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Glycosaminoglycans (GAGs) including chondroitin sulfate, dermatan sulfate, heparan

sulfate, and keratan sulfate, except for hyaluronan that is a free polysaccharide, are

covalently attached to core proteins to form proteoglycans. More than 50 gene products

are involved in the biosynthesis of GAGs. We recently developed a comprehensive

glycosylation mapping tool, GlycoMaple, for visualization and estimation of glycan

structures based on gene expression profiles. Using this tool, the expression levels

of GAG biosynthetic genes were analyzed in various human tissues as well as tumor

tissues. In brain and pancreatic tumors, the pathways for biosynthesis of chondroitin

and dermatan sulfate were predicted to be upregulated. In breast cancerous tissues,

the pathways for biosynthesis of chondroitin and dermatan sulfate were predicted to be

up- and down-regulated, respectively, which are consistent with biochemical findings

published in the literature. In addition, the expression levels of the chondroitin sulfate-

proteoglycan versican and the dermatan sulfate-proteoglycan decorin were up- and

down-regulated, respectively. These findings may provide new insight into GAG profiles

in various human diseases including cancerous tumors as well as neurodegenerative

disease using GlycoMaple analysis.

Keywords: dermatan sulfate (DS), chondroitin sulfate (CS), glycosaminoglycan (GAG), GlycoMaple, heparan

sulfate (HS), hyaluronan (HA), keratan sulfate (KS), proteoglycan (PG)

INTRODUCTION

Glycosaminoglycans (GAGs) are linear polysaccharides consisting of repeating disaccharide units.
Among these are heparin, heparan sulfate (HS), chondroitin sulfate (CS), dermatan sulfate (DS),
and keratan sulfate (KS), which are covalently bound to core proteins, forming proteoglycans
(PGs) (Kjellen and Lindahl, 1991; Iozzo, 1998; Lindahl et al., 2015). Hyaluronan (HA) is a free
polysaccharide (Lindahl and Rodén, 1972; Hascall, 2019). PGs are distributed in the extracellular
matrix and on cell surfaces, and are crucially involved in a wide range of biological processes such
as cell adhesion, the regulation of cellular signaling, and assembly of the extracellular matrix (Esko
and Selleck, 2002; Häcker et al., 2005; Bülow and Hobert, 2006; Bishop et al., 2007; Sarrazin et al.,
2011; Thelin et al., 2013; Xu and Esko, 2014; Mizumoto et al., 2015; Neill et al., 2015).

CS, DS, and HS are covalently linked to specific serine residues usually flanked by a
glycine residue on core proteins via a common linker tetrasaccharide region, GlcAβ1–3Gaβ1–
3Galβ1–4Xylβ1–O–, where GlcA, Gal, and Xyl stand for glucuronic acid, galactose, and xylose,
respectively (Lindahl and Rodén, 1972; Sugahara and Kitagawa, 2000). The biosynthesis of
the linker tetrasaccharide is initiated by the transfer of β-Xyl from uridine diphosphate
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(UDP)-Xyl to the specific serine residue(s) on the core proteins
of PGs by β-xylosyltransferase (XYLT) encoded by XYLT1
or XYLT2 (Götting et al., 2000; Pönighaus et al., 2007)
at the endoplasmic reticulum, endoplasmic reticulum-Golgi
intermediate compartment, or cis-Golgi apparatus (Prydz, 2015).
Then, a second Gal is transferred from UDP-Gal to Xylβ-
O-serine by β4-galactosyltransferase-I encoded by B4GALT7
(Almeida et al., 1999; Okajima et al., 1999). The C2-
position of Xyl is phosphorylated by xylosylkinase encoded by
FAM20B (Koike et al., 2009). A third Gal is added to the
second Gal residue on the Galβ1–4Xylβ-O-serine from UDP-
Gal by β3-galactosyltransferase-II encoded by B3GALT6 (Bai
et al., 2001). β3-Glucuronosyltransferase-I encoded by B3GAT3
transfers GlcA to Galβ1–3Galβ1–4Xylβ-O-serine from UDP-
GlcA (Kitagawa et al., 1998). Then, a phosphate group in
GlcAβ1–3Galβ1–3Galβ1–4Xyl(2-O-phosphate) is removed by
2-O-phosphoxylose phosphatase encoded by PXYLP1 (Koike
et al., 2014). The types of GAGs including CS, DS, or HS
extended from the linker tetrasaccharide are determined by the
structure of the core protein, sulfation and phosphorylation
status on the tetrasaccharide, and the biochemical environment
of GAGosome, which is a complex of enzymes and regulatory
factors in the Golgi apparatus (Sugahara and Kitagawa, 2000;
Presto et al., 2008; Prydz, 2015; Izumikawa, 2019).

Heparan sulfate consists of repeating disaccharide units of
N-acetylglucosamine (GlcNAc) (Rodén et al., 1992), and GlcA
that are polymerized onto the linker tetrasaccharide region
of specific core proteins (Lidholt et al., 1989; Lindahl, 1989;
Esko and Selleck, 2002; Kim et al., 2003). The initial GlcNAc
residue is transferred from UDP-GlcNAc to the tetrasaccharide
by α4-N-acetylglucosaminyltransferase (GlcNAcT)-I encoded
by exostosin-like 2 (EXTL2) or EXTL3 (Kitagawa et al., 1999;
Kim et al., 2001). Thereafter, polymerization of the HS-
repeating disaccharide region, [–3GalNAcα1–4GlcAβ1–]n,
occurs by enzymatic activities designated as HS-β4-
glucuronosyltransferase-II (HS-GlcAT-II) and GlcNAcT-II,
which are catalyzed by a HS polymerase enzyme hetero-complex
composed of exostosin 1 (EXT1) and EXT2 (Lind et al., 1998;
McCormick et al., 1998; Kim et al., 2003). EXTL1 and EXTL3
also show GlcNAcT-II activity (Kim et al., 2001). The GlcNAc
residue on the repeating unit is partially converted to N-sulfated
glucosamine by a dual enzyme, N-deacetylase/N-sulfotransferase
encoded by NDST1, NDST2, NDST3, or NDST4 (Hashimoto
et al., 1992; Eriksson et al., 1994; Aikawa and Esko, 1999; Aikawa
et al., 2001). HS C5-epimerase encoded by GLCE converts
GlcA residues, which are located on the non-reducing side of
N-sulfated glucosamine in the repeating disaccharide region
of HS, iduronic acid (IdoA) (Li et al., 1997). The disaccharide
region can be furtherO-sulfated at the C2 position of IdoA by HS
2-O-sulfotransferases, and O-sulfated at C3 and C6 positions of
GlcNAc or N-sulfated glucosamine by HS 3-O-sulfotransferases
and HS 6-O-sulfotransferases, respectively. 3′-phosphoadenosine
5′-phosphosulfate (PAPS) is utilized as the substrate for the
sulfation reaction (Kusche-Gullberg and Kjellen, 2003). PAPS is
synthesized from ATP and an inorganic sulfate in the cytosol by
PAPS synthase encoded by PAPSS1 or PAPSS2 (Venkatachalam,
2003). PAPS is transported into the Golgi lumen from the cytosol

by two PAPS transporters encoded by SLC35B2 and SLC35B3
(Kamiyama et al., 2003, 2006).

The repeating disaccharide region of CS and DS, [–
4GlcAβ1–3N-acetylgalactosamine (GalNAc)β1–]n and
[–4IdoAβ1–3GalNAcβ1–]n, respectively, is also attached
to a linker tetrasaccharide, GlcA-Gal-Gal-Xyl, on a serine
residue of specific core proteins (Lindahl and Rodén, 1972;
Fransson et al., 1993; Lamari and Karamanos, 2006). The
initial GalNAc residue is transferred from UDP-GalNAc to
the tetrasaccharide by β4-N-acetylgalactosaminyltransferase
(GalNAcT)-I encoded by CSGALNACT1 or CSGALNACT2
(Uyama et al., 2002, 2003). The CS-repeating disaccharide region
is formed by the alternative addition of GlcA and GalNAc
residues from UDP-GlcA and UDP-GalNAc to the non-reducing
end of the linker region tetrasaccharide, GlcA-Gal-Gal-Xyl,
by CS-GlcAT-II and GalNAcT-II activities, respectively, of
a chondroitin synthase (CHSY) family member including
CHSY1, CHSY3, chondroitin polymerizing factor (CHPF),
and CHPF2 (Kitagawa et al., 2001, 2003; Izumikawa et al.,
2007, 2008). The combination of any two heterocomplexes of
these five proteins exerts polymerization activity to build the
repeating disaccharide region of CS (Kitagawa et al., 2001, 2003;
Izumikawa et al., 2007, 2008). After or during biosynthesis
of the disaccharide region, GlcA residues in the chondroitin
precursor chain are epimerized to IdoA by DS-epimerase
encoded by DSE or DSEL (Maccarana et al., 2006; Pacheco
et al., 2009). The CS and DS repeating disaccharide regions,
[–4GlcAβ1–3GalNAcβ1–]n and [–4IdoAβ1–3GalNAcβ1–]n,
respectively, can be modified by sulfation at C4 and C6
positions of GalNAc and C2 position of GlcA and IdoA
by chondroitin 4-O-sulfotransferases, chondroitin 6-O-
sulfotransferases, and uronyl 2-O-sulfotransferase, respectively
(Kusche-Gullberg and Kjellen, 2003).

Keratan sulfate consists of sulfated poly-N-acetyllactosamine,
[–4GlcNAcβ1–3Galβ1–]n, which is bound to serine, threonine, or
asparagine on specific core proteins through the linkage region
such as O-linked or N-linked oligosaccharides, respectively
(Stuhlsatz et al., 1989; Caterson and Melrose, 2018). The
biosynthesis of the repeating disaccharide region of KS is initiated
by β3-N-acetylglucosaminyltransferase encoded by B3GNT7
(Seko and Yamashita, 2004; Kitayama et al., 2007). Thereafter,
GlcNAc 6-O-sulfotransferase encoded by CHST5 or CHST6
transfers a sulfate group from PAPS to the GlcNAc residue
(Akama et al., 2001, 2002; Narentuya et al., 2019), following the
addition of a Gal residue to the GlcNAc6-O-sulfate residue by
β4-galactosyltransferase encoded by B4GALT4 (Seko et al., 2003;
Kitayama et al., 2007). After the construction of polysaccharide,
[–4GlcNAc(6S)β1–3Galβ1–]n, KS Gal 6-O-sulfotransferase is
encoded by CHST1 (Fukuta et al., 1997; Akama et al., 2002).
KS-PGs are distributed widely in the cornea, cartilage, and
brain, and play important roles in collagen fibrillogenesis, tissue
hydration, neurotransmission, and nerve regeneration (Caterson
and Melrose, 2018).

Hyaluronan is a high molecular weight, natural polymer
composed of a repeating disaccharide, [–4GlcAβ1–3GlcNAcβ1–
]n (Rodén, 1980; Hascall and Esko, 2015; Abbruzzese et al., 2017;
Hascall, 2019). HA is synthesized from cytosolic UDP-GlcNAc
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and UDP-GlcA by hyaluronan synthase 1 (HAS1), HAS2, or
HAS3 at the plasma membrane (Itano and Kimata, 2002),
whereas other GAGs are synthesized in the secretory pathway.
HAS1 and HAS2 contribute to the synthesis of longer hyaluronan
(∼2 × 106 Da and >2 × 106 Da, respectively), whereas HAS3
synthesizes a markedly shorter hyaluronan (∼1 × 106 Da) (Itano
et al., 1999). HA is a major component of the extracellular
matrix, and is not covalently attached to a core protein (Lindahl
and Rodén, 1972; Hascall, 2019). During the tissue injury and
repair process, HA is actively produced and plays important roles
(Liang et al., 2016).

The abundance of GAGs and their pattern of sulfation are
dynamically altered, affecting GAG–protein interactions (Kjellen
and Lindahl, 2018) during a number of physiological and
pathological processes, such as differentiation, tumorigenesis,
inflammation, and bacterial and viral infections (Sasisekharan
et al., 2002; Bishop et al., 2007; Iozzo and Sanderson, 2011;
Jiang et al., 2011; Kam and Alexander, 2014; Baghy et al.,
2016; Morla, 2019). Therefore, the analyses of changes in
content as well as sulfation pattern of GAGs are required
to elucidate the pathogenesis. However, these analyses are
complicated and require special techniques. We previously
established GlycoMaple, a comprehensive glycosylation mapping
tool based on genetic expression profiles (Huang et al., 2021).
With this tool, the expression profiles of glycan-related genes
are mapped into glycan metabolic pathways to visualize and
estimate glycan biosynthesis or degradation using transcriptional
data. Transcripts per million transcripts (TPM) values of genes
in RNA-Seq analyses are commonly utilized to evaluate and
compare gene expression levels among samples from distinct
cells or tissues. By uploading RNA-Seq data, glycan metabolic
pathways in the tissue of interest can be automatically drawn
to understand the glycosylation process. In this study, the
expression levels of genes involved inGAGbiosynthetic pathways
in various tissues and tumor tissues have been addressed using
gene expression profile data available in public databases, thereby
allowing the estimation and comparison of amounts as well as
sulfation pattern of GAGs between normal and disease states.

METHODS

Expression data of GAG-related genes (Supplementary Table 1)
in 37 human tissues were downloaded from the Human
Protein Atlas database1 (Supplementary Table 2). TPM values
of GAG-related genes (Supplementary Table 1) and PG genes
(Supplementary Table 3) from healthy tissue in GTEx and
primary tumor tissues in TCGA were obtained from UCSC
Xena2 (Goldman et al., 2020). Raw data (log2[TPM + 0.001]) in
Xena were converted to TPM values (Supplementary Tables 4,

6). TPM values of samples were input in GlycoMaple, and
then pathways were visualized (Huang et al., 2021). When
several genes overlapped in a reaction, the maximum TPM
value among the values of overlapping genes was used to

1https://www.proteinatlas.org/download/rna_tissue_hpa.tsv.zip
2https://xenabrowser.net/

represent this reaction. When several gene products comprised
a reaction complex, the minimum TPM value of the subunit
genes was used to represent the reaction. To compare GAG
biosynthetic pathways between tumor and normal tissues, fold
changes in expression of genes, whose median TPM + 1 values
increased by >1.5 and decreased by <0.667, are shown as pink
and green arrows, respectively, in the pathways. The heatmaps
and boxplots for gene expression profiles were drawn by R
(ver. 3.6.2) (R Foundation for Statistical Computing, Vienna,
Austria). The data used for boxplots were converted to log2
(TPM + 1). The Wilcoxon matched-pairs signed rank test was
used to compare gene expression levels between primary tumor
and normal tissues.

RESULTS AND DISCUSSION

GAG Expression Profiles of Human
Tissues
We previously listed 950 human glycan-related genes and
established a tool named GlycoMaple, which can visualize 19
human glycan metabolic pathways and estimate the glycan
structures synthesized in cells or tissues (Huang et al., 2021). In
this study, we focused on GAG biosynthetic pathways. Among
950 glycan-related genes, those involved in: (1) biosynthesis of
GAG backbones, (2) sulfation modification of HS, (3) sulfation
modification of CS and DS, (4) biosynthesis of KS, and (5)
biosynthesis and catabolism of HA in GlycoMaple pathways,
were selected as GAG-related genes (Supplementary Figure 1).
In addition, genes encoding PAPS transporters (SLC35B2
and SLC35B3), a UDP-Xyl and UDP-GlcNAc transporter
(SLC35B4), and a UDP-Gal transporter (SLC35A2) were
included. PAPSS1 and PAPSS2, CANT1, and IMPAD1/BPNT2
encoding PAPS synthases 1 and 2, calcium-activated nucleotidase
1/UDP-diphosphatase, and 3′-phosphoadenosine 5′-phosphate
3′-phosphatase, respectively, were also listed. Furthermore, genes
encoding regulators of GAG biosynthesis such as maintenance
of Golgi-resident glycosyltransferases (GOLPH3) (Chang et al.,
2013), a Golgi-localized protease (SPPL3) (Kuhn et al., 2015),
a transcriptional regulator (ZNF263) (Weiss et al., 2020), and
an epigenetic factor (KDM2B) (Weiss et al., 2021) were also
added to the list. In total, 66 genes were listed in these categories
(Supplementary Table 1).

To evaluate GAG biosynthesis capability in human tissue,
we used RNA-Seq data from 37 human tissues, obtained from
the Human Protein Atlas (Pontén et al., 2008). TPM is a
value that indicates how many transcripts are present in each
transcript when there are 1 million total transcripts in the sample
(Wagner et al., 2012). The TPM is a method frequently utilized
for comparing samples. First, gene expression profiles in each
reaction were compared among tissues (Figure 1). The tissues
were clustered into two groups by gene expression profiles of
GAG biosynthetic reactions. One cluster included the cerebral
cortex, thyroid gland, placenta, testis, ovary, endometrium,
smooth muscle, cervix/uterine, prostate, fallopian tube, seminal
vesicle, adrenal gland, parathyroid gland, spleen, lymph node,
skin, lung, urinary bladder, appendix, and gallbladder. This
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FIGURE 1 | Expression profiles of GAG-related genes in human tissues. Expression data of genes responsible for 29 reactions in five categories including

biosynthesis of GAG backbones (green), sulfation of HS (red), sulfation of CS and DS (pink), biosynthesis of KS (ocher), and biosynthesis of HA (blue). Expression

data were obtained from 37 human tissues of the Human Protein Atlas. The reaction numbers are correlated with Supplementary Figure 1 and Supplementary

Table 1. Transcripts per million transcripts (TPM) values in each of 29 reactions were normalized (z-score) and visualized as a heatmap.

cluster showed relatively higher expression of GAG-related genes,
suggesting stronger productive ability of GAGs. In contrast,
tissues such as the tonsil, liver, skeletal muscle, pancreas, salivary
gland, and heart muscle were clustered together in the same
tree because of lower expression of GAG-related genes. Certain
digestive organs including the duodenum, small intestine, colon,
and rectum were sub-clustered in this group because of the
relatively low expression of genes involved in the biosynthesis of
HS, CS, and DS. Instead, genes required for KS biosynthesis were
expressed in the digestive tissues.

We next examined the Pearson correlation of 66 GAG-
related gene expression in 37 human tissues to identify
similarities in the expression patterns. In the Pearson correlation
heatmap for GAG-related genes, many genes required for the
biosynthesis of GAG backbones, including XYLT1, XYLT2,
FAM20B, B4GALT7, B3GALT6, B3GAT3, EXT1, EXT2, EXTL2,
EXTL3, CHSY1, CHSY3, CHPF, CHPF2, CSGALNACT1, DSE,
and DSEL, clustered together (Figure 2 and Supplementary

Table 2). The expression patterns of regulator genes for GAG
biosynthesis including SPPL3, GOLPH3, and ZNF263, and
SLC35B2, SLC35B4, PAPSS1, and IMPAD1, which encode a
PAPS transporter, UDP-Xyl/UDP-GlcNAc dual transporter,
PAPS synthase 1, and 3′-phosphoadenosine 5′-phosphate

3′-phosphatase, respectively, were also correlated with genes
required for biosynthesis of sulfated GAGs in human tissues
(Figure 2 and Supplementary Table 2). These findings suggest
that expression levels of these genes are regulated by similar
mechanisms such as regulation by corresponding signal
transductions as well as transcriptional factors. On the other
hand, some other genes encoding regulators and transporters
were not clustered in the group (Figure 2). For example, the
expression patterns of SLC35A2, whose gene product imports
UDP-Gal into the lumen of the Golgi apparatus, were different
from those of genes categorized as necessary for the biosynthesis
of GAG backbones. This is reasonable because UDP-Gal is
utilized not only for GAG biosynthesis, but also for biosynthesis
of other glycans, such as N-glycans, mucin-type O-glycans,
and glycolipid. HAS1 and HAS2, which encode hyaluronan
synthase to produce a higher molecular weight form of HA,
shared close expression patterns (Figure 2), indicating linkage
between gene function and transcriptional regulation. Genes
required for sulfation of GAGs were distributed in different
trees, although some of them, such as NDST3, HS3ST2, HS3ST3,
and HS3ST5, showed correlated expression patterns in normal
human tissues (Figure 2 and Supplementary Table 2). It has
been reported that several genes such as B3GAT3, EXT2, GLCE,
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NDST2, HS3ST1, HS3ST6, HS6ST1, and CSGALNACT2 are
upregulated by treatment with 4-methylumbelliferyl-β-xyloside,
which inhibits the biosynthesis of GAGs (Sasaki et al., 2019).
Some of these genes possess enhancer elements named PG stress
response elements, PGSE-A and PGSE-B, in their promoter
region, which regulate the transcription activation upon Golgi
stress caused by PG defects (Sasaki et al., 2019). Among these
genes, CSGALNACT2, NDST2, andHS3ST1 were clustered in the
Pearson correlation heatmap (Figure 2), suggesting that their
expression levels are regulated in a common manner.

Prediction of Alterations in GAG
Structure in Human Tumor Tissues
Because GAGs are involved in cell adhesion, migration,
proliferation, and inflammation, changes in GAG levels can affect
tumor development (Sasisekharan et al., 2002; Bishop et al.,
2007; Iozzo and Sanderson, 2011; Mizumoto and Sugahara,
2013; Wei et al., 2020). The GlycoMaple tool can compare
glycan metabolic pathways between two samples based on gene
expression data. The comparison function enables us to reveal
underlying changes of PGs or GAGs between normal and tumor
tissues. We compared GAG biosynthetic pathways between
several primary tumor and normal tissues using RNA-Seq data
from two public databases: the Cancer Genome Atlas Program
(TCGA) and Genotype-Tissue Expression Project (GTEx) (GTEx
Consortium, 2017; Hoadley et al., 2018). TPM values of GAG-
related genes were used as expression values, which were obtained
from RNA-Seq data of primary tumor and normal tissue samples
(brain, pancreas, breast, adrenal glands, and thyroid glands)
processed in UCSC Xena (Goldman et al., 2020). Based on
these expression values, GAG biosynthetic pathways were then
analyzed using GlycoMaple.

Spatio/temporal expression of PGs and biosynthesis of GAGs
are critical for establishment and maintenance of fundamental
functions of the central nervous system (Karamanos et al.,
2018). In brain cancers, various GAG and PG levels have been
reported to change (Vitale et al., 2019). The medians of TPM
from 662 primary brain tumors and 1,146 normal brain tissues
were added into the glycosylation pathways. Pink and green
arrows indicate whether expression of the genes (TPM + 1)
coding the GAG biosynthetic enzymes were increased more
than 1.5-fold and decreased to less than 0.667-fold, respectively,
in primary tumors, when compared with the corresponding
normal tissues (Figure 3). In primary brain tumor samples,
many of the reaction steps in GAG biosynthesis were upregulated
(Figure 3). In particular, almost all of the reactions involved
in the biosynthesis of GAG backbones were markedly increased
(Figure 3A). The expression levels of XYLT1, XYLT2, B4GALT7,
B3GALT6, PXYLP1, EXT1, EXT2, EXTL3,CHSY1,CHPF,CHPF2,
CSGALNACT1, DSE, and DSEL were increased (Figure 3B). In
addition, sulfation of chondroitin and dermatan was predicted
to increase in the brain during tumorigenesis, as contributed
by CHST3, CHST11, CHST12, CHST14, CHST15, and UST
(Figures 3C,D). Besides, the expression levels of several genes
encoding core proteins of PG were increased to varying degrees
(Supplementary Figure 2A and Supplementary Table 4). It has

been reported that various PGs are upregulated in brain cancers.
For example, high levels of HA receptors including epican (CD44)
were correlated with poor prognosis in cancer patients (Yan and
Wang, 2020). RNA levels for fibronectin (FN1), brevican (BCAN),
versican (VCAN), perlecan (HSPG2), and several laminins were
high in glioblastomas compared with in the normal brain
(Dzikowski et al., 2021; von Spreckelsen et al., 2021). A high
level of CD74 was expressed in the monocytic subset of immune
suppressive myeloid-derived suppressor cells and localized in
the tumor microenvironment (Alban et al., 2020). Glypican 2
(GPC2) was selectively expressed in neuroblastoma (Nagarajan
et al., 2018). In our analysis, particularly, transcript levels of
CD44, BCAN, VCAN, CD74, and GPC2 increased more than
five-fold and were the most upregulated PGs in brain tumor
tissues, whereas only the expression of GPC5 was downregulated
among the PGs (Supplementary Figure 2A and Supplementary

Tables 4, 5). This prediction is consistent with previous reports
that PGs help drive multiple oncogenic pathways in tumor
cells and promote critical tumor–microenvironment interactions
in cancer (Iozzo and Sanderson, 2011; Wade et al., 2013;
Theocharis et al., 2015; Schaefer et al., 2017; Yan and Wang,
2020). Furthermore, the expression levels of genes involved in
the regulation of GAG biosynthesis such as SPPL3, GOLPH3,
ZNF263, and KDM2B; in the biosynthesis of a sulfate donor,
PAPS synthase encoded by PAPSS1 and PAPSS2; in the transport
of PAPS encoded by SLC35B2; and in the catabolism of UDP
and 3′-phosphoadenosine 5′-phosphate encoded by CANT1 and
IMPAD1, respectively, were also increased bymore than 1.5 times
in brain tumors compared with normal tissues (Supplementary

Figure 2B and Supplementary Table 4). These results suggest
that demand for the biosynthesis and sulfation of GAGs changes
the expression of regulator genes, which might affect the amount
as well as sulfation patterns of GAGs. In contrast, the expression
levels of biosynthetic enzymes for HA and KS did not show a
definite trend between normal and tumor tissues based upon
GlycoMaple predictions (data not shown). This indicates that
expression levels of biosynthetic enzymes for HA as well as KS
and catabolic enzymes for HA might not significantly change, at
least in the brain tumors examined.

We also analyzed GAG pathways in pancreatic carcinoma.
GAGs are produced at low levels in healthy pancreatic tissue
(Theocharis et al., 2000). In contrast, the amounts of GAGs
in human pancreatic carcinoma are increased 4-fold, and in
particular, show a 22-fold increase of CS and 12-fold increase of
HA (Theocharis et al., 2000). The emerging expression of GAGs is
considered to be a biological tumor marker for pancreatic tissues.
The medians of TPM from 178 primary pancreatic tumors
and 165 normal tissues were used to visualize the glycosylation
pathways in GlycoMaple. Almost all steps involved in GAG
biosynthesis including HS, CS, DS, KS, and HAwere expressed in
the pancreatic tumor tissues, and increased markedly compared
with healthy tissues (Supplementary Figure 3), which was
partially consistent with previous reports (Theocharis et al., 2000;
Skandalis et al., 2006). It should be noted, however, that the
reports showed no changes in the content ormolecular size of HS,
suggesting that in silico analysis is not always correct. In addition,
it was reported that 6-O-sulfated CS on two PGs, versican
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FIGURE 2 | Correlation of expression of GAG-related genes among human tissues. Similarity of expression patterns of 56 genes involved in GAG biosynthesis in 37

human tissues, including biosynthesis of GAG backbones (green), sulfation of HS (red), sulfation of CS and DS (pink), biosynthesis of KS (ocher), biosynthesis of HA

(blue), nucleotide sugar transporters (purple), and regulators (yellow) were visualized as a Pearson correlation heatmap. The Pearson correlation values (–1 to 1) are

presented as color changes (blue to red).

(VCAN) and decorin (DCN), was upregulated in pancreatic
cancer (Skandalis et al., 2006). The VCAN expression level in
pancreatic neuroendocrine tumor tissues was found to be higher
than in normal pancreatic tissues (Gao et al., 2020). In this study,
the RNA-seq data indicated that the expression levels of both
CHST3 and CHST15 encoding chondroitin 6-O-sulfotransferase
and GalNAc-4-O-sulfate 6-O-sulfotransferase in tumors were
increased 4.0 and 3.5 times, respectively, in pancreatic tumors
compared with that in normal tissues (Supplementary Figure 3

and Supplementary Table 4). The expression levels of VCAN
and DCN were increased 4.8 and 1.5 times, respectively
(Supplementary Table 4). Besides, it has been reported that
endocan (ESM1) expression in pancreatic neuroendocrine tumor
correlates with poor clinical outcomes (Lin et al., 2017). The
overexpression of lumican (LUM) and biglycan (BGN) has been
reported in pancreatic cancers (Weber et al., 2001; Ishiwata et al.,
2007). A high syndecan 1 (SDC1) mRNA level tended to increase
the mortality rate due to pancreatic cancer (Wu et al., 2020).
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FIGURE 3 | Comparison of expression of GAG biosynthetic enzymes between primary brain tumors and normal tissues. Expression changes of genes responsible

for reactions in pathways for biosynthesis of GAG backbones (A) and sulfation of CS and DS (C) between primary brain tumors (N = 662) and normal tissues

(N = 1146) were visualized using GlycoMaple. Median TPM values of GAG-related genes in each sample were used for mapping. If several genes overlapped in a

reaction, the maximum TPM value among the overlapping genes was used. When several gene products comprised a reaction complex, the minimum TPM value of

the subunit genes was used. Fold changes of gene expression whose median TPM + 1 value was increased by >1.5 are shown as pink arrows. Genes that are

significantly changed among tumor and normal tissues (Wilcoxon matched-pairs signed rank test; **P < 0.0001) in GAG backbones (B) and sulfation of CS and DS

(D) are shown as boxplots. The numbers of each step indicate the enzymes responsible for biosynthesis of GAG backbones (A) and sulfation of CS and DS (B).

(A) 1, XYLT1 and XYLT2; 2, B4GALT7; 3, FAM20B; 4, B3GALT6; 5, B3GAT3; 6, PXYLP1; 7, EXTL2 and EXTL3; 8 and 9, EXT1 and EXT2; 10, CSGALNACT1 and

CSGALNACT2; 11, CHSY1, CHSY3, CHPF, and CHPF2; 12, DSE and DSEL. (C) 1, CHST11, CHST12, and CHST13; 2, CHST14; 3, UST; 4, CHST3; 5, CHST15.

In our analysis, expression of all PGs except for neurocan
(NCAN), which showed almost no expression, were increased in
pancreatic carcinoma (Supplementary Figure 3F). Particularly,
VCAN, ESM1, LUM, BGN, and SDC1 were the five most
upregulated PGs. Similar to brain tumors, genes encoding
transporters and regulators related to GAG biosynthesis were also
upregulated in pancreatic tumors (Supplementary Figure 3G

and Supplementary Tables 4, 5).
In breast cancer, the DS content has been reported to decrease

significantly, whereas the CS content increased in the central
area of breast carcinoma tissues compared with fibroadenoma
(Olsen et al., 1988). A similar change in GAG levels was
observed in prostate cancer, where the DS level decreased and
the CS level increased, when compared with normal tissue (De

Klerk et al., 1984). GlycoMaple data including expression levels
of biosynthetic enzymes for GAGs correlate well with these
trends including the amounts of GAGs (Figure 4). In primary
breast tumors, there is reduced expression of DSE and DSEL,
which are the genes encoding DS epimerase converting GlcA
to IdoA, to generate dermatan from the chondroitin precursor
chain (Figures 4A,B). In addition, CHPF and CHPF2, whose
products are required for the polymerization of chondroitin, were
upregulated in breast cancer tissues (Figures 4A,B). Consistent
with this result, down- and up-regulations of DSE and CHPF,
respectively, were also observed in ductal carcinoma in situ
compared with non-malignant breast tissue (Potapenko et al.,
2015). It has also been demonstrated that among PG and GAG-
related genes, ACAN, VCAN, XYLT2, B3GALT6, CHSY1, CHPF,
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FIGURE 4 | Comparison of expression of GAG biosynthetic enzymes between breast and prostate primary tumors and normal tissues. Expression changes of genes

responsible for biosynthetic pathways for GAG backbones between primary breast tumors (N = 1092) and normal tissues (N = 179) (A) or primary prostate tumors

(N = 495) and normal tissues (N = 100) (C) were visualized using GlycoMaple, as described in Figure 3. Fold changes of gene expression whose median TPM + 1

value was increased by >1.5 and decreased by <0.667 are shown as pink and green arrows, respectively. GAG core biosynthesis genes that were significantly

changed among tumor and normal tissues (Wilcoxon matched-pairs signed rank test; **P < 0.0001) in breast (B) and prostate (D) are shown as boxplots. The

numbers of each step are referred to in the legend of Figure 3.

CHST11, and CHST15 were upregulated in malignant breast
cancer tissue, while CHST3 was downregulated (Potapenko
et al., 2010). These findings were consistent with our data:
expression levels of ACAN, VCAN, B3GALT6, CHPF, CHST11,
and CHST15 were increased more than 1.5 times in breast
tumors, whereas expression of CHST3 was 3.4-times decreased
(Figure 4B, Supplementary Figure 4A, and Supplementary

Table 4). In terms of PGs, it has been reported that ESM1 was
overexpressed in triple-negative breast cancer cell lines as well
as in patient tissues, which is correlated with a poor prognosis
(Fernandez-Vega et al., 2013). SDC1 expression was activated,
when compared with the very low level of expression in normal

breast tissue, while expression of DCN decreased two—five-
fold (Eshchenko et al., 2007). BGN was upregulated in human
breast cancers, particularly in the tumor stroma compartment,
compared with normal mammary glands (Cong et al., 2021).
VCAN mRNA levels were upregulated in breast cancer tissues
(Takahashi et al., 2012). In contrast, normal breast tissues
exhibited high expression levels of GPC3, while the expression
was reduced in tumors (Guereno et al., 2020). Despite the fact
that HSPG2 expression was correlated with poor patient survival
and is considered as a therapeutic target in triple-negative breast
cancer (Kalscheuer et al., 2019), the expression levels were
two-fold higher in normal breast compared with breast cancer
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tissues (Jansson et al., 2020). Our analysis also showed changes
in expression of those genes: upregulation of SDC1, ESM1,
VCAN, and BGN, and downregulation of GPC3, HSPG2, and
DCN in breast cancer tissues (Supplementary Figure 4A and
Supplementary Tables 4, 5).

In primary prostate tumors, DSE expression was decreased to
less than half (Figures 4C,D). In addition, a greater than two-fold
increase was found in CSGALNACT1, whose product initiates the
biosynthesis of the disaccharide region of the chondroitin chain
(Figures 4C,D). These results are consistent with the findings of
decreased DS and increased CS in pancreatic cancerous tissues
(De Klerk et al., 1984), suggesting that GlycoMaple is a powerful
tool for estimating changes of GAGs in diseased tissues. In terms
of PGs, it has been reported that the expression of fibromodulin
(FMOD) in malignant prostate tissues is significantly upregulated
compared with that in benign tissues (Bettin et al., 2016).
A significant decrease in tissue DCN expression is associated
with tumor progression and metastasis in certain types of cancer
including prostate cancer (Rezaie et al., 2020). The GPC2mRNA
expression level was utilized to predict survival associated with
prostate cancer (Xu et al., 2018). In our analysis, upregulations of
neuroglycan C (CSPG5), bamacan (SMC3), and collagen type IX
alpha2 (COL9A2) and downregulations of GPC1, GPC2, HSPG2,
CSPG4, and DCN were detected (Supplementary Figure 4B and
Supplementary Table 5).

Finally, we estimated GAG changes in the adrenal and thyroid
glands during tumorization. GlycoMaple analysis predicted
decreased levels of CS and DS, because of the downregulation
of CSGALNACT1 and DSE in both the adrenal gland and
thyroid gland tumors compared with that in normal tissues
(Supplementary Figure 5). To date, there has been no report
that GAG levels are changed in those tissues during tumorization.
Therefore, it is worth examining the amounts of CS and DS
in tumor tissues.

CONCLUDING REMARKS

In this study, we analyzed the expression levels of GAG
biosynthetic enzymes as well as PGs in various normal and
tumor tissues. GAG biosynthetic levels differed, depending upon
the tissue functions and requirements. Analyses of the amount
and sulfation pattern of GAGs are not easy to perform and
require relatively abundant starting materials. The estimation
of glycan structures based on gene expression data could be
performed easily from small amounts of samples, and is useful
to discover properties of cells of interest and obtain clues to
structural changes among cell types. We applied GlycoMaple
analysis to visualize the expression of genes involved in GAG
biosynthesis and PG levels and to estimate glycan changes
based on gene expression. Comprehensive analysis using gene
expression levels in human tissues revealed new findings showing
that expression of some genes required for GAG biosynthesis
are regulated in a similar manner. For example, expression
of genes required for the biosynthesis of GAG backbones
including CS, DS, HS, and HA may be similarly regulated.
GlycoMaple estimation showed that GAG biosynthetic patterns
and core proteins of PGs were markedly changed during tumor

progression in some tissues, which correlated with previous
research. The process of CS formation would be upregulated
during the formation of many tumor types (Berto et al.,
2001; Sakko et al., 2008; Svensson et al., 2011). However,
there are several limitations in GlycoMaple analysis (Huang
et al., 2021). First, estimations of GAG changes in tumors
using GlycoMaple, are just predictions based on expression
changes of genes related to GAG biosynthesis. Second, the
estimation of glycans from GlycoMaple is not quantitative.
Therefore, after identifying potential target pathways from
these estimations, it is essential to validate GAG as well as
PG levels using biochemical analyses. Nonetheless, GlycoMaple
could provide a ‘bird’s eye view’ of glycosylation pathways
in cells/tissues of interest and clues for focusing on altered
glycosylation pathways between diseased and normal tissues.
Changes in glycosylation patterns during tumor progression
were widely observed. In the future, GlycoMaple analysis
could contribute to the development of biomarkers and
clinical diagnostics using transcriptional data from clinical
patient samples.
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