〕Open access • Journal Article • DOI:10.1007/S00401-018-1849-4

Novel, improved grading system(s) for IDH-mutant astrocytic gliomas

- Source link

Mitsuaki Shirahata, Mitsuaki Shirahata, Takahiro Ono, Takahiro Ono ...+59 more authors
Institutions: University Hospital Heidelberg, Saitama Medical University, Akita University, German Cancer Research Center ...+8 more institutions

Published on: 23 Apr 2018 - Acta Neuropathologica (Springer Berlin Heidelberg)
Topics: Diffuse Astrocytoma, Astrocytic Tumor, Anaplastic astrocytoma, Neoplasm Grading and Astrocytoma

Related papers:

- The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary.
- Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas.
- The 2007 WHO Classification of Tumours of the Central Nervous System
- Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma.
- cIMPACT-NOW Update 3: Recommended diagnostic criteria for "Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV"

Share this paper: 9 in \square
View more about this paper here: https://typeset.io/papers/novel-improved-grading-system-s-for-idh-mutant-astrocytic$27 x c 1 s z f 3 g$

Zurich Open Repository and Archive
University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Novel, improved grading system(s) for IDH-mutant astrocytic gliomas

Shirahata, Mitsuaki ; Ono, Takahiro ; Stichel, Damian ; et al ; Weller, Michael

Abstract

According to the 2016 World Health Organization Classification of Tumors of the Central Nervous System (2016 CNS WHO), IDH-mutant astrocytic gliomas comprised WHO grade II diffuse astrocytoma, IDH-mutant (AII), WHO grade III anaplastic astrocytoma, IDH-mutant (AAIII), and WHO grade IV glioblastoma, IDH-mutant (GBM). Notably, IDH gene status has been made the major criterion for classification while the manner of grading has remained unchanged: it is based on histological criteria that arose from studies which antedated knowledge of the importance of IDH status in diffuse astrocytic tumor prognostic assessment. Several studies have now demonstrated that the anticipated differences in survival between the newly defined AII and AAIII have lost their significance. In contrast, GBM still exhibits a significantly worse outcome than its lower grade IDH-mutant counterparts. To address the problem of establishing prognostically significant grading for IDH-mutant astrocytic gliomas in the IDH era, we undertook a comprehensive study that included assessment of histological and genetic approaches to prognosis in these tumors. A discovery cohort of 211 IDH-mutant astrocytic gliomas with an extended observation was subjected to histological review, image analysis, and DNA methylation studies. Tumor group-specific methylation profiles and copy number variation (CNV) profiles were established for all gliomas. Algorithms for automated CNV analysis were developed. All tumors exhibiting 1p/19q codeletion were excluded from the series. We developed algorithms for grading, based on molecular, morphological and clinical data. Performance of these algorithms was compared with that of WHO grading. Three independent cohorts of 108, 154 and 224 IDH-mutant astrocytic gliomas were used to validate this approach. In the discovery cohort several molecular and clinical parameters were of prognostic relevance. Most relevant for overall survival (OS) was CDKN2A/B homozygous deletion. Other parameters with major influence were necrosis and the total number of CNV. Proliferation as assessed by mitotic count, which is a key parameter in 2016 CNS WHO grading, was of only minor influence. Employing the parameters most relevant for OS in our discovery set, we developed two models for grading these tumors. These models performed significantly better than WHO grading in both the discovery and the validation sets. Our novel algorithms for grading IDH-mutant astrocytic gliomas overcome the challenges caused by introduction of IDH status into the WHO classification of diffuse astrocytic tumors. We propose that these revised approaches be used for grading of these tumors and incorporated into future WHO criteria.

DOI: https://doi.org/10.1007/s00401-018-1849-4

Shirahata, Mitsuaki; Ono, Takahiro; Stichel, Damian; et al; Weller, Michael (2018). Novel, improved grading system(s) for IDH-mutant astrocytic gliomas. Acta Neuropathologica, 136(1):153-166.
DOI: https://doi.org/10.1007/s00401-018-1849-4

Novel, improved grading system(s) for IDH-mutant astrocytic gliomas

Mitsuaki Shirahata ${ }^{1,2, \star}$, Takahiro Ono ${ }^{1,3, *}$, Damian Stichel ${ }^{4, *}$, Daniel Schrimpf ${ }^{1,4}$, David E. Reuss ${ }^{1,4}$, Felix Sahm ${ }^{1,4}$, Christian Koelsche ${ }^{1,4}$, Annika Wefers ${ }^{1,4}$, Annekathrin Reinhardt ${ }^{1,4}$, Kristin Huang ${ }^{1,4}$, Philipp Sievers ${ }^{1,4}$,Hiroaki Shimizu ${ }^{3}$, Hiroshi Nanjo ${ }^{5}$, Yusuke Kobayashi ${ }^{2}$, Yuhei Miyake ${ }^{2}$, Tomonari Suzuki ${ }^{2}$, Jun-ichi Adachi ${ }^{2}$, Kazuhiko Mishima ${ }^{2}$, Atsushi Sasaki ${ }^{6}$, Ryo Nishikawa ${ }^{2}$, Melanie Bewerunge-Hudler ${ }^{7}$, Marina Ryzhova ${ }^{8}$, Oksana Absalyamova ${ }^{8}$, Andrey Golanov ${ }^{8}$, Peter Sinn ${ }^{9}$, Michael Platten ${ }^{10}$, Christine Jungk ${ }^{11}$, Frank Winkler ${ }^{12}$, Antje Wick ${ }^{12}$, Daniel Hänggi ${ }^{13}$, Andreas Unterberg ${ }^{11}$, Stefan M. Pfister ${ }^{14,15, ~ 16}$, David T. W. Jones ${ }^{14,15}$, Martin van den Bent ${ }^{17}$, Monika Hegi ${ }^{18}$, Pim French ${ }^{17}$, Brigitta G. Baumert ${ }^{19}$, Roger Stupp ${ }^{20}$, Thierry Gorlia ${ }^{21}$, Michael Weller ${ }^{22}$, David Capper ${ }^{23}$, Andrey Korshunov ${ }^{1,4}$, Christel Herold-Mende ${ }^{11}$, Wolfgang Wick ${ }^{12}$, David N. Louis ${ }^{24}$, Andreas von Deimling 1,4,
${ }^{1}$ Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
${ }^{2}$ Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Hidaka, Japan
${ }^{3}$ Department of Neurosurgery, Akita University Graduate School of Medicine, Akita, Japan
${ }^{4}$ Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg, Germany
${ }^{5}$ Akita University Hospital Division of Clinical Pathology, Akita, Japan
Medical Center, Hidaka, Japan
${ }^{6}$ Department of Pathology, Saitama Medical University International Medical Center, Hidaka, Japan
${ }^{7}$ Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
${ }^{8}$ NN Burdenko Neurosurgical Institute, 5-th Tverskaya_Yamskaya str. 16 Moscow, Russia
${ }^{9}$ Department of Pathology, University Hospital Heidelberg, Heidelberg, Germany
${ }^{10}$ Department of Neurology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
${ }^{11}$ Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
${ }^{12}$ Department of Neurology, Heidelberg University Hospital, Heidelberg, and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg, Germany
${ }^{13}$ Department of Neurosurgery, University Medical Center Mannheim, University of Heidelberg
${ }^{14}$ Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ)
${ }^{15}$ Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
${ }^{16}$ Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
${ }^{17}$ The Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, The Netherlands
${ }^{18}$ Laboratory of Brain Tumor Biology and Genetics, Neuroscience Research Center, Lausanne University Hospital, Lausanne, and Division of Neurosurgery, Lausanne University Hospital, Lausanne, Switzerland
${ }^{19}$ Department of Radiation-Oncology (MAASTRO Clinic) \& GROW (School for Oncology), Maastricht University Medical Centre, Maastricht, The Netherlands
${ }^{20}$ Malnati Brain Tumor Institute of the Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
${ }^{21}$ EORTC Headquarter, Brussels, Belgium
${ }^{22}$ Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland ${ }^{23}$ Department of Neuropathology, University Hospital Heidelberg, ,and German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ) Heidelberg, and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neuropathology
${ }^{24}$ Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA

* The first three authors have contributed equally

Corresponding author
Andreas von Deimling
Department for Neuropathology and CCU Neuropathology
University of Heidelberg and DKFZ
Im Neuenheimer Feld 224
69120 Heidelberg
Fon: +49-6221-56 4650
Fax: +49-6221-56 4566
andreas.vondeimling@med.uni-heidelberg.de

Summary

According to the 2016 World Health Organization Classification of Tumors of the Central Nervous System (2016 CNS WHO), IDH-mutant astrocytic gliomas are comprised of WHO grade II diffuse astrocytoma, IDH-mutant (All ${ }_{\text {IDHmut }}$), WHO grade III anaplastic astrocytoma, IDH-mutant (AAIIIIDHmut), and WHO grade IV glioblastoma, IDH-mutant (GBMIDHmut). Notably, IDH gene status has been made the major criterion for classification while the manner of grading has remained unchanged: it is based on histological criteria that arose from studies which antedated knowledge of the importance of IDH status in diffuse astrocytic tumor prognostic assessment. Several studies have now demonstrated that the anticipated differences in survival between the newly defined All ${ }_{I D H m u t}$ and AAlll|lohmut have lost their significance. In contrast, GBM ${ }_{\text {IDHmut }}$ still exhibits a significantly worse outcome than its lower grade IDH-mutant counterparts. To address the problem of establishing prognostically significant grading for IDH-mutant astrocytic gliomas in the IDH era, we undertook a comprehensive study that included assessment of histological and genetic approaches to prognosis in these tumors. A discovery cohort of 211 IDH-mutant astrocytic gliomas with an extended observation was subjected to histological review, image analysis, and DNA methylation studies. Tumor group-specific methylation profiles and copy number variation profiles (CNV) were established for all gliomas. Algorithms for automated CNV analysis were developed. All tumors exhibiting 1p/19q codeletion were excluded from the series. We developed algorithms for grading, based on molecular, morphological and clinical data. Performance of these algorithms was compared with that of WHO grading. Three independent cohorts of 108, 154 and 224 IDH-mutant astrocytic gliomas were used to validate this approach. In the discovery cohort several molecular and clinical parameters were of prognostic relevance. Most relevant for overall survival (OS) was CDKN2A/B homozygous deletion. Other parameters with major influence were necrosis and the total number of CNV. Proliferation as assessed by mitotic count, which is a key parameter in 2016 CNS WHO grading, was of only minor influence. Employing the parameters most relevant for OS in our discovery set, we developed two models for grading these tumors. These models performed significantly better than WHO grading in both the discovery and the validation sets. Our novel algorithms for grading IDH-mutant astrocytic gliomas overcome the challenges caused by introduction of IDH status into the WHO classification of diffuse astrocytic tumors. We propose that these revised approaches be used for grading of these tumors and incorporated into future WHO criteria.

Keywords:

Astrocytoma, Glioblastoma, IDH, grading, CDKN2A/B

Introduction

Diffuse astrocytic gliomas are the most common brain tumors of adults and their grading has therefore been of considerable significance in the management of patients with brain tumors. As a result, over the years, these tumors have been graded according to various systems, each representing an advance over prior approaches. These have included the Kernohan scheme, the St. Anne-Mayo system and, for the past 25 years, primarily the WHO classification $[8,12,13]$. These schemes often resulted in patient groups with significantly varying prognoses that received treatments of differing intensity. In recent years the WHO classification scheme based on early work from Zulch [38] and regarding astrocytic gliomas from Burger [3] has been most widely used [13,14].

IDH1 and IDH2 mutations have emerged as early mutations in diffuse astrocytic tumors [2,21,35,37], and determination of the IDH status by immunohistochemistry [6] or sequencing has now become a standard in the diagnosis of these tumors. The 2016 WHO Classification Of Tumors Of The Central Nervous System [14] introduced molecular parameters for the categorization of diffuse astrocytomas, notably IDH mutation status [14]. In fact, determination of IDH and 1p/19q status is mandatory for diagnosing beyond NOS (not otherwise specified) categories. However, applying the new classification parameters results in patient groups that are different from those classified prior to the 2016 CNS WHO (e.g. according to the 2007 CNS WHO). From the former group of diffuse WHO grade II and III astrocytomas, approximately 70% to 80% now are classified as diffuse astrocytoma, IDHmutant (All ${ }_{\text {DDHmut }}$) and anaplastic astrocytoma, IDH-mutant (AAIll ${ }_{\text {IDHmut }}$) while 20\% to 30\% are classified as diffuse astrocytoma, IDH-wildtype (All IDHwt) and anaplastic astrocytoma, IDHwildtype (AAlll|DHwt). In turn, the shifting of diagnostic groups has prognostic implications. For example, multiple studies have demonstrated a close relationship between many
All|IDHw/AAlll|IDHwt to glioblastoma, IDH-wildtype (GBM IDHwt [4,27,33]. In fact, prior to the 2016 CNS WHO the prognostic power of grading parameters for diffuse astrocytoma WHO grade II (All ${ }_{\text {NOS }}$) and anaplastic astrocytoma WHO grade III (AAIII ${ }_{\text {NOS }}$) were most likely a result of considerable contamination with unrecognized GBM ${ }_{\text {IDHwt }}$ [34]. In addition, a series of recent studies have highlighted that WHO grading of All IDHmut/AAlll IDHmut has lost its prognostic relevance $[4,18,20,22,28,33,34]$. Given the clinical importance of appropriate grading, the potential prognostic changes brought about by the 2016 CNS WHO classification pose a major challenge. We therefore sought to establish novel, improved grading criteria for IDHmutant astrocytic gliomas.

Methods

Study design and participants

For this multicenter retrospective analysis we collected a discovery series of 211 astrocytic tumors. We defined the following criteria for inclusion: 1) all tumors had either an IDH1 or an IDH2 mutation; 2) all tumors had a 2016 CNS WHO integrated diagnosis of All ${ }_{\text {IDHmut }}(\mathrm{n}=54)$, AAIII ${ }_{\text {IDHmut }}(n=90)$ or GBM $_{\text {IDHmut }}(n=67)$, i.e., no tumors had 1p/19q codeletion; 3) sufficient formalin-fixed, paraffin-embedded (FFPE) material for morphological and additional molecular analyses was available; and 4) the patients had an extended follow up. Tumor material was from the archive of the Department of Neuropathology, University of Heidelberg, Heidelberg, Germany and from patients enrolled in the NOA04 trial [36]. Use of tissue and clinical data was in accordance with local ethical regulations.

Three validation series were compiled. The first validation series from Heidelberg (HD) containing 108 tumors differed from the discovery set only in that sufficient material for the complete set of analyses performed on the discovery set was not available. The HD validation series contained $\operatorname{All}_{I_{D H}}(n=32)$, AAIIIIDHmut $(n=29)$ and $\operatorname{GBM}_{I D H m u t}(n=47)$. In this set diagnosis and grading according to the guidelines of the 2016 CNS WHO was performed (AvD). The second validation set from the European Organization for Research and Treatment of Cancer (EORTC) contained 154 cases and was compiled from patients of the EORTC studies 22033 (64 cases), 26091 (80 cases) and 26981 (10 cases) with Illumina 450 k or $850 \mathrm{k} /$ EPIC data being available. All patients in this set also had an IDH mutation and none of the tumors harbored a $1 \mathrm{p} / 19 \mathrm{q}$ codeletion. The EORTC validation series contained All $_{\text {IDHmut }}(n=94)$, AAlll|IDHmut $(n=39)$ and $\operatorname{GBM}_{\text {IDHmut }}(n=21)$. In this set diagnosis and grading according to the guidelines of the 2016 CNS WHO was performed by reference centers. The third validation set from The Cancer Genome Atlas consortium (TCGA) contained 224 cases and was retrieved from published data. In this set diagnosis and grading was obtained from the source. Methylome data based on Illumina 450k array was available for all of these cases. All cases in this set had an IDH mutation as provided by TCGA. and none contained a $1 \mathrm{p} / 19 \mathrm{q}$ codeletion as assessed by copy number profiles which were calculated from the DNA methylation data. Clinical data were known to the local investigators (MS, TO, DSt, DSc, AvD). Cases from the HD validation set also were reviewed by the same neuropathologist (AvD). Clinical data from the HD validation set were known to the lead authors. Clinical data from the EORTC validation set were not known to the lead authors. Clinical data for the TCGA validation set were open access. The institutional funding of this study did not influence study design, inclusion criteria, analyses or interpretation of the data. MS, TO, DSt,

DSc and AvD had full access to all raw data except for the EORTC series and had final responsibility for the decision to submit for publication.

Procedures

For the discovery set, $4 \mu \mathrm{~m}$-sections were cut from FFPE blocks from all tumors and stained with hematoxylin/eosin, and examined by immunohistochemistry with antibodies against IDHR132H (clone H09, Dianova, Hamburg, Germany), Ki-67 (clone MIB-1, Dako, Waldbronn, Germany) or pHH3 (rabbit polyclonal,BioCare Medical, Pacheco, USA) to determine proliferation and CD31 (clone JC70A, Dako, Waldbronn, Germany) to determine vascular density.

All tumor samples were analyzed by Illumina HumanMethylation450 (450k) or MethylationEPIC (850k) arrays (Illumina, San Diego, CA, USA) as previously described [32]. Methylation data were analyzed by a classifier as previously reported [5]. CNV plots were generated using the R/Bioconductor package conumee version 1.6.0. Automated assessment of copy-number changes was performed using a proprietary algorithm (Stichel D and colleagues, unpublished). This allowed determining CNV load (CNV-L) for each tumor. The discovery set was subjected to digital image analysis. Parameters assessed included cell count, proliferation activity and microvessel density. The software package Aperio ImageScope was employed for proliferation and microvessel density analysis. The software packages Ilastik [31] and ImageJ [30] were used for cell count analysis. To receive subgroups with distinct OS, conditional trees were created applying the function ctree from the R package party on the discovery set and a set of selected input variables. Here, the global null hypothesis of independence between any of the input variables and the OS was tested. If it couldn't be rejected, the association of any single input variable with the response was computed as p-value from a test for the partial null hypothesis of the variable and OS. The input variable with the highest association to OS was selected and a binary split in this variable was created. This procedure was then repeated to create conditional trees. To create Model $_{\text {path }}$ all parameters received from molecular analyses but CDKN2A/B status were excluded. Kaplan-Meier estimators were computed using the function survfit from the R package survival. All parameters assessed are listed in table 1.

Numerical alterations of several genes with established relevance for astrocytic gliomas-comprising CCND1, CCND2, CDK4, CDK6, CDKN2A/B, EGFR, MDM4, MET, MYC, MYCN, NF1, NF2, PDGFR2, PPM1D, PTEN, RB1 and SMARCB1-- were evaluated by visual assessment of copy number profiles and by employing our proprietary algorithm. Our series are based on visual assessment for CDKN2A/B analysis. With the cutoff selected in our series, visual and algorithm driven $C D K N 2 A / B$ evaluation produced the same number of cases scored as having a homozygous deletion. The respective genes and cutoff values are given in table 2.

Statistical analysis

All patient sets were retrospectively compiled. The size of the respective sets was determined by availability of data and not by a power calculation. OS times were analyzed by the Kaplan-Meier method and compared with a log-rank test. Prediction error plots were based on Brier scores. P values less than 0.05 were considered significant. Software R version 3.4 and packages survival and party were employed for analysis

Results

Series validation and determination of histologic and molecular features associated with OS

On the basis of histological review, all tumors in the discovery set were confirmed to be diffuse astrocytic gliomas. Classification according to the 2016 CNS WHO revealed three distinct groups, All|ldmut, AAll| $\left.\right|_{\mid D H m u t}$ or GBM|DHmut, with significantly different OS (figure 1a). The IDH status was determined by IHC with H 09 [6] or by Sanger sequencing. All immunonegative samples have been subjected to sequencing. IDH status was also confirmed by performing 450k/EPIC analysis and receiving the readout of "methylation group astrocytoma IDH mutant" by a recently developed and published classifier tool [5] which predicts IDH-mutant astrocytoma with very high specificity and sensitivity. Further, combined $1 p / 19 q$ deletion was excluded for every tumor based on analysis of the copy number profile (CNP) generated from 450k/EPIC data. Therefore, our series included exclusively AlliDHmut, AAlll ${ }_{\text {IDHmut }}$ or GBMIDHmut, in full agreement with 2016 CNS WHO classification criteria. In the discovery set of 211 patients, 135 were still alive at the time of last follow-up. Median follow up in these 135 patients was 1772 days (4.9 years); average follow was 2086 days (5.7 years).
The morphological parameters of strongest negative prognostic value were vascular proliferation ($\mathrm{p}<0.0005$) and necrosis ($\mathrm{p}<0.00005$). Patients aged 55 and older did worse ($p<0.04$) than patients aged below this cutoff confirming the influence of age on OS. Female patients fared significantly ($p=0.01$) better than male patients. Image analysis showed that cellularity had a major association with OS. Cell count defined as number of tumor cells per square millimeter in the tumor area of highest density emerged as an important parameter for prognostic evaluation. Patients with a cell density of $4605 / \mathrm{mm}^{2}$ or more fared worse than patients with 4604 or fewer tumor cells $/ \mathrm{mm}^{2}$ ($\mathrm{p}<0.002$) Ki-67 immunohistochemistry was significantly associated with worse OS (cutoff 14.5%; $p<0.006$), however, mitotic count established by assessing sections treated with pHH 3 antibody was not prognostic. (table 1). While pHH3 has been established as a reliable marker for assessing mitotic activity, those studies have mainly been performed prior to further stratification of diffuse astrocytomas by IDH status [7]. In a recent study on IDH-mutant diffuse glioma, pHH 3 was found to reliably detect mitotic figures but turned out with a weaker association with survival that Ki-67 [10]. EPIC- or 450k array data were employed to assess several parameters: this included analysis by the brain tumor classifier tool [5] for the confirmation of IDH mutations and evaluation of individual copy number status. Copy number plots were evaluated for amplifications or homozygous deletions, respectively. In the discovery set regions with such alterations contained CCND1, CCND2, CDK4, CDK6, CDKN2A/B, EGFR, MDM4, MET,

MYC, MYCN, NF1, NF2, PDGFR2, PPM1D, PTEN, RB1 and SMARCB1 (table 2). Upon univariate analysis the strongest association with OS was observed for homozygous CDKN2A/B deletion and for MYCN amplification (table 2 and figure 1b). Furthermore, the total CNV-load (CNVL) was determined, resulting in a split for a value of 349695798 base pairs (rounded 350 Mb). This number refers to the sum of all gains or deletions as determined by analysis of the $450 \mathrm{k} / 850 \mathrm{k}$ raw data by our proprietary algorithm. Patients with higher CNVL fared significantly worse than patients with lower CNVL ($p<0.0001$). However the frequency for all chromosomal gains or losses increased with age as demonstrated by summary CNV plots (supplementary figure 1). Further, EPIC/450k array methylation data were used for unsupervised clustering of the discovery dataset. This analysis yielded two sets with highly significant differences in OS (supplementary figure 2A). Likewise, the algorithm underlying our methylation based classifier [5] recognized two sets with significantly different OS (supplementary figure 2D).

Novel grading algorithms based on discovery set

Multivariate analysis including all parameters exhibiting a significant association with OS (table 1) was performed to develop grading models that could be compared with the current 2016 CNS WHO standard. Three different models were generated. The first approach (Model ${ }_{\text {path }}$) aimed at minimizing the required molecular data input, which would presumably allow for the most widespread applicability. In addition to IDH and 1p/19q testing, the first approach only requires the determination of $C D K N 2 A / B$ status. The second approach, Model $_{\text {cNVL }}$ made use of all molecular data available. Because ModelcnvL in the discovery set placed a set of 7 patients with necrosis into the most favorable group, we created a Model $_{\text {combined }}$, which shifted these patients to the patient group with intermediate OS (Figure 2). While this model was not based on a mathematical procedure, it worked well in the discovery and all validation sets.
Model $_{\text {path }}$ demonstrated that an algorithm based on employment of absence/presence of homozygous CDKN2A/B deletion and absence/presence of necrosis formed three groups among the 211 tumors in the discovery cohort. In this Model ${ }_{\text {path }}$, patients with homozygous deletion of CDKN2A/B exhibited the worst OS and were termed astrocytoma, IDH-mutant, grade 4, pathology ($\mathrm{A} 4_{\text {path }}$). This group comprised 38 tumors of the discovery cohort and contained 23 GBMIDHmut and 15 AAlll|IHm. Tumors with necrosis but without homozygous CDKN2A/B deletion fared significantly better and were termed astrocytoma, IDH-mutant, grade 3, pathology ($\mathrm{A} 3_{\text {path }}$). $\mathrm{A} 3_{\text {path }}$ contained 44 tumors which by definition were all $G B M_{I D H m}$. The remaining 129 patients with neither homozygous CDKN2A/B deletion nor necrosis were termed astrocytoma, IDH-mutant, grade 2, pathology (A2 path). A2 path contained 75 AAllliDHmut and 54 AlliDHm. OS plots of the discovery set assembled according to 2016 CNS WHO and
according to Model $_{\text {path }}$ are shown (figure 3a and 3b). Model ${ }_{\text {path }}$ performed better in predicting OS of the groups than the 2016 CNS WHO did as illustrated by Brier scores (figure 4a). ModelcnvL relied on absence/presence of homozygous CDKN2A/B deletion and on a threshold value of 350 Mb for CNVL. Therefore, A4 were determined as in our first approach. However, the remaining patients were subdivided with those having a CNV-L value $<350 \mathrm{Mb}$ being termed astrocytoma, IDH-mutant, grade 2, CNVL (A2 ${ }_{\text {CNVL }}$) and those with value >350 Mb being termed astrocytoma, IDH-mutant, grade 3, CNVL (A3cnvL). A2 cnvL featured 86
 with 37 GBM $_{\text {IDHmut, }} 33$ AAIIIIDHmut 17 All $_{\text {IDHm }}$. A OS plot of the discovery set according to Model cnvL is shown (figure 3c). ModelcnvL performed better in predicting OS of the groups than the 2016 CNS WHO did as illustrated by Brier scores (figure 4a).
Model $_{\text {combined }}$ was devised to circumvent the provocative shift of patients with necrosis but without CDKN2A/B deletion and with a low CNVL into the most favorable patient group (figure 2). Instead, this patient group was placed in the intermediate malignancy group. Notably, Model ${ }_{\text {combined }}$ is not based on a strict mathematical approach. The number of only seven patients in this group is too small to confirm OS comparable to that of patients in the intermediate malignancy group (supplementary figure 3). In Model ${ }_{\text {combined }}$ the A4 group defined by homozygous CDKN2A/B deletion was identical to that in Model ${ }_{\text {path }}$ and Model $_{\text {CNVL }}$. Model ${ }_{\text {combined }}$ also performed better in predicting OS of the groups than the 2016 CNS WHO could accomplish as illustrated by Brier scores (figure 4a).
Importantly, all three-tiered grading approaches, i.e. WHO, Model ${ }_{\text {path }}$, Model ${ }_{\text {cNvL }}$ and Model $_{\text {combined }}$ were predictive with higher power than two-tiered approaches based on unsupervised clustering and the classifier tool (figure 4a).

Validation of the study series

The validation sets supported our findings from the discovery set.
In the HD validation set, WHO based separation was of borderline significance ($\mathrm{p}=0.05$)
(Figure 3e). In contrast, Model ${ }_{\text {path }}$ or Model ${ }_{\text {cnvL }}$ both significantly separated three prognostic patient groups ($\mathrm{p}<0.0001$) (figure $3 f$ and g). Best performance was achieved by Model $_{\text {combined }}$ (Figure 3h).
The EORTC validation set produced comparable results (figure 3i, j, k, and I). Here the 2016 CNS WHO did separate groups with different OS ($\mathrm{p}=0.004$). Model ${ }_{\text {path }}$ performed slightly better ($p=0.002$), however, ModelcNvL and Model $_{\text {combined }}$ again provided best separation into groups of different OS ($\mathrm{p}<0.0001$).

The TCGA dataset was only of limited value for validating our models due to a high number of cases with relatively short observation periods. We observed a good separation of patients recognized by our models as highly malignant due to presence of a homozygous CDKN2A/B
deletion. TCGA patients with CDKN2A/B homozygous deletion also died relatively quickly and therefore separated significantly from patients without such deletion. However, the separation between the intermediate and more favorable tumor groups was not possible due to a high number of patients lacking long-term follow up. Thus, due to its composition the TCGA validation set only could be used for validating the poor OS of patients with homozygous CDKN2A/B deletion (Figure 3m, n, o and p).

In conclusion, in all three validation sets the tested grading models performed better than the current WHO system.

Discussion

Using combined histological and genetic parameters, notably necrosis and CDKN2A/B deletion, we have established a novel grading system for IDH-mutant diffuse astrocytic tumors. Interestingly, this system does not incorporate morphological estimates of proliferation, which have been a key parameter in WHO grading systems through counting mitotic figures. Indeed, CDKN2A/B homozygous deletion is tightly linked to proliferation because loss of p16 removes the inhibition of complexes of CDK4 with D-type cyclins thereby driving the cell cycle. In our discovery set CDKN2A/B homozygous deletion was clearly associated with higher proliferation. However, a considerable fraction of patients lacking the deletion still exhibited high Ki-67 reads (supplementary figure 4).
By focusing on this marker rather than quantifying proliferation, grading accuracy may improve because the difficulties underlying precise determination of mitotic counts (e.g., interobserver variations, tissue artifacts, interfering staining conditions, sampling, or extended time from tissue removal to fixation) are eliminated.
In our discovery set, mitotic count was not a strong predictor of outcome. This confirms previous reports pointing to the failure of morphological proliferation assessment in predicting clinical outcome in IDH-mutant astrocytic gliomas [20,28]. Likewise, Ki67 staining ubiquitously used as a parameter for estimating proliferation provides variable readouts dependent on staining or processing conditions and, therefore, is problematic for the determination of cutoff values to discern malignancy grades.
Proliferation assessed by Ki-67 is described as low or absent in All ${ }_{\text {DHHmut }}$ in the 2016 CNS WHO 2016 [17]. In our discovery set, Ki-67 is significantly associated prognosis, but the split point was determined around 15%. A reason for the failure of Ki-67 as a prognostic parameter in WHO is the low split point (often near 2\%) in the previous studies [11,15]. These studies all were from the pre-IDH era and contained many glioblastomas, thus driving the split points to low values. This may explain why the 2016 CNS WHO stated that Ki-67 was not prognostic for AAlll|DHmut [17].
The presence of homozygous $C D K N 2 A / B$ deletion turned out to be the most powerful parameter for inferior clinical outcome. This parameter is currently not employed in WHO grading, but could be construed as a molecular estimate of proliferation given the role of the p16 protein in regulating the cell cycle. Interestingly, CDKN2A/B homozygous deletion in tumors without necrosis, graded AAlll|DHmut, was associated with OS indistinguishable from that of patients with tumors exhibiting both CDKN2A/B homozygous deletion and necrosis that were diagnosed by definition as GBMIDHmut (figure 1b). And in turn, by removing tumors with CDKN2A/B homozygous deletion among AAlll|IDHmut, OS of the remaining patients did not significantly $(\mathrm{p}=0.124)$ differ from that AlliDHmut (figure 1b). CDKN2A/B homozygous
deletion or mutations in the RB pathway have been determined as an unfavorable parameter in previous studies $[1,26]$. We therefore performed an analysis combining cases with either CDKN2A/B homozygous deletion or RB1 homozygous deletion or CDK4 or CDK6 amplification. However, this did not result in an overall improvement of separating groups of patients with different outcome in all tumor sets. We think this partly due to the more pronounced association of $C D K N 2 A / B$ homozygous deletion with survival than that of the other RB1 pathway genes analyzed (supplementary figure 5) While combining typical lesions of the RB1 pathway should be further explored, we expect that mainly the assessment of CDKN2A/B status will be highly relevant for future diffuse astrocytoma grading systems. Satisfactory data acquisition can be performed by FISH, by quantitative PCR or by array technology as performed in this study. As shown elsewhere, CDKN2A/B status may be readily determined by FISH analysis [23,25]. Given the utility of immunohistochemistry for routine pathology diagnosis, we tried to detect homozygous deletion of the CDKN2A gene product p16 by immunohistochemistry. Unfortunately, using p16 antibody cloneG175-405 (BD-Biosciences) we could not show satisfactory correlation between p16 immunohistochemistry and molecular detection of CDKN2A homozygous deletion. In our immunohistochemistry, the basal nuclear expression of p16 was too low in many samples to allow definite detection of loss of expression. Our observation is supported by another study observing a correlation of p16 expression loss and CDKN2A deletion, however only in 85% of the deleted tumors [25]. We consider this correlation not tight enough and, therefore, favor determination of $C D K N 2 A / B$ deletion by an assay addressing DNA directly. A representative CNP with evident CDKN2A/B homozygous deletion is shown in supplementary figure 6. Another key parameter, the presence of necrosis, which according to the 2016 CNS WHO results in the diagnosis of GBM IDHmut, appears overrated in terms of estimating prognosis in IDH-mutant diffuse astrocytomas. As a single factor, necrosis is prognostically highly significant in our discovery set (table1), but the presence of necrosis in the absence of homozygous CDKN2A/B deletion was associated with clearly better prognosis than that of tumors containing the homozygous deletion (figure 1b). To account for these observations, we developed grading models based on those parameters that turned out to predict clinical outcome better than grading according to the 2016 CNS WHO (figure 2). Better outcome prediction could be confirmed in two independent validation series and better detection of patients at risk for poor OS could be achieved in the TCGA set with shorter observation periods only (figure 3). Our data on the TCGA data are in line with a previous study on the TCGA LGG data set reporting that CDKN2A homozygous deletion, but not expression associates with unfavorable OS [29]. Because all three tiered grading approaches in this study predicted OS with less error than the two-tiered grading schemes emerging from unsupervised clustering or from using the methylation-based classifier [5], the latter were not
further considered, although both schemes proved stable in the validation series (figure 4 a and b and supplementary figure $2 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}$ and 5)
An interesting parameter emerging from our analysis was CNVL. A proportion higher than 350 Mb either lost or gained in the areas covered by the methylation arrays correlated with poorer OS. Previously, the mutational load has been shown to correlate with tumor grade in IDH-mutant glioma [9]. While our data more reflect genomic instability and those data rely on an accumulation of mutations they also support a quantitative approach to tumor grading.

Shifts of patients according to different grading approaches

WHO grading and our grading models result in three different groups, however with different distributions. The allotment of patients in the discovery set to Model-specific sets is provided in supplementary table 1 . Our novel approaches lead to a higher overall number of diffuse astrocytomas in the lower-grade group. This effect is more pronounced for Model $\mathrm{l}_{\text {path }}$ than for Model $_{\text {CNVL. }}$ In Model ${ }_{\text {path }}$, the increase from 54 All $_{\text {IDHmut }}$ to 129 A2 path comes with the reduction of median OS from 7053 days to 5122 days. In contrast, the increase from 54 All $10 H m u t$ to 86 A2 ${ }_{\text {cnvL }}$ did not alter the median OS of 7053 days. The shifts in patient numbers in the comparable groups is mainly due to the strong influence of proliferation rate on the WHO grading algorithm. The typical problem is exemplified by a well differentiated diffuse astrocytoma being currently diagnosed as a WHO grade III tumor because of the detection of a few mitotic figures. In such a setting, the clinician may be surprised by a grade III designation given the lack of neuroradiological or intraoperative evidence for higher grade. The novel grading approaches described here appear to address this clinicopathological problem. It should be noted that the diagnostic considerations underlying WHO grading of the discovery set already deviated from the traditional WHO guidelines due to the experience of the authors who diagnosed and graded the tumors $[20,28]$ In particular, more than single mitoses were accepted as compatible with All ${ }_{\text {IDHmut }}$. In the setting of IDH mutations, the presence of few mitotic figures did not result in a diagnosis of AAll| ${ }_{\text {DHHmut }}$. This may be another reason for "standard" grading successfully predicting OS in the discovery set. Our data demonstrate that AAll|IDHmut stratified for CDKNA homozygous deletion separates into two groups with quite different OS: patients with tumors lacking this lesion follow a moderately aggressive course while patients with tumors having a CDKN2A/B deletion fare more similar to patients with GBM ${ }_{\text {IDHmut }}$ with homozygous deletion but much worse than patients with GBMIDHmut lacking CDKN2A/B homozygous deletion (figure 1B). Thus combining patients with All $_{\text {IDHmut }}$ and AAlll ${ }_{\text {IDHmut }}$ but lacking homozygous deletion of CDKN2A/B into a single group in Model ${ }_{\text {Path }}$ forms a fairly homogenous cohort and may have implications for the nomenclature of these tumors as well as a potential therapeutic relevance.

Model $_{\text {Path }}$ results in reduction of the size of the intermediate grading group. In the discovery set, AAlll ${ }_{I D H m u t}$ with 90 patients constitutes the largest group. The equivalent group according to Model ${ }_{\text {path }}$ includes 44 patients. This contrasts ModelcnvL which allots 87 patients to the intermediate group. The relation of the A3path and A3CNVL groups is analyzed in Model $_{\text {combined }}$ based on CDKN2A/B, necrosis and CNV-L (figure 3b, c and d). The power of this model is best exemplified by the lowest prediction error rate as shown by Brier score (figure 4a for discovery set, figure 4b for HD-validation set).

Implication for the use of morphological parameters proliferation and necrosis

Our data challenge the value of two main criteria that have long been used in the grading of diffuse astrocytomas: proliferation and necrosis. As previously reported [20], mitotic count is of less significance in a set of IDH-mutant diffuse astrocytomas than in a set of diffuse astrocytomas not tested for IDH status (and thereby likely to contain a substantial fraction of biological glioblastomas). In our analyses, mitotic figures did not emerge as a parameter providing the most significant separation of patients with IDH-mutant diffuse astrocytoma in groups with different OS. We therefore suggest a more conservative use of proliferation and caution to use this as a sole indicator for high tumor grade.

The other grading parameter in question is necrosis. The presence of necrosis in a diffuse astrocytic neoplasm that had not been pretreated inevitably prompted the WHO diagnosis of GBMIDHmut. However, patients with tumors exhibiting necrosis but not containing homozygous CDKN2A/B deletion survive significantly better than patients with tumors lacking necrosis but containing a CDKN2A/B homozygous deletion (figure 1b). This observation in our discovery and validation series (figure 3) should prompt a more conditional approach to the presence of necrosis as a parameter for grading of higher-grade diffuse astrocytic tumors.

Clinical perspective of grading according to the novel approaches

Caveats of our study are the heterogeneity of treatment and the potential effect of treatment on OS. Patients with AAIIIIDHmut and All|DHmuthave been treated quite heterogeneously with therapies ranging from wait and see to radiotherapy, chemotherapy or combinations thereof. In general, patients with AAlll|IHmut may have been likely to receive a more intense treatment than patients with All ${ }_{\text {IDHmut }}$. We cannot exclude the possibility of treatment being effective in patients with AAlll $I_{\text {DHmut }}$, thereby blurring the distinction to OS of patients with All ${ }_{\text {IDHmut. }}$. Nonetheless, the current treatment for All ${ }_{\text {IDHmut }}$ and AAllliDHmut is similar in most centers. Therefore, the shift of patients between the corresponding groups following grading according to our novel approaches will likely not have an immediate effect on treatment. However, upon applying Model $l_{\text {combined }}$ we subdivide All ${ }_{\text {IDHmut }}$ into $A 2_{\text {combined }}$ and $A 3_{\text {combined }}$. Patients with A2 combined, although more numerous than those in Alliohmut, appear to exhibit a
slightly better OS than patients with AllIDHmut. This may prompt future consideration regarding therapy in $\mathrm{A} 2_{\text {combined }}$ patients. In contrast, patients with $\mathrm{A} 3_{\text {combined }}$ show average OS closer to AAlll|lHmut patients, thereby potentially supporting similar treatments for these groups. In turn, it will be of interest to determine if patients with GBMIDHmut should receive the same treatment as those patients with GBM ${ }_{10 H m u t}$ lacking homozygous $C D K N 2 A / B$ deletion since these patients have OS approaching that of AAIII ${ }_{\text {IDHmut }}$. Finally, patients assigned to the least favorable A4 group all exhibit homozygousCDKN2A/B deletion; such patients are in need of maximal treatment and could possibly benefit from treatment with CDK antagonists because CDKN2A/B deletion results in increased CDK activity [24].

Implications for the classification and grading of IDH-mutant diffuse astrocytic tumors

The 2016 CNS WHO divided the traditionally termed "glioblastoma" into GBMIDHwt, GBMIDHmut and, in specific situations, diffuse midline glioma, H3K27-mutant. Genetically, these three groups are entirely different. While the diffuse midline glioma, H3K27-mutant is semantically clearly set apart from GBM ${ }_{\text {IDHwt }}$, the latter shares the same "family name" with GBM ${ }_{\text {IDHmut }}$ [18]. However, there appears to be greater genetic kinship between GBM ${ }_{\text {IDHmut }}$ and $A_{\text {IDHmut }}$ and not between GBM ${ }_{\text {IDHmut }}$ and GBM IDHwt . This kinship is also supported by the distribution of other mutations such as ATRX or TP53 that are typically seen in these tumors and by the rarity of many mutations typical for GBM ${ }_{\text {IDHwt }}$ such as EGFR amplification. Thus a genetic approach to taxonomy would favor a term such as "high-grade AIDHmut" rather than the current term of GBM ${ }_{\text {IDHmut }}$.
However, this still would be in conflict with a harmonious grading scale. Clearly, GBM IDHmut has a better prognosis than GBM ${ }_{\text {IDHwt }}$. In fact, GBM IDHmut $^{\text {has a better prognosis than the }}$ prognosis allotted to the pre-IDH era anaplastic astrocytoma WHO grade III (AAIIINOS) [34]. This circumstance would argue for a lower grade than currently allotted to the GBMIDHmut. However, the novel creation of an IDH-mutant glioblastoma grade 3 would seem awkward[18].
We suggest that future grading approaches include assessment of homozygous CDKN2A/B deletion in these tumors, given its powerful association with poorer prognosis. This accounts for both GBM IDHmut and AAIIIIDHmut - resulting in essential irrelevance of the presence of necrosis on OS in tumors with homozygous CDKN2A/B deletion. In other words, a definable fraction of AAIIIIDHmut fare significantly worse than a fraction of the GBMIDHmut. This cannot be repaired using the current WHO nomenclature without major changes to our historical concepts of nomenclature [18].
One possible solution, which we have considered implementing in Heidelberg, would be to restrict classification to the term $\mathrm{A}_{\mathrm{IDH}}$ mut and then adapt grading according to molecular lesions, thereby omitting the term GBMIDHmut. The term "glioblastoma" would be reserved for
those histologically defined glioblastomas lacking IDH mutation or not having had adequate (not otherwise specified, NOS) or diagnostic (not elsewhere classified, NEC) work-ups [19]. Such a system would lend itself well to the use of layered reports, as discussed elsewhere [16]. In this context, if these data were confirmed in other studies, the WHO classification of such tumors could resemble what is given in supplementary table 2 (based on Model ${ }_{\text {path }}$). Advantages of such an approach would include better prognostic correlations and therefore guidance of therapies, and a "freeing up" of grading from classification that could allow more easy adaptation of grading criteria in the future [18].

Conclusions

The 2016 CNS WHO grading of IDH-mutant astrocytic tumors is not as prognostically meaningful as needed and the histological parameters of proliferation and necrosis appear overrated when incorporating IDH gene status. Significantly, several other morphological and molecular parameters show higher prognostic power and modeling has provided suggestions for grading algorithms, with the proposal that $C D N K 2 A / B$ status will be important for future grading of these tumors.

Acknowledgements

This work was supported by German Cancer Aid (70112371) to AvD and German Cancer Aid (110624) to WW and MW. We are indebted to Toshio Sasajima, Masaya Oda and Masataka Takahashi for support regarding clinical data acquisition. We thank Viktoria Zeller, Ulrike Lass, Antje Habel, Ulrike Vogel, Katja Brast, Kerstin Lindenberg, John Moyers and Jochen Meyer for excellent technical assistance. We also thank the Microarray unit of the Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), especially Matthias Schick, Roger Fischer, Nadja Wermke and Anja Schramm-Glück, for providing methylation services.

References

Aoki K, Nakamura H, Suzuki H et al. (2018) Prognostic relevance of genetic alterations in diffuse lower-grade gliomas. Neuro Oncol 20: 66-77
Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116: 597-602
Burger PC, Vogel FS, Green SB, Strike TA (1985) Glioblastoma multiforme and anaplastic astrocytoma, pathologic criteria and prognostic implications. Cancer 56: 1106-1111
Cancer Genome Atlas Research N, Brat DJ, Verhaak RG et al. (2015) Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. The New England journal of medicine 372: 2481-2498
Capper D, Jones DTW, Sill M et al. (2018) DNA methylation-based classification of central nervous system tumours. Nature 555: 469-474
Capper D, Zentgraf H, Balss J, Hartmann C, von Deimling A (2009) Monoclonal Antibody Specific for IDH1 R132H Mutation. Acta Neuropathol 118: 599-601
Colman H, Giannini C, Huang L et al. (2006) Assessment and prognostic significance of mitotic index using the mitosis marker phospho-histone H 3 in low and intermediate-grade infiltrating astrocytomas. Am J Surg Pathol 30: 657-664
Daumas-Duport C, Scheithauer B, O'Fallon J, Kelly P (1988) Grading of astrocytomas. A simple and reproducible method. Cancer 62: 2152-2165
Draaisma K, Wijnenga MM, Weenink B, Gao Y, Smid M, Robe P, van den Bent MJ, French PJ (2015) PI3 kinase mutations and mutational load as poor prognostic markers in diffuse glioma patients. Acta Neuropathol Commun 3: 88
Duregon E, Bertero L, Pittaro A et al. (2016) Ki-67 proliferation index but not mitotic thresholds integrates the molecular prognostic stratification of lower grade gliomas. Oncotarget 7: 21190-21198
Hsu DW, Louis DN, Efird JT, Hedley-Whyte ET (1997) Use of MIB-1 (Ki-67) immunoreactivity in differentiating grade II and grade III gliomas. J Neuropathol Exp Neurol 56: 857-865
12 Kernohan JW, Mabon RF, Svien HJ, Adson AW (1949) A simplified classification of gliomas. Proc Staff Meet Mayo Clin 24: 71-75
13 Louis D, Ohgaki H, Wiestler O, Cavenee W (2007) World Health Organization Classification of Tumours of the Central Nervous System. In: Bosman F, Jaffe E, Lakhani S, Ohgaki H (eds) World Health Organization Classification of Tumours 4 edn. IARC, City Louis D, Ohgaki H, Wiestler O, Cavenee WK (2016) World Health Organization Classification of Tumours of the Central Nervous System. In: Bosman F, Jaffe E, Lakhani S, Ohgaki H (eds) World Health Organization Classification of Tumours Revised 4th edition edn. IARC, City Louis DN, Edgerton S, Thor AD, Hedley-Whyte ET (1991) Proliferating cell nuclear antigen and Ki-67 immunohistochemistry in brain tumors: a comparative study. Acta Neuropathol 81: 675-679
Louis DN, Perry A, Burger P et al. (2014) International Society of Neuropathology-Haarlem Consensus Guidelines, for Nervous System Tumor Classification and Grading. Brain Pathol 24: 429-435
Louis DN, Perry A, Reifenberger G et al. (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131: 803-820
Louis DN, von Deimling A (2017) Grading of diffuse astrocytic gliomas: Broders, Kernohan, Zulch, the WHO... and Shakespeare. Acta Neuropathol 134: 517-520
19 Louis DN, Wesseling P, Paulus W et al. (2018) cIMPACT-NOW update 1: Not Otherwise Specified (NOS) and Not Elsewhere Classified (NEC). Acta Neuropathol:

Olar A, Wani KM, Alfaro-Munoz KD et al. (2015) IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II-III diffuse gliomas. Acta Neuropathol 129: 585596
Parsons DW, Jones S, Zhang X et al. (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321: 1807-1812
Pekmezci M, Rice T, Molinaro AM et al. (2017) Adult infiltrating gliomas with WHO 2016 integrated diagnosis: additional prognostic roles of ATRX and TERT. Acta Neuropathol 133: 1001-1016
Perry A, Nobori T, Ru N, Anderl K, Borell TJ, Mohapatra G, Feuerstein BG, Jenkins RB, Carson DA (1997) Detection of p16 gene deletions in gliomas: a comparison of fluorescence in situ hybridization (FISH) versus quantitative PCR. J Neuropathol Exp Neurol 56: 999-1008 Pfaff E, Kessler T, Balasubramanian GP et al. (epub ahead of print) Feasibility of real-time molecular profiling for patients with newly diagnosed glioblastoma without MGMT promoter-hypermethylation - the NCT Neuro Master Match (N2M2) pilot study. Neuro Oncol:
Purkait S, Jha P, Sharma MC, Suri V, Sharma M, Kale SS, Sarkar C (2013) CDKN2A deletion in pediatric versus adult glioblastomas and predictive value of p16 immunohistochemistry. Neuropathology 33: 405-412
Reis GF, Pekmezci M, Hansen HM et al. (2015) CDKN2A loss is associated with shortened overall survival in lower-grade (World Health Organization Grades II-III) astrocytomas. J Neuropathol Exp Neurol 74: 442-452
Reuss DE, Kratz A, Sahm F et al. (2015) Adult IDH wild type astrocytomas biologically and clinically resolve into other tumor entities. Acta Neuropathol 130: 407-417
Reuss DE, Mamatjan Y, Schrimpf D et al. (2015) IDH mutant diffuse and anaplastic astrocytomas have similar age at presentation and little difference in survival: a grading problem for WHO. Acta Neuropathol 129: 867-873
Roy DM, Walsh LA, Desrichard A, Huse JT, Wu W, Gao J, Bose P, Lee W, Chan TA (2016) Integrated Genomics for Pinpointing Survival Loci within Arm-Level Somatic Copy Number Alterations. Cancer Cell 29: 737-750
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nature methods 9: 671-675
Sommer C, Strähle C, Köthe U, Hamprecht FA (2011) ilastik: Interactive Learning and Segmentation Toolkit. Eighth IEEE International Symposium on Biomedical Imaging (ISBI). IEEE, City, pp 230-233
Sturm D, Witt H, Hovestadt V et al. (2012) Hotspot Mutations in H3F3A and IDH1 Define Distinct Epigenetic and Biological Subgroups of Glioblastoma. Cancer Cell 22: 425-437
Suzuki H, Aoki K, Chiba K et al. (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47: 458-468
von Deimling A, Ono T, Shirahata M, Louis D (2018) Grading of Diffuse Astrocytic Gliomas: A Review of Studies Before and After the Advent of IDH Testing. Semin Neurol 38: 19-23
Watanabe T, Nobusawa S, Kleihues P, Ohgaki H (2009) IDH1 Mutations Are Early Events in the Development of Astrocytomas and Oligodendrogliomas. American Journal of Pathology 174: 653-656
Wick W, Hartmann C, Engel C et al. (2009) NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J Clin Oncol 27: 5874-5880
Yan H, Parsons DW, Jin G et al. (2009) IDH1 and IDH2 Mutations in Gliomas. The New England journal of medicine 360: 765-773
Zülch KJ (1979) Histological typing of tumours of the central nervous system. Who's Who, City

Figure legends

Table 1

Morphological and clinical features and their association with OS in the discovery set.

Table 2

Genes with amplifications or homozygous deletions found in 211 IDH-mutated astrocytomas in the discovery set and their association with OS. Univarate analysis.

Figure 1
Kaplan-Meier plot stratifying according to WHO in the discovery set (a). (b) shows the same patients with additional stratification for homozygous deletion of $C D K N 2 A / B$.

Figure 2

Distribution of 211 patients in the discovery set according to WHO grading and to three different grading approaches. $\mathrm{N}_{+} \sim$ necrosis present; $\mathrm{N}-\sim$ necrosis absent; $\mathrm{P}_{+} \sim$ CDKN2A/B is homozygously deleted; $\mathrm{P}-\sim \mathrm{CDKN2A} / \mathrm{B}$ is not homozygously deleted; $\mathrm{C}+\sim$ high CNVLload; C- ~ low CNVL-load. Parameter P+ is not encountered in All ${ }_{\text {IDHmut }}$ and, therefore, this potential tumor subset is not depicted in the three alternative grading approaches. Top: Grading model applied. Middle: Placement of patient groups with distinct features according to the four different approaches. Bottom: OS of patients according to the four approaches.

Figure 3
Kaplan-Meier plots stratifying according to WHO, Model $l_{\text {path }}$ and Model ${ }_{c N V L}$ and Model $_{\text {combined }}$ in the discovery set (a, b, c, d), the HD validation set (e, f, g, h) the EORTC validation set (i, j, $k, I)$ and the TCGA set (m, n, o, p).
Coulor schemes for WHO: red GBMIDHmut, blue AAIll IDHmut, $^{\text {, green }}$ All $_{\text {IDHmut }}$; for Model path : red A4, blue $A 3_{\text {path, }}$, green $A 2_{\text {path }}$; for Model cnvL : red A4, blue $A 3_{c N V L}$, green $A 2_{\text {cnvL }}$; for Model $_{\text {combined }}$: red A4, blue $A 3_{\text {combined }}$, green $A 2_{\text {comined. }}$

Figure 4

Brier scores to the grading approaches in the discovery set (a) and HD-validation set (b): reference which was random distribution (black), classifier tool (orange) based on epigenomic classification[5], unsupervised clustering of 850 K based methylation data (yellow), WHO diagnosis (red), Model ${ }_{\text {path }}$ (blue), Model ${ }_{\text {cNVL }}$ (green) and Model ${ }_{\text {combined }}$ (purple.)

Supplementary table 1

Discovery set data employed in grading schemes for IDH-mutant astrocytoma. For each scheme lowest grade is indicated by green, intermediate grade by blue and highest grade by red color.

Supplementary Table 2

Possible designation of IDH-mutant astrocytoma based on Model $_{\text {path }}$ in a future classification scheme

Supplementary figure 1

Copy number summary plots. Vertical axis indicates percentage of patients affected. Horizontal axis refers to chromosomal localization. Dotted vertical lines indicate border between p and q arms. Data are given for three age groups.

Supplementary figure 2

Kaplan-Meier plots stratifying by unsupervised clustering in the discovery set (a), the HD validation set (b) and the EORTC validation set (c).
Kaplan-Meier plots stratifying by the methylation based classifier in the discovery set (d), the HD validation set (e) and the EORTC validation set (f).

Supplementary figure 3

OS of subgroups in Model $l_{\text {combined }}$. The patient set $(\mathrm{n}=7)$ characterized by necrosis, absence of CDKN2A/B homozygous deletion and low CNVL exhibited only 2 events. While the corresponding curve (red) fits well the group of patients with intermediate OS, the number is too low for a clear statement.

Supplementary figure 4

Association of proliferation markers with CDKN2A/B status. (a) association with Ki67. (b) association with pHH3. Horizontal bars in box-plots correspond to median values.

Supplementary figure 5

OS of patients with IDH-mutant astrocytoma in association with RB pathway genes. (a) red homozygous deletion of CDKN2A/B, black - wild type status. (b) red -homozygous deletion of RB1 or CDK4 amplification or CDK6 amplification, black - wild type status. . (a) red homozygous deletion of CDKN2A/B or homozygous deletion of RB1 or CDK4 amplification or CDK6 amplification, black - wild type status for all.

Supplementary figure 6

Examples for CNP from astrocytic tumors exhibiting homozygous deletion of CDKN2A/B.

WHO 2016
Model $_{\text {path }}$
Model $_{\text {CNVL }}$
Model ${ }_{\text {combined }}$

intermediat malignancy			
Anaplastic astrocytoma, IDH-mutant, WHO grade III (AAIIIIDHmut			
N -	N -	N -	N
P+	P+	P-	P-
C+	C-	C+	C-
12	3	33	42

Supplementary figure 1

Age31-45 ($\mathrm{n}=98$)

Age45-max ($\mathrm{n}=53$)

unsupervised clustering

methylation based classification

A Discovery-set: compare_grading

.. - CDKN2A_hom.del. - CNA only - CNA+necr. - necr. only - noCNA_noNE:

Supplementary figure 4

Supplementary figure 5

case	Age	gender	WHO	OS	CDKN2A/B	Necrosis	CNVL (bp)	Model $_{\text {path }}$	Model $_{\text {CNVL }}$	Model $_{\text {combined }}$
1	37	f	All ${ }_{\text {IDHmut }}$	4022	balanced	no	276499911	A2 $2_{\text {path }}$	A2 ${ }_{\text {cnvL }}$	A 2 combined
2	51	f	All ${ }_{\text {IDHmut }}$	3275	balanced	no	275244442	A2 $2_{\text {path }}$	A2 ${ }_{\text {cNVL }}$	A2 ${ }_{\text {combined }}$
3	26	m	All ${ }_{\text {IDHmut }}$	7053	hetdel	no	118472068	$\mathrm{A} 2{ }_{\text {path }}$	A2 ${ }_{\text {cNVL }}$	A2 ${ }_{\text {combined }}$
4	28	f	All ${ }_{\text {IDHmut }}$	6497	balanced	no	100902350	A2 ${ }_{\text {path }}$	A2 ${ }_{\text {cnvL }}$	$\mathrm{A} 2{ }_{\text {combined }}$
5	24	m	All ${ }_{\text {IDHmut }}$	5122	hetdel	no	12386106	A $2_{\text {path }}$	A2 ${ }_{\text {cNVL }}$	A2 ${ }_{\text {combined }}$
6	23	f	All ${ }_{\text {IDHmut }}$	1731	balanced	no	274819415	A2 $2_{\text {path }}$	A2 ${ }_{\text {cNVL }}$	A2 ${ }_{\text {combined }}$
7	54	f	All ${ }_{\text {IDHmut }}$	2700	hetdel	no	32231326	A2 $2_{\text {path }}$	A2 ${ }_{\text {cNVL }}$	A 2 combined
8	29	m	All ${ }_{\text {IDHmut }}$	448	balanced	no	54866147	A2 $2_{\text {path }}$	A2 ${ }_{\text {cNVL }}$	A2 ${ }_{\text {combined }}$
9	38	f	All ${ }_{\text {IDHmut }}$	2314	balanced	no	228565769	A 2 path	A2 ${ }_{\text {cNVL }}$	A2 ${ }_{\text {combined }}$
10	46	m	All ${ }_{\text {IDHmut }}$	1481	balanced	no	304920289	A2 $2_{\text {path }}$	A2 ${ }_{\text {cNVL }}$	A2 ${ }_{\text {combined }}$
11	25	m	All ${ }_{\text {IDHmut }}$	4207	balanced	no	120631604	A 2 path	A2 ${ }_{\text {cNVL }}$	$\mathrm{A} 2{ }_{\text {combined }}$
12	29	f	All ${ }_{\text {IDHmut }}$	2190	balanced	no	305279829	A 2 path	A2 ${ }_{\text {cNVL }}$	A2 ${ }_{\text {combined }}$
13	38	f	All ${ }_{\text {IDHmut }}$	1917	balanced	no	147031947	A 2 path	A2 ${ }_{\text {cNVL }}$	A2 ${ }_{\text {combined }}$
14	43	m	All ${ }_{\text {IDHmut }}$	2852	hetdel	no	214674094	A 2 path	A2 ${ }_{\text {cnvL }}$	A 2 combined
15	26	f	All ${ }_{\text {IDHmut }}$	129	balanced	no	73687679	A 2 path	A2 ${ }_{\text {cNVL }}$	A 2 combined
16	31	f	All ${ }_{\text {IDHmut }}$	3310	balanced	no	166849942	A2 $2_{\text {path }}$	A2 ${ }_{\text {cNVL }}$	A2 ${ }_{\text {combined }}$
17	31	f	All ${ }_{\text {IDHmut }}$	4769	balanced	no	157179197	A 2 path	A2 ${ }_{\text {cnvL }}$	A 2 combined
18	50	f	All ${ }_{\text {IDHmut }}$	6896	balanced	no	306090692	A 2 path	A2 ${ }_{\text {cNVL }}$	$\mathrm{A} 2{ }_{\text {combined }}$
19	25	f	All ${ }_{\text {IDHmut }}$	2769	balanced	no	87857691	A2 $2_{\text {path }}$	A2 ${ }_{\text {cNVL }}$	A2 ${ }_{\text {combined }}$
20	36	m	Allidmmut	3110	balanced	no	134873237	A2 $2_{\text {path }}$	A2 ${ }_{\text {cNVL }}$	A2 ${ }_{\text {combined }}$
21	43	m	All ${ }_{\text {IDHmut }}$	5151	balanced	no	296069657	A 2 path	A2 ${ }_{\text {cnvL }}$	A 2 combined
22	32	m	All ${ }_{\text {IDHmut }}$	4947	balanced	no	318517227	A2 $2_{\text {path }}$	A2 ${ }_{\text {cNVL }}$	A2 ${ }_{\text {combined }}$
23	46	m	All ${ }_{\text {IDHmut }}$	4083	hetdel	no	211988482	A 2 path	A2 ${ }_{\text {cNVL }}$	A2 ${ }_{\text {combined }}$
24	28	f	All ${ }_{\text {IDHmut }}$	2877	balanced	no	63527897	A 2 path	A2 ${ }_{\text {cnvL }}$	A 2 combined
25	25	m	All ${ }_{\text {IDHmut }}$	968	balanced	no	90983369	A2 $2_{\text {path }}$	A2 ${ }_{\text {cNVL }}$	$\mathrm{A} 2{ }_{\text {combined }}$
26	28	m	All ${ }_{\text {IDHmut }}$	2980	hetdel	no	272577994	A 2 path	A2 ${ }_{\text {cNVL }}$	A2 ${ }_{\text {combined }}$
27	28	f	All ${ }_{\text {IDHmut }}$	3624	balanced	no	97759160	A2 $2_{\text {path }}$	A2 ${ }_{\text {cNVL }}$	A2 ${ }_{\text {combined }}$
28	26	m	All ${ }_{\text {IDHmut }}$	6411	balanced	no	42297630	A 2 path	A2 ${ }_{\text {cnvL }}$	A 2 combined
29	34	f	All ${ }_{\text {IDHmut }}$	7574	balanced	no	80568258	A 2 path	A2 ${ }_{\text {cNVL }}$	A2 ${ }_{\text {combined }}$
30	35	f	All ${ }_{\text {IDHmut }}$	2270	balanced	no	201135535	A2 $2_{\text {path }}$	A2 ${ }_{\text {cNVL }}$	A2 ${ }_{\text {combined }}$
31	26	m	All ${ }_{\text {IDHmut }}$	6549	balanced	no	1875847	A2 $2_{\text {path }}$	A2 ${ }_{\text {cNVL }}$	A2 ${ }_{\text {combined }}$
32	52	f	All ${ }_{\text {IDHmut }}$	1849	balanced	no	208322963	A 2 path	A2 ${ }_{\text {cNVL }}$	$\mathrm{A} 2{ }_{\text {combined }}$
33	36	m	All ${ }_{\text {IDHmut }}$	2074	hetdel	no	298249331	A $2{ }_{\text {path }}$	A2 ${ }_{\text {cNVL }}$	A2 ${ }_{\text {combined }}$
34	39	f	All idmmut	21	balanced	no	40784782	A2 $2_{\text {path }}$	A2 ${ }_{\text {cNVL }}$	A2 ${ }_{\text {combined }}$
35	31	m	All ${ }_{\text {IDHmut }}$	100	hetdel	no	234203374	A $22_{\text {path }}$	A2 ${ }_{\text {cNVL }}$	A2 ${ }_{\text {combined }}$
36	31	m	All ${ }_{\text {IDHmut }}$	2182	hetdel	no	246267203	A 2 path	A2 cNVL	A2 ${ }_{\text {combined }}$
37	29	m	All ${ }_{\text {IDHmut }}$	2297	balanced	no	97150870	A2 ${ }_{\text {path }}$	A2 ${ }_{\text {cNVL }}$	A2 ${ }_{\text {combined }}$
38	38	f	All ${ }_{\text {IDHmut }}$	2342	balanced	no	633608335	A 2 path	A3 ${ }_{\text {cnvL }}$	A3 ${ }_{\text {combined }}$
39	32	m	All ${ }_{\text {IDHmut }}$	2556	balanced	no	442770300	A 2 path	A3 ${ }_{\text {cnvL }}$	A3 ${ }_{\text {combined }}$
40	28	f	All ${ }_{\text {IDHmut }}$	6394	gain	no	440940501	A $2{ }_{\text {path }}$	A3 ${ }_{\text {CNVL }}$	A3 ${ }_{\text {combined }}$
41	30	f	All ${ }_{\text {IDHmut }}$	4302	hetdel	no	763615945	$\mathrm{A} 2{ }_{\text {path }}$	A3 ${ }_{\text {CNVL }}$	A3 ${ }_{\text {combined }}$
42	37	m	All ${ }_{\text {IDHmut }}$	1693	balanced	no	358458133	A2 $2_{\text {path }}$	A3 $3_{\text {cNVL }}$	A3 ${ }_{\text {combined }}$
43	46	f	All ${ }_{\text {IDHmut }}$	1104	balanced	no	426876972	A2 $2_{\text {path }}$	A3 ${ }_{\text {cNVL }}$	A3 ${ }_{\text {combined }}$
44	29	m	All ${ }_{\text {IDHmut }}$	2491	balanced	no	430413652	A 2 path	A3 ${ }_{\text {cnvL }}$	A3 ${ }_{\text {combined }}$

45	51	m	All ${ }_{\text {IDHmut }}$	2901	hetdel	no	526514536	A2 path	A3 ${ }_{\text {cNvL }}$	A3 combined
46	70	f	All ${ }_{\text {IDHmut }}$	709	balanced	no	377719470	A2 $2_{\text {path }}$	A3 cNVL	A3 ${ }_{\text {combined }}$
47	46	m	Allighmut	3058	balanced	no	403543802	A2 $2_{\text {path }}$	A3 $3_{\text {cnvL }}$	A3 combined
48	67	f	Allidhmut	2672	hetdel	no	836373426	A2 $2_{\text {path }}$	A3 $3_{\text {cnvL }}$	A3 combined
49	51	f	All ${ }_{\text {IDHmut }}$	2219	hetdel	no	646859920	A2 $2_{\text {path }}$	A3cnvi	A $3_{\text {combined }}$
50	29	m	All ${ }_{\text {IDHmut }}$	2278	balanced	no	484645537	A2 path	A3 ${ }_{\text {cnvL }}$	A3 combined
51	41	m	All ${ }_{\text {IDHmut }}$	5971	hetdel	no	704332454	A2 path	A3 $3_{\text {cNVL }}$	A3 combined
52	41	m	All ${ }_{\text {IDHmut }}$	228	balanced	no	662264513	A2 ${ }_{\text {path }}$	A3 ${ }_{\text {cNVL }}$	A3 combined
53	67	f	Allidhmut	1173	balanced	no	572896836	A2 path	A3 cnvi	A3 combined
54	34	m	Allidhmut	379	balanced	no	406233411	A2 path	A3 cnvl	A3 combined
55	35	f	AAIIIIDHmut	363	hetdel	no	178096653	A2 ${ }_{\text {path }}$	A2 cnvi	A2 combined
56	22	m	AAIIIIIDHmut	3641	hetdel	no	197533690	A2 path	A2 cnvl	A2 combined
57	26	m	AAIIIIDHmut	6081	hetdel	no	103568330	A2 path	A2 ${ }_{\text {cnvl }}$	A2 ${ }_{\text {combined }}$
58	35	m	AAIIIIIDHmut	2598	balanced	no	200733683	A2 path	A2 cnvi	A2 ${ }_{\text {combined }}$
59	42	f	AAIIIIDHmut	2661	balanced	no	132505213	A2 path	A2cnvi	A2 combined
60	32	m	AAlll ${ }_{\text {IDHmut }}$	664	balanced	no	104349865	A2 ${ }_{\text {path }}$	A2cnvi	A2 combined
61	32	f	AAIIIIDHmut	422	hetdel	no	187991641	A2 $2_{\text {path }}$	A2cnvi	A2 combined $^{\text {d }}$
62	37	f	AAIIIIDİmut	1758	gain	no	304204478	A2 $2_{\text {path }}$	A2 cnvi	A2 ${ }_{\text {combined }}$
63	42	f	AAIIIIDİmut	1219	gain	no	187801981	A2 path	A2 ${ }_{\text {cnvl }}$	A2 $2_{\text {combined }}$
64	26	m	AAIIIIDİmut	1691	balanced	no	145503063	A2 path	A2 ${ }_{\text {cnvl }}$	A2 ${ }_{\text {combined }}$
65	25	m	AAIIIIIOHmut	1488	balanced	no	207787601	A2 path	A2 cnvi	A2 combined
66	31	f	AAIIIIDİmut	1033	hetdel	no	315520776	A2 ${ }_{\text {path }}$	A2cnvl	A2 ${ }_{\text {combined }}$
67	35	m	AAlll ${ }_{\text {IDHmut }}$	1444	balanced	no	255473408	A2 path	A2cnvl	A2 combined
68	25	f	AAIIIIDHmut	41	balanced	no	283494206	A2 ${ }_{\text {path }}$	A2 cnvi	A2 combined
69	36	m	AAIIIIIDHmut	146	balanced	no	42705800	A2 ${ }_{\text {path }}$	A2 ${ }_{\text {cnvL }}$	A2 combined
70	55	m	AAlll ${ }_{\text {IDHmut }}$	546	balanced	no	6385695	A2 ${ }_{\text {path }}$	A2 ${ }_{\text {cnvL }}$	A2 ${ }_{\text {combined }}$
71	35	f	AAlll ${ }_{\text {IDHmut }}$	961	balanced	no	245265283	A2 ${ }_{\text {path }}$	A2cnvi	A2 combined
72	35	m	AAlll ${ }_{\text {IOHmut }}$	1371	balanced	no	194100168	A2 path	A2cnvi	A2 combined
73	42	f	AAlll ${ }_{\text {IDHmut }}$	1892	balanced	no	169361691	A2 ${ }_{\text {path }}$	A2cnvi	A2 combined
74	37	f	AAlll ${ }_{\text {IDHmut }}$	1772	balanced	no	107496655	A2 ${ }_{\text {path }}$	A2cnvi	A2 ${ }_{\text {combined }}$
75	37	m	AAIIIIDHmut	1289	balanced	no	173539970	A2 ${ }_{\text {path }}$	A2 cnvi	A2 ${ }_{\text {combined }}$
76	31	m	AAIIIIDHmut	3089	balanced	no	88952640	A2 path	A2 ${ }_{\text {cnvl }}$	A2 $2_{\text {combined }}$
77	36	f	AAIIIIDİmut	2911	balanced	no	143626885	A2 path	A2 ${ }_{\text {cnvl }}$	A2 ${ }_{\text {combined }}$
78	37	m	AAIIIIIOHmut	2843	balanced	no	178612373	A2 path	A2 cnvi	A2 combined
79	30	m	AAllliohmut	4194	balanced	no	337431093	A2 ${ }_{\text {path }}$	A2cnvi	A2 combined
80	36	m	AAlll ${ }_{\text {IDHmut }}$	3583	balanced	no	77900000	A2 ${ }_{\text {path }}$	A2cnvi	A2 combined
81	61	m	AAlll ${ }_{\text {IDHmut }}$	586	balanced	no	209203001	A2 ${ }_{\text {path }}$	A2 cnvi	A2 ${ }_{\text {combined }}$
82	20	f	AAIIIIIDHmut	2621	balanced	no	76220792	A2 ${ }_{\text {path }}$	A2 ${ }_{\text {cnvL }}$	A2 combined
83	32	m	AAllliohmut	5716	balanced	no	196477555	A2 ${ }_{\text {path }}$	A2cnvi	A2 combined
84	36	m	AAlll ${ }_{\text {IDHmut }}$	2234	balanced	no	120190000	A2 ${ }_{\text {path }}$	A2cnvi	A2 combined
85	31	m	AAlll ${ }_{\text {IOHmut }}$	1876	balanced	no	64692119	A2 path	A2cnvi	A2 combined
86	35	m	AAlll ${ }_{\text {IDHmut }}$	808	hetdel	no	47784811	A2 ${ }_{\text {path }}$	A2cnvi	A2 combined
87	18	f	AAlll ${ }_{\text {IDHmut }}$	2527	balanced	no	165846610	A2 ${ }_{\text {path }}$	A2 ${ }_{\text {cnvL }}$	A2 ${ }_{\text {combined }}$
88	20	m	AAlll ${ }_{\text {IDHmut }}$	552	balanced	no	17370000	A2 ${ }_{\text {path }}$	A2 cnvi	A2 ${ }_{\text {combined }}$
89	41	m	AAllliohmut	541	balanced	no	193578368	A2 path	A2cnvi	A2 ${ }_{\text {combined }}$

90	60	m	AAIIIIDHmut	1116	balanced	no	206039846	A2 $2_{\text {path }}$	A2 ${ }_{\text {cnvL }}$	A2 $2_{\text {combined }}$
91	34	m	AAlll ${ }_{\text {IDHmut }}$	1112	balanced	no	138650339	A2 $2_{\text {path }}$	A2 cnvl $^{\text {a }}$	A2 $2_{\text {combined }}$
92	32	f	AAlll ${ }_{\text {IDHmut }}$	189	balanced	no	249098921	A2 ${ }_{\text {path }}$	A2 cnvi	A2 $2_{\text {combined }}$
93	34	m	AAlll ${ }_{\text {IDHmut }}$	4403	balanced	no	349695798	A2 path	A2 cnvi	A2 $2_{\text {combined }}$
94	31	m	AAlll ${ }_{\text {IDHmut }}$	8152	hetdel	no	84825223	A2 path	A2 cnvl	A2 $2_{\text {combined }}$
95	27	f	AAlll ${ }_{\text {IOHmut }}$	2351	balanced	no	1852897	A2 path	A2 cnvi	A2 $2_{\text {combined }}$
96	27	m	AAIIIIDHmut	86	balanced	no	100983650	A2 ${ }_{\text {path }}$	A2 $\mathrm{cNVL}^{\text {a }}$	A $2{ }_{\text {combined }}$
97	39	f	AAIIIIDHmut	2049	balanced	no	498665062	A2 ${ }_{\text {path }}$	A3 $3_{\text {cnvl }}$	A3 $3_{\text {combined }}$
98	56	m	AAIIIIDHmut	253	hetdel	no	636279064	A2 path	A3 cnvi	A3 $3_{\text {combined }}$
99	44	f	AAlll ${ }_{\text {IDHmut }}$	5464	balanced	no	760800250	A2 $2_{\text {path }}$	A3 ${ }_{\text {cnvL }}$	A3 $3_{\text {combined }}$
100	45	f	AAlll ${ }_{\text {IDHmut }}$	1581	balanced	no	423820854	A2 $2_{\text {path }}$	A3 ${ }_{\text {cnvl }}$	A3 $3_{\text {combined }}$
101	32	f	AAlll ${ }_{\text {IDHmut }}$	1145	hetdel	no	453251583	A2 ${ }_{\text {path }}$	A3 ${ }_{\text {cnvl }}$	A3 $3_{\text {combined }}$
102	38	m	AAIIIIDHmut	622	balanced	no	689926530	A2 path	A3 ${ }_{\text {cnvL }}$	A3 $3_{\text {combined }}$
103	46	f	AAlll ${ }_{\text {IDHmut }}$	793	hetdel	no	434218283	A2 path	A3 ${ }_{\text {cnvL }}$	A3 $3_{\text {combined }}$
104	49	m	AAlll ${ }_{\text {IDHmut }}$	748	hetdel	no	365496202	A2 path	A3cnvl	A3 $3_{\text {combined }}$
105	53	m	AAlll ${ }_{\text {IDHmut }}$	269	balanced	no	728398267	A2 path	A3cnvl	A3 ${ }_{\text {combined }}$
106	30	m	AAlll ${ }_{\text {IDHmut }}$	2436	balanced	no	363383060	A2 path	A3 ${ }_{\text {cnvl }}$	A3 $3_{\text {combined }}$
107	36	m	AAlll ${ }_{\text {IDHmut }}$	289	hetdel	no	380840728	A2 path	A3 cnvl	A3 $3_{\text {combined }}$
108	48	f	AAlll ${ }_{\text {IDHmut }}$	1349	balanced	no	510647250	A2 path	A3 ${ }_{\text {cnvl }}$	A3 $3_{\text {combined }}$
109	30	m	AAlll ${ }_{\text {IDHmut }}$	1754	balanced	no	499800655	A2 ${ }_{\text {path }}$	A3 ${ }_{\text {cnvL }}$	A3 $3_{\text {combined }}$
110	33	m	AAlll ${ }_{\text {IDHmut }}$	476	balanced	no	440645896	A2 path	A3cnvl	A3 combined
111	50	f	AAlll ${ }_{\text {IOHmut }}$	2817	balanced	no	358770474	A2 ${ }_{\text {path }}$	A3 cnve	A $3_{\text {combined }}$
112	36	f	AAlll ${ }_{\text {IDHmut }}$	7	gain	no	517861229	A2 ${ }_{\text {path }}$	A3cnvl	A3 ${ }_{\text {combined }}$
113	48	f	AAlll ${ }_{\text {IDHmut }}$	1898	hetdel	no	758714830	A2 $2_{\text {path }}$	A3 ${ }_{\text {cnvL }}$	A3 $3_{\text {combined }}$
114	33	m	AAIIIIDHmut	2436	balanced	no	468801667	A2 ${ }_{\text {path }}$	A3 ${ }_{\text {cNVL }}$	A3 $3_{\text {combined }}$
115	25	m	AAlll ${ }_{\text {IDHmut }}$	3467	balanced	no	624356552	A2 ${ }_{\text {path }}$	A3 ${ }_{\text {cnvL }}$	A3 $3_{\text {combined }}$
116	30	f	AAlll ${ }_{\text {IDHmut }}$	186	balanced	no	352744994	A2 $2_{\text {path }}$	A3cnvl	A3 $3_{\text {combined }}$
117	36	m	AAlll ${ }_{\text {IDHmut }}$	1830	balanced	no	618297540	A2 path	A3cnvl	A3 $3_{\text {combined }}$
118	52	m	AAlll ${ }_{\text {IDHmut }}$	849	hetdel	no	639333382	A2 ${ }_{\text {path }}$	A3cnvl	A3 combined
119	53	m	AAlll ${ }_{\text {IDHmut }}$	3625	balanced	no	1062531615	A2 path	A3 ${ }_{\text {cnvl }}$	A3 $3_{\text {combined }}$
120	46	m	AAlll ${ }_{\text {IDHmut }}$	2863	hetdel	no	454173599	A2 path	A3 ${ }_{\text {cnvL }}$	A3 $3_{\text {combined }}$
121	46	m	AAlll ${ }_{\text {IDHmut }}$	2183	hetdel	no	1315154012	A2 path	A3 cnvi	A3 $3_{\text {combined }}$
122	44	f	AAlll ${ }_{\text {IDHmut }}$	961	balanced	no	673356226	A2 path	A3 ${ }_{\text {cnvl }}$	A3 $3_{\text {combined }}$
123		m	AAlll ${ }_{\text {IDHmut }}$	2304	balanced	no	484685201	A2 path	A3cnvl	A3 combined
124	41	f	AAlll ${ }_{\text {IDHmut }}$	1442	balanced	no	911535916	A2 ${ }_{\text {path }}$	A3cnvl	A3 combined
125	30	m	AAlll ${ }_{\text {IDHmut }}$	1589	balanced	no	1190727105	A2 ${ }_{\text {path }}$	A3cnvl	A3 ${ }_{\text {combined }}$
126	58	m	AAIIII ${ }_{\text {IDHmut }}$	1804	hetdel	no	900853650	A2 ${ }_{\text {path }}$	A3 $3_{\text {cnvL }}$	A $3_{\text {combined }}$
127	46	m	AAIIIIDHmut	61	balanced	no	474539606	A2 ${ }_{\text {path }}$	A3 $3_{\text {cnvL }}$	A3 $3_{\text {combined }}$
128	37	m	AAlll ${ }_{\text {IDHmut }}$	4598	hetdel	no	552397505	A2 ${ }_{\text {path }}$	A3 cnvi	A $3_{\text {combined }}$
129	66	f	AAlll ${ }_{\text {IDHmut }}$	787	balanced	no	1069350769	A2 ${ }_{\text {path }}$	A3cnvl	A3 $3_{\text {combined }}$
130	37	f	AAlll ${ }_{\text {IDHmut }}$	363	homodel	no	465715427	A4	A4	A4
131	36	f	AAlll ${ }_{\text {IDHmut }}$	1024	homodel	no	831929597	A4	A4	A4
132	55	m	AAlll ${ }_{\text {IDHmut }}$	581	homodel	no	930444025	A4	A4	A4
133	27	m	AAlll ${ }_{\text {IDHmut }}$	2315	homodel	no	223793927	A4	A4	A4
134	28	m	AAllliohmut	535	homodel	no	296028886	A4	A4	A4

135	68	m	AAIIIIDImut	1198	homodel	no	866989174	A4	A4	A4
136	56	m	AAlll ${ }_{\text {IDHmut }}$	879	homodel	no	1312842881	A4	A4	A4
137	40	m	AAlll ${ }_{\text {IDHmut }}$	677	homodel	no	989539476	A4	A4	A4
138	49	f	AAlllidimut	360	homodel	no	1142771330	A4	A4	A4
139	31	m	AAIIIIDHmut	1680	homodel	no	684135301	A4	A4	A4
140	57	m	AAIIIIDHmut	2184	homodel	no	644588335	A4	A4	A4
141	42	m	AAIIIIDHmut	985	homodel	no	1137070451	A4	A4	A4
142	58	m	AAlll ${ }_{\text {IDHmut }}$	499	homodel	no	1304553626	A4	A4	A4
143		m	AAlll ${ }_{\text {IDHmut }}$	1936	homodel	no	222558442	A4	A4	A4
144	25	f	AAlll ${ }_{\text {IDHmut }}$	880	homodel	no	482618213	A4	A4	A4
145	36	m	GBM ${ }_{\text {IDHmut }}$	302	balanced	present	0	$A 3_{\text {path }}$	A2cnvL	A3 combined
146	38	m	GBM ${ }_{\text {IDHmut }}$	1293	hetdel	present	193419378	$A 3_{\text {path }}$	A2 ${ }_{\text {cnvL }}$	A $3_{\text {combined }}$
147	50	m	GBM $_{\text {IDHmut }}$	1070	hetdel	present	347889943	$A 3_{\text {path }}$	A2 ${ }_{\text {cnvL }}$	A3 combined
148	47	m	GBM ${ }_{\text {IDHmut }}$	1063	balanced	present	201362719	$A 3_{\text {path }}$	A2 ${ }_{\text {cnvL }}$	A3 combined
149	33	m	GBM ${ }_{\text {IDHmut }}$	1740	hetdel	present	274299199	$A 3_{\text {path }}$	A2 cnvL	A $3_{\text {combined }}$
150	34	m	GBM ${ }_{\text {IDHmut }}$	3732	balanced	present	324522740	$A 3_{\text {path }}$	A2 cnvL	A $3_{\text {combined }}$
151	45	f	GBM ${ }_{\text {IDHmut }}$	3102	balanced	present	330020454	$A 3_{\text {path }}$	A2cnvL	A $3_{\text {combined }}$
152	15	m	GBM ${ }_{\text {IDHmut }}$	1309	hetdel	present	458136707	$A 3_{\text {path }}$	A3cnvL	A $3_{\text {combined }}$
153	41	m	GBM ${ }_{\text {IDHmut }}$	1890	balanced	present	1115095398	$A 3_{\text {path }}$	A 3 cnvL	A $3_{\text {combined }}$
154	38	m	GBM $_{\text {IDHmut }}$	1513	balanced	present	545004153	$A 3_{\text {path }}$	A3 $3_{\text {cnvL }}$	A $3_{\text {combined }}$
155	45	f	GBM ${ }_{\text {IDHmut }}$	405	hetdel	present	1590206155	$A 3_{\text {path }}$	A3 cnvL	A $3_{\text {combined }}$
156	43	m	GBM ${ }_{\text {IDHmut }}$	626	balanced	present	618971955	$A 3_{\text {path }}$	A3 cnvL	A $3_{\text {combined }}$
157	33	f	GBM ${ }_{\text {IOHmut }}$	1505	hetdel	present	941539384	$A 3_{\text {path }}$	A3 cnvL	A $3_{\text {combined }}$
158		m	GBM ${ }_{\text {IDHmut }}$	1313	hetdel	present	478025436	$A 3_{\text {path }}$	A 3 cnvL	A $3_{\text {combined }}$
159	27	m	GBM ${ }_{\text {IDHmut }}$	765	balanced	present	414171054	$A 3_{\text {path }}$	A3 ${ }_{\text {cnvL }}$	A $3_{\text {combined }}$
160	35	f	GBM ${ }_{\text {IDHmut }}$	665	balanced	present	2059818464	$A 3_{\text {path }}$	A3 ${ }_{\text {cnvL }}$	A $3_{\text {combined }}$
161	37	f	GBM ${ }_{\text {IDHmut }}$	174	hetdel	present	358097638	$A 3_{\text {path }}$	A3cnvL	A $3_{\text {combined }}$
162	44	f	GBM ${ }_{\text {IDHmut }}$	917	hetdel	present	593099167	$A 3_{\text {path }}$	A3 cnvL	A $3_{\text {combined }}$
163	53	m	GBM ${ }_{\text {IDHmut }}$	3544	balanced	present	1136518981	$A 3_{\text {path }}$	A3 cnvL	A $3_{\text {combined }}$
164	38	m	GBM ${ }_{\text {IDHmut }}$	690	hetdel	present	549311866	$A 3_{\text {path }}$	A3cnvL	A $3_{\text {combined }}$
165	23	m	GBM $_{\text {IDHmut }}$	480	balanced	present	569558376	$A 3_{\text {path }}$	A3 ${ }_{\text {cnvL }}$	A $3_{\text {combined }}$
166	51	m	GBM ${ }_{\text {IDHmut }}$	330	hetdel	present	903932607	$A 3_{\text {path }}$	A3 ${ }_{\text {cnvL }}$	A $3_{\text {combined }}$
167	33	m	GBM ${ }_{\text {IDHmut }}$	1710	balanced	present	485848840	$A 3_{\text {path }}$	A3 cnvL	A $3_{\text {combined }}$
168	38	f	GBM ${ }_{\text {IDHmut }}$	3540	balanced	present	707394101	$A 3_{\text {path }}$	A3 cnvL	A3 ${ }_{\text {combined }}$
169	33	f	GBM ${ }_{\text {IDHmut }}$	1860	hetdel	present	570848619	$A 3_{\text {path }}$	A3 cnvL	A $3_{\text {combined }}$
170	35	m	GBM ${ }_{\text {IOHmut }}$	390	hetdel	present	643888537	$A 3_{\text {path }}$	A3 cnvL	A $3_{\text {combined }}$
171	23	m	GBM ${ }_{\text {IDHmut }}$	1620	balanced	present	451313723	$A 3_{\text {path }}$	A3 $3_{\text {cnvL }}$	A $3_{\text {combined }}$
172	47	f	GBM ${ }_{\text {IDHmut }}$	1740	balanced	present	407272041	$A 3_{\text {path }}$	A 3 cnvL	A $3_{\text {combined }}$
173	41	m	GBM ${ }_{\text {IDHmut }}$	1830	balanced	present	369144405	$A 3_{\text {path }}$	A3cnvL	A $3_{\text {combined }}$
174	49	m	GBM ${ }_{\text {IDHmut }}$	1020	balanced	present	900834346	$A 3_{\text {path }}$	A3cnvL	A $3_{\text {combined }}$
175		m	GBM ${ }_{\text {IDHmut }}$	360	balanced	present	1054050774	$A 3_{\text {path }}$	A3 cnvL	A $3_{\text {combined }}$
176	26	m	GBM ${ }_{\text {IDHmut }}$	1920	hetdel	present	471542557	$A 3_{\text {path }}$	A3 cnvL	A3 combined
177	25	m	GBM ${ }_{\text {IDHmut }}$	2940	balanced	present	511679183	$A 3_{\text {path }}$	A3 ${ }_{\text {cnvL }}$	A3 ${ }_{\text {combined }}$
178	47	f	GBM $_{\text {IDHmut }}$	750	balanced	present	781997801	$A 3_{\text {path }}$	A3 ${ }_{\text {cnvL }}$	A $3_{\text {combined }}$
179	43	f	GBM ${ }_{\text {IDHmut }}$	360	balanced	present	1185670713	A3 path	A3 cnvL	A3 combined

180	31	f	GBM $_{\text {IDHmut }}$	1800	hetdel	present	455864908	$A 3_{\text {path }}$	A3 ${ }_{\text {cnvL }}$	A3 $3_{\text {combined }}$
181	37	f	GBM $_{\text {IDHmut }}$	2040	balanced	present	555554816	$A 3_{\text {path }}$	A3 $3_{\text {cNVL }}$	A3 combined ${ }_{\text {d }}$
182	18	m	GBM $_{\text {IDHmut }}$	630	balanced	present	572076605	$A 3_{\text {path }}$	A3 ${ }_{\text {cnvL }}$	A3 $3_{\text {combined }}$
183	32	m	GBM ${ }_{\text {IDHmut }}$	632	balanced	present	422428971	$A 3_{\text {path }}$	A3 $3_{\text {cnvL }}$	A3 $3_{\text {combined }}$
184	22	m	GBM ${ }_{\text {IDHmut }}$	934	balanced	present	766615685	$A 3_{\text {path }}$	A3 $3_{\text {cnvL }}$	A3 $3_{\text {combined }}$
185	27	f	GBM ${ }_{\text {IDHmut }}$	1582	balanced	present	828095041	$A 3_{\text {path }}$	A3 $3_{\text {cnvL }}$	A3 $3_{\text {combined }}$
186	38	m	GBM $_{\text {IDHmut }}$	360	balanced	present	1544228140	$A 3_{\text {path }}$	A3 ${ }_{\text {cNVL }}$	A3 $3_{\text {combined }}$
187	21	f	GBM $_{\text {IDHmut }}$	2413	balanced	present	425183946	$A 3_{\text {path }}$	A3 $3_{\text {cnvL }}$	A3 combined
188	31	m	GBM ${ }_{\text {IDHmut }}$	734	hetdel	present	847090386	$A 3_{\text {path }}$	A3 ${ }_{\text {cnvL }}$	A3 $3_{\text {combined }}$
189	60	m	GBM ${ }_{\text {IDHmut }}$	297	homodel	present	807768413	A4	A4	A4
190	41	m	GBM ${ }_{\text {IDHmut }}$	1107	homodel	present	495740703	A4	A4	A4
191	32	m	GBM ${ }_{\text {IOHmut }}$	676	homodel	present	378012012	A4	A4	A4
192	45	f	GBM $_{\text {IDHmut }}$	559	homodel	present	659510395	A4	A4	A4
193	38	m	GBM ${ }_{\text {IOHmut }}$	763	homodel	present	421896525	A4	A4	A4
194	30	f	GBM ${ }_{\text {IDHmut }}$	612	homodel	present	774198635	A4	A4	A4
195	52	m	GBM ${ }_{\text {IDHmut }}$	744	homodel	present	1007202573	A4	A4	A4
196	52	m	GBM ${ }_{\text {IDHmut }}$	355	homodel	present	432740127	A4	A4	A4
197	47	m	GBM ${ }_{\text {IOHmut }}$	420	homodel	present	354295141	A4	A4	A4
198	37	m	GBM ${ }_{\text {IDHmut }}$	1740	homodel	present	673228823	A4	A4	A4
199	32	m	GBM ${ }_{\text {IDHmut }}$	1440	homodel	present	713800664	A4	A4	A4
200	30	f	GBM $_{\text {IDHmut }}$	1860	homodel	present	409762641	A4	A4	A4
201	42	f	GBM ${ }_{\text {IDHmut }}$	510	homodel	present	558904598	A4	A4	A4
202		f	GBM ${ }_{\text {IDHmut }}$	1110	homodel	present	1026408664	A4	A4	A4
203	32	m	GBM ${ }_{\text {IDHmut }}$	1020	homodel	present	428821854	A4	A4	A4
204	33	m	GBM ${ }_{\text {IDHmut }}$	630	homodel	present	889020134	A4	A4	A4
205	29	f	GBM ${ }_{\text {IDHmut }}$	360	homodel	present	313871779	A4	A4	A4
206	48	m	GBM ${ }_{\text {IDHmut }}$	840	homodel	present	2420702864	A4	A4	A4
207	28	f	GBM ${ }_{\text {IDHmut }}$	660	homodel	present	616412044	A4	A4	A4
208	32	m	GBM ${ }_{\text {IDHmut }}$	1080	homodel	present	265982563	A4	A4	A4
209	27	m	GBM ${ }_{\text {IDHmut }}$	13	homodel	present	873352072	A4	A4	A4
210	25	m	GBM ${ }_{\text {IDHmut }}$	388	homodel	present	960004694	A4	A4	A4
211	56	m	GBM ${ }_{\text {IOHmut }}$	1605	homodel	present	919954069	A4	A4	A4

Table 3

Diffuse astrocytic tumours

Diffuse astrocytic glioma, IDH-mutant, CDKN2A/B-intact, WHO grade II
Diffuse astrocytic glioma, IDH-mutant, CDKN2A/B-intact with necrosis, WHO grade III Diffuse astrocytic glioma, IDH-mutant, CDKN2A/B-deleted, WHO grade IV

Table 1

parameter	min	max	split	\mathbf{n}	rate	p-value
age (years)	15	70	54	190	$<54 ; 92 \%$	<0.05
gender male	0	1	na	130	$\mathrm{~m} ; 62 \%$	0.01
cell count $\left(\mathrm{n} / \mathrm{mm}^{2}\right)$	734	9143	4604	130	$<4604 ; 62 \%$	<0.002
Ki67 $(\%)$	0	97	14.5	144	$<14.5 ; 71 \%$	<0.01
pHH3 count $(\mathrm{n} / 10 \mathrm{HPF})$	0	327	no split			
microvessel density $(\%)$	0,2	8,7	1.2	82	$>1.2 ; 39 \%$	<0.05
necrosis absent	0	1	na	144	present; 32\%	<0.000005
vascular proliferation absent	0	1	na	129	absent; 61\%	<0.001

Table 2

gene	alteration	n	p-value
CCND1	amplification (cutoff 0.35)	1	0.17
CCND2	amplification (cutoff 0.35)	27	0.15
CDK4	amplification (cutoff 0.35)	18	0.11
CDK6	amplification (cutoff 0.35)	6	0.13
CDKN2A/B	homo del (cutoff -0.415)	38	0.0001
EGFR	amplification (cutoff 0.35)	4	0.38
MDM4	amplification (cutoff 0.35)	5	0.09
MET	amplification (cutoff 0.35)	11	0.39
MYC	amplification (cutoff 0.35)	13	0.89
MYCN	amplification (cutoff 0.35)	12	0.001
NF1	homo del (cutoff -0.415)	4	0.52
NF2	homo del (cutoff -0.415)	4	0.32
PDGFRA	amplification (cutoff 0.35)	13	0.03
PPM1D	amplification (cutoff 0.35)	1	0.70
PTEN	homo del (cutoff -0.415)	3	0.11
RB1	homo del (cutoff -0.415)	12	0.001
SMARCB1	homo del (cutoff -0.415)	2	0.26

homo del = homozygous deletion

