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Abstract: We live in a period when smart devices gather a large amount of data from a variety of
sensors and it is often the case that decisions are taken based on them in a more or less autonomous
manner. Still, many of the inputs do not prove to be essential in the decision-making process; hence,
it is of utmost importance to find the means of eliminating the noise and concentrating on the most
influential attributes. In this sense, we put forward a method based on the swarm intelligence
paradigm for extracting the most important features from several datasets. The thematic of this paper
is a novel implementation of an algorithm from the swarm intelligence branch of the machine learning
domain for improving feature selection. The combination of machine learning with the metaheuristic
approaches has recently created a new branch of artificial intelligence called learnheuristics. This
approach benefits both from the capability of feature selection to find the solutions that most impact on
accuracy and performance, as well as the well known characteristic of swarm intelligence algorithms
to efficiently comb through a large search space of solutions. The latter is used as a wrapper method
in feature selection and the improvements are significant. In this paper, a modified version of the salp
swarm algorithm for feature selection is proposed. This solution is verified by 21 datasets with the
classification model of K-nearest neighborhoods. Furthermore, the performance of the algorithm is
compared to the best algorithms with the same test setup resulting in better number of features and
classification accuracy for the proposed solution. Therefore, the proposed method tackles feature
selection and demonstrates its success with many benchmark datasets.

Keywords: feature selection; swarm intelligence; hybridization; learnheuristics; salp swarm algorithm

1. Introduction

The fields of big data, cryptography, and computer science in general are all influenced
by the domain of optimization and to some extent even somewhat rely on it. The field of
optimization is broad and employs a large variety of techniques. Although there is a large
number of optimization solutions, in most of the cases there is room for further improve-
ments and new algorithms can lead to better results. What is more, some optimization
methods prove to be suitable for a certain class of problems, while others perform better
for other types. Consequently, when proposing a new optimization technique, it needs to
be thoroughly tested in order to identify its strengths and weaknesses with respect to the
solutions’ quality when dealing with different types of problems.

Nature-inspired algorithms have been widely applied in recent years for solving
various range mathematical and engineering optimization non-deterministic polynomial
hard (NP-hard) problems [1] due to its high robustness and efficiency in exploiting and
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exploring vast search space domain. Of all nature-inspired approaches, evolutionary algo-
rithms (EA) and swarm intelligence metaheuristics stand out the most and they have been
effectively applied to different NP-hard real-world challenges [2–4]. The EA approaches
conduct a search process by adopting reproduction, crossover and mutation operators
from natural evolution, while swarm intelligence mimics collective intelligent behavior of
group of organisms from nature such as flock of birds, school of fish, colonies of ants and
bees, and so forth. Both families of methods belong to the group of artificial intelligence
optimization techniques. Various metaheuristics were reviewed and considered to be
improved upon. The most recent from the reviewed set are the grey wolf optimizer (GWO),
red deer algorithm (RDA) [5], ant lion optimizer (ALO) [6], grasshopper optimization
algorithm (GOA) [7], multi-verse optimizer (MVO) [8], moth-flame optimization algorithm
(MFO) [9], social engineering optimizer (SEO) [10], dragonfly algorithm (DA) [11], whale
optimization algorithm (WOA) [12], harris hawks optimization (HHO) [13], sine cosine al-
gorithm (SCA) [14]. While the mentioned algorithms have all shown notable improvement
performance-wise, none are without shortcomings. In the field of swarm metaheuristics,
the primary solutions tend to favor either exploration or exploitation phases. There have
been attempts in the domain to initially create a solution that performs equally well in
both phases like the elaborate SCA. Nevertheless, even the SCA has undergone modifi-
cations and achieved better performance than its original version [15]. Hence, the true
potential of the swarm metaheuristics is achieved through hybridization. This modification
method relies on the principle of fusing the original algorithm with another. This is usually
achieved by incorporating a principle from an algorithm that has better performance for
the phase that unfavored by the solution that is improved upon. The dynamic of the field
dictates constant improvement and search for new solutions and new ways to improve
the existing ones. The reason for the authors to opt to improve SSA is with its robustness
while maintaining simplicity. The algorithm is easy to implement and the fine-tuning
modifications are even suggested by its author.

The expansion of data availability and computer processing power in recent decades
has led to interaction between the fields of nature-inspired metaheuristics and machine
learning, which is an artificial intelligence subdomain and as a crucial tool for data science.
Machine learning models can be efficiently utilized to find patterns and make predictions
from what may appear at first glance uncorrelated huge amounts of data. However, em-
ployed large datasets are usually packed with inessential and redundant data negatively
influencing machine learning performance regarding computational complexity and accu-
racy. An attribute of “high-dimensional” is usually associated with such datasets and this
phenomena is known as the curse of dimensionallity [16].

Therefore, finding relevant information (features) from large datasets is crucial for tack-
ling the above mentioned issue and it is known as the dimensionality reduction challenge
in the modern computer science literature [17]. The process of dimensionality reduction is
usually employed in the data pre-processing phase of machine learning and it encompasses
two approaches: feature extraction and feature selection. By using feature extraction, new
variables are derived from the primary dataset [18], while feature selection chooses a subset
of significant variables for further use [19].

The aim of feature selection is to find the most informative subset from high-dimensional
datasets by removing redundant and irrelevant features, therefore improving classification and
prediction accuracy of machine learning model. According to G. Chandrashekar et al. [20], all
feature selection methods can be split into three groups: filter, wrapper and embedded.
Wrapper methods utilize learning algorithms to evaluate feature subset by training a model
and they are the most efficient, however the most computational demanding as well. Filter
methods do not rely on a training system, but apply a measure to assign a score to feature
subsets. This group is generally less computationally expensive than the wrapper family,
but generates a universal set (not tuned to a particular predictive model) since it does not
include model training. Finally, the embedded methods use feature selection as a part of
the model construction procedure, that is, algorithms execute feature selection during the
model training. The embedded methods are as fast as the filter ones, but more precise.
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Regarding the computational difficulty, embedded methods are in the middle of wrappers
and filters.

Nature-inspired algorithms, especially swarm intelligence metaheuristics [21,22], have
been successfully applied as wrapper methods for feature selection in machine learning
and this is one point where machine learning and optimization metaheuristics intersect.
If there are n f features in a dataset, the total number of 2n f subsets exist and, since for
high-dimensional datasets n f is typically a large number, this challenge is considered
NP-hard. Consequently, regarding the fact that swarm intelligence proved to be a robust
and efficient optimizer for solving NP-hard challenges, its application as a wrapper feature
selection method is straightforward.

Notwithstanding that many swarm intelligence applications for feature selection
can be found by surveying recent literature sources, considering no free lunch (NFL)
theorem [23], there is still space for improvements in this domain. The NFL, which proved
to be accurate, states that no universal algorithm exists that can solve all optimization
problems. Accordingly, an approach that efficiently solves feature selection issues for all
datasets does not exist. The NFL theorem motivates researchers to improve and adjust
current algorithms or propose new ones, to solve various problems, including feature
selection challenge.

Therefore, the motivation behind the proposed study is to try to further enhance
feature selection in machine learning by employing an improved salp swarm algorithm
(SSA), which was also developed and evaluated for the purpose of this research. The SSA
belongs to the family of swarm intelligence metaheuristics and it was proposed in 2017 by
Mirjalili et al. [24]. The basic SSA is enhanced by including an additional mechanism and
by hybridization with another well-known swarm intelligence metaheuristics.

Guided by established practice from the modern literature, before its application to
feature selection, the proposed enhanced SSA is firstly tested and evaluated on a recognized
test-bed with challenging instances of functions having 30 dimensions from the Congress
on Evolutionary Computation 2013 (CEC2013) benchmark suite [25]. This also allows a
direct comparison of the obtained results with the outputs of a large variety of state-of-
the-art (SOTA) metaheuristics. Afterwards, it is adapted as a wrapper-based approach for
feature selection and validated against 21 well-known datasets retrieved from University
of California, Irvine (UCI) repository [26].

The scientific contributions of proposed study can be summed as follows:

• proposed improved SSA algorithm overcomes some observed deficiencies and estab-
lishes better performance than original SSA;

• proposed method proves to be promising and competitive with other SOTA meta-
heuristics according to CEC2013 testing results; and

• compared to other SOTA approaches, improvements in addressing feature selection
issue in machine learning in terms of classification accuracy and number of selected
features is established.

Based on that stated above, the method proposed in this study tackles the feature
selection challenge and demonstrates its success with many benchmark datasets.

The organization of the manuscript is as follows. Section 2 covers some of the most
notable SOTA approaches from the domain of swarm intelligence, as well as from the
area of hybrid methods between swarm algorithms and machine learning. In Section 3,
the original SSA is presented first, then its drawbacks are indicated and finally details of
the proposed algorithm are provided. Sections 4 and 5 present simulations with standard
CEC2013 instances along with feature selection experiments including comparative analysis
and discussion with other recent SOTA algorithms. Finally, a summary and future research
plans are examined in Section 6.

2. Related Works

There are several recent good survey studies that present the challenges that appear
within feature selection in various fields of machine learning, as well as indicate the most
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prolific methods to achieve the task. Some very inspiring reads are [20,27], as well as
the more recent work [28]. These also thoroughly present the complexity of the feature
selection task, the manner in which the dimensionality reduction can be achieved for
various datasets, ideas that are also marginally discussed in the introduction section of the
current article. Another work that also presents a survey for the same problem is [29]. This
study especially concentrates on evolutionary computation approaches for achieving the
goal, so it is better linked with the current work. A review of studies for feature selection
that is further narrowed only on methodologies involving swarm intelligence algorithms is
found in [30].

The two most popular evolutionary computation approaches in feature selection are
genetic algorithms (GAs) and particle swarm optimization (PSO), and for both there is an
increasing trend in the number of studies using them in the last couple of decades [29].
They are both applied in wrapper approaches beside various classification algorithms, like
support vector machines [31–33], K-nearest neighbor [34–36], artificial neural networks [37,38],
decision tree [39] and so forth.

In [31], a regression real-world task regarding combustion processes in industry is
considered, where support vector regression is actually employed for getting an optimal
carbon monoxide concentration in the exhaust gases based on other characteristics. Besides
a GA for feature selection, two more methods from Bayesian statistics are tested, but the
GA approach proves to be superior. Another case of successful combination between a
GA and SVM for classification is presented in [32], where the GA is used both for feature
selection and for fine tuning the parameters of the SVM. In [33], dataset with medical
microscopical images is considered and features are first extracted from these and they
are further reduced by feature selections and eventually an SVM is applied for achieving
automated diagnosis.

In [34], a bees inspired optimization algorithm is used as the metaheuristics that takes
care of optimization, several benchmark datasets are used and the results are compared
to cases when a GA, a PSO or an ant colony optimization are used. The approach in [36]
integrates an evolutionary algorithm with a local search technique and the authors claim
very good performance for medium- to large-sized datasets.

In [37], a real-world credit dataset is collected at a Croatian bank and the GA combined
with ANN is applied to it and then further tested on a UCI database. Applications to
medical data are presented in [38], where various classifiers (SVM, artificial neural networks,
K-nearest neighbor, linear regression) are optimized via a genetic algorithm as concerns
both parameter optimization and feature selection.

Finally, in [39] an application to medical images performs, as in [33] above, feature
extraction and then feature selection is performed using a GA. Various classifiers like
SVM, ANN and decision tree are used for the final prediction. Another example of feature
selection tackled by swarm intelligence is [40], where the PSO algorithm is validated and
improved upon with a innovative mechanism of initialization and the update process of
solutions with the 20 popular datasets.

SSA has also been used to address the feature selection problem. Some of the effi-
ciently improved cases of the basic SSA include the solution of feature weighting with
the minimum distance problem [41], the problem of feature selection solving through
hybridization with the opposition based learning heuristics [42], and the improvement of
accuracy, reliability and the convergence time for the problem of feature selection with the
introduction of the inertia weight control parameter [43]. SSA has also been successfully
modified and applied in other application domains recently, such as green home health
care routing problem [44], health care supply chain [45], crop disease detection [46] and
power systems unit commitment task [47], to name the few.

Nature is the source of inspiration in the case of swarm intelligent algorithms. The ben-
efit for the machine learning techniques derives from the good compatibility with the main
principle of swarm intelligence of employing an immense amount of units individually
incapable of solving the problem. This sort of algorithms are often applied by themselves
for the reason of their well known exceeding performance. Furthermore, their full poten-
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tial is reached by incorporating hybridization techniques. The real world application of
swarm intelligence solutions is vast from the clustering, node localization, and preserving
of energy in wireless sensor networks [48–51], through to the scheduling problem with
cloud tasks [2,52], the prediction of COVID-19 cases based on machine learning [53,54],
MRI classification optimization [55,56], text document clustering [57], and the optimization
of the artificial neural networks [58–61].

3. Proposed Method

This section first introduces basic details of the original SSA metaheuristics. After-
wards, the observed drawbacks of the basic version are elaborated and mechanisms that
are able to overcome its deficiencies are proposed. Finally, solutions for improving SSA are
put forward.

3.1. Basic Salp Swarm Algorithm

The SSA [24] algorithm was motivated by the group of animals called salp, which are
aquatic, small, barrel-shaped and transparent. The individual units of this specimen bind
together with the goal of finding the safest paths in finding food sources. These interesting
creatures link up one behind another forming a chain.

The first unit in the chain is the leader and its behavior models exploration and
exploitation of the optimization algorithm search process. The leader decides where the
group will go in search for paths and food in its area. The leader’s position is changed
towards the direction of the food source, that represents the current best solution.

The units’ positions in D-dimensional search space are mathematically described as a
two-dimensional matrix labeled X, while the food source (current best solution) is labeled
as F. The following function updates the leader’s position in the j-th dimension [24]:

x1
j =

{
Fj + c1((ubj − lbj)c2 + lbj), c3 ≥ 0.5
Fj − c1((ubj − lbj)c2 + lbj), c3 < 0.5,

(1)

the x1 denotes leader, Fj represents the position of the current best solution (food source),
the upper and lower search space boundaries in the j-th dimension are, respectively, ubj
and lbj, while c1, c2 and c3 denote pseudo-random numbers drawn from the interval [0, 1].

The parameters c2 and c3 determine the step size and dictate whether the position
of the new solution will be generated towards negative or positive infinity. However, the
most important parameter is considered to be c1 due to the reason that it directly influences
the exploration and exploitation balance, which is one of the most important factors that
influence search process efficiency. The c1 is calculated as [24]:

c1 = 2e−(
4l
L )2

, (2)

where the current iteration is represented as l and the maximum iterations in a run are
denoted as L.

The position of followers is updated with the following equation that represents
Newton’s law of motion [24]:

xi
j =

1
2

at2 + V0t, (3)

where xi
j denote i-th follower in the j-th dimension and i ≥ 2. Annotation t represents time

and a =
Vf inal

V0
, where V = x−x0

t , and the initial speed is V0.
Due to the fact that time in any optimization process is modeled as iteration, the dispar-

ity between iterations is 1 and V0 = 0 at the beginning, Equation (3) can be reformulated as:

xi
j =

1
2
(xi

j + xi−1
j ) (4)
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3.2. Cons of the Original Algorithm and Proposed Improved Approach

It is a common case for the basic optimization algorithms to have certain deficiencies
and that is also the case with the SSA. Noticed cons of the basic SSA can be summarized as
follows: insufficient exploration, average exploitation power (conditional drawback) and
intensification-diversification trade-off.

In general, any optimization algorithm can be improved by applying small modifica-
tions, for example, minor changes made to the search equation, additional mechanisms,
and/or significant changes by hybridization with other algorithm. For the purpose of this
study, basic SSA was improved by including novel mechanism, as well as hybridization
with another well-known optimization metaheuristics.

Based on the findings from previous research [62,63], as well as on extensive simu-
lations with challenging CEC2013 benchmark instances [25] that were conducted for the
purpose of this study, it was discovered that the diversification process of basic SSA exhibits
some deficiencies, which leads to the inappropriate intensification-diversification balance,
that is on average dis-balanced towards exploitation.

First of all, the SSA exploration is controlled only by dynamic parameter c1 according
to Equation (2) and at the beginning of a run it is shifted towards exploration, while at later
iterations it slides towards exploitation. However, this mechanism is applied only to the
leader F (current best solution) and the whole search process to some extent depends on
the luck. Followers are updated according to Equation (4), which is essentially exploitation
between its previous and current positions. If the algorithm was lucky and manages to find
a region of the search space where the optimum solution resides, then the search process
will eventually converge and satisfying solutions’ quality will be obtained. Conversely, the
search will stuck in sub-optimal regions and best solutions will be located far from global
optimum at the end of a run.

Therefore, a solution for the above mentioned issue would be to improve exploration
in early iterations. For achieving this goal, an exploration replacement mechanism is
incorporated into the basic SSA in the following way: in the first rmp iterations, the
wrs worst solutions from population are rejected and renewed with randomly generated
solutions within upper and lower bounds of the search space according to expression:

xj = lbj + (ubj − lbj) · rnd, (5)

where rnd is pseudo-random number drawn from a uniform distribution.
The same expression is utilized in the initialization phase, where a starting random

population is generated. This mechanism introduces two additional control parameters:
replacement mechanism point (rmp), that determines when (in terms of l) the replacement
mechanism will be triggered and worst replaced solutions (wrs) that controls the number
of worst solutions that will be replaced with random ones. If rmp = L, then the enhanced
exploration will be performed throughout the whole run, similarly if rmp = 0, then the
SSA search will executed as in its basic version.

By further analysis of the original SSA, it was also determined that the exploitation
procedure with the followers (Equation (4)) is relatively simple depending on their current
and previous positions. To overcome this, hybridization with another recently proposed
metaheuristics, the SCA [14] is performed. In each iteration, the followers are updated either
by using basic SSA equation (Equation (4), or SCA search expression for and individual i
and component j:

xi
j =

{
xi

j + r1 · sin(r2) · |r3Pj − xi
j|, r4 < 0.5

xi
j + r1 · cos(r2) · |r3Pj − xi

j|, r4 ≥ 0.5,
(6)

where r1, r2, r3 and r4 are four randomly generated values from the interval [0, 1], Pj
represents the j-th component of random individual from population, || indicates the
absolute value and sin and cos are standard trigonometric functions.
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Similarly, as the original SSA, the SCA employs the following formula to adjust
intensification-diversification balance:

r1 = a− l
a
L

, (7)

where the parameter a represents a constant.
To control whether the followers’ position will be updated using basic SSA or SCA

search, pseudo-random number φ is used, as it is shown in Algorithm 1.
Encouraged with the introduced modifications, proposed enhanced SSA is named

SSA with replacement mechanism and SCA search-SSARM-SCA. Its pseudo-code is shown
in Algorithm 1. The flowchart of the algorithm is shown in Figure 1.

Algorithm 1 Pseudocode of SSARM-SCA.
Initialize population X by using Equation (5)
repeat

Compute the objective function for each solution xi
Update the best salp (solution) (F = Xb)
for i = 1 : N do

if i == 1 then
Update the position of salp using Equation (1)

end if
if φ < 0.5 then

Update followers by using SSA search and Equation (4)
else

Update followers by using SCA search and Equation (6)
end if

end for
Sort all individuals according to fitness
if l < rmp then

Replace wrs worst solutions by random ones using Equation (5).
end if
Update c1 using Equation (2)
Update r1 using Equation (7)

until (l < L)
Return the best solution F.

i == 1
Initialize population X 

by using Eq. (5)

Compute the 
objective function for 

each solution xᵢ

Update the best salp 
(solution) (F=Xb)

Φ < 0.5FALSE

Update the position 
of salp using Eq. (1)TRUE

Update followers by 
using SCA search and 

Eq. (6)
FALSE

Update followers by 
using SSA search and 

Eq. (4)
TRUE

i = 1 : N

i++ TRUE

FALSESort all individuals 
according to fitness

I < rmpFALSE

Replace the worst 
solutions by random 

ones using Eq. (5)
TRUE

Update C₁ using Eq. (2)Update r₁ using Eq. (7)l < L

l--

TRUE

Return the best solution 
F

FALSE

Figure 1. Flowchart of the proposed SSARM-SCA algorithm.

3.3. Complexity and Limitations of Proposed Method

The most computationally expensive operation during metaheuristics algorithm’s
execution is fitness function valuation (FFE). Accordingly, as established in the most
relevant and contemporary computer science publications, the complexity of the algorithm
is measured in terms of utilized FFEs [64].
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Complexity of both basic SSA and the proposed SSARM-SCA algorithms is the same:
O(NP) +O(2 ·NP · T), where NP denotes the number of solutions in the population, while
T represents the number of iterations. The proposed algorithm in each iteration performs
the search either by utilizing the SSA or SCA search equations. In the first rmp iterations
the wrs solutions are replaced by pseudo-random solutions, however this does not add
additional costs in terms of FFE, as all solutions in the population are being evaluated at
the beginning of each iteration.

When the FFE is being considered, the proposed SSARM-SCA algorithm is not more
complex than the basic SSA metaheuristics. The algorithm is slightly more complex if the
number of floating point operations is taken into account, however this can be disregarded
in comparison to FFE, and therefore it is not relevant for the algorithm’s complexity.

4. Validation of the Proposed Method for Standard CEC2013 Benchmarks

Following good practice from modern literature, the proposed SSARM-SCA is first
tested on challenging CEC2013 benchmark instances [25] with 30 dimensions (D = 30)
before being adapted for the practical feature selection challenge. With the goal of making
comparative analysis with other SOTA approaches, which results are published in the
recent papers, the same experimental conditions in terms of control parameters as in [65]
are kept.

The CEC2013 benchmark suite contains 28 functions that are split into three groups
based on its characteristics. Test instances from 1 to 5 are unimodal, benchmarks from 6 to
20 are multimodal, and finally, test bed from 21 to 28 belongs to the category of composite
functions. Functions’ details employed in simulations are given in Table 1.

Besides the proposed method and original SSA, for the purpose of comparative
analysis, all methods shown in [65] are also implemented and evaluated. All algorithms
are tested with 50 individuals in population N = 50 and the number of fitness function
evaluations maxFFEs of 3× 105 is set as termination condition as in [65].

The SSARM-SCA is compared to practical genetic algorithm (RGA) [66], gravitational
search algorithm (GSA) [67], disruption GSA (D-GSA) [68], black hole GSA (BH-GSA) [69],
clustered GSA (C-GSA) [70] and attractive repulsive GSA (AR-GSA) [65].

Table 1. CEC2013 benchmark suite details.

No Functions Initial Range

Unimodal Functions
1 Sphere function [−100, 100]D

2 Rotated High Conditioned Elliptic Function [−100, 100]D

3 Rotated Bent Cigar Function [−100, 100]D

4 Rotated Discus Function [−100, 100]D

5 Different Powers Function [−100, 100]D

Basic multimodal Functions
6 Rotated Rosenbrock’s Function [−100, 100]D

7 Rotated Schaffer’s F7 Function [−100, 100]D

8 Rotated Ackley’s Function [−100, 100]D

9 Rotated Weierstrass Function [−100, 100]D

10 Rotated Griewank’s Function [−100, 100]D

11 Rastrigin’s Function [−100, 100]D

12 Rotated Rastrigin’s Function [−100, 100]D

13 Non-Continuous Rotated Rastrigin’s Function [−100, 100]D

14 Schwefel’s Function [−100, 100]D

15 Rotated Schwefel’s Function [−100, 100]D

16 Rotated Katsuura Function [−100, 100]D

17 Lunacek Bi_Rastrigin Function [−100, 100]D

18 Rotated Lunacek Bi_Rastrigin Function [−100, 100]D

19 Expanded Griewank’s plus Rosenbrock’s Function [−100, 100]D

20 Expanded Schaffer’s F6 Function [−100, 100]D
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Table 1. Cont.

No Functions Initial Range

Composition Functions
21 Composition Function 1 (n = 5, Rotated) [−100, 100]D

22 Composition Function 2 (n = 3, Unrotated) [−100, 100]D

23 Composition Function 3 (n = 3, Rotated) [−100, 100]D

24 Composition Function 4 (n = 3, Rotated) [−100, 100]D

25 Composition Function 5 (n = 3, Rotated) [−100, 100]D

26 Composition Function 6 (n = 5, Rotated) [−100, 100]D

27 Composition Function 7 (n = 5, Rotated) [−100, 100]D

28 Composition Function 8 (n = 5, Rotated) [−100, 100]D

Specific SSARM-SCA control parameters are set as follows: rms = 3× 102 according
to expression maxFFEs/1000 and wrs = 10 by using formula N/5. Values for these
parameters are determined empirically. Dynamic parameter c1 for original SSA and SSARM-
SCA are adjusted according to Equation (2) and parameter r1 of SSARM-SCA is adjusted
throughout the run by expression (7). It is noted that in those expressions instead of l
and L, the FFEs and maxFFEs are used, respectively. Other methods implemented for the
purpose of comparison are tested with the control parameters suggested in [65].

All algorithms are executed in 51 independent runs and the following metrics in
terms of objective function values are captured: best, median, worst, mean and standard
deviation. Comparative analysis results are split into three tables based on the function
types as follows: Table 2 show results for unimodal, Table 3 presents metrics for multimodal
and Table 4 depicts results for composite CEC2013 instances. The best results for each
metrics are marked bold in all tables.

Table 2. Comparative analysis between SSARM-SCA and other SOTA methods for CEC2013 uni-
modal benchmarks.

SSA RGA GSA D-GSA BH-GSA C-GSA AR-GSA SSARM-SCA

F1
Best 0× 100 1.85× 102 0× 100 6.70× 10−1 4.55× 10−13 2.27× 10−13 0× 100 0× 100

Median 0× 100 2.81× 102 0× 100 9.56× 10−1 3.64× 10−12 2.27× 10−13 0× 100 0× 100

Worst 2.11× 10−13 3.52× 102 2.27× 10−13 1.47× 100 5.00× 10−12 4.55× 10−13 0× 100 0× 100

Mean 6.94× 10−14 2.82× 102 7.58× 10−14 9.75× 10−1 3.33× 10−12 2.76× 10−13 0× 100 0× 100

Std 1.11× 10−13 3.16× 101 1.08× 10−13 1.97× 10−1 1.03× 10−12 9.44× 10−14 0× 100 0× 100

F2
Best 9.16× 105 1.09× 107 9.26× 105 7.26× 106 5.25× 105 9.60× 105 1.56× 105 1.22 × 105

Median 1.69× 106 1.59× 107 1.74× 106 1.12× 107 1.97E× 106 1.75× 106 6.05× 105 5.78 × 105

Worst 3.51× 106 2.53× 107 3.33× 106 1.80× 107 4.94× 106 3.07 × 106 6.57× 106 6.48× 106

Mean 1.21× 106 1.69× 107 1.85× 106 1.16× 107 2.01× 106 1.84× 106 1.37× 106 1.20 × 106

Std 5.22× 105 3.64× 106 5.12× 105 42.17× 106 7.84× 105 4.53 × 105 1.68× 106 1.45× 106

F3
Best 2.65× 107 3.34× 109 2.78× 107 1.02× 109 4.87× 10−5 2.86× 107 7.73× 10−12 7.42 × 10−12

Median 7.67× 108 6.28× 109 7.85× 108 2.96× 109 1.62× 106 1.07× 109 1.23× 10−11 1.15 × 10−11

Worst 2.89× 109 2.37× 1010 2.95× 109 9.22× 109 2.90× 1019 4.38× 109 1.50× 10−11 1.45 × 10−11

Mean 9.71× 108 6.72× 109 9.84× 108 3.55× 109 5.70× 1017 1.23× 109 1.19× 10−11 1.07 × 10−11

Std 7.23× 108 2.99× 109 7.14× 108 1.72× 109 4.07× 1018 8.40× 108 1.85× 10−12 1.76 × 10−12

F4
Best 5.64× 104 5.16× 104 5.73× 104 5.85× 104 4.99× 104 5.59× 104 4.64× 104 4.43 × 104

Median 6.57× 104 7.12× 104 6.86× 104 6.87× 104 6.82× 104 6.98× 104 6.49× 104 6.23 × 104

Worst 7.81× 104 1.03× 105 7.95× 104 7.10 × 104 9.03× 104 8.64× 104 7.84× 104 7.66× 104

Mean 6.72× 104 7.33× 104 6.85× 104 6.74× 104 6.85× 104 7.06× 104 6.47× 104 6.23 × 104

Std 5.56× 103 1.20× 104 5.67× 103 3.36 × 103 8.16× 103 5.19× 103 7.86× 103 7.54× 103



Sensors 2022, 22, 1711 10 of 25

Table 2. Cont.

SSA RGA GSA D-GSA BH-GSA C-GSA AR-GSA SSARM-SCA

F5
Best 1.56× 10−12 1.95× 102 1.48 × 10−12 2.68× 100 1.92× 10−11 1.44× 10−11 2.03× 10−8 2.36× 10−8

Median 2.51× 10−12 3.04× 102 2.39 × 10−12 1.49× 101 1.00× 10−10 2.13× 10−11 9.96× 10−8 8.92× 10−8

Worst 3.88× 10−12 4.65× 102 3.75 × 10−12 6.05× 101 3.37× 10−10 5.71× 10−11 1.87× 10−7 2.94× 10−7

Mean 2.49× 10−12 3.05× 102 2.40 × 10−12 1.87× 101 1.25× 10−10 2.36× 10−11 1.02× 10−7 1.58× 10−7

Std 5.67× 10−13 6.13× 101 5.42 × 10−13 1.10× 101 7.15× 10−11 7.49× 10−12 3.59× 10−8 3.61× 10−8

Table 3. Comparative analysis between SSARM-SCA and other SOTA methods for CEC2013 multi-
modal benchmarks.

SSA RGA GSA D-GSA BH-GSA C-GSA AR-GSA SSARM-SCA

F6
Best 2.56× 10−1 7.81× 101 2.47× 10−1 5.61× 10−1 2.23× 10−1 1.46 × 10−1 3.74× 10−1 2.95× 10−1

Median 5.54× 101 1.11× 102 5.69× 101 7.19× 101 3.35 × 100 5.43× 101 1.77× 101 1.56× 101

Worst 9.35× 101 1.39× 102 9.42× 101 1.35× 102 6.86 × 101 1.04× 102 8.11× 101 7.87× 101

Mean 5.24× 101 1.13× 102 5.18× 101 7.36× 101 2.26 × 101 5.13× 101 3.37× 101 3.15× 101

Std 2.67× 101 1.20 × 101 2.51× 101 2.46× 101 2.68× 101 2.50× 101 2.73× 101 2.58× 101

F7
Best 2.69× 101 4.14× 101 2.74× 101 3.61× 101 4.50× 10−5 3.06× 101 4.32× 10−9 4.19 × 10−9

Median 4.57× 101 5.57× 101 4.45× 101 5.59× 101 5.23× 10−1 4.35× 101 2.58× 10−5 2.21 × 10−5

Worst 8.56× 101 6.87× 101 8.48× 101 9.11× 101 2.86× 101 7.39× 101 3.63× 10−3 3.15 × 10−3

Mean 4.93× 101 5.58× 101 4.71× 101 5.70× 101 5.59× 101 4.62× 101 1.55× 10−4 1.12 × 10−4

Std 1.35× 101 5.66× 100 1.19× 101 1.25× 101 7.62× 101 1.08× 101 5.20× 10−4 5.01 × 10−4

F8
Best 2.12× 101 2.08× 101 2.08× 101 2.08× 101 2.08× 101 2.09× 101 2.06× 101 1.79 × 101

Median 2.15× 101 2.10× 101 2.10× 101 2.10× 101 2.10× 101 2.12× 101 2.10× 101 1.96 × 101

Worst 2.26× 101 2.10× 101 2.10× 101 2.11× 101 2.10× 101 2.16× 101 2.10× 101 2.04 × 101

Mean 2.17× 101 2.10× 101 2.10× 101 2.10× 101 2.10× 101 2.12× 101 2.09× 101 1.85 × 101

Std 4.64× 10−2 4.67× 10−2 4.79× 10−2 5.29× 10−2 5.62× 10−2 1.59× 10−1 7.14× 10−2 4.54 × 10−2

F9
Best 2.36× 101 1.60× 101 2.14× 101 2.11× 101 3.24× 100 2.02× 101 2.37× 10−7 2.24 × 10−7

Median 2.97× 101 2.13× 101 2.73× 101 3.01× 101 7.20× 101 2.86× 101 4.99× 100 4.67 × 100

Worst 3.89× 101 2.67× 101 3.50× 101 3.76× 101 1.50× 101 3.68× 101 8.91× 100 8.84 × 100

Mean 2.86× 101 2.16× 101 2.77× 101 3.01× 101 7.78× 100 2.83× 101 5.25× 100 5.13 × 100

Std 3.64× 100 2.35× 100 3.56× 100 3.92× 100 2.44× 100 3.65× 100 1.98× 100 1.86 × 100

F10
Best 0× 100 3.54× 101 0× 100 1.22× 100 5.68× 10−13 3.41× 10−13 0× 100 0× 100

Median 5.44× 10−14 5.95× 101 5.68× 10−14 1.49× 100 1.19× 10−12 7.40× 10−3 0× 100 0× 100

Worst 2.17× 10−2 6.98× 101 2.22× 10−2 2.20× 100 1.72× 10−2 2.96× 10−2 1.48× 10−2 1.36 × 10−2

Mean 5.55× 10−3 5.91× 101 5.61× 10−3 1.57× 100 2.56× 10−3 7.39× 10−3 1.69× 10−3 1.53 × 10−3

Std 6.41× 10−3 6.75× 100 6.39× 10−3 2.68× 10−1 5.05× 10−3 6.02× 10−3 3.83× 10−3 3.67 × 10−3

F11
Best 1.28× 102 1.14× 102 1.33× 102 1.30× 102 8.95× 100 1.43× 102 7.96× 100 7.76 × 100

Median 1.79× 102 1.45× 102 1.83× 102 1.85× 102 1.69 × 101 1.84× 102 1.79× 101 1.85× 101

Worst 2.46× 102 1.62× 102 2.34× 102 2.31× 102 3.38× 101 2.34× 102 2.98× 101 2.75 × 101

Mean 1.95× 102 1.44× 102 1.90× 102 1.87× 102 1.79× 101 1.87× 102 1.83× 101 1.74 × 101

Std 2.41× 101 9.16× 100 2.35× 101 2.18× 101 5.21× 100 2.14× 101 4.47× 100 4.32 × 100

F12
Best 1.67× 102 1.42× 102 1.60× 102 1.52× 102 7.96 × 100 1.47× 102 1.29× 101 1.12× 101

Median 2.12× 102 1.58× 102 2.08× 102 2.09× 102 1.39 × 101 2.05× 102 2.29× 101 2.12× 101

Worst 2.68× 102 1.75× 102 2.59× 102 2.63× 102 2.49 × 101 2.62× 102 3.88× 101 3.64× 101

Mean 2.18× 102 1.58× 102 2.07× 102 2.08× 102 1.42 × 101 2.06× 102 2.36× 101 2.25× 101

Std 2.83× 101 8.64× 100 2.75× 101 2.39× 101 3.77 × 100 2.34× 101 5.42× 100 5.23× 100
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Table 3. Cont.

SSA RGA GSA D-GSA BH-GSA C-GSA AR-GSA SSARM-SCA

F13
Best 2.47× 102 1.31× 102 2.75× 102 2.50× 102 5.16× 100 2.43× 102 1.15× 101 4.89 × 100

Median 3.48× 102 1.58× 102 3.30× 102 3.24× 102 2.51× 101 3.37× 102 4.13× 101 2.15 × 100

Worst 4.56× 102 1.69× 102 4.28× 102 4.27× 102 6.17× 101 4.06× 102 8.74× 101 6.10 × 101

Mean 3.56× 102 1.57× 102 3.34× 102 3.30× 102 2.77× 101 3.32× 102 4.51× 101 2.43 × 101

Std 3.45× 101 7.02× 100 3.34× 101 3.79× 101 1.31× 101 3.96× 101 1.83× 101 6.58 × 100

F14
Best 2.15× 103 4.36× 103 2.22× 103 2.50× 103 1.06× 103 2.20× 103 7.80× 102 7.21 × 102

Median 3.44× 103 5.03× 103 3.26× 103 3.40× 103 1.63× 103 3.33× 103 1.47× 103 1.25 × 103

Worst 4.37× 103 5.64× 103 4.30× 103 4.31× 103 2.60× 103 4.61× 103 2.45× 103 2.33 × 103

Mean 3.45× 103 5.06× 103 3.29× 103 3.38× 103 1.63× 103 3.41× 103 1.49× 103 1.34 × 103

Std 4.88× 102 2.62× 102 4.98× 102 4.19× 102 3.24× 102 4.87× 102 3.76× 102 2.59 × 102

F15
Best 2.45× 103 4.56× 103 2.39× 103 2.14× 103 5.12× 102 2.28× 103 5.33× 102 5.01 × 102

Median 3.39× 103 5.30× 103 3.27× 103 3.36× 103 1.19× 103 3.20× 103 1.20× 103 1.04 × 103

Worst 4.85× 103 5.94× 103 4.68× 103 4.99× 103 2.27× 103 4.10× 103 1.82 × 103 2.35× 103

Mean 3.48× 103 5.31× 103 3.31× 103 3.42× 103 1.22× 103 3.28× 103 1.21× 103 1.15 × 103

Std 5.65× 102 2.91× 102 5.43× 102 4.92× 102 3.90× 102 4.56× 102 3.29× 102 2.78 × 102

F16
Best 4.23× 10−4 1.93× 100 4.07 × 10−4 6.99× 10−1 6.07× 10−4 6.07× 10−4 5.47× 10−4 5.29× 10−4

Median 2.22× 10−3 2.50× 100 2.11× 10−3 1.13× 100 3.33× 10−3 2.56× 10−3 2.06 × 10−3 2.25× 10−3

Worst 9.54× 10−3 3.02× 100 9.39× 10−3 1.73× 100 1.16× 10−2 9.32 × 10−3 1.04× 10−2 1.36× 10−2

Mean 2.76× 10−3 2.46× 100 2.87× 10−3 1.14× 10−3 4.00× 10−3 3.43× 10−3 2.72× 10−3 2.58 × 10−3

Std 2.34× 10−3 2.75× 10−1 2.17× 10−3 2.27× 10−1 2.29× 10−3 2.25× 10−3 1.84× 10−3 1.34 × 10−3

F17
Best 3.66× 101 1.92× 102 3.74× 101 7.46× 101 3.69× 101 3.58× 101 4.10× 101 3.46 × 101

Median 4.25× 101 2.11× 102 4.43× 101 1.04× 102 4.62× 101 4.33 × 101 5.04× 101 4.68× 101

Worst 6.41× 101 2.30× 102 6.67× 101 1.25× 102 5.63 × 101 5.68× 101 6.53× 101 7.83× 101

Mean 4.62× 101 2.11× 102 4.50× 101 1.02× 102 4.61× 101 4.41 × 101 5.05× 101 4.58× 101

Std 5.23× 100 9.40× 100 5.06× 100 1.08× 101 4.12× 100 4.37× 100 5.31× 100 4.06 × 100

F18
Best 3.75× 101 1.85× 102 3.67× 101 1.33× 102 3.93× 101 3.76× 101 4.16× 101 3.58 × 101

Median 4.64× 101 2.09× 102 4.53× 101 1.73× 102 4.69× 101 4.45 × 101 5.51× 101 4.47× 101

Worst 5.86× 101 2.28× 102 5.35× 101 1.97× 102 5.89× 101 5.85× 101 7.12× 101 5.16 × 101

Mean 4.76× 101 2.10× 102 4.52× 101 1.73× 102 4.74× 101 4.56× 101 5.61× 101 4.48 × 101

Std 3.84× 100 8.88× 100 3.77× 100 1.39× 101 4.05× 100 4.25× 100 7.12× 100 3.65 × 100

F19
Best 1.69× 100 2.16× 101 1.78× 100 4.34× 100 2.76× 100 1.76 × 100 2.54× 100 2.35× 100

Median 2.61× 100 2.55× 101 2.77 × 100 6.47× 100 4.58× 100 3.02× 100 3.54× 100 3.67× 100

Worst 4.01× 100 2.91× 101 4.40 × 100 1.54× 101 6.24× 100 4.41× 100 6.87× 100 6.94× 100

Mean 2.76× 100 2.54× 101 2.95 × 100 7.24× 100 4.70× 100 3.03× 100 3.83× 100 3.94× 100

Std 6.76× 10−1 1.60× 100 6.80× 10−1 2.73× 100 9.52× 10−1 6.28 × 10−1 8.88× 10−1 8.53× 10−1

F20
Best 1.61× 101 1.50× 101 1.41× 101 1.41 × 101 1.50× 101 1.50× 101 1.49× 101 1.46× 101

Median 1.65× 101 1.50× 101 1.50× 101 1.50× 101 1.50× 101 1.50× 101 1.50× 101 1.50× 101

Worst 1.65× 101 1.50× 101 1.50× 101 1.50× 101 1.50× 101 1.50× 101 1.50× 101 1.50× 101

Mean 1.65× 101 1.50× 101 1.50× 101 1.50× 101 1.50× 101 1.50× 101 1.50× 101 1.50× 101

Std 1.45× 10−1 9.93× 10−6 1.33× 10−1 1.81× 10−1 6.30× 10−8 3.09× 10−6 1.98× 10−2 6.17 × 10−8
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Table 4. Comparative analysis between SSARM-SCA and other SOTA methods for CEC2013 compos-
ite benchmarks.

SSA RGA GSA D-GSA BH-GSA C-GSA AR-GSA SSARM-SCA

F21
Best 1.27× 102 4.62× 102 1.00× 102 1.27× 102 2.00× 102 1.00 × 102 2.00× 102 1.95× 102

Median 3.65× 102 5.62× 102 3.00× 102 3.15× 102 3.00× 102 3.00× 102 3.00× 102 2.84 × 102

Worst 4.76× 102 6.07× 102 4.44× 102 4.44× 102 4.44× 102 4.44× 102 4.44× 102 4.26 × 102

Mean 3.36× 102 5.41× 102 3.20× 102 3.40× 102 3.36× 102 3.32× 102 3.26× 102 3.12 × 102

Std 7.39× 101 4.30× 101 7.28× 101 7.13× 101 9.12× 101 7.97× 101 9.22× 101 4.26 × 101

F22
Best 3.95× 103 4.31× 103 3.78× 103 4.03× 103 3.28× 102 3.87× 103 3.13× 102 3.05 × 102

Median 5.39× 103 4.99× 103 5.18× 103 5.39× 103 1.10× 103 5.53× 103 1.11× 103 1.05 × 103

Worst 7.25× 103 5.75× 103 7.08× 103 7.04× 103 2.18× 103 7.50× 103 2.26× 103 2.15 × 103

Mean 5.63× 103 5.06× 103 5.35× 103 5.53× 103 1.22× 103 5.51× 103 1.12× 103 1.03 × 103

Std 8.91× 102 3.43× 102 8.59× 102 7.93× 102 4.09× 102 8.06× 102 3.83× 102 3.21 × 102

F23
Best 4.32× 103 4.37× 103 4.23× 103 4.86× 103 6.01 × 102 3.86× 103 1.01× 103 1.28× 103

Median 5.67× 103 5.41× 103 5.50× 103 5.54× 103 1.96× 103 5.49× 103 1.84 × 103 1.92× 103

Worst 6.89× 103 6.24× 103 6.67× 103 6.38× 103 4.23× 103 6.12× 103 3.75 × 103 3.85× 103

Mean 5.76× 103 5.40× 103 5.53× 103 5.58× 103 2.10× 103 5.44× 103 1.96 × 103 2.10× 103

Std 4.59× 102 4.05× 102 4.36× 102 3.22× 102 7.58× 102 4.30× 102 6.01× 102 3.13 × 102

F24
Best 2.46× 102 2.31× 102 2.20× 102 2.16× 102 2.00× 102 2.29× 102 2.00× 102 1.96 × 102

Median 2.68× 102 2.37× 102 2.57× 102 2.59× 102 2.00× 102 2.55× 102 2.00× 102 1.99 × 102

Worst 3.95× 102 2.80× 102 3.90× 102 3.82× 102 2.10× 102 3.87× 102 2.00 × 102 2.07× 102

Mean 2.81× 102 2.40× 102 2.79× 102 2.71× 102 2.01× 102 2.68× 102 2.00× 102 2.00× 100

Std 4.60× 101 1.12× 101 4.49× 101 3.77× 101 1.18× 10−1 3.63× 101 2.45× 10−2 2.17 × 10−2

F25
Best 2.22× 102 2.40× 102 2.00× 102 2.09× 102 2.00× 102 2.00× 102 2.00× 102 1.89 × 102

Median 3.57× 102 2.83× 102 3.43× 102 3.50× 102 2.00× 102 3.41× 102 2.00× 102 1.95 × 102

Worst 4.11× 102 3.04× 102 3.86× 102 3.86× 102 2.71× 102 3.85× 102 2.00× 102 1.99 × 102

Mean 3.85× 102 2.72× 102 3.32× 102 3.39× 102 2.12× 102 3.32× 102 2.00× 102 1.94 × 102

Std 4.55× 101 2.51× 101 4.06× 101 3.71× 101 2.55× 101 4.15× 101 1.86× 10−5 1.82 × 10−5

F26
Best 2.56× 102 2.01× 102 2.34× 102 2.00× 102 1.11 × 102 2.00× 102 2.27× 102 2.31× 102

Median 3.67× 102 3.40× 102 3.42× 102 3.50× 102 3.00× 102 3.48× 102 2.98 × 102 3.06× 102

Worst 3.87× 102 3.64× 102 3.78× 102 3.70× 102 3.25× 102 3.71× 102 3.19 × 102 3.25× 102

Mean 3.43× 102 3.15× 102 3.29× 102 3.33× 102 2.85 × 102 3.28× 102 2.92× 102 2.99× 102

Std 3.88× 101 6.06× 101 3.74× 101 4.35× 101 4.26× 101 4.76× 101 1.71× 101 1.68 × 101

F27
Best 5.64× 102 6.15× 102 5.88× 102 6.11× 102 3.00× 102 6.24× 102 3.00 × 102 3.24× 102

Median 7.51× 102 7.96× 102 7.63× 102 8.43× 102 3.00× 102 7.68× 102 3.00 × 102 3.27× 102

Worst 9.76× 102 1.02× 103 9.87× 102 1.03× 103 3.04× 102 1.01× 103 3.03 × 102 3.30× 102

Mean 7.78× 102 7.74× 102 7.84× 102 8.41× 102 3.01× 102 7.84× 102 3.00 × 102 3.25× 102

Std 1.02× 102 1.33× 102 1.09× 102 1.12× 102 1.14× 100 9.29× 101 4.09 × 10−1 4.34× 10−1

F28
Best 2.24× 103 5.09× 102 2.46× 103 2.83× 103 1.00 × 102 2.33× 103 3.00× 102 3.23× 102

Median 3.15× 103 8.12× 102 3.13× 103 3.22× 103 3.00× 102 3.17× 103 3.00× 102 3.28× 102

Worst 3.52× 103 1.75× 103 3.68× 103 3.94× 103 1.35× 103 3.93× 103 3.00 × 102 3.34× 102

Mean 3.05× 103 8.91× 102 3.14× 103 3.25× 103 3.49× 102 3.24× 103 3.00 × 102 3.27× 102

Std 2.58× 102 3.52× 102 2.71× 102 2.37× 102 2.53× 102 2.91× 102 8.77 × 10−9 8.92× 10−9
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First of all, obtained results for all methods for the purpose of this study are similar as
in [67], therefore this research validates results reported in [67]. From the comparative anal-
ysis results superiority of proposed SSARM-SCA can be unambiguously determined. For
most of the benchmarks, including all three types (unimodal, multimodal and composite)
in average, the SSARM-SCA obtains the best results for all four indicators among all other
SOTA metaheurisitcs. Specifically, when comparing to the original SSA, improvements in
terms of convergence speed and results’ quality are substantial.

More insights regarding the convergence speed can be obtain from Figure 2. In the
presented figure, convergence speed graphs for some methods included in analysis for
2 unimodal (F1 and F4), 4 multimodal (F7,F12,F14 and F18) and 2 composite (F24 and F28)
benchmarks are generated. Provided graphs validate clear improvements of proposed
SSARM-SCA over original SSA and other SOTA methods in terms of convergence.

However, to more objectively determine the robustness and efficiency of one approach
over others, results should also be compared in terms of statistical tests. For that reason, the
Friedman test [71,72], as the primary method for doing as alongside the ranked two-way
analysis of variances of the proposed method and other implemented methods for the
research, was conducted.

The results achieved by the 8 implemented algorithms over the 28 functions from
the CEC2013 benchmark set, including the Friedman and the aligned Friedman test, are
presented in the Tables 5 and 6, respectively.

Table 5. Friedman test ranks for the compared algorithms over 28 CEC2013 functions.

Functions SSA RGA GSA D-GSA BH-GSA C-GSA AR-GSA SSARM-SCA

F1 3 8 4 7 6 5 1.5 1.5
F2 1 8 5 7 6 4 3 2
F3 4 7 3 6 8 5 2 1
F4 6 8 4.5 3 4.5 7 2 1
F5 1 8 2 7 4 3 5 6
F6 4 8 6 7 1 5 3 2
F7 6 7 5 8 3 4 2 1
F8 2 5.5 5.5 5.5 5.5 8 3 1
F9 7 4 5 8 3 6 2 1
F10 5 8 4 7 3 6 2 1
F11 8 4 7 5.5 2 5.5 3 1
F12 5 4 7 8 1 6 3 2
F13 8 4 7 5 2 6 3 1
F14 4 8 5 6 3 7 2 1
F15 4 8 6 7 3 5 2 1
F16 4 8 3 7 6 5 2 1
F17 5 8 2 7 4 1 6 3
F18 5 8 2 7 4 3 6 1
F19 2 8 1 7 6 3 4 5
F20 8 4 4 4 4 4 4 4
F21 1 8 3 7 6 5 4 2
F22 8 4 5 7 3 6 2 1
F23 8 4 6 7 2.5 5 1 2.5
F24 8 4 7 6 3 5 2 1
F25 8 4 5.5 7 3 5.5 2 1
F26 4 5 7 8 1 6 2 3
F27 7 4 5.5 8 2 5.5 1 3
F28 5 4 6 8 3 7 1 2

Average Ranking 5.035714286 6.160714286 4.75 6.678571429 3.660714286 5.125 2.696428571 1.892857143
Rank 5 7 4 8 3 6 2 1
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Figure 2. Convergence speed comparison for 8 CEC2013 instances-proposed SSARM-SCA vs. other
approaches. (a) SSARM-SCA vs. others-CEC2013 F1. (b) SSARM-SCA vs. others-CEC2013 F4.
(c) SSARM-SCA vs. others-CEC2013 F7. (d) SSARM-SCA vs. others-CEC2013 F12. (e) SSARM-SCA
vs. others-CEC2013 F14. (f) SSARM-SCA vs. others-CEC2013 F18. (g) SSARM-SCA vs. others-
CEC2013 F24. (h) SSARM-SCA vs. others-CEC2013 F28.
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Table 6. Aligned Friedman test ranks for the compared algorithms over 28 CEC2013 functions.

Functions SSA RGA GSA D-GSA BH-GSA C-GSA AR-GSA SSARM-SCA

F1 64 192 65 68 67 66 62.5 62.5
F2 8 223 12 222 13 11 10 9
F3 4 7 3 6 224 5 1.5 1.5
F4 216 221 195.5 32 195.5 219 15 14
F5 51 194 52 85 54 53 55 56
F6 109 167 115 153 73 112 87 84
F7 148 155 147 157 79 146 71 70
F8 123 132.5 132.5 132.5 132.5 136 130 113
F9 144 139 142 145 95 143 93 92
F10 103 164 102 105 101 104 100 99
F11 175 156 170 168.5 44 168.5 45 43
F12 171 159 173 174 40 172 42 41
F13 190 50 182 179 38 180 39 37
F14 187 218 197 199 30 201 29 27
F15 193 220 200 202 24 198 23 22
F16 127 138 126 137 129 128 125 124
F17 82 183 75 158 77 74 83 76
F18 69 181 59 177 61 60 78 57
F19 107 150 106 135 114 108 110 111
F20 140 119 119 119 119 119 119 119
F21 49 189 72 97 91 89 81 58
F22 217 206 212 214 18 213 17 16
F23 215 203 207 208 20.5 204 19 20.5
F24 176 152 166 163 88 162 86 36
F25 178 94 160.5 165 48 160.5 47 46
F26 98 141 151 154 80 149 90
F27 188 184 185.5 191 34 185.5 33 35
F28 205 31 209 211 28 210 25 26

Average Ranking 133.4642857 156.0178571 133.4285714 148.4642857 75.625 134.875 61.28571429 56.83928571
Rank 5 8 4 7 3 6 2 1

As observed in Table 6, the proposed SSARM-SCA outperformed all of the other
candidates, as well as the basic SSA which averaged the ranking of 133.463. Proposed
SSARM-SCA obtained an average ranking of 56.838.

Furthermore, the research [73] provides grounds for the possible improvement in
terms of performance in comparison with the χ2 value. Hence, the Iman and Davenport’s
test [74] is used as well. The results of this test are summarized in Table 7.

The results show a value of 2.230× 101, which demonstrates significantly better results
than the F-distribution critical value (F(9, 9× 10) = 2.058× 100). Additionally, the null
hypothesis is rejected by Iman and Davenport’s test. The Friedman statistics fared with the
score of (χ2

r = 1.407× 101) resulting in better performance than the F-distribution critical
value at the level of significance being α = 0.05.

The final conclusion is that the null hypothesis can be rejected and that the proposed
SSARM-SCA is clearly the best of its competitors.

Table 7. Friedman and Iman–Davenport statistical test results summary (α = 0.05).

Friedman Value χ2 Critical Value p-Value Iman-Davenport Value F-Critical Value

8.866× 101 1.407× 101 1.110× 10−16 2.230× 101 2.058× 100

The rejection of the null hypothesis by both statistical tests performed is followed
by the next type of test, Holm’s step-down method which is a non-parametric post-hoc
method. The findings of such experiments are displayed in Table 8.

The p value is the main sorting reference for all the methods and they are compared
against the α/(k− i). The k denote the degree of freedom while the i shows the number of
the algorithm, respectively.
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This research utilized α parameter at the levels of 0.05 and 0.1. It should be noted that
the values of p parameter are displayed in scientific notation.

Table 8. Results of the Holm’s step-down procedure.

Comparison p-Values Ranking Alpha = 0.05 Alpha = 0.1 H1 H2

SSARM-SCA vs. D-GSA 1.33227× 10−13 0 0.007142857 0.014285714 TRUE TRUE
SSARM-SCA vs. RGA 3.53276× 10−11 1 0.008333333 0.016666667 TRUE TRUE

SSARM-SCA vs. C-GSA 3.96302× 10−7 2 0.01 0.02 TRUE TRUE
SSARM-SCA vs. SSA 7.90191× 10−7 3 0.0125 0.025 TRUE TRUE
SSARM-SCA vs. GSA 6.37484× 10−6 4 0.016666667 0.033333333 TRUE TRUE

SSARM-SCA vs. BH-GSA 0.003462325 5 0.025 0.05 TRUE TRUE
SSARM-SCA vs. AR-GSA 0.109821937 6 0.05 0.1 FALSE FALSE

The summary of testing with Holm’s method by the results provided in the Table 8
stands to prove that the improvement has been achieved for the subjected solution in case
of both levels of significance.

5. Feature Selection Experiments

The feature selection belongs to the group of binary problems, hence the well-known
V-shaped transfer function was used for mapping continuous search space variables to dis-
crete values 0 and 1. Therefore, if a dataset consists of n f feature, one solution is represented
as a binary array of length n f . This is how the proposed SSARM-SCA was adapted for this
problem and for the sake of distinguishing binary version from its respecting continuous
version it is referenced as the bSSARM-SCA.

Efficiency of proposed method for feature selection challenge was compared to SOTA
metaheuristics presented in [22]. For that reason similar experimental conditions as in [22]
were established. However, instead of using L = 70 with N = 8 as in [22], the maxFFEs
was used as termination condition and it was set to 560 (N · L). This approach is more
reasonable since different optimization algorithms consume different number of FFEs in
each iteration and respecting the fact that the FFE is the most expensive calculation in
optimization process. The other SSARM-SCA control parameters were as follows: rms = 56
according to formula maxFFEs/10 and wrs = 2 by using expression round(N/3).

The bSSARM-SCA performance was tested on the 21 UCI datasets which are often
used for bench-marking (Table 9). All datasets are split into training and testing using
train_test_split rule in proportion 80%:20%. Each solution’s fitness is calculated on the train-
ing set by utilizing nearest neighbors (KNN) classifier and the following fitness function F
as in [22]:

F = αER(D) + β
|R|
|C| , (8)

where the ER(D) represents the error-rate of classification, the selected features number
represented as R, and lastly the C shows the sum of all features. The α and β are parameters
that establish relative influence of the ER(D) and R to the fitness function and they sum to
1 (α = 1− β).

From the formulated fitness function it can be seen that the classification error rate, as
well as the number of selected features are taken into consideration and that the problem is
formulated as minimization optimization challenge. In this study, α is set to 0.9, while β is
adjusted to 0.1.

At the end of a run, the solution with best fitness is determined and results of its
evaluation on the testing set were reported. All experiments were conducted in 20 inde-
pendent runs. All methods, including SOTA metaheuristics used in comparative analysis
shown in [22], along with original bSSA and bSSARM-SCA are implemented in Python
using numpy, pandas, scikitlearn and matplotlib libraries. Moreover, the same performance
metrics as in [22] are shown and for all implemented methods, a V-shaped transfer function
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is used for mapping continuous to binary search space. Algorithms proposed in [22] were
tested with the control parameters as suggested in original papers.

Table 9. Experimental setup datasets.

No. Name Features Samples

1 Breastcancer 9 699
2 Tic-tac-toe 9 958
3 Zoo 16 101
4 WineEW 13 178
5 SpectEW 22 267
6 SonarEW 60 208
7 IonosphereEW 34 351
8 HeartEW 13 270
9 CongressEW 16 435
10 KrvskpEW 36 3196
11 WaveformEW 40 5000
12 Exactly 13 1000
13 Exactly 2 13 1000
14 M-of-N 13 1000
15 vote 16 300
16 BreastEW 30 569
17 Semeion 265 1593
18 Clean 1 166 476
19 Clean 2 166 6598
20 Lymphography 18 148
21 PenghungEW 325 73

Finally, as proposed in [40], four different initialization methods were employed in
order to more objectively evaluate proposed method: small, mixed and large. In small
initialization, all individuals are generated at the beginning of a run with small number
of selected features (about 1/3) and in the case of a large individuals employ most of the
features ([2/3,1]). In mixed initialization experiments, generated solutions take into account
about 2/3 of all features in the dataset.

In all three experiments mean fitness and accuracy obtained over 20 runs are used as
performance metrics and expressions used for its calculation are given in Equation (9) and
Equation (10), respectively.

Avg( f ) =
1

Run

Run

∑
i=1

f ∗i , (9)

where average fitness is denoted as Avg( f ), f ∗ designates the individual with the best
fitness in the run, while Run represents the total number of runs.

Avg(c) =
1

Run

Run

∑
i=1

1
N

N

∑
i=1

Match(Ci, Li), (10)

where Avg(c) represents the average classification accuracy, N marks the number of in-
stances in the test set, Ci represents the classifier output for instance i, and Li denotes the
reference class corresponding to the given instance i.

As already noted, for the purpose of comparative analysis, besides original SSA
adapted for binary optimization problems (bSSA), the following algorithms, which results
are shown in [22], are also used: whale optimization algorithm (WOA) [12], bWOA with
sigmoidal transfer function (bWOA-S) and with hyperbolic tangent transfer function
(bWOA-V) [22], three versions of binary ant lion optimizer (BALO) [22], particle swarm
optimization (PSO) [75], binary gray wolf optimization (bGWO) and binary dragonfly
algorithm (bDA) [11].

Mean fitness and classification accuracy for all three initialization strategies and 21 UCI
datasets are shown in Tables 10–15. In all provided tables, the best results are marked with
bold style.
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Table 10. Mean fitness statistical metric using small initialization with the 21 utilized datasets.

No. WOA bWOA-S bWOA-v BALO1 BALO2 BALO3 PSO bGWO bDA bSSA bSSARM-SCA

1 0.063 0.047 0.052 0.078 0.096 0.089 0.059 0.033 0.033 0.153 0.025
2 0.327 0.223 0.315 0.347 0.353 0.335 0.332 0.248 0.217 0.275 0.224
3 0.242 0.135 0.222 0.413 0.397 0.417 0.258 0.125 0.052 0.675 0.154
4 0.939 0.907 0.936 0.954 0.962 0.953 0.927 0.884 0.879 0.915 0.836
5 0.341 0.291 0.341 0.353 0.393 0.374 0.361 0.279 0.252 0.199 0.634
6 0.332 0.204 0.313 0.375 0.374 0.368 0.304 0.156 0.181 0.097 0.063
7 0.136 0.121 0.134 0.172 0.176 0.185 0.143 0.097 0.127 0.173 0.116
8 0.291 0.253 0.276 0.297 0.305 0.286 0.284 0.193 0.163 0.194 0.129
9 0.380 0.362 0.378 0.393 0.396 0.394 0.403 0.355 0.336 0.498 0.289

10 0.395 0.088 0.376 0.423 0.416 0.418 0.422 0.078 0.057 0.294 0.033
11 0.434 0.194 0.438 0.496 0.497 0.516 0.436 0.182 0.184 0.171 0.149
12 0.323 0.293 0.335 0.348 0.333 0.335 0.318 0.317 0.203 0.368 0.133
13 0.244 0.242 0.237 0.239 0.266 0.241 0.245 0.246 0.238 0.257 0.222
14 0.298 0.134 0.298 0.357 0.352 0.356 0.282 0.135 0.071 0.245 0.033
15 0.129 0.065 0.142 0.153 0.156 0.175 0.135 0.064 0.051 0.064 0.047
16 0.052 0.046 0.057 0.084 0.082 0.084 0.054 0.036 0.032 0.026 0.049
17 0.098 0.038 0.096 0.092 0.091 0.097 0.097 0.024 0.034 0.187 0.715
18 0.294 0.153 0.297 0.359 0.378 0.366 0.292 0.111 0.146 0.975 0.099
19 0.083 0.046 0.086 0.127 0.133 0.135 0.085 0.036 0.047 0.386 0.231
20 0.298 0.205 0.274 0.374 0.316 0.378 0.302 0.187 0.168 0.256 0.135
21 0.467 0.182 0.445 0.615 0.601 0.607 0.449 0.144 0.173 0.132 0.112

Table 11. Classification accuracy using small initialization for the 21 utilized datasets.

No. WOA bWOA-S bWOA-v BALO1 BALO2 BALO3 PSO bGWO bDA bSSA bSSARM-SCA

1 0.864 0.645 0.741 0.832 0.811 0.844 0.862 0.965 0.752 0.856 0.974
2 0.658 0.783 0.672 0.590 0.593 0.583 0.621 0.746 0.685 0.694 0.780
3 0.744 0.842 0.777 0.458 0.474 0.449 0.585 0.868 0.814 0.621 0.665
4 0.042 0.050 0.028 0.012 0.015 0.013 0.034 0.087 0.032 0.331 0.343
5 0.627 0.668 0.609 0.563 0.556 0.554 0.584 0.706 0.644 0.769 0.754
6 0.639 0.714 0.657 0.543 0.547 0.546 0.605 0.835 0.697 0.903 0.915
7 0.844 0.837 0.835 0.784 0.774 0.763 0.822 0.893 0.829 0.867 0.874
8 0.675 0.644 0.633 0.605 0.598 0.609 0.655 0.795 0.657 0.763 0.831
9 0.582 0.581 0.586 0.558 0.542 0.572 0.566 0.623 0.581 0.910 0.938

10 0.580 0.912 0.608 0.514 0.517 0.513 0.547 0.918 0.783 0.917 0.916
11 0.552 0.803 0.553 0.392 0.403 0.399 0.391 0.812 0.742 0.795 0.830
12 0.636 0.669 0.612 0.589 0.621 0.618 0.655 0.654 0.645 0.678 0.712
13 0.729 0.725 0.708 0.748 0.696 0.702 0.726 0.726 0.714 0.746 0.764
14 0.692 0.848 0.849 0.722 0.727 0.703 0.817 0.934 0.873 0.857 0.953
15 0.861 0.917 0.834 0.723 0.723 0.703 0.818 0.933 0.879 0.745 0.935
16 0.895 0.691 0.725 0.805 0.827 0.834 0.899 0.962 0.785 0.989 0.977
17 0.898 0.962 0.896 0.878 0.903 0.909 0.895 0.971 0.958 0.897 0.914
18 0.680 0.818 0.677 0.590 0.582 0.587 0.644 0.872 0.795 0.874 0.891
19 0.908 0.956 0.908 0.841 0.843 0.848 0.883 0.961 0.953 0.885 0.904
20 0.677 0.735 0.654 0.517 0.556 0.524 0.612 0.792 0.708 0.702 0.878
21 0.496 0.742 0.491 0.284 0.297 0.301 0.417 0.802 0.722 0.825 0.894

Table 12. Mean fitness statistical metric using large initialization with the 21 utilized datasets.

No. WOA bWOA-S bWOA-v BALO1 BALO2 BALO3 PSO bGWO bDA bSSA bSSARM-SCA

1 0.135 0.128 0.167 0.185 0.148 0.226 0.163 0.031 0.039 0.159 0.033
2 0.216 0.209 0.208 0.246 0.244 0.241 0.204 0.212 0.208 0.219 0.191
3 0.143 0.134 0.130 0.163 0.125 0.189 0.176 0.102 0.076 0.146 0.068
4 0.926 0.927 0.923 0.937 0.939 0.923 0.929 0.905 0.886 0.856 0.829
5 0.315 0.317 0.313 0.320 0.328 0.318 0.318 0.304 0.243 0.383 0.214
6 0.304 0.287 0.299 0.274 0.295 0.285 0.273 0.258 0.194 0.275 0.138
7 0.168 0.164 0.184 0.166 0.178 0.164 0.163 0.155 0.124 0.094 0.116
8 0.344 0.333 0.341 0.346 0.354 0.348 0.344 0.288 0.177 0.211 0.133
9 0.403 0.408 0.393 0.407 0.405 0.387 0.395 0.373 0.342 0.051 0.039

10 0.065 0.077 0.074 0.071 0.076 0.076 0.068 0.062 0.053 0.071 0.062
11 0.192 0.198 0.195 0.193 0.199 0.194 0.186 0.189 0.186 0.175 0.159
12 0.307 0.308 0.313 0.309 0.307 0.303 0.308 0.307 0.209 0.258 0.192
13 0.256 0.250 0.261 0.267 0.261 0.262 0.257 0.255 0.243 0.259 0.227
14 0.139 0.134 0.137 0.146 0.131 0.138 0.122 0.124 0.065 0.194 0.054
15 0.083 0.094 0.087 0.085 0.092 0.095 0.082 0.087 0.058 0.065 0.051
16 0.218 0.223 0.153 0.104 0.154 0.208 0.203 0.046 0.031 0.105 0.143
17 0.042 0.042 0.049 0.041 0.049 0.046 0.043 0.033 0.032 0.145 0.075
18 0.181 0.181 0.181 0.188 0.198 0.194 0.188 0.178 0.136 0.091 0.074
19 0.053 0.050 0.057 0.054 0.055 0.055 0.054 0.043 0.047 0.036 0.022
20 0.239 0.235 0.223 0.245 0.230 0.237 0.237 0.222 0.143 0.250 0.161
21 0.269 0.244 0.277 0.272 0.261 0.278 0.233 0.229 0.181 0.276 0.156
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Table 13. Classification accuracy using large initialization for the 21 utilized datasets.

No. WOA bWOA-S bWOA-v BALO1 BALO2 BALO3 PSO bGWO bDA bSSA bSSARM-SCA

1 0.615 0.617 0.612 0.678 0.694 0.667 0.741 0.950 0.781 0.925 0.948
2 0.793 0.798 0.797 0.744 0.736 0.740 0.741 0.761 0.664 0.773 0.814
3 0.834 0.830 0.835 0.813 0.843 0.793 0.815 0.897 0.785 0.871 0.920
4 0.057 0.056 0.056 0.041 0.053 0.064 0.063 0.081 0.035 0.052 0.094
5 0.663 0.677 0.660 0.664 0.660 0.672 0.669 0.680 0.649 0.669 0.714
6 0.691 0.702 0.690 0.715 0.695 0.701 0.725 0.748 0.703 0.726 0.794
7 0.836 0.832 0.812 0.837 0.827 0.834 0.833 0.853 0.811 0.871 0.856
8 0.645 0.654 0.633 0.644 0.632 0.635 0.641 0.693 0.653 0.612 0.715
9 0.599 0.587 0.594 0.583 0.585 0.598 0.589 0.629 0.586 0.570 0.645

10 0.935 0.939 0.935 0.912 0.928 0.924 0.930 0.930 0.771 0.856 0.918
11 0.814 0.803 0.817 0.809 0.805 0.811 0.811 0.819 0.743 0.811 0.830
12 0.692 0.683 0.688 0.685 0.684 0.672 0.683 0.685 0.649 0.651 0.707
13 0.741 0.744 0.744 0.726 0.721 0.728 0.735 0.737 0.710 0.779 0.786
14 0.868 0.865 0.862 0.837 0.830 0.837 0.857 0.866 0.727 0.819 0.886
15 0.906 0.906 0.903 0.908 0.909 0.909 0.908 0.918 0.884 0.895 0.931
16 0.618 0.616 0.614 0.712 0.692 0.654 0.711 0.937 0.769 0.715 0.898
17 0.966 0.967 0.965 0.960 0.961 0.966 0.968 0.971 0.952 0.945 0.933
18 0.814 0.810 0.816 0.823 0.805 0.813 0.815 0.839 0.801 0.796 0.861
19 0.957 0.951 0.957 0.953 0.956 0.950 0.959 0.950 0.950 0.966 0.978
20 0.744 0.753 0.763 0.737 0.749 0.757 0.743 0.773 0.714 0.726 0.752
21 0.743 0.757 0.730 0.728 0.743 0.731 0.761 0.771 0.735 0.759 0.793

Table 14. Mean fitness statistical metric using mixed initialization with the 21 utilized datasets.

No. WOA bWOA-S bWOA-v BALO1 BALO2 BALO3 PSO bGWO bDA bSSA bSSARM-SCA

1 0.053 0.050 0.078 0.104 0.098 0.073 0.033 0.037 0.031 0.067 0.025
2 0.221 0.206 0.212 0.248 0.253 0.244 0.207 0.216 0.207 0.219 0.191
3 0.150 0.144 0.122 0.182 0.147 0.142 0.077 0.090 0.074 0.115 0.059
4 0.926 0.928 0.911 0.939 0.939 0.933 0.883 0.902 0.883 0.926 0.892
5 0.317 0.303 0.287 0.313 0.325 0.315 0.240 0.281 0.256 0.302 0.293
6 0.305 0.282 0.259 0.274 0.294 0.289 0.169 0.231 0.195 0.260 0.154
7 0.157 0.151 0.154 0.157 0.163 0.168 0.115 0.148 0.125 0.151 0.136
8 0.322 0.304 0.250 0.313 0.326 0.308 0.156 0.236 0.168 0.256 0.137
9 0.388 0.389 0.373 0.397 0.395 0.383 0.333 0.354 0.342 0.358 0.337

10 0.076 0.078 0.082 0.078 0.071 0.077 0.041 0.063 0.055 0.028 0.031
11 0.191 0.195 0.194 0.194 0.197 0.193 0.184 0.185 0.183 0.171 0.155
12 0.300 0.307 0.305 0.305 0.309 0.307 0.155 0.276 0.222 0.254 0.176
13 0.247 0.241 0.256 0.236 0.246 0.254 0.236 0.245 0.242 0.252 0.223
14 0.135 0.134 0.157 0.153 0.156 0.139 0.027 0.114 0.071 0.095 0.025
15 0.088 0.080 0.089 0.080 0.093 0.082 0.048 0.063 0.057 0.064 0.056
16 0.089 0.059 0.063 0.085 0.080 0.083 0.039 0.056 0.036 0.057 0.031
17 0.043 0.047 0.034 0.047 0.045 0.049 0.031 0.035 0.031 0.043 0.042
18 0.195 0.182 0.178 0.188 0.197 0.196 0.133 0.157 0.143 0.167 0.149
19 0.056 0.053 0.043 0.057 0.056 0.053 0.044 0.046 0.046 0.051 0.034
20 0.235 0.234 0.225 0.254 0.245 0.235 0.135 0.217 0.163 0.212 0.123
21 0.263 0.240 0.241 0.273 0.260 0.275 0.144 0.211 0.183 0.223 0.128

Table 15. Classification accuracy using mixed initialization for the 21 utilized datasets.

No. WOA bWOA-S bWOA-v BALO1 BALO2 BALO3 PSO bGWO bDA bSSA bSSARM-SCA

1 0.784 0.612 0.624 0.749 0.726 0.723 0.803 0.969 0.788 0.988 0.995
2 0.786 0.793 0.785 0.685 0.684 0.687 0.722 0.764 0.678 0.784 0.826
3 0.847 0.834 0.827 0.652 0.705 0.684 0.787 0.903 0.773 0.949 0.987
4 0.068 0.056 0.057 0.037 0.034 0.035 0.038 0.088 0.031 0.052 0.079
5 0.672 0.675 0.664 0.636 0.622 0.620 0.653 0.703 0.640 0.635 0.694
6 0.690 0.709 0.708 0.644 0.636 0.642 0.722 0.765 0.706 0.687 0.789
7 0.833 0.838 0.836 0.812 0.807 0.803 0.834 0.869 0.828 0.918 0.894
8 0.654 0.656 0.654 0.628 0.628 0.625 0.661 0.753 0.651 0.654 0.795
9 0.595 0.588 0.593 0.574 0.556 0.579 0.583 0.636 0.574 0.587 0.611

10 0.936 0.932 0.913 0.768 0.764 0.756 0.795 0.943 0.752 0.976 0.971
11 0.817 0.802 0.803 0.647 0.643 0.645 0.766 0.815 0.748 0.821 0.851
12 0.683 0.688 0.697 0.642 0.652 0.643 0.662 0.708 0.644 0.695 0.696
13 0.737 0.747 0.738 0.731 0.714 0.702 0.727 0.739 0.716 0.750 0.776
14 0.862 0.862 0.834 0.731 0.737 0.742 0.763 0.886 0.725 0.792 0.910
15 0.917 0.904 0.903 0.822 0.825 0.824 0.889 0.931 0.865 0.854 0.893
16 0.768 0.618 0.610 0.735 0.743 0.726 0.812 0.947 0.761 0.789 0.956
17 0.969 0.966 0.963 0.926 0.936 0.928 0.955 0.975 0.953 0.909 0.934
18 0.819 0.815 0.808 0.727 0.722 0.725 0.804 0.842 0.798 0.747 0.823
19 0.958 0.954 0.955 0.907 0.913 0.917 0.956 0.963 0.951 0.967 0.980
20 0.750 0.753 0.743 0.638 0.676 0.659 0.701 0.788 0.708 0.723 0.799
21 0.742 0.751 0.721 0.554 0.563 0.561 0.763 0.783 0.733 0.691 0.796
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From the provided experimental results, a few important remarks can be deduced.
First, similar results for WOA, bWOA-S, bWOA-v, BALO1, BALO2, BALO3, PSO, bGWO
and bDA to those reported in [22] were obtained, therefore validity of previous study is
confirmed (it is noted that due to stochastic nature of metaheuristics, exactly the same
results could not be generated). Second, proposed hybrid bSSARM-SCA for most datasets
and benchmark instances outscores original SSA, hence performance improvements over
basic implementation are clear. Finally, when compared to all other SOTA approaches
encompassed by comparative analysis, proposed bSSARM-SCA in average obtained the
best results and proved to be robust method in tackling feature selection challenge in terms
of employed fitness function and classification accuracy.

Formulated fitness function takes into account the number of selected features, how-
ever only with weighted coefficient of 0.1 (parameter β = 0.1 in expression (8)). For that
reason, to further validate propose method the average proportion of selected features
(selection size) over 20 runs and all three initialization strategies are shown in Table 16.

Table 16. Average selection size with various datasets for the compared algorithms with the three
different initialization methods.

No. WOA bWOA-S bWOA-v BALO1 BALO2 BALO3 PSO bGWO bDA bSSA bSSARM-SCA

1 0.60886 0.63861 0.56741 0.47538 0.50271 0.50868 0.63800 0.63864 0.50675 0.58513 0.39845
2 0.77512 0.97084 0.75567 0.61843 0.63723 0.62091 0.52900 0.79141 0.80453 0.71853 0.41776
3 0.66136 0.76385 0.60682 0.62082 0.61776 0.62537 0.60000 0.59196 0.47186 0.59521 0.59631
4 0.62575 0.69964 0.58316 0.55874 0.56187 0.54282 0.64400 0.58202 0.47052 0.59542 0.58343
5 0.64672 0.73931 0.59172 0.54452 0.59815 0.56953 0.56500 0.62820 0.45986 0.58241 0.43273
6 0.64745 0.66347 0.55684 0.60581 0.60552 0.62386 0.52700 0.62140 0.43832 0.59984 0.39566
7 0.60278 0.66867 0.59251 0.54545 0.55643 0.54014 0.56100 0.61205 0.40635 0.59132 0.41883
8 0.55591 0.54555 0.54181 0.51756 0.45773 0.47854 0.61300 0.57510 0.41768 0.49586 0.40025
9 0.53255 0.58447 0.54674 0.50805 0.52583 0.50498 0.42600 0.62824 0.44291 0.52230 0.41532

10 0.70463 0.90372 0.67915 0.61943 0.62585 0.62323 0.57500 0.76343 0.53323 0.72852 0.67424
11 0.73333 0.90562 0.70748 0.62677 0.63145 0.63089 0.75300 0.79986 0.58678 0.73515 0.70038
12 0.64096 0.72682 0.69783 0.51643 0.54204 0.54291 0.47900 0.62248 0.61836 0.62253 0.45673
13 0.49951 0.46766 0.61592 0.39480 0.40371 0.44680 0.47400 0.42963 0.17891 0.47631 0.25214
14 0.72478 0.87848 0.69151 0.62203 0.60811 0.62151 0.69600 0.76442 0.63473 0.74125 0.59421
15 0.66752 0.74691 0.60294 0.59162 0.56681 0.61087 0.52100 0.61076 0.37889 0.59847 0.46316
16 0.57203 0.62386 0.60253 0.51881 0.49581 0.51047 0.55800 0.60791 0.48891 0.55274 0.45746
17 0.66791 0.79945 0.59723 0.62171 0.62593 0.62368 0.85900 0.64188 0.50080 0.65842 0.52873
18 0.69274 0.79430 0.58856 0.62131 0.61927 0.62394 0.65300 0.64942 0.48531 0.65752 0.47841
19 0.66856 0.77001 0.57541 0.62471 0.62492 0.62782 0.78200 0.68587 0.48756 0.64968 0.47485
20 0.66241 0.72775 0.60096 0.60554 0.58972 0.59054 0.49700 0.62543 0.50483 0.62430 0.47124
21 0.64848 0.71164 0.53685 0.62125 0.62182 0.62323 0.55300 0.49162 0.47485 0.51429 0.46991

Similar to results with an average obtained fitness function and classification accuracy,
from Table 16 it can be concluded that on average proposed bSSARM-SCA metaheuristics
managed to significantly reduce the number of selected features and this in turn has
implications for the classifier’s computational efficiency. Therefore, as a conclusion by
performing feature selection with bSSARM-SCA classification computational time can
be substantially reduced. In terms of average selection size, only the bDA for some test
instances managed to outscore the method proposed in this study.

Box and whiskers diagram visualization of average classification error (ER) for all
datasets and three initialization strategy is shown in Figure 3. From presented diagram
stability of propose bSSARM-SCA can be undoubtedly noticed. For example, when com-
pared with basic SSA, that in some runs misses promising regions of the search space, the
superiority of the algorithm proposed in this study is evident.

Finally, to show the performances of the proposed bSSARM-SCA algorithm and
compare it to other SOTA SSA versions, the authors have implemented binary versions
of three novel SSA modifications. The accuracy of the bSSARM-SCA over 21 datasets
was compared to opposition based learning and inertia weight ISSA (bISSA1), proposed
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by [41], opposition based learning and local search ISSA (bISSA2) proposed in [42], and
inertia weight ISSA (bISSA3) given in [43]. Again, it is worth noting that the authors have
independently implemented all three mentioned binary ISSA variants and executed the
experiments with 21 observed datasets. The obtained results are shown in Table 17, where
the best result is marked bold for each category (small, large or mixed initialization). The
simulation findings clearly show the superiority of the proposed bSSARM-SCA method,
that obtained the best results on 15 out of 21 observed datasets. The second best method was
bISSA2 [42], which obtained the best results on four datasets, while the bISSA1 method [41]
achieved the best accuracy on two datasets.

bDA bGWO bPSO BALO1 BWOA-S WOA bSSA bSSARM-SCA
Method

0.0

0.1

0.2

0.3

0.4

0.5

Er
ro

r r
at

e

Figure 3. Box plots and whiskers diagrams for average error rate including all datasets and three
initialization strategies.

Table 17. Classification accuracy of the proposed bSSARM-SCA method and three recent ISSA
variants for the 21 utilized datasets.

Small Initialization Large Initialization Mixed Initialization

No. bSSARM-SCA bISSA1 bISSA2 bISSA3 bSSARM-SCA bISSA1 bISSA2 bISSA3 bSSARM-SCA bISSA1 bISSA2 bISSA3

1 0.974 0.956 0.962 0.935 0.948 0.949 0.951 0.926 0.995 0.959 0.974 0.942
2 0.780 0.769 0.771 0.762 0.814 0.796 0.801 0.785 0.826 0.802 0.806 0.793
3 0.665 0.652 0.649 0.638 0.920 0.897 0.886 0.869 0.987 0.962 0.944 0.926
4 0.343 0.310 0.324 0.298 0.094 0.085 0.081 0.079 0.079 0.074 0.072 0.068
5 0.754 0.728 0.739 0.720 0.714 0.696 0.698 0.653 0.694 0.680 0.682 0.647
6 0.915 0.893 0.910 0.885 0.794 0.772 0.785 0.751 0.789 0.769 0.774 0.748
7 0.874 0.859 0.891 0.851 0.856 0.843 0.863 0.836 0.894 0.887 0.902 0.879
8 0.831 0.817 0.820 0.803 0.715 0.702 0.705 0.698 0.795 0.781 0.786 0.769
9 0.938 0.914 0.912 0.906 0.645 0.628 0.623 0.615 0.611 0.602 0.601 0.594

10 0.916 0.908 0.917 0.902 0.918 0.911 0.917 0.909 0.971 0.956 0.973 0.949
11 0.830 0.814 0.811 0.809 0.830 0.813 0.809 0.806 0.851 0.837 0.835 0.825
12 0.712 0.709 0.709 0.705 0.707 0.703 0.704 0.699 0.696 0.690 0.691 0.682
13 0.764 0.756 0.771 0.753 0.786 0.779 0.792 0.772 0.776 0.768 0.789 0.761
14 0.953 0.942 0.937 0.933 0.886 0.863 0.866 0.857 0.910 0.902 0.898 0.883
15 0.935 0.916 0.919 0.904 0.931 0.909 0.914 0.896 0.893 0.868 0.872 0.859
16 0.977 0.967 0.963 0.958 0.898 0.884 0.879 0.871 0.956 0.941 0.936 0.928
17 0.914 0.918 0.915 0.904 0.933 0.936 0.926 0.917 0.934 0.938 0.928 0.925
18 0.891 0.863 0.869 0.858 0.861 0.837 0.842 0.831 0.823 0.806 0.809 0.793
19 0.904 0.897 0.901 0.884 0.978 0.956 9.971 0.948 0.980 0.968 0.973 0.962
20 0.878 0.882 0.866 0.859 0.752 0.761 0.735 0.728 0.799 0.806 0.783 0.775
21 0.894 0.873 0.899 0.865 0.793 0.784 0.804 0.779 0.796 0.789 0.814 0.787
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6. Conclusions

Research proposed in this study presents a novel SSA algorithm that addresses ob-
served deficiencies of its original implementation. By hybridizing basic algorithm with
well-known SCA metaheuristics and by incorporating guided replacement mechanism, a
novel SSARM-SCA metaheurisitcs is devised.

Guided by established practice from the modern literature, before its application to
feature selection, the proposed enhanced SSA is firstly tested and evaluated on a recognized
test-bed with challenging instances of functions having 30 dimensions from the CEC2013
benchmark suite. Afterwards, it is adapted as a wrapper-based approach for feature
selection and validated against 21 well-known datasets retrieved from UCI.

According to experimental findings and rigorous comparative analysis with other
recent SOTA approaches, proposed SSARM-SCA proves to be an efficient optimizer that
significantly improves convergences speed and results’ quality of the basic SSA and also
other SOTA algorithms. Moreover, obtained results prove that the proposed method
manage to established better classification accuracy and utilization of lesser number of
features, therefore it also manages to improve the solution to the feature selection challenge.

The proposed SSARM-SCA algorithm does not increase the complexity of the basic
SSA implementation in terms of FFE, while offering significantly better performances for
this particular problem. However, according to the no free lunch theorem, the limitation of
the proposed solution is that there are no guarantees that it would perform well for other
optimization problems.

The possible directions of the future research include testing of the devised SSARM-
SCA algorithm on other practical datasets from different application domains, and also
applying it to other optimization problems, such as the wireless sensor networks optimiza-
tion problem and task scheduling in cloud-based systems.
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