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Abstract

This paper aims to investigate the class of fifth-order Korteweg–de Vries equations by
devising suitable novel hyperbolic and exponential ansatze. The class under
consideration is endowed with a time-fractional order derivative defined in the
conformable fractional derivative sense. We realize various solitons and solutions of
these equations. The fractional behavior of the solutions is studied comprehensively
by using 2D and 3D graphs. The results demonstrate that the methods mentioned
here are more effective in solving problems in mathematical physics and other
branches of science.
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1 Introduction

Nonlinear partial differential equations (PDEs) play a significant role in several scientific

and engineering fields [1–5]. Since the discovery of the soliton in 1965 by Zabusky and

Kruskal [6], many nonlinear PDEs have been derived and extensively applied in differ-

ent branches of physics and applied mathematics [7–17]. Nonlinear PDEs appear in con-

densed matter, solid state physics, fluid mechanics, chemical kinetics, plasma physics,

nonlinear optics, propagation of fluxion in Josephson junctions, ocean dynamics and

many others [18–27]. In order to understand the different nonlinear phenomena, various

methods for obtaining exact solutions to nonlinear PDEs have been proposed [28–31].

One of the most interesting evolution equations with a lot of applications in describing

different phenomena is the Korteweg–de Vries equation [32, 33]. This equation occurs

in different types, orders and lots of modifications [34–46]. Certain applications of the

equation are found in many fields including fluids dynamics, plasma physics and shallow

water and nonlinear waves processes, respectively. The main motivation of this work is to

study the fifth-order Korteweg–de Vries equation endowed with a time-fractional order

derivative in time that reads [47]

uα
t + au2ux + buxuxx + cuuxxx + duxxxxx = 0, (1)
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where α ∈ (0, 1] is the fractional order derivative and a, b, c and d are non-zero real con-

stants. The fractional order derivative α in the above equation is considered to be taken in

the recent conformable fractional derivative sense [48–50]. It is worth to be noticed that

the field of fractional calculus is an old area of research that has gained much interest in

the last few decades [51–56].

Many researchers have proposed various forms of Eq. (1) by suitably introducing differ-

ent values of the non-zero real constants a, b, c and d. Some of the famous examples with

fractional order derivatives in time include [47]:

1) The fractional Sawada–Kotera equation

uα
t + 45u2ux + 15uxuxx + 15uuxxx + uxxxxx = 0, (2)

2) the fractional Caudrey–Dodd–Gibbon equation

uα
t + 180u2ux + 30uxuxx + 30uuxxx + uxxxxx = 0, (3)

3) the fractional Lax equation

uα
t + 30u2ux + 30uxuxx + 10uuxxx + uxxxxx = 0, (4)

4) the fractional Kaup–Kuperschmidt equation

uα
t + 20u2ux + 25uxuxx + 10uuxxx + uxxxxx = 0, (5)

and

5) the fractional Ito equation

uα
t + 2u2ux + 6uxuxx + 3uuxxx + uxxxxx = 0. (6)

However, we tackle in this paper the class of time-conformable fractional fifth-order

Korteweg–de Vries equations given in Eqs. (2)–(6) by devising suitable novel hyperbolic

and exponential ansatze. The essential advantage of these techniques over the othermeth-

ods in the literature is that they present novel explicit analytical wave solutions including

many real free parameters. The closed-form wave answers of nonlinear PDEs have a sig-

nificant meaning revealing the interior working of the physical phenomena. Furthermore,

the calculations in these methods are very simple and vital in presenting new solutions

compared with the steps in other approaches.

In doing so, various solitons and solutions of the equations will be realized and further

depicted graphically to confirm their shapes. One can well see various analytical and nu-

merical methods used in tackling different forms of the Korteweg–de Vries equations and

evolution equations in the papers cited above and also in [57–61]. The current paper is or-

ganized as follows: Sect. 2 presents some preliminaries about the conformable fractional

derivative. Section 3 gives the concept of the methodology. Section 4 is reserved for the

application. Section 5 gives some graphical results and a discussion. Finally, Sect. 6 gives

the conclusion.
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2 Fractional conformable derivative

Definition 1 ([48]) Let u : [0,∞) → R be a real-valued function. The fractional con-

formable derivative of order α for u(t) is defined by

Dα
t

(

u(t)
)

= lim
δ→0

(

u(t + δt1–α) – u(t)

δ

)

, t > 0,α ∈ (0, 1]. (7)

Theorem 1 ([48]) Suppose v(t) and w(t) are α-differentiable for α ∈ (0, 1] and t > 0, then

(a) Dα
t (t

n) = ntn–α , ∀n ∈R,

(b) Dα
t (C) = 0, ∀C ∈R,

(c) Dα
t (xv(t) + yw(t)) = xDα

t v(t) + yDα
t w(t), ∀x, y ∈R,

(d) Dα
t (v(t)w(t)) = v(t)Dα

t (w(t)) +w(t)Dα
t (v(t)),

(e) Dα
t (

v(t)
w(t)

) = 1
w2(t)

(w(t)Dα
t v(t) – v(t)Dα

t w(t)), w(t) �= 0,

(f ) Importantly, if the first derivative of v(t) exists, then

Dα
t v(t) = t1–α dv

dt
. (8)

Theorem 2 ([48]) Let it be given that v(t) is α-differentiable for α ∈ (0, 1]. Let w(t) be a

differentiable function defined in the range of v(t), then

Dα
t

(

v(t) ◦w(t)
)

= t1–αw′(t)v′(w(t)
)

. (9)

The proof of Theorem 1 and Theorem 2 can be found in [48].

3 The hyperbolic and exponential ansatz methods

We consider the nonlinear time-fractional differential equation of the form

P
(

u,Dα
t u,Dxu,D

2α
tt u,Dxxu,D

α
t Dxu, . . .

)

= 0, (10)

where α ∈ (0, 1] is the fractional order derivative. Further, we make use of the following

transformations:

u(x, t) = v(ξ ), ξ = f

(

x,
tα

α

)

, (11)

where f is a function of x and t, depending on the application.Moreover, we derive the fol-

lowing hyperbolic (see periodic ansatze in [35]) and exponential [41] ansatze for transfor-

mations for the fractional fifth-order Korteweg–de Vries equation under consideration.

1) Hyperbolic ansatz method

v(ξ ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

A0 +A1 sech
2(ξ ), bright soliton solution,

A0 +A1 tanh
2(ξ ), dark soliton solution,

A0 +A1 csch
2(ξ ), singular soliton solution,

A0 +A1 coth
2(ξ ), singular soliton solution.

(12)
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2) Exponential ansatz method

v(ξ ) = A1 +A2

eξ

(1 + eξ )2
, (13)

where A0, A1 �= 0 and A2 �= 0 are non-zero constants to be determined. Substituting

either Eq. (12) or (13) as the case maybe into Eq. (10) and retaining the relevant

coefficients in ξ , we get a system of algebraic equations. This system of equations will

then be solved simultaneously to determine the unknowns with the help of computer

software to obtain the solutions of Eq. (10).

4 Application

In this section,we employ the presented hyperbolic and exponential ansatz functionmeth-

ods to construct bright soliton solutions, dark soliton solutions, singular soliton solutions

and exponential solutions for the class of fractional fifth-order Korteweg–de Vries equa-

tions under consideration.

4.1 The fractional Sawada–Kotera equation

4.1.1 Bright soliton solution

Let A0,A1 �= 0,k, s and w be arbitrary constants. Then we assume a bright soliton solution

of the form

u(x, t) = A0 +A1 sech
2(ξ ), ξ = sx – k

tα

α
+w. (14)

Substituting Eq. (14) into (2) and simplify as explained in Sect. 3, we get the following

system of algebraic equations:

–2A1k + 32A1s
5 + 120A0A1s

3 + 90A2
0A1s = 0,

–480A1s
5 + 240A2

1s
3 – 360A0A1s

3 + 180A0A
2
1s = 0,

720A1s
5 – 540A2

1s
3 + 90A3

1s = 0. (15)

Solving the above system gives

A0 =
±

√
5
√
ks + 4s6 – 10s3

15s
, A1 = 2s2, (16)

which yields the following bright soliton solution:

u1(x, t) =
±

√
5
√
ks + 4s6 – 10s3

15s
+ 2s2 sech

2

(

sx – k
tα

α
+w

)

. (17)

4.1.2 Dark soliton solution

Let A0,A1 �= 0,k, s and w be arbitrary constants. Then we assume a bright soliton solution

of the form

u(x, t) = A0 +A1 tanh
2(ξ ), ξ = sx – k

tα

α
+w. (18)
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Inserting Eq. (18) into (2), we get the following system of algebraic equations:

2A1k – 272A1s
5 – 60A2

1s
3 + 240A0A1s

3 – 90A2
0A1s = 0,

–2A1k + 1232A1s
5 + 540A2

1s
3 – 600A0A1s

3 – 180A0A
2
1s + 90A2

0A1s = 0,

–1680A1s
5 – 1020A2

1s
3 + 360A0A1s

3 – 90A3
1s + 180A0A

2
1s = 0,

720A1s
5 + 540A2

1s
3 + 90A3

1s = 0. (19)

Solving the above system gives

A0 =
20s3 ±

√
5
√
ks + 4s6

15s
, A1 = –2s2, (20)

which yields the following dark soliton solution:

u2(x, t) =
20s3 ±

√
5
√
ks + 4s6

15s
– 2s2 tanh

2

(

sx – k
tα

α
+w

)

. (21)

4.2 The fractional Caudrey–Dodd–Gibbon equation

4.2.1 Singular soliton solutions

Let A0,A1 �= 0, s,k and w be arbitrary constants. We have the following two cases:

Case (I). Assume a singular soliton solution of the form

u(x, t) = A0 +A1 csch
2(ξ ), ξ = sx – k

tα

α
+w. (22)

Inserting Eq. (22) into (3), we get the following system of algebraic equations:

A1k – 32A1s
5 – 240A0A1s

3 – 360A2
0A1s = 0,

–480A1s
5 – 480A2

1s
3 – 720A0A1s

3 – 720A0A
2
1s = 0,

–720A1s
5 – 1080A2

1s
3 – 360A3

1s = 0. (23)

Thus, solving the above system gives

A0 =
±

√
5
√
ks + 4s6 – 10s3

30s
, A1 = –s2, (24)

which yields the following singular soliton solution:

u3(x, t) =
±

√
5
√
ks + 4s6 – 10s3

30s
– s2 Csch

2

(

sx – k
tα

α
+w

)

. (25)

Case (II). Assume a singular soliton solution of the form

u(x, t) = A0 +A1 coth
2(ξ ), ξ = sx – k

tα

α
+w. (26)

Inserting Eq. (26) into (3), we get the following system of algebraic equations:

2A1k – 272A1s
5 – 120A2

1s
3 + 480A0A1s

3 – 360A2
0A1s = 0,
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–2A1k + 1232A1s
5 + 1080A2

1s
3 – 1200A0A1s

3 – 720A0A
2
1s + 360A2

0A1s = 0,

–1680A1s
5 – 2040A2

1s
3 + 720A0A1s

3 – 360A3
1s + 720A0A

2
1s = 0,

720A1s
5 + 1080A2

1s
3 + 360A3

1s = 0. (27)

Thus, solving the above system gives

A0 =
20s3 ±

√
5
√
ks + 4s6

30s
, A1 = –s2, (28)

which yields the following singular soliton solution:

u4(x, t) =
20s3 ±

√
5
√
ks + 4s6

30s
– s2 coth

2

(

sx – k
tα

α
+w

)

. (29)

4.3 The fractional Lax equation

4.3.1 Bright soliton solution

Let A0,A1 �= 0, s,k and w be arbitrary constants. Assume a bright soliton solution of the

form

u(x, t) = A0 +A1 sech
2(ξ ), ξ = sx – k

tα

α
+w. (30)

Substituting Eq. (30) into (4), we get the following system of algebraic equations:

–2A1k + 32A1s
5 + 80A0A1s

3 + 60A2
0A1s = 0,

–480A1s
5 + 320A2

1s
3 – 240A0A1s

3 + 120A0A
2
1s = 0,

720A1s
5 – 600A2

1s
3 + 60A3

1s = 0. (31)

Thus, solving the above system gives

A0 =
1

3

(

±
√
13s2 – 5s2

)

, A1 = ∓
√
13s2 + 5s2, k = 4

(

∓5
√
13s5 + 19s5

)

, (32)

which yields the following bright soliton solution:

u5(x, t) =
1

3

(

±
√
13s2 – 5s2

)

+
(

∓
√
13s2 + 5s2

)

sech
2

(

sx – k
tα

α
+w

)

. (33)

4.3.2 Dark soliton solution

Let A0,A1 �= 0, s,k and w be arbitrary constants. Let us assume a bright soliton solution in

the form

u(x, t) = A0 +A1 tanh
2(ξ ), ξ = sx – k

tα

α
+w. (34)

Substituting Eq. (34) into (4), we get the following system of algebraic equations:

2A1k – 272A1s
5 – 120A2

1s
3 + 160A0A1s

3 – 60A2
0A1s = 0,

–2A1k + 1232A1s
5 + 760A2

1s
3 – 400A0A1s

3 – 120A0A
2
1s + 60A2

0A1s = 0,
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–1680A1s
5 – 1240A2

1s
3 + 240A0A1s

3 – 60A3
1s + 120A0A

2
1s = 0,

720A1s
5 + 600A2

1s
3 + 60A3

1s = 0. (35)

Thus, solving the above system gives

A0 =
2

3

(

±
√
13s2 + 5s2

)

, A1 = –
√
13s2 ∓ 5s2, k = 4

(

∓5
√
13s5 + 19s5

)

, (36)

which yields the following dark soliton solution:

u6(x, t) =
2

3

(

±
√
13s2 + 5s2

)

+
(

∓5
√
13s5 + 19s5

)

tanh
2

(

sx – k
tα

α
+w

)

. (37)

4.4 The fractional Kaup–Kuperschmidt equation

4.4.1 Exponential solution

Let A1,A2 �= 0,k and c be arbitrary constants. We assume an exponential solution in the

form

u(x, t) = A1 +A2

eξ

(1 + eξ )2
, ξ = k

(

x – c
tα

α

)

. (38)

Substituting Eq. (38) into (5), we get the following system of algebraic equations:

20A2
1A2k + 10A1A2k

3 –A2ck +A2k
5 = 0,

60A2
1A2k + 40A1A

2
2k – 90A1A2k

3 + 35A2
2k

3 – 3A2ck – 57A2k
5 = 0,

40A2
1A2k + 40A1A

2
2k – 100A1A2k

3 + 20A3
2k – 235A2

2k
3 – 2A2ck + 302A2k

5 = 0,

–40A2
1A2k – 40A1A

2
2k + 100A1A2k

3 – 20A3
2k + 235A2

2k
3 + 2A2ck – 302A2k

5 = 0,

–60A2
1A2k – 40A1A

2
2k + 90A1A2k

3 – 35A2
2k

3 + 3A2ck + 57A2k
5 = 0,

–20A2
1A2k – 10A1A2k

3 +A2ck –A2k
5 = 0. (39)

Thus, solving the above system gives

⎧

⎨

⎩

Case one: A1 = –k2, A2 = 12k2, c = 11k4,

Case two: A1 = – k2

8
, A2 =

3k2

2
, c = k4

16
,

(40)

which yield the following solutions:

u7(x, t) = –k2 +
12k2ek(x–11k

4 tα

α )

(1 + ek(x–11k
4 tα

α ))2
, (41)

or

u8(x, t) = –
k2

8
+

3k2ek(x–
k4

16
tα

α )

2(1 + ek(x–
k4

16
tα
α ))2

. (42)
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4.5 The fractional Ito equation

4.5.1 Exponential solution

Let A1,A2 �= 0,k and c be arbitrary constants. Assume we have an exponential solution in

the form

u(x, t) = A1 +A2

eξ

(1 + eξ )2
, ξ = k

(

x – c
tα

α

)

. (43)

Substituting Eq. (43) into (6), we get the following system of algebraic equations:

2A2
1A2k –A2ck + 3A1A2k

3 +A2k
5 = 0,

6A2
1A2k + 4A1A

2
2k – 3A2ck – 27A1A2k

3 + 9A2
2k

3 – 57A2k
5 = 0,

4A2
1A2k + 4A1A

2
2k + 2A3

2k – 2A2ck – 30A1A2k
3 – 63A2

2k
3 + 302A2k

5 = 0,

–4A2
1A2k – 4A1A

2
2k – 2A3

2k + 2A2ck + 30A1A2k
3 + 63A2

2k
3 – 302A2k

5 = 0,

–6A2
1A2k – 4A1A

2
2k + 3A2ck + 27A1A2k

3 – 9A2
2k

3 + 57A2k
5 = 0,

–2A2
1A2k +A2ck – 3A1A2k

3 –A2k
5 = 0. (44)

Thus, solving the above system gives

A1 = –
5k2

2
, A2 = 30k2, c = 6k4, (45)

which yield the following solutions:

u9(x, t) = –
5k2

2
+

30k2ek(x–6k
4 tα

α )

(1 + ek(x–6k
4 tα

α ))2
. (46)

5 Graphical results and discussion

In this section, we give some graphical depictions to some of the acquired solutions us-

ing the devised hyperbolic and exponential ansatz methods for the class of fifth-order

Korteweg–de Vries equations under consideration. Both the 2-dimensional and the 3-

dimensional plots are presented. Based on the ansatz methods devised, we have con-

structed bright and dark soliton solutions for the fractional Sawada–Kotera equation in

Eqs. (17) and (21); singular soliton solutions for the fractional Caudrey–Dodd–Gibbon

in equations (25) and (29); bright and dark soliton solutions for the fractional Lax equa-

tion in Eqs. (33) and (37); exponential solutions for the fractional Kaup–Kuperschmidt in

Eqs. (41) and (42); and finally the exponential solution for the fractional Ito in Eq. (46). In

Fig. 1, we plot the dark soliton solution of the fractional Sawada–Kotera equation given

in equation (19). In Fig. 2, we plot the singular solution of the fractional Caudrey–Dodd–

Gibbon given in Eq. (25). In Fig. 3, we plot the exponential solution of the fractional Kaup–

Kuperschmidt equation given in Eqs. (36). In these figures, we study the effect of the frac-

tion order on the variation of the wave displacement. Figures 1 and 3 cleanly show bell-

shaped solution, while Fig. 2 gives a singular solution representation.

In Figs. 1–3, the fractional order α clearly affected on the propagating of wave solution

in which the amplitude is increased with the increase of α.
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Figure 1 Graphical depiction of the solution given in Eq. (21) when k = 2, s = 0.8, w = 0.1

Figure 2 Graphical depiction of the solution given in Eq. (29) when k = 2, s = 0.8, w = 1

Figure 3 Graphical depiction of the solution given in Eq. (42) when k = 2

6 Conclusion

In summary, the present paper investigates a well-known class of fifth-order Korteweg–de

Vries equations by devising novel hyperbolic and exponential ansatze in the presence of a

time-fractional order derivative. The fractional derivative is considered to be taken in the

sense of the conformable fractional derivative. Various solitons and solutions of the equa-

tions including bright solitons, dark solitons, singular solitons and certain exponential

solutions have been realized in the study. We finally depict some of the obtained solutions
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graphically and conclude that similar considerations of various evolution equations can

be done using the devised ansatze.
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