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Fermatean fuzzy sets (FFSs) have piqued the interest of researchers in a wide range of domains.Te striking framework of the FFS
is keen to provide the larger preference domain for the modeling of ambiguous information deploying the degrees of membership
and nonmembership. Furthermore, FFSs prevail over the theories of intuitionistic fuzzy sets and Pythagorean fuzzy sets owing to
their broader space, adjustable parameter, fexible structure, and infuential design. Te information measures, being a signifcant
part of the literature, are crucial and benefcial tools that are widely applied in decision-making, data mining, medical diagnosis,
and pattern recognition. Tis paper aims to expand the literature on FFSs by proposing many innovative Fermatean fuzzy sets-
based information measures, namely, distance measure, similarity measure, entropy measure, and inclusion measure. We in-
vestigate the relationship between distance, similarity, entropy, and inclusion measures for FFSs. Another achievement of this
research is to establish a systematic transformation of information measures (distance measure, similarity measure, entropy
measure, and inclusion measure) for the FFSs. To accomplish this aim, new formulae for information measures of FFSs have been
presented. To demonstrate the validity of the measures, we employ them in pattern recognition, building materials, and medical
diagnosis. Additionally, a comparison between traditional and novel similarity measures is described in terms of counter-intuitive
cases. Te fndings demonstrate that the innovative information measures do not include any absurd cases.

1. Introduction

Te idea of the fuzzy set (FS) was developed by Zadeh [1] in
1965, which addressed vagueness and ambiguity in real-
world situations. In 1970, Bellman and Zadeh (1970) in-
troduced the concept of decision-making (DM) problems
with uncertainty. DM is a systematic procedure of selecting
the most ideal choice from a collection of available alter-
natives. Terefore, the decision maker plays a crucial role in
real world environments [2]. A smart decision may have
a signifcant impact on the direction of someone’s lifestyle.

Before making a fnal selection, a DM assesses the re-
strictions, advantages, and characteristics of each alternative.
Since an FS is defned by a single parameter: membership
degree. Several higher-order FSs have been described in
recent decades by several scholars.

Atanassov [3] established the notion of intuitionistic
fuzzy sets (IFSs) capable of dealing with complexity and
uncertainty and it has been extensively examined and uti-
lized by several researchers in DM problems. An IFS is
defned by three parameters: membership grade (MG),
nonmembership grade (NMG), and hesitancy margin with
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the property that the sum ofMG and NMGmust be less than
or equal to 1.

In many situations, it is conceivable that the sum of the
MG and NMG will be greater than 1. To overcome these
challenges, Yager [4] introduced the Pythagorean fuzzy set
(PyFS) as an extension of the IFS theory. PyFS is defned by
an MG and NMG and satisfes the criterion that the square
sum of its MG and NMG is less than or equal to 1.Terefore,
PyFSs can more accurately express the fuzzy nature of in-
formation than IFS.

In the feld of PyFS, there are various approaches for
solving real-life multiattribute decision-making (MADM)
situations. A number of researchers have also suggested real-
world applications in a Pythagorean fuzzy environment.
However, if orthopair FSs as 〈0.9, 0.5〉, where 0.9 is the MG
of specifc criteria of a parameter and 0.5 is the NMG, it does
not fulfll the IFS and PFS requirements. However, the cubic
sum of the MG and NMG is equal to or less than one. In this
context, Senapati and Yager [5] recently introduced the
Fermatean fuzzy set (FFS).Tey also demonstrated that FFSs
have larger degrees of uncertainty than IFSs and PyFSs, are
capable of sustaining higher levels of uncertainty, and can
solve MCDM challenges. Information measures are an es-
sential notion for dealing with MADM challenges in a va-
riety of domains, including pattern recognition, clinical
diagnosis, and personnel appointment. Tere are several
types of information measures established such as distance,
similarity, entropy, and inclusion measures.

Te MADM process are normally assisted by similarity
measures, distance measures, inclusion measures, entropy
measures, and, in certain situations, aggregation operators.
Te degree of similarity measures has garnered considerable
interest in recent decades due to its importance in DM, data
mining, pattern recognition, and medical diagnosis appli-
cations. Szmidt and Kacprzyk [6] performed the frst in-
vestigation, extending well-known distance measures such
as the Hamming distance and the Euclidian distance to the
IFS environment and comparing them to approaches used
for conventional fuzzy sets. However, Wang and Xin [7]
suggested that Szmidt and Kacprzyk [6] distance measure
was inefective in certain situations. Terefore, several in-
novative pattern recognition distance measures were de-
veloped and implemented. Grzegorzewski [8] also extended
Hamming, Euclidean, and their normalized versions to the
IFS framework. Later on, Chen [9] demonstrated that several
faws occurred in Grzegorzewski [8] by providing counter-
examples. Hung and Yang [10] described three similarity
measures and extended the Hausdorf distance to IFSs. On
the other side, rather than expanding well-established
measures, various research established novel similarity
measures for IFS.

Yong et al. [11] developed a novel similarity measure for
IFS based on MG and NMG. Mitchell [12] demonstrated
that Yong et al.’s [11] similarity measure had certain
counter-intuitive circumstances and improved it statisti-
cally. Additionally, Liang and Shi [13] provided examples to
demonstrate that the similarity measure proposed by Yong
et al. [11] was unsuitable for certain scenarios, and hence
developed various additional similarity measures for IFSs.

Xu [14] formulated a series of IFS-based similarity
measures and applied them to the MADM problem
employing IF information. Xu and Chen [15] presented a set
of distance and similarity measures that are diferent
combinations and extensions of the weighted Hamming,
Euclidean, and Hausdorf distances. Xu and Yager [16]
constructed a similarity measure between IFSs and used it to
MAGDM utilizing IF preference relations.

In addition to this research, several researchers in-
vestigated the relationships between IFSs’ distance, simi-
larity, and entropy measures. Zeng and Guo [17] analyzed
the relationship between normalized distance, similarity,
inclusion, and entropy of interval-valued fuzzy collections.
Additionally, it was demonstrated that the similarity, in-
clusion, and entropy of interval-valued fuzzy sets may be
induced using the normalized distance of their axiomatic
defnitions. Wei et al. [18] proposed a generalized entropy
measure for IFSs and PyFSs. Additionally, a technique was
developed for constructing similarity measures for IFS and
PyFSs using entropy measures. Numerous researchers in-
vestigated information measures (distance measure, simi-
larity measure, entropy measure, and inclusion measure) for
IFSs and PyFSs and their transformations relationship.
Dengfeng and Chuntian [19] investigated the similarity
between IFSs and used their fndings to pattern recognition.
Huang and Yang [10] presented the Hausdorf distance as
a similarity measure between IFSs and utilized it to assess the
degree of similarity between IFSs. Ashraf et al. [20] gave the
idea of a spherical fuzzy set then they implicated this concept
also in decision-making [21].

Nguyen et al. [22] developed a novel knowledge-based
similarity measure for IFSs and demonstrated its application
to pattern recognition. Zhang [23] pioneered a unique
strategy for PyFSs MADM based on similarity measures.
Zhang et al. [24] explored the use of the application of
a scoring function on IFSs with double parameters for
pattern recognition and medical diagnosis. Ejegwa estab-
lished distance [25] and similarity measures [26] for PyFSs.

Ye [27] designed and implemented a cosine similarity
measure for IFSs (CIFS). In addition, Ye [28] introduced the
cosine similarity measure for interval-valued IFSs (CIVIFSs)
and described its use in solving MADM problems. Liu et al.
[29] investigated the cosine similarity measure between
hybrid IFSs and their application for diagnostic purposes. In
recent years, several scholars have conducted research on
PyFS information measures (distance measure, similarity
measure, entropy measure, and inclusion measure). Wei and
Wei [30] introduced a set of ten cosine-based PFS similarity
measures relying on the MG, NMG, and hesitation of PyFSs
in order to improve the capacity to cope with the two op-
timization challenges related to pattern recognition and
medical diagnosis procedures. Peng [31] established a PyFS
similarity measure based on the parameters Lp norm and
levels of ambiguity, which were examined in detail in re-
lation to the PyFS similarity measure. Peng et al. [32] de-
veloped the fundamental defnitions of PyFS information
measures, along with the similarity measure, as well as
discussed the transformation principles for the established
information measures.
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Te advantages of existing information measures are as
follows:

An examination of the existing literature on FS, IFS,
and PyFS exposes a number of weaknesses that spur us to
create a more potent class of novel information measures
(distance measure, similarity measure, entropy measure,
and inclusion measure).

Te disadvantages of existing information measures are
as follows:

(i) Some of them cannot help but be caught in pointless
circumstances (i.e., dividing by zero).

(ii) Many of them struggle to avoid examples that seem
to go against logic.

(iii) Many of them are unable to categorize the results,
and some of them provide irrational results. We
describe a class of useful FFS information mea-
sures (distance measure, similarity measure,
entropy measure, and inclusion measure), ofer
associated information measure formulations,
and examine their transformation connections to
address the faw in the prior research.

Te important contributions of the current manuscript
are listed.

1.1. Important Contributions of the Manuscript

(i) Development of axiomatic FFS information
measures (distance measure, similarity measure,
entropy, and inclusion measure).

(ii) We develop several equations for FFS information
metrics and thoroughly examine the relevant
transformation relationships.

(iii) To determine the necessary distances for pattern
recognition and medical diagnostics in order to
show that they are efective, we compared the
suggested FFS distance measurements to those that
are previously documented in the literature.
Moreover, we demonstrate the viability and ef-
ciency of using distance measurements between
FFS data.

(iv) A number of illogical examples of traditional
similarity measures are used to show the efec-
tiveness of the novel measures.

(v) We use them for pattern recognition, building
supplies, and medical diagnosis.

(vi) We come to the conclusion that the proposed
similarity measures outperform current similarity
measures for pattern recognition problems.

(vii) To show the efectiveness of the suggested in-
formation measures, which are also contrasted
with current similarity measures, numerical ex-
amples are ofered. For issues with medical di-
agnosis, a comparison between the proposed
similarity measures and traditional similarity
measurements is carried out.

(viii) Additionally, we used an example to demonstrate
how the suggested FFS inclusion measures could
be used for pattern identifcation. Te results show
that new illustration approaches are both feasible
and successful.

Te manuscript is organized as follows: Section 2 dis-
cusses the defnitions and fundamental ideas of FS, HFS, IFS,
and FFS, as well as the corresponding operational rules of
FFS. Section 3 introduces a new type of information mea-
sures, provides related information measure formulations,
and investigates their transformation relationships for FFSs.
In Sections 4 to 7, we demonstrated the application of the
novel information measures between FFSs to pattern rec-
ognition. Moreover, a comparative study has been presented
between the proposed similarity measure and conventional
similarity measures. Section 7 concludes the paper by
outlining the future area of research.

2. Basic Terminologies

In this section, we provide some relevant fundamental in-
formation, such as FS, HFS, IFS, FFSs, and some related
operational laws, which are listed. Tese core concepts will
assist readers in comprehending the proposed framework.

Defnition 1 (see [1]). LetZ � ϰ1, ϰ2, ϰ3, . . . , ϰn􏼈 􏼉 be a fnite
set. Te FS F on Z is defned as follows:

F � 〈ϰi,IF ϰi( 􏼁〉|ϰi ∈ Z􏼈 􏼉, (1)

where F(ϰi) ∈ [0, 1] known to be MG.

Defnition 2 (see [3]). LetZ � ϰ1, ϰ2, ϰ3, . . . , ϰn􏼈 􏼉 be a fnite
set. An IFS 5 over ϰ is follows:

5 � 〈ϰi,I5 ϰi( 􏼁, ð5 ϰi( 􏼁〉|ϰi ∈Z􏽮 􏽯, (2)

for each ϰi ∈Z the functions I5: Z⟶ [0, 1], 1 and
ð5: ϰ⟶ [0, 1] denotes the MG and NMG, respectively,
which must satisfy the property 0≤I5(ϰi) + ð5(ϰi)≤ 1.

Defnition 3 (see [33]). Let ϰ � ϰ1, ϰ2, ϰ3, . . . , ϰn􏼈 􏼉 be a fnite
set. Te HFS H on ϰ is defned as follows:

H � 〈ϰi,IhH
ϰi( 􏼁〉|ϰi ∈Z􏽮 􏽯, (3)

where h(ϰi) is a set of values contain in (0,1), which shows
the MG of ϰi ∈ H. Te element of h(ϰi) is known as the HF
element.

Defnition 4 (see [34]). Let Z � ϰ1, ϰ2, ϰ3, . . . , ϰn􏼈 􏼉 be a f-
nite set, a Fermatean fuzzy sets (FFSs)F overZ is defned as
follows:

F � 〈ϰi,IF ϰi( 􏼁, ðF ϰi( 􏼁〉|ϰi ∈ ϰ􏼈 􏼉, (4)

for each ϰi ∈ ϰ the functions IF: ϰ⟶ [0, 1] and
ðF: ϰ⟶ [0, 1] denote the MG and NMG, respectively,
which must satisfy (ðF(ϰi)3 + (IF(ϰi)3 ≤ 1. Te degree of
indeterminacy is given as follows:
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πF ϰi( 􏼁 �

����������������������

1 − IF ϰi( 􏼁( 􏼁
3

+ ðF ϰi( 􏼁( 􏼁
33

􏽱

. (5)

Defnition 5 (see [5]). If Y and P be two FFSs, then the
operations can be defned as follows:

(i) Addition: Y⊕P � ϰi ∈ Z,
��������
I3

Y(ϰi) +3
􏽱

􏼚

I3
P(ϰi) − I3

Y(ϰi)I
3
P(ϰi), ðY(ϰi)ðP(ϰi)|ϰi ∈Z};

(ii) Multiplication: Y⊗P � ϰi ∈Z,IY(ϰi)IP(ϰi),���������������������������
ð3Y(ϰi) + ð3P(ϰi) − ð3Y(ϰi)ð

3
P(ϰi)

3
􏽱

|ϰi ∈Z};

(iii) Scalar multiplication: λ⊙Y � ϰi ∈ Z,􏼈������������������������
1 − (1 − I3

Y(ϰi))
λ, (ð3Y(ϰi))

λ3
􏽱

| ϰi ∈Z and λ0};

(iv) Exponent: Yλ � ϰi ∈Z,I3
Y(ϰi),􏽮���������������

1 − (1 − ð3P(ϰi))
λ3

􏽱

| ϰi ∈Z}.

Defnition 6 (see [5]). If Y and P be two FFSs, then the
operations can be defned as follows:

(i) Complement: Yc � 〈ðY(ϰi),IY(ϰi)〉|ϰi ∈ Z􏽮 􏽯;
(ii) Equality: Y � P if for all 〈ϰi ∈ Z,IY

(ϰi) � IP(ϰi) and ðY(ϰi) � ðP(ϰi)〉;
(iii) Intersection: Y∩P � 〈min IY(ϰi),IP(ϰi)),

max (ðY(ϰi), ðP(ϰi))|ϰi ∈Z〉;
(iv) Union: Y∪P � 〈max (IY (ϰi),IP(ϰi)), min

(ðY(ϰi), ðP(ϰi))|ϰi ∈ Z〉.

Defnition 7 (see [5]). If Y, P, andM be three FFSs, then
the following characteristics are held:

(i) Y∪P � P∪Y;
(ii) Y∩P � P∩Y;
(iii) Y∪ (P∪M) � (Y∪P)∪M;
(iv) Y∩ (P∩M) � (Y∩P)∩M;
(v) α∪ (Y∪P) � αY∪ αP;
(vi) (Y∪P)α � Yα ∪Pα.

3. Some New Types of Information
Measures between FFSs

Tis section explains the axiomatic framework of FFSs in-
formation measures (distance, similarity, entropy, and in-
clusion), as well as their related formulations.
Simultaneously, their transformation relationships are
thoroughly examined.

3.1.DistanceMeasures for FFSs. Tis section introduces the
idea of a distance measures for FFSs. A number that is
assigned to a pair of points in a space which indicates how
far those points are from one another. A distance measure
is called a metric if it is always positive and also it is
always symmetric.

Defnition 8. Let Y, P, and M be three FFSs on Z. A
distance measureD(Y,P) is a mapping D: FFS (Z)× FFS
(Z)⟶[0, 1], carrying the following features:

(1) 0≤D(Y,P)≤ 1;

(2) D(Y,P) � D(P,Y);

(3) D(Y,P) � 0 if Y � P;
(4) D(Y,Yc) � 1 if Y is a crisp set;
(5) If Y⊆P⊆M, then D(Y,P)≤D(Y,M) and

D(P,M)≤D(Y,M).

Theorem 1. LetY andP be two FFS s, thenDi(Y,P)(i �

1, 2, . . . , 13) is a distance measure.

(1) D(Y,P) � (1/2|Z|)􏽐ϰi∈Z(|I3
Y(ϰi) − I3

P(ϰi)| +

|ð3Y(ϰi) − ð3P(ϰi)| + |π3Y(ϰi) − π3P(ϰi)|);

(2) D2(Y,P) � (1/2|Z|)􏽐ϰi∈Z(|(I3
Y(ϰi) − I3

P(ϰi))
+(ð3Y(ϰi) − ð3P(ϰi))|);

(3) D3(Y,P) � (1/4|X|)(􏽐ϰi∈Z(|I3
Y(ϰi) − I3

P(ϰi)|+

|ð3Y(ϰi) − ð 3
P(ϰi)| + |π3Y(ϰi) − πP

3(ϰi)|) + 􏽐ϰi∈Z

(|(I3
Y(ϰi) − ð3Y(ϰi)) − (I3

P(ϰi) − ð3P(ϰi))|));

(4) D4(Y,P) � (1/|Z|)􏽐ϰi∈Z(|I3
Y(ϰi) − I3

P(ϰi)|∨
|(ð3Y(ϰi) − ð3P(ϰi))|);

(5) D5(Y,P) � (2/|Z|)􏽐ϰi∈Z(|I3
Y(ϰi) − I3

P(ϰi)|∨
|(ð3Y(ϰi) − ð3P(ϰi))|/1 + |I3

Y(ϰi) − I3
P(ϰi)|∨|(ð

3
Y

(ϰi) − ð3P(ϰi))|);
(6) D6(Y,P) � (2􏽐ϰi∈Z|I3

Y(ϰi) − I3
P(ϰi)|∨|(ð

3
Y(ϰi)

− ð3P(ϰi))|/􏽐ϰi∈Z (1 + |I3
Y(ϰi) − I3

P(ϰi)|∨|ð
3
Y

(ϰi) − ð3P(ϰi)|));
(7) D7(Y,P) � 1 − α(􏽐ϰi∈Z(I3

Y(ϰi)∧I
3
P(ϰi))/􏽐ϰi∈Z

(I3
Y(ϰi)∨I

3
P(ϰi))) − β(􏽐ϰi∈Z(ð3Y (ϰi)∧ð

3
P(ϰi))

/􏽐ϰi∈Z(ð3Y(ϰi)∨ð
3
P(ϰi))), α + β � 1, α, β ∈ [0, 1];

(8) D8(Y,P) � 1 − (α/|Z|)􏽐ϰi∈Z(I3
Y(ϰi)∧I

3
P(ϰi))/

(I3
Y(ϰi)∨I

3
P(ϰi)) − (β/|Z|)􏽐ϰi∈Z(ð3Y(ϰi)∧ ð

3
P

(ϰi))/(ð
3
Y(ϰi)∨ð

3
P(ϰi)), α + β � 1, α, β ∈ [0, 1];

(9) D9(Y,P) � 1 − (1/|Z|)􏽐ϰi∈Z((I3
Y(ϰi)∧I

3
P

(ϰi)) + (ð3Y(ϰi)∧ð
3
P(ϰi))/(I

3
Y(ϰi)∨I

3
P(ϰi)) +

(ð3Y(ϰi)∨ð
3
P(ϰi)));

(10) D10(Y,P) � 1 − (􏽐ϰi∈Z(I3
Y(ϰi)∧I

3
P(ϰi)) + (ð3Y

(ϰi)∧ð
3
P(ϰi))/􏽐ϰi∈Z(I3

Y(ϰi)∨I
3
P(ϰi)) + (ð3Y(ϰi)

∨ð3P(ϰi)));
(11) D11(Y,P) � 1 − (1/|Z|)􏽐ϰi∈Z((I3

Y(ϰi)∧I
3
P

(ϰi)) + (1 − ð3Y(ϰi))∧(1 − ð3P(ϰi)))/((I
3
Y(ϰi)

∨I3
P(ϰi)) + (1 − ð3Y(ϰi))∨(1 − ð3P(ϰi)));

(12) D12(Y,P) � 1 − (􏽐ϰi∈Z(I3
Y(ϰi)∧I

3
P(ϰi)) + ((1

− ð3Y(ϰi))∧(1 − ð3P(ϰi))))/(􏽐ϰi∈Z(I3
Y(ϰi)∨I

3
P

(ϰi)) + ((1 − ð3Y(ϰi))∨(1 − ð3P(ϰi))));
(13) D13(Y,P) �

�����
(1/2t

􏽰
|Z|(l1 + 1)

t
) 􏽘
ϰi∈Z

|(l1(I
3
Y􏽮

(ϰi)) − I3
P(ϰi)) − (ð3Y ϰi) − ð3P (ϰi))|

t}+

4 Computational Intelligence and Neuroscience



(1/2|Z|(l2 + 1)
t
) 􏽘
ϰi∈Z

|(l2(ð
3
Y(ϰi)) − ðP􏽮

3(ϰi)) − (I3
Y(ϰi) − I3

P(ϰi))|
t}

3.2. Similarity Measure for FFSs. Tis section introduces the
idea of similarity measures for FFSs. Similarity functions
take a pair of points and return a large similarity value for
nearby points, and a small similarity value for distant points.
One way to transform between a distance function and
a similarity measure is to take the reciprocal.

Defnition 9. Let Y, P, and M be three FFSs on Z. A
similarity measureS Y( 􏼁 andP) is a mappingS FFS (Z) ×

FFS (Z)⟶[0, 1], possessing the following properties:

(i) 0 ≤S (Y and P) ≤ 1;
(ii) S (Y and P)�S (P and Y);
(iii) S (Y and P)� 1 if Y�P;
(iv) S (Y and Yc)� 0 if Y is a crisp set;
(v) IfY⊆P⊆M, thenS (Y andP) ≤S (Y andM) and

S (P and M) ≤S (Y and M).

Theorem 2. Let Y and P be two FFSs, then Si(Y,P)(i �

1, 2, . . . , 13) is a distance measure.

(1) S1(Y,P) � 1 − (1/2|Z|) 􏽐ϰi∈Z |I
3
Y􏼐 (ϰi) − I

3
P

(ϰi)| + |ð3Y(ϰi) − ð3P(ϰi)| + |π3
Y(ϰi) − π3

P(ϰi)|);
(2) S2(Y,P) � 1 − (1/2|Z|)􏽐ϰi∈Z(|I3

Y(ϰi) − I3
P

(ϰi) − (ð3Y(ϰi) − ð3P(ϰi))|);
(3) S3(Y,P) � 1 − (1/4|X|) 􏽐ϰi∈Z(|I3

Y(ϰi) − I3
P

(ϰi)| + |ð3Y(ϰi) − ð3P (ϰi)| + |π3Y(ϰi) − π3
P(ϰi)|)+

􏽐ϰi∈Z(|(I3
Y(ϰi) − ð3Y(ϰi)) + (I3

P(ϰi) − ð3P(ϰi))|))
(4) S4(Y,P) � 1 − (1/|Z|)􏽐ϰi∈Z(|I3

Y(ϰi) − I3
P(ϰi)|

∨|(ð3Y(ϰi) − ð3P(ϰi))|);
(5) S5(Y,P) � (1/|Z|)􏽐ϰi∈Z(1 − |I3

Y(ϰi) − I3
P(ϰi)|

∨|ð3Y(ϰi) − ð3P(ϰi)|)/(1 + |I3
Y(ϰi) − I3

P(ϰi)|∨|ð
3
Y

(ϰi) − ð3P(ϰi)|);
(6) S6(Y,P) � (􏽐ϰi∈Z(1 − |I3

Y(ϰi) − I3
P(ϰi)|∨|ð

3
Y

(ϰi) − ð3P(ϰi)|))/(􏽐ϰi∈Z(1 + |I3
Y(ϰi) − I3

P(ϰi)|∨
|ð3Y(ϰi) − ð3P(ϰi)|));

(7) S7(Y,P) � α(􏽐ϰi∈Z(I3
Y(ϰi)∧I

3
P(ϰi))/􏽐ϰi∈Z

(I3
Y(ϰi)∨I

3
P(ϰi))) + β(􏽐ϰi∈Z(ð3Y(ϰi)∧ð

3
P(ϰi))/

􏽐ϰi∈Z(ð3Y(ϰi)∨ð
3
P(ϰi))), α + β � 1, α, β ∈ [0, 1];

(8) S8(Y,P) � (α/|Z|)􏽐ϰi∈Z((I3
Y(ϰi)∧I

3
P(ϰi))/

(I3
Y(ϰi)∨I

3
P(ϰi))) + (β/|Z|)􏽐ϰi∈Z((ð3Y (ϰi)∧ð

3
P

(ϰi))/(ð
3
Y(ϰi)∨ð

3
P(ϰi))), α + β � 1, α, β ∈ [0, 1];

(9) S9(Y,P) � (1/|Z|)􏽐ϰi∈Z((I3
Y(ϰi)∧I

3
P(ϰi))+

(ð3Y(ϰi)∧ð
3
P(ϰi)))/((I

3
Y(ϰi)∨I

3
P(ϰi)) +

(ð3Y(ϰi)∨ð
3
P (ϰi)));

(10) S10(Y,P) � (􏽐ϰi∈Z(I3
Y(ϰi)∧I

3
P(ϰi)) + (ð3Y(ϰi)

∧ð3P(ϰi)))/(􏽐ϰi∈Z(I3
Y(ϰi)∨I

3
P(ϰi)) + (ð3Y(ϰi)∨

ð3P(ϰi)));

(11) S11(Y,P) � (1/|Z|) 􏽐ϰi∈Z((I3
Y(ϰi)∧I

3
P(ϰi))+

((1 − ð3Y(ϰi))∧(1 − ð3P(ϰi))))/((I
3
Y(ϰi)∨I

3
P(ϰi))+

((1 − ð3Y(ϰi))∨(1 − ð3P(ϰi))));

(12) S12(Y,P) � (􏽐ϰi∈Z (I3
Y(ϰi)∧I

3
P(ϰi)) + ((1−

ð3Y(ϰi))∧(1 − ð3P(ϰi))))/(􏽐ϰi∈Z(I3
Y(ϰi)∨ I

3
P(ϰi))

+((1 − ð3Y(ϰi))∨(1 − ð3P(ϰi))));

(13) S13(Y,P) �
�����
(1/2|t

􏽰
Z|(l1 + 1)

t
)􏽐ϰi∈Z |(l1(I

3
Y􏽮

(ϰi)) − I3
P(ϰi)) − (ð3Y(ϰi) − ð3P(ϰi))|

t} + (1/ 2|Z|

(l2 + 1)t)􏽐ϰi∈Z |{ l2(ð
3
Y(ϰi)) − ð3P(ϰi)) − (I3

Y (ϰi)−
I3

P(ϰi))|
t}

Theorem 3. For i � 1, 2, 3, . . . , 13, if α � β � 1/2, then we
have

(i) Si(Y,Pc) � Si(P
c,Y);

(ii) Si(Y,P) � Si(Y∩P,Y∪P);

(iii) Si(Y,Y∩P) � Si(Y,Y∪P);

(iv) Si(Y,Y∪P) � Si(Y,Y∩P).

Theorem 4. For i � 1, 2, . . . , 6, we have

(i) Si(Y,Y⊗P) � Si(P,Y⊕P);
(ii) Si(Y,Y⊕P) � Si(P,Y⊗P);

Theorem 5. For i � 1, 4, 5, 6 and for all ϰi ∈ Z, (I3
Y(ϰi) +

I3
P(ϰi)) � 1, and ð3Y(ϰi) + ð3P(ϰi) � 1, we have

(i) Si(Y,Y⊘P) � Si(P,Y⊖P),

I3
Y(ϰi)≤I

3
P(ϰi), and (ð3Y(ϰi)≥ ð

3
P(ϰi))

(ii) Si(Y,Y⊖P) � Si(P,Y⊘P),

I3
Y(ϰi)≥I

3
P(ϰi), and (ð3Y(ϰi)≤ ð

3
P(ϰi))

3.3. Entropy for FFSs. Let Y and P two FFSs on Z. An
entropy measure E(Y) is a mapping E: FFS (Z)⟶ [0, 1],
carrying the following features:

(i) 0≤E(Y)≤ 1;

(ii) E(Y) � 0 if Y is a crisp set;

(iii) E(Y) � 1 if I3
Y(ϰi) � ðtY(ϰi);

(iv) E(Y) � E(Yc);
(v) If E(Y)≤E(P) if Y is less fuzzy than P, that is

I
3
Y ϰi( 􏼁≤I3

P ϰi( 􏼁≤ ð3P ϰi( 􏼁≤ ð3Y ϰi( 􏼁,

ð3Y ϰi( 􏼁≤ ð3P ϰi( 􏼁≤I3
P ϰi( 􏼁≤I3

Y ϰi( 􏼁.
(6)

Theorem 6. Let Y be two FFS s, then Ei(Y,P)

(i � 1, 2, . . . , 12) is an entropy.
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3.4. Inclusion Measure for FFSs. Let Y, P, and M be three
FFSs onZ. An inclusionmeasureI(Y,P) is a mappingI:
FFS (Z)× FFS (Z) ⟶[0, 1], carrying the following
features:

(i) 0≤I(Y,P)≤ 1;
(ii) I(Y,P) � 1 if Y⊆P;
(iii) I(Y,P) � 0 if Y � Φ and P � ∅;
(iv) If Y⊆P⊆M, then I(Y,P)≤I(Y,M) and

I(P,M)≤I(Y,M).

Theorem 7. LetY andP be two FFS s, thenIi(Y,P)(i �

1, 2, . . . , 7) is an inclusion measure.

(1) I1(Y,P) � 1 − (1/2|Z|)􏽐ϰi∈Z(|I3
Y(ϰi) − I3

Y

(ϰi)∧I
3
P(ϰi)| + |ð3Y(ϰi) − ð3Y(ϰi)∨ð

3
P(ϰi)|);

(2) I2(Y,P) � 1,Y � ∅􏼈 (􏽐ϰi∈Z(1 + I3
Y(ϰi)∧I

3
P

(ϰi) − ð3Y(ϰi)∨ð
3
P(ϰi)))/ 􏽐ϰi∈Z(1 + I3

Y(ϰi) − ð3Y

(ϰi))),Y≠∅;
(3) I3(Y,P) � 1,Y � P � ∅(􏽐ϰi∈Z(1 + I3

Y􏽮 (ϰi)−

ð3Y(ϰi)))/(􏽐ϰi∈Z (1 + I3
Y(ϰi)∨I

3
P(ϰi) − ð3Y(ϰi)∧

ð3P(ϰi))), others;
(4) I4(Y,P) � 1,Y � P � ∅(􏽐ϰi∈Z(1 + I3

Y(ϰi)−􏽮

ð3Y(ϰi)))/(􏽐ϰi∈Z(1 + ð3Y(ϰi)∧ð
3
P(ϰi)− I3

Y(ϰi)∨

I3
P(ϰi))), others;

(5) I5(Y,P) � 1,Y � P � ∅(1/|Z|)􏽐ϰi∈Z(1 + I3
Y􏽮

(ϰi)∧I
3
P(ϰi) − ð3Y(ϰi)∨ð

3
P(ϰi))/(1 + I3

Y(ϰi) − ð3Y
(ϰi)), others;

(6) I6(Y,P) � 1,Y � P � ∅(1/|Z|)􏼈 􏽐ϰi∈Z(1+

I3
Y(ϰi) − ð3Y(ϰi))/(1 + I3

Y(ϰi)∨I
3
P(ϰi) − ð3Y (ϰi)

∧ð3P(ϰi)), others;
(7) I7(Y,P) � 1,Y � P � ∅(1/|Z|)􏽐ϰi∈Z􏽮 (1+

I3
Y(ϰi) − ð3Y(ϰi))/(1 + ð3Y (ϰi)∧ð

3
P(ϰi)−

I3
Y(ϰi)∨I

3
P(ϰi)), others;

3.5. Te Relations between Tese Measures. In this section,
we study the relations between inclusion, entropy, simi-
larity measure, and distance measure of Fermatean fuzzy
sets. First, according to the defnitions of similarity
measure and distance measure of Fermatean fuzzy sets,
one should note that they are all used for estimating the
degree of similarity between two Fermatean fuzzy sets.
Te main diference is as follows: for the similarity
measure, a greater value means that the two Fermatean
fuzzy sets are more similar than are a pair with a lower
value. Te situation for the distance measure is just the
opposite, that is, the smaller the value is, the more similar
these two Fermatean fuzzy sets are. So, we can obtain the
following theorem.

3.6. Transformation Relationships among Information Mea-
sures for FFSs

Theorem 8. Suppose D be the Fermatean fuzzy distance
measure forY,P ∈ FFS s, then S(Y,P) � 1 − D(Y,P) is
the similarity measure of FFS s Y and P. Te proof is
straightforward.

Theorem 9. ForY,P ∈ FFSs, andwe orderD1(Y,P) � (1/
|Z|) 􏽐ϰi∈Z (|I3

Y(ϰi) − I3
P (ϰi)| + |ð3Y(ϰi) − ð3P(ϰi)| + |π3

Y

(ϰi) − π3
P(ϰi)|), then we have S(Y,P) � 1− (1/2

|Z|) 􏽐ϰi∈Z (|I3
Y (ϰi) − I3

P(ϰi)| + |ð3Y(ϰi) − ð3P(ϰi)| + |π3
Y

(ϰi) − π3
P(ϰi)|) � S1(Y,P).

Also, Si(Y,P) � 1 − Di(Y,P)(i � 1, 2, . . . , 13).

Theorem 10. Let D and S be the distance and similarity
measures of FFSs, for Y ∈ FFSs, then
E(Y) � 1 − S(Y,Yc) � 1 − S(Y,Yc) is the entropy
of FFSs.

Proof

(i) (E1) It is straightforward.
(ii) (E2) If Y is a crisp set, then Y � ∅ or Y � Φ, we

have S(Y,Yc) � 0. Terefore, E(Y) � 0.
(iii) (E3)

E(Y) � 1⇔S(Y,Yc) � S(Yc,Y)⇔I3
Y(ϰi) �

I3
Y(ϰi) � ð3Y(ϰi) for ϰi ∈ Z.

(iv) (E4) E(Y) � S(Y,Yc) � S(Yc,Y) � E(Yc).
(v) (E5) Since I3

Y(ϰi)≤I
3
P(ϰi)≤ ð

3
P(ϰi)≤ ð

3
Y(ϰi)

implies Y⊆P⊆Pc⊆Yc. Terefore, according the
defnition of similarity measure of FFS s, we have
S(Y,Yc)≤S(P,Yc)≤E(Y,Yc), that is,
E(Y)≤E(P). Similarly, if
ð3Y(ϰi)≤ ð

3
P(ϰi)≤I

3
P(ϰi)≤I

3
Y(ϰi), then we have

S(Y,Yc)≤S(P,Yc)≤S(P,Pc), that is,
E(Y)≤E(P). Tis completes the proof. □

Theorem 11. For Y,P ∈ FFSs, and we order

S(Y,P) � S1(Y,P) � 1 − (1/2
|Z|)􏽐ϰi∈Z(|I3

Y(ϰi) − I3
P(ϰi)| + |ð3Y(ϰi) − ð3P

(ϰi)| + |π3
Y(ϰi) − π3P(ϰi)|), then we have

E(Y) � S1(Y,Yc) � 1 − (1/|Z|)􏽐ϰi∈Z|I3
Y

(ϰi) − ð3Y(ϰi)| � E4(Y). Also,
E4(Y) � S2(Y,Yc) � S3(Y,Yc) � S4(Y,Yc) �

S13(Y,Yc),

E5(Y) � S7(Y,Yc) � S10(Y ,Yc), E6(Y) � S8(Y,

Yc) � S9 Y,Yc), E7(Y) � S12(Y,Yc), E8(Y) �

S11(Y,Yc).

Defnition 10. Let Y be an FFS, m(Y), n(Y) ∈ FFSs,
∀ϰi ∈Z, m(Y)(ϰi) � (Im(Y)(ϰi), ðm(Y)(ϰi)), and
n(Y)(ϰi) � (In(Y)(ϰi), ðn(Y)(ϰi)) their membership
and nonmembership functions are defned as follows:
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Im(Y)(ϰi) �
��������������������
1 + (I3

Y(ϰi) − ð3Y(ϰi))
33

􏽱
,

ðm(Y)(ϰi) �
������������������
1 − |I3

Y(ϰi) − ð3Y(ϰi)|
3

􏽱
,

In(Y)(ϰi) �
��������������������
1 − (I3

Y(ϰi) − ð3Y(ϰi))
33

􏽱
,

ðn(Y)(ϰi) �
������������������
1 + |I3

Y(ϰi) − ð3Y(ϰi)|
3

􏽱
.

Theorem 12. Let D be the distance measure and S be the
similarity measure of FFSs, for Y in FFSs, then E(Y) �

S(m(Y), n(Y)) � 1 − D(Y,Yc) � 1 − S(m(Y), n(Y)) is
the entropy of FFS Y.

Proof

(i) (E1) It is straightforward.
(ii) (E2) If Y is a crisp set, then ∀ϰi ∈ Z, we have

IY(ϰi) � 1, ðY(ϰi) � 0, or IY(ϰi) � 0, ðY(ϰi) �

1. Terefore, we can achieve

Im(Y) ϰi( 􏼁 � 1, ðm(Y) ϰi( 􏼁 � 0,Im(Y) ϰi( 􏼁 � 0,

ðm(Y) ϰi( 􏼁 � 1.
(7)

It implies thatm(Y) � Φ, n(Y) � ∅, consequently,
S(m(Y), n(Y)) � 0.

(iii) (E3) E(Y) � 1⇔S(m(Y), n(Y)) � 1⇔m(Y)

� n(Y)⇔Im(Y)(ϰi) � In(Y)(ϰi), ðm(Y)(ϰi) �

ðn(Y)(ϰi).
(iv) (E4) Using the defnitions of m(Y) and n(Y), we

have m(Y) � m(Yc), n(Y) � n(Yc), hence
S(m(Y), n(Y)) � S(m(Yc), n(Yc)).

(v) (E5) Since IY(ϰi)≤IP(ϰi)≤ ðY(ϰi)≤ ðP(ϰi)
implies Y⊆P⊆Pc⊆Yc. Terefore, we have
|I3

Y(ϰi) − ð3Y(ϰi)|≥ |(I3
P(ϰi) − ð3P(ϰi))|. It means

that n(A) ≤n(P)≤m(P)≤m(Y), so we have
S(m(Y), n(Y))≤S(m(P), n (Y))≤S(m(P),

n(P)), that is, E(Y)≤E(P).

Similarly, if ðY(ϰi)≤ ðP(ϰi)≤IP(ϰi)≤IY(ϰi), then
we have

S(m(Y), n(Y)) ≤S(m(Y), n(P))≤S(m(P),

n(P)), that is, E(Y)≤E(P).
(8)

Tis completes the proof. □

Theorem 13. SupposeD andS be the distance measure and
similarity measures of FFSs, respectively, for Y,P ∈ FFSs,
then I(Y,P) � S(Y,Y∩P) � 1 − D(Y,Y∩P) is the
inclusion measure of FFSs Y and P.

Proof

(i) (I1) It is straightforward.
(ii) (I2) If Y⊆P, then S(Y,Y∩P) �

S(Y,Y) � 1 � S(Y,P).
(iii) (I3) I(Y,P) � 0⇔S(Y,Y∩P) � 0⇔Y � Φ,

P � ∅.

(iv) (I4) If Y⊆P⊆O, then I(O,Y) � S(O,O∩Y) �

S(O,Y) and I(P,Y) � S(P,P∩Y) �

S(P,Y). Known by the similarity measure of FFSs,
we have I(O, M)≤I(P,Y). Similarly,
I(O,Y)≤I(O,P). Tis completes the proof. □

Theorem 14. SupposeD and S be the distance measure and
similarity measures of FFSs, respectively, for Y,P in FFSs,
then I(Y,P) � S(P,Y∪P) � 1 − D(P,Y∪P) is the
inclusion measure of FFSs Y and P.

Defnition 11. Let Y and P be two FFS s, then we defne
g(A,B) ∈ FFS s,∀ϰi ∈Z,

Ig(Y,P)(ϰi) �
�������������������������������������������
(1 + min |I3

Y(ϰi) − I3
P(ϰi)|, |ð3Y(ϰi) − ð3P(ϰi)|􏽮 􏽯/2)

􏽱
,

ðg(Y,P)(ϰi) �
�������������������������������������������
(1 − max |I3

Y(ϰi) − I3
P(ϰi)|, |ð3Y(ϰi) − ð3P(ϰi)|􏽮 􏽯/2)

􏽱
.

Theorem 15. Suppose E be the entropy measure of FFSs, for
Y, P ∈ FFSs, then E(g(Y,P)) is the similarity measure of
FFSs Y and P.

Proof

(i) (S1) − ( S2) are straightforward.
(ii) (S3) Known by the defnition of entropy of FFS s,

E(g(Y,P)) � 1⇔Ig(Y,P)(ϰi) � ðg(Y,P)(ϰi)
⇔|I3

Y(ϰi) − It
P(ϰi)| � 0, |ð3Y(ϰi) − ð3P(ϰi)| � 0⇔

IY(ϰi) � IP(ϰi), ðY(ϰi) � ðP(ϰi)⇔Y � P.
(iii) (S4) IfY is a crisp set, then IY(ϰi) � 1, ðY(ϰi) � 0

or IY(ϰi) � 0, ðY(ϰi) � 1. Hence, Ig(Y,

Yc)(ϰi) � 1,IY(Y,Pc) (ϰi) � 0, ðY(Y,Pc)

(ϰi) � 0, it implies g(Y,Pc) �Φ, so
E(g(Y,Pc)) � 0.

(iv) (S5) Since Y⊆P⊆O, then ∀ϰi ∈Z, we have
IY(ϰi)≤IP (ϰi)≤IO(ϰi), ðO(ϰi)≤ ðP(ϰi)≤ ðY
(ϰi). Terefore, we have I3

Y(ϰi) − I3
O

(ϰi)|≥ |I3
Y(ϰi) − I3

P(ϰi)| and |ð3Y(ϰi) − ð3O
(ϰi)|≥ |ð3Y(ϰi) − ð3P(ϰi)|.

Furthermore, we have

min I
3
Y ϰi( 􏼁 − I

3
O ϰi( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, ð
3
Y ϰi( 􏼁 − ð3O ϰi( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛,

≥min I
3
Y ϰi( 􏼁 − I

3
P ϰi( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, ð
3
Y ϰi( 􏼁 − ð3P ϰi( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛,

max I
3
Y ϰi( 􏼁 − I

3
O ϰi( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, ð
3
Y ϰi( 􏼁 − ð3O ϰi( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛,

≥max I
3
Y ϰi( 􏼁 − I

3
P ϰi( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, ð
3
Y ϰi( 􏼁 − ð3P ϰi( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛.

(9)

Also, we can know

Ig(Y,O) ϰi( 􏼁≥Ig(Y,P) ϰi( 􏼁,

ðY(Y,O) ϰi( 􏼁≤ ðY(Y,P) ϰi( 􏼁,Ig(Y,P) ϰi( 􏼁≥ ðY(Y,P) ϰi( 􏼁,

(10)

that is
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ðg(Y,O) ϰi( 􏼁≤ ðg(Y,P) ϰi( 􏼁≤Ig(Y,P) ϰi( 􏼁≤Ig(Y,O) ϰi( 􏼁,

(11)

and known by the defnition, E(g(Y,O))≤E(g(Y,P)).
Similarly, we can prove that E(g(Y,O))≤E(g(P,O)).

Tis completes the proof. □ □

Theorem 16. Suppose I be the inclusion measure of FFS s,
for Y ∈ FFS s, then E(Y) � I(Y∪Yc,Y∩Yc) is the
entropy of FFS sY.

Proof

(i) (E1) It is straightforward.
(ii) (E2) If Y is a crisp set, then Y � Φ or Y � ∅, we

have I Y( 􏼁∪Yc, Y∩Yc) � I Φ( ),∅) � 0.
Terefore, E(Y) � 0.

(iii) (E3) E Y( 􏼁) �1 ⇔I Y( 􏼁∪Yc, Y∩Y c) �

1⇔Y∪Yc⊆Y∩Yc⇔Y∪Yc � Y∩Yc⇔IY

(ϰi) � IY(ϰi) � ðY(ϰi).
(iv) (E4) E(Y) � I Y( 􏼁∪Yc, Y∩Yc) � I(Yc ∪

Y,Yc ∩ Y( 􏼁 � E(Yc).
(v) (E5) Since IY(ϰi)≤IP(ϰi)≤ IP(ϰi)≤IY

(ϰi)≤ ðP(ϰi)≤ ðY(ϰi) implies Y⊆P⊆Pc⊆Yc.
Furthermore, Y∩Yc⊆P∩Pc⊆P∪Pc⊆Y∪Yc.

According to the defnition of inclusion measure, we
have I Y( 􏼁∪Yc, Y∩Yc)≤I Y( 􏼁∪Yc,
P∩Pc)≤I P( )∪Pc, P∩Pc), so E(Y)≤E(P).

Similarly, if ðY(ϰi)≤ ðP(ϰi)≤IP(ϰi)≤IY(ϰi), then
we can have I Y( 􏼁∪Yc, Y∩Yc)≤I P( )∪Pc,
Y∩Yc)≤I P( )∪Pc, P∩Pc), that is E(A) ≤E(P). Tis
completes the proof. □

Example 1. For Y, P ∈ FFS s, and we order I(Y,P) �

I1(Y,P) � 1 − (1/2|Z|)􏽐ϰi∈Z(|I3
Y(ϰi) − I3

Y(ϰi)∧I
3
P

(ϰi)| + |ð3Y(ϰi) − ð3Y(ϰi)|), then we have E(Y) �

I1(Y∪Y
c,Y∩Yc) � 1 − (1/2|Z|) 􏽐ϰi∈Z(|I3

Y(ϰi)−
ð3Y(ϰi)|) � E4(Y).

Theorem 17. S(IY(ϰi), ðY(ϰi)) is the entropy of FFS Y.

Proof

(i) (E1) It is straightforward.
(ii) (E2) If Y is a crisp set, then we have IY(ϰi) � Φ,

and ðY(ϰi) � ∅ or IY(ϰi) � ∅, and ðY(ϰi) � Φ.
Terefore, S(IY(ϰi), ðY(ϰi) � 0.

(iii) (E3) Known by the defnition of similarity measure
of FFSs, we have

S IY ϰi( 􏼁, ðY ϰi( 􏼁􏼐 􏼑 � 1⇔IY ϰi( 􏼁 � ðY ϰi( 􏼁⇔E(Y) � 1.

(12)

(iv) (E4) E(Y) � S(IY(ϰi), ðY (ϰi)) � S(ðY(ϰi),IY

(ϰi)) � E(Yc).

(v) (E5) Since IY(ϰi)≤IP(ϰi)≤ ðP(ϰi)≤ ðY(ϰi)
implies Y⊆P⊆Pc⊆Yc. Namely, IY⊆IP⊆ðP⊆ðY.
According to the defnition of similarity measure,
we can have S(IY(ϰi), ðY(ϰi))≤
S(IP(ϰi), ðP(ϰi)), that is, E(Y)≤E(P).

Similarly, if ðY(ϰi)≤ ðP(ϰi)≤IP(ϰi)≤IY(ϰi), then
we can have E(Y)≤E(P). Tis completes the proof. □

4. Apply the Distance Measure between FFSs to
Pattern Recognition

In this part, we use numerical examples to show the fea-
sibility and efectiveness of the innovative FFS distance
measures to illustrate the applications of the established
distance measures for specifc FFSs in pattern recognition.
Furthermore, we compare them to the existing distance
measures.

Example 2. Let M1,M2,M3, and M4 be four known pat-
terns that are illustrated by the following FFSs in X as
follows:

M1 � ϰ1, 0.32, 0.36( 􏼁, ϰ2, 0.41, 0.47( 􏼁, ϰ3, 0.54, 0.48( 􏼁􏼈 􏼉,

M2 � ϰ1, 0.41, 0.43( 􏼁, ϰ2, 0.52, 0.51( 􏼁, ϰ3, 0.60, 0.32( 􏼁􏼈 􏼉,

M3 � ϰ1, 0.34, 0.57( 􏼁, ϰ2, 0.56, 0.61( 􏼁, ϰ3, 0.86, 0.81( 􏼁􏼈 􏼉,

M4 � ϰ1, 0.23, 0.11( 􏼁, ϰ2, 0.31, 0.30( 􏼁, ϰ3, 0.45, 0.35( 􏼁􏼈 􏼉,

L � ϰ1, 0.25, 0.22( 􏼁, ϰ2, 0.46, 0.34( 􏼁, ϰ3, 0.47, 0.54( 􏼁􏼈 􏼉,

(13)

where L is an unknown pattern. Its aimed is to determine
the class to which L belongs. In order to do that, the
distance between L and classes M1, M2, M3, and M4 are
measured, and L is then allocated to the class Mg specifed
as follows:

g � argmax
g

D Mg,L􏼐 􏼑􏽮 􏽯. (14)

For all the newly developed distance measures (D1 −

D13) for FFS, the distance between D(M1,L), D(M2,L),
D(M3,L), and D(M4,L) is determined and displayed in
Table 1. It is observed in the Table 1, that an unknown
patternL belongs to a classM3 whenD1 toD13 are used. It
is clear that the cause for this diference is the frst char-
acteristic, i.e., (ϰ1). Te FFNs of ϰ1 are as follows:

(0.32, 0.36), (0.41, 0.43), (0.34, 0.57),

(0.23, 0.11), (0.25, 0.22),
(15)

for M1, M2, M3,M4, and L, respectively. It is predicted
that the distance between (0.34, 0.57) and (0.25, 0.22) is
larger than the distance between (0.41, 0.43) and (0.25, 0.22)

is larger than the distance between (0.23, 0.11) and
(0.25, 0.22) is larger than (0.32, 0.36) and (0.25, 0.22). As
a conclusion, it appears that

D M3,L( 􏼁>D M2,L( 􏼁>D M4,L( 􏼁>D M4,L( 􏼁,

(16)
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is more acceptable. By routine calculations, we can fnd the
aforementioned relation for D to D13 as shown in Table 1.

Example 3. Assume that a doctor would like to diagnose the
condition of C: (viral fever, malaria, typhoid, or chest
problem) for patients P: (Ragu, Mathi,Velu, and Karthi)
with disease symptoms V: (headache, acidity, burning eyes
and depression). Te symptoms associated with the con-
sidered diagnosis are listed in Table 2–4, and the symptoms
of the disease associated with each patient are listed in
Table 2. Each table element is represented by a specifc FFSs.
For each patient, a precise diagnosis is necessary.Te dis-
tance measuring methods mentioned here are used to assess
the distance between each patient and each diagnosis. Each
patient was then diagnosed using the concept of the shortest
possible distance. To determine a condition of the patient,
we may assess the distance measure between the symptoms
associated with each illness and those associated with the
patient. Te diagnostic fndings are provided in Table 2–4
using the distance measure formula D13. We may conclude
that all the patients sufer from viral fever.

4.1. Comparison of the Distance Measure between FFSs in
MedicalDiagnosis. To illustrate the efectiveness of the novel
distance measure for specifc FFSs in pattern recognition, we
present a numerical example and compare the novel fndings
to those reported in the literature.

Example 4. Consider a set of four patients, Al, Bob, Joe, and
Ted, as represented by M � M1,M2,M3,M4􏼈 􏼉 who have
the symptoms temperature, headache, stomach pain, cough,
and chest pain, which are represented by
S � ϰ1, ϰ2, ϰ3, ϰ4, ϰ5􏼈 􏼉. Let L � L1,L2,L3,L4,L5􏼈 􏼉 be
a list of possible diagnoses. Possible disease are defned as fol-
lows: L1: viral fever, L2: malaria, L3: typhoid, L4: stomach
problem, and L5: chest problem. Te FF relation M⟶ S is
illustrated by FFS, as can be seen in Table 5. Te FF relation
S⟶L is denoted by the FFS, as seen in Table 6. Each element
in Table 6 is represented by FFS. Te established distance
measure methods are used to determine the distance between
each patient and each diagnosis.Ten, using the idea ofminimal
distance degree, each patient was diagnosed. We demonstrated
the distance measure results of the patient Mj(j � 1, 2, 3, 4)

with regard to the diagnostic Li(i � 1, 2, 3, 4, 5) and the fnal
diagnosis fndings are given in Al has malaria Table 7, Bob has
stomach problem Table 8, Joe has typhoid Table 9, and Ted has
viral fever Table 10. We perform a comparison study with other
methodologies to demonstrate the capability and validity of the
presented distance measures, and the fndings are provided in
Table 11. Table 11 shows that the suggested distance measure
approaches achieve the same result as inD [18],D [35],D [36],
and D [37], demonstrating that using the proposed distance
measure methods to solve the medical diagnosis problem is
possible and benefcial. From the preceding practical imple-
mentation of the measures techniques, we may deduce that the
proposed distance measures approaches are more efective and
superior in handling real world challenges.

5. Apply the SimilarityMeasure between FFSs to
Pattern Recognition

In this part, we describe some examples to show the use of
the suggested similarity measures based on FFS to pattern
recognition.

Example 5. Suppose the four classes M1,M2,M3, and M4
of known construction materials and L, an unknown
construction material, are defned in the space
X � ϰ1, ϰ2, ϰ3􏼈 􏼉 and are represented by FFS is given. Its goal
is to ascertain to which class L belongs to (see Table 12).

Here,L is a known building materials. Its objective is to
determine the class to which L belongs. To do this, the
degrees of similarity between L and classes M1, M2, M3,
and M4 are measured, and L is then allocated to the class
Mg specifed as follows:

g � argmax
g

S Mg,L􏼐 􏼑􏽮 􏽯. (17)

For all the established similarity measure (S1 − S13) for
FFS, the degree of similarity between the four classes of
known building materials S(M1,L),S(M2,

L),S(M3,L), and S(M4,L) are determined and dis-
played in Table 13. It is clearly observed in the Table 13, that
an unknown building material L belongs to a class M1
when S1,S3,S7, to S10 are used and L belongs to a class
M3 when S2, S4, to S6 and S11 to S13 are used. It is clear
that the cause for this diference is the frst feature, i.e., (ϰ1).
Te FFNs of ϰ1 are (0.21, 0.33), (0.22, 0.41),
(0.11, 0.11), (0.33, 0.11), and (0.25, 0.22) for M1, M2,
M3,M4, and L, respectively. It is predicted that the sim-
ilarity degree between (0.21, 0.33) and (0.25, 0.22) is larger
than the similarity degree between (0.11, 0.11) and
(0.25, 0.22) is larger than the similarity degree between
(0.33, 0.11) and (0.25, 0.22) is larger than (0.22, 0.41) and
(0.25, 0.22). As a conclusion, it appears that
S(M1,L)>S(M3,L)>S ( M4, L( )>S(M2,L) is
more acceptable. Similarly, we can fnd the previously
mentioned relations for S2 to S13.

6. A Comparison of the Proposed Similarity
Measures between FFSs

To illustrate the efectiveness of the novel similarity
measures for specifc FFSs in pattern recognition, we
present some examples and compare the novel fndings to
those reported in the literature.

Example 6. Comparison analysis of similarity measure for
three known patternsM1,M2, andM3 that are presented by
the following FFSs in X � ϰ1, ϰ2, ϰ3, ϰ4􏼈 􏼉:

M1 � (ϰ1, 0.3, 0.3), (ϰ2, 0.4, 0.4), (ϰ3, 0.4, 0.4), (ϰ4,􏼈

0.4, 0.4)},
M2 � (ϰ1, 0.5, 0.5), (ϰ2, 0.1, 0.1), (ϰ3, 0.5, 0.5), (ϰ4,􏼈

0.1, 0.1)},
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M3 � (ϰ1, 0.5, 0.4), (ϰ2, 0.4, 0.5), (ϰ3,􏼈

0.3, 0.3), (ϰ4, 0.2, 0.2)}.

Te following is an unknown pattern L:
L � (ϰ1, 0.4, 0.4), (ϰ2, 0.5, 0.5), (ϰ3, 0.2, 0.2), (ϰ4, 0.3, 0.3)􏼈 􏼉.

Our objective is to ascertain the class to which L be-
longs. Te classifcation result of the suggested similarity
measures (S1 − S13) displayed in Table 14 is contrasted to
the classifcation result of the existing similarity measures
(S [38]-S [39]) depicted in Table 15. From Table 14, we
observed that the developed similarity measures (S1,S3 −

S13) addressing the shortcomings of conventional similarity
measures S [19], S [27], S [30], S [44], S [32], and S [45].

Example 7. Assume that a doctor would like to diagnose the
condition of C: (viral fever, malaria, or typhoid) for a set of
patients P: (Al, Bob, Joe, and Ted) having symptoms V:
(temperature, headache, and cough). Te symptoms

associated with the considered diagnosis are listed in Ta-
ble 16, and the symptoms associated with each patient are
listed in Table 17. Each table element is represented by
a specifc FFSs. Each patient requires proper diagnosis,
which need be assessed. We will identify a diagnosis for each
patient based on the similarity between the symptoms as-
sociated with each diagnosis and those associated with the
patient. Te diagnostic observations are described in Ta-
ble 18 Al, Table 19 Bob, Table 20 Joe, and Table 21 Ted,
respectively, using the novel similarity measures formula
(S1 − S13). Te patient Al is diagnosed with malaria (Mal.)
in 12 of the 13 of the approaches; the remaining approach
indicates that Al is diagnosed with viral fever (VF) as
presented in Table 18. It is obvious that Bob has a stomach
problem (SP), since all of the measures yield the same
fndings as shown in Table 19. Joe is diagnosed with typhoid
in 12 of the 13 methods; the other approach represented that
Joe is diagnosed with VF as shown in Table 20. Similarly, 9 of

Table 1: Distance measures for Example 2 with α � β � 0.5, l1 � l2 � 2, and t � 1.

D(M1,L) D(M2,L) D(M3,L) D(M4,L)
Classifcation

results

D1 0.0827 0.1829 0.4313 0.1137 M1
D2 0.0354 0.0504 0.0698 0.0272 M1
D3 0.0590 0.1167 0.2505 0.0704 M1
D4 0.0514 0.0956 0.2982 0.0638 M1
D5 0.0975 0.1738 0.4360 0.1169 M1
D6 0.0978 0.1746 0.4593 0.1200 M1
D7 0.4118 0.6334 0.7627 0.5214 M1
D8 0.7918 0.8745 0.9253 0.8486 M1
D9 0.7913 0.8698 0.9226 0.8360 M1
D10 0.4141 0.6233 0.7636 0.5184 M1
D11 0.6930 0.7167 0.8023 0.6902 M1
D12 0.0789 0.1483 0.3761 0.0699 M1
D13 0.0316 0.0599 0.1121 0.0212 M1

Table 2: Symptomatic characteristics of the diagnosis under consideration.

Headache Acidity Burning eyes Depression
Stress (0.2, 0.6) (0.3, 0.7) (0.2, 0.6) (0.1, 0.8)

Ulcer (0.3, 0.7) (0.1, 0.4) (0.2, 0.4) (0.1, 0.4)

Vision problem (0.2, 0.5) (0.1, 0.5) (0.1, 0.3) (0.2, 0.3)

Blood pressure (0.1, 0.4) (0.2, 0.5) (0.2, 0.4) (0.1, 0.3)

Table 3: Symptoms and features of the patients under consideration.

Blood pressure Ulcer Vision problem Stress
Ragu (0.2, 0.4) (0.1, 0.3) (0.1, 0.4) (0.2, 0.3)

Mathi (0.1, 0.5) (0.1, 0.4) (0.2, 0.3) (0.1, 0.3)

Velu (0.1, 0.3) (0.1, 0.5) (0.2, 0.3) (0.2, 0.3)

Karthi (0.1, 0.4) (0.2, 0.4) (0.1, 0.5) (0.1, 0.3)

Table 4: Te distance between the patient and the set of probable diagnoses using D1.

Blood pressure Ulcer Vision problem Stress
Ragu 0.2961 0.1539 0.1047 0.0760
Mathi 0.2658 0.1236 0.0459 0.0899
Velu 0.2882 0.2062 0.0683 0.0522
Karthi 0.2536 0.1618 0.1093 0.0803
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the 13 measures indicated that Ted has VF, whereas, the
remaining methods imply that Ted has Mal as presented in
Table 21. For patient Al, it could be observed from Table 18
and Table 22 that the established similarity measures
(S1,S3 − S11) yield the same fndings as those in S [41], S
[10], S [49], S [13], S [12], S [44], S [32], S [48], and S

[18], and the measures (S2,S12,S13) provide the same
results as in S [38], S [40], S [42], S [19], S [13], S [27], S

[30], S [32], S [45], S [39], S [46], S [48], S [47], and S

[50]. For patient Bob the novel similarity measures provided
the same results as in the literature presented in Table 19 and
Table 22. Similarly, for patient Joe the proposed similarity
measure provided the same result as in the literature shown
in Table 20 except S4. For patient Ted, the suggested sim-
ilarity measures (S1 − S6, S11 − S13) yield the same fndings
as inS [38],S [40],S [10],S [42],S [19],S [43],S [13],S

Table 7: Diagnostic results of the FFS distance measure for Al.

D(M1,L1) D(M1,L2) D(M1,L3) D(M1,L4) D(M1,L5)
Classifcation

results

D1 0.3643 0.3417 0.4607 0.5690 0.6813 L2
D2 0.2045 0.2067 0.2693 0.4683 0.5323 L1
D3 0.2844 0.2742 0.3650 0.5187 0.6068 L2
D4 0.3617 0.3413 0.4607 0.5667 0.6813 L2
D5 0.5717 0.5606 0.6581 0.8110 0.9018 L2
D6 0.3566 0.3400 0.4331 0.5075 0.5804 L2
D7 0.6394 0.4872 0.6744 0.9229 0.8799 L2
D8 0.8703 0.8057 0.9047 0.9777 0.9591 L2
D9 0.8744 0.8199 0.8978 0.9864 0.9678 L2
D1 0.6339 0.4892 0.6628 0.9202 0.8568 L2
D11 0.7457 0.7334 0.7621 0.8274 0.8555 L2
D12 0.2305 0.2321 0.2998 0.4522 0.5370 L2
D13 0.2146 0.1679 0.2480 0.3912 0.4480 L2

Table 8: Diagnostic results of the FFS distance measure for Bob.

D(M2,L1) D(M2,L2) D(M2,L3) D(M2,L4) D(M2,L5)
Classifcation

results

D1 0.4667 0.5783 0.4410 0.2323 0.5490 L4
D2 0.2965 0.4487 0.2713 0.1177 0.4027 L4
D3 0.3816 0.5135 0.3562 0.1750 0.4758 L4
D4 0.4667 0.5783 0.4410 0.2323 0.5467 L4
D5 0.6904 0.7648 0.6696 0.3850 0.7542 L4
D6 0.4375 0.5152 0.4185 0.2447 0.4940 L4
D7 0.8448 0.8700 0.7308 0.4278 0.8139 L4
D8 0.9528 0.9617 0.8980 0.8085 0.9388 L4
D9 0.9380 0.9610 0.8783 0.7880 0.9336 L4
D10 0.7928 0.8210 0.6621 0.3486 0.7230 L4
D11 0.7899 0.8471 0.7811 0.7201 0.8534 L4
D12 0.3577 0.4994 0.3456 0.1569 0.4980 L4
D13 0.2854 0.3870 0.2447 0.1432 0.3383 L4

Table 6: Symptomatic characteristics of the diagnosis.

ϰ1 ϰ2 ϰ3 ϰ4 ϰ5
L1 (0.40, 0.00) (0.30, 0.50) (0.10, 0.70) (0.40, 0.30) (0.10, 0.70)

L2 (0.70, 0.00) (0.20, 0.60) (0.00, 0.90) (0.70, 0.00) (0.10, 0.80)

L3 (0.30, 0.30) (0.60, 0.10) (0.20, 0.70) (0.20, 0.60) (0.10, 0.90)

L4 (0.10, 0.70) (0.20, 0.40) (0.80, 0.00) (0.20, 0.70) (0.20, 0.70)

L5 (0.10, 0.80) (0.00, 0.80) (0.20, 0.80) (0.20, 0.80) (0.80, 0.10)

Table 5: Symptomatic characteristics of the patient.

ϰ1 ϰ2 ϰ3 ϰ4 ϰ5
M1 (0.80, 0.10) (0.60, 0.10) (0.20, 0.80) (0.60, 0.10) (0.10, 0.60)

M2 (0.00, 0.80) (0.40, 0.40) (0.60, 0.10) (0.10, 0.70) (0.10, 0.80)

M3 (0.80, 0.10) (0.80, 0.10) (0.00, 0.60) (0.20, 0.70) (0.00, 0.50)

M4 (0.60, 0.10) (0.50, 0.40) (0.30, 0.40) (0.70, 0.20) (0.30, 0.40)
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[12],S [27],S [30],S [32],S [45],S [39],S [18],S [47],S
[48], and S [50], and the measures S7–S10 provide the
results as in S [41], S [44], S [32], S [46], and S [49] fgure
out in Tables 21 and 22. Table 23 shows the present summary
of medical diagnosis.

7. Applicationof theInclusionMeasurebetween
FFSs and Pattern Recognition

Tis section illustrates the applicability of the suggested FFS
inclusion measures to pattern recognition.

Example 8. Let, M1,M2,M3, and M4 are the known pat-
terns illustrated by FFSs in X � ϰ1, ϰ2, ϰ3􏼈 􏼉 described as
follows:

M1 � (ϰ1, 0.21, 0.19), (ϰ2, 0.22, 0.23), (ϰ3, 0.32, 0.27)􏼈 􏼉,
M2 � (ϰ1, 0.22, 0.12), (ϰ2, 0.24, 0.21), (ϰ3, 0.27, 0.25)􏼈 􏼉,
M3 � (ϰ1, 0.12, 0.21), (ϰ2, 0.14, 0.30), (ϰ3, 0.21, 0.32)􏼈 􏼉,
M4 � (ϰ1, 0.10, 0.22), (ϰ2, 0.11, 0.31), (ϰ3, 0.13, 0.33)􏼈 􏼉.

Te following is an unknown pattern L:
L � (ϰ1, 0.15, 0.21), (ϰ2, 0.19, 0.27), and(ϰ3, 0.32, 0.28)􏼈 􏼉.

Its purpose is to determine which class L belongs to. To
do this, the inclusion degrees between L and classes M1,

M2,M3, andM4 are measured, andL is then allocated to
the class Mg specifed as follows:

g � argmax
g

I Mg,L􏼐 􏼑􏽮 􏽯. (18)

For all the established inclusion measures (I1 − I7)

for FFS, the degree of inclusion between I(M1,L),
I(M2,L), I(M3,L), and I(M4,L) are determined
and displayed in Table 24. It is clearly observed in the
Table 24 that an unknown patternL belongs to a classM4
when I1 to I3 and I5 to I6 are used, and L belongs to
a class M3 and M2 when I4 and I7 are, respectively,
used. It is clear that the cause for this diference is the
frst characteristic, i.e., (ϰ1). Te FFNs of ϰ1 are
(0.21, 0.19), (0.22, 0.12), (0.12, 0.21), (0.10, 0.22), and
(0.15, 0.21) forM1,M2,M3,M4, andL, respectively. It is
predicted that the inclusion degree between (0.10, 0.22)

and (0.15, 0.21) is larger than the inclusion degree between
(0.12, 0.21) and (0.15, 0.21) is larger than the inclusion
degree between (0.21, 0.19) and (0.15, 0.21) is larger than
(0.22, 0.12) and (0.15, 0.21). As a conclusion, it appear-
s that I(M1,L)> I(M3,L)>I(M4,L)>I(M2,L)

is more acceptable. In a similar way, we can fnd the
previously mentioned relations for I2 to I7.

Table 9: Diagnostic results of the FFS distance measure for Joe.

D(M3,L1) D(M3,L2) D(M3,L3) D(M3,L4) D(M3,L5)
Classifcation

results

D1 0.5323 0.6393 0.5493 0.5843 0.6693 L3
D2 0.2952 0.4107 0.2760 0.3930 0.5230 L3
D3 0.4137 0.5250 0.4127 0.4887 0.5962 L3
D4 0.5313 0.6387 0.5463 0.5817 0.6667 L1
D5 0.7785 0.9021 0.7713 0.7939 0.9256 L3
D6 0.4835 0.5541 0.4937 0.5174 0.5714 L1
D7 0.7948 0.7738 0.6857 0.8150 0.8678 L3
D8 0.9280 0.9141 0.9085 0.9326 0.9549 L3
D9 0.9433 0.9337 0.9070 0.9685 0.9673 L3
D10 0.7915 0.7788 0.6739 0.8298 0.8467 L3
D11 0.7747 0.7954 0.7657 0.8089 0.8521 L3
D12 0.3106 0.4096 0.3054 0.3903 0.5265 L3
D13 0.2632 0.3302 0.2512 0.3433 0.4011 L3

Table 10: Diagnostic results of the FFS distance measure for Ted.

D(M4,L1) D(M4,L2) D(M4,L3) D(M4,L4) D(M4,L5)
Classifcation

results

D1 0.3627 0.4667 0.5197 0.5193 0.7987 L1
D2 0.2030 0.2618 0.3168 0.3652 0.5255 L1
D3 0.2828 0.3643 0.4183 0.4423 0.6621 L1
D4 0.3623 0.4667 0.5197 0.5193 0.7987 L1
D5 0.5837 0.6409 0.7406 0.7702 0.0791 L1
D6 0.3572 0.4375 0.4754 0.4751 0.6479 L1
D7 0.7744 0.6062 0.8480 0.9195 0.9493 L2
D8 0.9295 0.8542 0.9551 0.9798 0.9825 L2
D9 0.9286 0.9173 0.9635 0.9824 0.9839 L2
D10 0.7736 0.6740 0.8610 0.9206 0.9454 L2
D11 0.7382 0.7472 0.7742 0.7901 0.8373 L1
D12 0.2203 0.2769 0.3340 0.3600 0.5182 L1
D13 0.1652 0.1903 0.2343 0.2774 0.3843 L1
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Table 11: Diagnosis results of diferent methods in Example 4 (summary of the comparison).

Al Bob Joe Ted
Wei et al. [18] Mal SP TYP VF
Xiao and Ding [35] Mal SP TYP VF
Zhou et al. [36] Mal SP TYP VF
Euclidean distance Mal SP TYP VF
Deng and Wang [37] Mal SP TYP VF
Deng and Wang [37] Mal SP TYP VF
Present — — — —
D1 Mal SP TYP VF
D2 VF SP TYP VF
D3 Mal SP TYP VF
D4 Mal SP VF VF
D5 Mal SP TYP VF
D6 Mal SP VF VF
D7 Mal SP TYP VF
D8 Mal SP TYP VF
D9 Mal SP TYP VF
D10 Mal SP TYP VF
D11 Mal SP TYP VF
D12 Mal SP TYP VF
D13 Mal SP TYP VF

Table 12: Classes information with FFSs.

ϰ1 ϰ2 ϰ3
M1 (0.21, 0.33) (0.22, 0.43) (0.32, 0.32)

M2 (0.22, 0.41) (0.32, 0.31) (0.13, 0.34)

M3 (0.11, 0.11) (0.12, 0.21) (0.32, 0.32)

M4 (0.33, 0.11) (0.21, 0.22) (0.23, 0.32)

L (0.25, 0.22) (0.42, 0.34) (0.33, 0.24)

Table 13: Similarity measure for Example 5.

S(M1,L) S(M2,L) S(M3,L) S(M4,L)
Classifcation

results

S1 0.9641 0.9524 0.9517 0.9541 M1
S2 0.9738 0.9743 0.9884 0.9819 M3
S3 0.9689 0.9633 0.9701 0.9680 M1
S4 0.9731 0.9667 0.9736 0.9728 M3
S5 0.1636 0.1629 0.1637 0.1636 M3
S6 0.4909 0.4886 0.4910 0.4908 M3
S7 0.4248 0.3654 0.2901 0.2829 M1
S8 0.1261 0.1155 0.0822 0.0888 M1
S9 0.1281 0.1312 0.0824 0.0816 M2
S10 0.4252 0.3656 0.2891 0.2749 M1
S11 0.3161 0.3146 0.3172 0.3155 M3
S12 0.9486 0.9436 0.9522 0.9469 M3
S13 0.9760 0.9776 0.9907 0.9848 M3
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Table 14: Comparison for the proposed similarity measure for Example 6.

S(M1,L) S(M2,L) S(M3,L) Classifcation result

S1 0.8973 0.7987 0.9467 M3
S2 1.0000 1.0000 0.9797 Cannot be classifed
S3 0.9487 0.8993 0.9632 M3
S4 0.9615 0.9245 0.9648 M3
S5 0.1623 0.1579 0.1627 M3
S6 0.4868 0.4735 0.4880 M3
S7 0.3913 0.1947 0.7015 M3
S8 0.1433 0.0649 0.2470 M3
S9 0.1433 0.0649 0.2383 M3
S10 0.3913 0.1947 0.6755 M3
S11 0.3007 0.2720 0.3160 M3
S12 0.9023 0.8171 0.9481 M3
S13 0.9828 0.9721 0.9760 M1

Table 15: Comparison for similarity measures for Example 6.

S(M1,L) S(M2,L) S(M3,L) Classifcation results

S [38] 0.8677 0.7261 0.9134 M3
S [40] 1.0000 1.0000 0.9750 Cannot be classifed
S [41] 0.8679 0.7425 0.8923 M3
S [10] 0.8750 0.7500 0.9000 M3
S [10] 0.8141 0.6501 0.8495 M3
S [10] 0.7778 0.6000 0.8182 M3
S [42] 0.8750 0.7500 0.9250 M3
S [19] 1.0000 1.0000 0.9750 Cannot be classifed
S [43] 0.9375 0.8750 0.9500 M3
S [13] 0.8750 0.7500 0.9250 M3
S [13] 0.9375 0.8750 0.9500 M3
S [13] 0.9167 0.8333 0.9417 M3
S [12] 0.8750 0.7500 0.9250 M3
S [27] 1.0000 1.0000 0.9969 Cannot be classifed
S [30] 1.0000 1.0000 0.9884 Cannot be classifed
S [44] 0.5000 0.5000 0.5000 Cannot be classifed
S [32] 1.0000 1.0000 0.9775 Cannot be classifed
S [32] 0.5038 0.2378 0.6223 M3
S [32] 0.8785 0.7912 0.9205 M3
S [45] 0.9583 0.9167 0.9583 Cannot be classifed
S [39] 0.9841 0.9727 0.9816 M1

Table 16: Symptom features for the diagnosis under consideration.

Temperature Headache Stomach pain Cough Chest pain
Viral fever (0.4, 0.0) (0.3, 0.5) (0.1, 0.7) (0.4, 0.3) (0.1, 0.7)

Malaria (0.7, 0.0) (0.2, 0.6) (0.0, 0.9) (0.7, 0.0) (0.1, 0.8)

Typhoid (0.3, 0.3) (0.6, 0.1) (0.2, 0.7) (0.2, 0.6) (0.1, 0.9)

Stomach problem (0.1, 0.7) (0.2, 0.4) (0.8, 0.0) (0.2, 0.7) (0.2, 0.7)

Chest problem (0.1, 0.8) (0.0, 0.8) (0.2, 0.8) (0.2, 0.8) (0.8, 0.1)

Table 17: Symptoms of the patients under examination.

Temperature Headache Stomach pain Cough Chest pain
Al (0.8, 0.1) (0.6, 0.1) (0.2, 0.8) (0.6, 0.1) 0.1, 0.6
Bob (0.0, 0.8) (0.4, 0.4) (0.6, 0.1) (0.1, 0.7) 0.1, 0.8
Joe (0.8, 0.1) (0.8, 0.1) (0.0, 0.6) (0.2, 0.7) 0.0, 0.5
Ted (0.6, 0.1) (0.5, 0.4) (0.3, 0.4) (0.7, 0.2) 0.3, 0.4
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Table 18: Symptoms features of the patient (Al).

VF Mal Typ SP Chest problem
S1 0.6488 0.6984 0.7203 0.5014 0.4562
S2 0.7955 0.7933 0.7307 0.5317 0.4677
S3 0.7221 0.7459 0.7255 0.5165 0.4619
S4 0.7288 0.7440 0.6545 0.5750 0.4890
S5 0.1472 0.1478 0.1424 0.1343 0.1272
S6 0.4391 0.4430 0.4198 0.3976 0.3715
S7 0.3606 0.5128 0.3256 0.0771 0.1201
S8 0.1297 0.1943 0.0953 0.0223 0.0409
S9 0.1256 0.1801 0.1022 0.0136 0.0322
S10 0.3661 0.5108 0.3372 0.0798 0.1432
S11 0.2543 0.2666 0.2379 0.1726 0.1445
S12 0.7695 0.7679 0.7002 0.5478 0.4630
S13 0.8437 0.7623 0.7557 0.6000 0.5030

Table 19: Symptoms features of the patient (Bob).

VF Mal Typ SP Chest problem
S1 0.5582 0.4509 0.7143 0.8666 0.5881
S2 0.7035 0.5513 0.7287 0.8823 0.5973
S3 0.6309 0.5011 0.7215 0.8745 0.5927
S4 0.6500 0.5662 0.6693 0.8257 0.5900
S5 0.1411 0.1364 0.1424 0.1547 0.1370
S6 0.4186 0.3950 0.4238 0.4625 0.4019
S7 0.1552 0.1300 0.2692 0.5722 0.1861
S8 0.0472 0.0383 0.1020 0.1915 0.0612
S9 0.0620 0.0390 0.1217 0.2120 0.0664
S10 0.2072 0.1790 0.3379 0.6514 0.2770
S11 0.2101 0.1529 0.2189 0.2799 0.1466
S12 0.6423 0.5006 0.6544 0.8431 0.5020
S13 0.7719 0.5822 0.7506 0.8711 0.5903

Table 20: Symptoms features of the patient (Joe).

VF Mal Typ SP Chest problem
S1 0.5616 0.4917 0.7086 0.5813 0.4720
S2 0.7048 0.5893 0.7240 0.6070 0.4770
S3 0.6332 0.5405 0.7163 0.5942 0.4745
S4 0.6015 0.5210 0.5902 0.5637 0.5000
S5 0.1363 0.1284 0.1366 0.1346 0.1266
S6 0.4052 0.3815 0.4020 0.3943 0.3750
S7 0.2052 0.2262 0.3143 0.1850 0.1322
S8 0.0720 0.0859 0.0915 0.0674 0.0451
S9 0.0567 0.0663 0.0930 0.0315 0.0327
S10 0.2085 0.2212 0.3261 0.1702 0.1533
S11 0.2253 0.2046 0.2343 0.1911 0.1479
S12 0.6894 0.5904 0.6946 0.6097 0.4735
S13 0.7613 0.6263 0.7706 0.6493 0.5101
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Table 21: Symptoms features of the patient (Ted).

VF Mal Typ SP Chest problem
S1 0.6579 0.6447 0.6727 0.6080 0.4644
S2 0.7970 0.7382 0.6832 0.6348 0.4745
S3 0.7274 0.6914 0.6779 0.6214 0.4694
S4 0.7283 0.6500 0.6103 0.6105 0.4010
S5 0.1467 0.1433 0.1385 0.1369 0.1142
S6 0.4390 0.4186 0.4077 0.4077 0.3425
S7 0.2256 0.3938 0.1520 0.0805 0.0507
S8 0.0705 0.1458 0.0449 0.0202 0.0175
S9 0.0714 0.0827 0.0365 0.0176 0.0161
S10 0.2264 0.3260 0.1390 0.0794 0.0546
S11 0.2618 0.2528 0.2258 0.2099 0.1627
S12 0.7797 0.7231 0.6660 0.6400 0.4818
S13 0.8268 0.7069 0.7062 0.6688 0.5084

Table 22: Te summary of existing similarity measures in medical diagnosis.

Al Bob Joe Ted
S [38] VF SP TYP VF
S [40] VF SP TYP VF
S [41] Mal SP TYP Mal
S [10] Mal SP TYP VF
S [10] Mal SP TYP VF
S [10] Mal SP TYP VF
S [42] VF SP TYP VF
S [19] VF SP TYP VF
S [43] VF/Mal SP TYP VF
S [13] Mal SP TYP VF
S [13] VF SP TYP VF
S [13] Mal SP TYP VF
S [12] Mal SP TYP VF
S [27] VF SP TYP VF
S [30] VF SP TYP VF
S [44] Mal SP TYP Mal
S [32] Mal SP TYP VF
S [32] Mal SP TYP Mal
S [32] VF SP TYP VF
S [45] VF SP TYP VF
S [39] VF SP TYP VF
S [18] Mal SP TYP VF
S [46] VF SP TYP Mal
S [47] VF SP TYP VF
S [48] VF SP TYP VF
S [48] VF SP TYP VF
S [48] Mal SP SP VF
S [49] Mal SP TYP Mal
S [50] VF SP TYP VF
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8. Conclusions and Future Recommendations

8.1. Conclusions. Te main fndings of this research are
emphasized and encapsulated as follows:

(1) We developed axiomatically FFSs information
measures (distance measure, similarity measure,
entropy, and inclusion measure).

(2) We constructed various formulae for FFSs in-
formation measures and analyzed the associated
transformation relationships in detail.

(3) We used the established distance measures (D1-D13)
to pattern recognition and medical diagnosis to
demonstrate their efcacy. Te applications sub-
stantiate the results and also illustrate the feasibility
and efectiveness of the distance measures between
FFSs information.

(4) We demonstrated the efcacy of the novel similarity
measures (S1-S13); several counterintuitive examples
of existing similarity measures are shown. We
employed them to pattern recognition, construction
materials, and medical diagnosis. For pattern rec-
ognition problems, we conclude that the proposed
similarity measures dominate existing similarity
measures. In some special situations, it has been
shown that many conventional similarity measures
are incapable of providing reasonable fndings.
However, in these specifc cases, the proposed
similarity measure is profcient of discriminating

FFSs. A comparison of the proposed similarity
measures with conventional similarity measures is
performed for medical diagnosis problems. Te
applications emphasise the results and also illustrate
the signifcance and reliability of the established
similarity measures.

(5) Additionally, we illustrated the applicability of the
suggested FFS inclusion measures to pattern recogni-
tion with an example. Te fndings demonstrate the
feasibility and efectiveness of new inclusion measures.

Te experimental fndings demonstrated that the
proposed measures are more reliable and can avoid the
counter-intuitive situation in dealing with practical ap-
plications based on Fermatean fuzzy environment.
[24, 51, 52].

8.2. Limitations and Future Works

(1) Te FFSs are inappropriate to deal with situations
where the cube sum of membership and non-
membership grades of exceeds 1

(2) A near future target is to unfold the application of
the proposed information measures in scientifc
investigations for decision-making, pattern rec-
ognition, linguistic summarization, and data
mining

(3) We have also a plan to apply the presented approach
to procurement planning, water desalination station

Table 23: Te summary of present similarity measures in medical diagnosis.

Al Bob Joe Ted
S1 TYP SP TYP TYP
S2 VF SP TYP VF
S3 Mal SP TYP VF
S4 Mal SP VF VF
S5 Mal SP TYP VF
S6 Mal SP VF VF
S7 Mal SP TYP Mal
S8 Mal SP TYP Mal
S9 Mal SP TYP Mal
S10 Mal SP TYP Mal
S11 Mal SP TYP VF
S12 VF SP TYP VF
S13 VF SP TYP VF

Table 24: Inclusion measure for Example 8.

I(M1,L) I(M2,L) I(M3,L) I(M4,L)
Classifcation

results

I1 0.9964 0.9936 0.9970 0.9997 M4
I2 0.9927 0.9872 0.9939 0.9995 M4
I3 0.9927 0.9873 0.9940 0.9995 M4
I4 0.9732 0.9787 0.9906 0.9852 M3
I5 0.3309 0.3291 0.3313 0.3332 M4
I6 0.3309 0.3291 0.3313 0.3332 M4
I7 0.3356 0.3369 0.3331 0.3321 M2
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selection, wind power plant site selection, and many
more domains of real world problems

(4) Additionally, we will be further interested to im-
merse them in a variety of fuzzy environments

(5) Furthermore, since this work presents an applicative
analysis of the FFS information measures, we should
develop an appropriate software to efectively apply the
presented information measures in a realistic situation
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