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Abstract

RNA modifications can be added or removed by a variety of enzymes that catalyse the necessary reactions, and

these modifications play roles in essential molecular mechanisms. The prevalent modifications on mRNA include

N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), 5-hydroxymethylcytosine (hm5C),

pseudouridine (Ψ), inosine (I), uridine (U) and ribosemethylation (2’-O-Me). Most of these modifications contribute to

pre-mRNA splicing, nuclear export, transcript stability and translation initiation in eukaryotic cells. By participating in

various physiological processes, RNA modifications also have regulatory roles in the pathogenesis of tumour and

non-tumour diseases. We discussed the physiological roles of RNA modifications and associated these roles with

disease pathogenesis. Functioning as the bridge between transcription and translation, RNA modifications are vital

for the progression of numerous diseases and can even regulate the fate of cancer cells.
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Introduction

In the 1950s, the first RNA nucleoside modification was

identified [1]; since then, researchers have focused on updat-

ing the understanding of RNA modifications. At the very be-

ginning, the 5’cap and the poly(A) tail, which represent cap

and tail modifications, respectively, were discovered. How-

ever, with the limitations of technology, modifications of

eukaryotic mRNA ends were considered the only post-

transcriptional alterations to mRNA for a while. Fortunately,

this situation did not last for a long time. Internal mRNA

modifications have been investigated in succession in the last

50 years. The revealed mRNA modifications included but

were not limited to N6-methyladenosine (m6A), N1-

methyladenosine (m1A), 5-methylcytosine (m5C), 5-

hydroxymethylcytosine (hm5C), pseudouridine (Ψ), inosine

(I), uridine (U) and ribose-methylation (2’-O-Me) [2–4] (Figs.

1 and 2). m6A is the most abundant modification and was

therefore thoroughly investigated [5].

Analogous to mRNA modification, we also identified many

modifications on transfer RNAs (tRNAs) and ribosomal

RNAs (rRNAs), such as queuosine (Q) [6]. Eukaryotic tRNAs

contain, on average, over 10 modifications per molecule.

From elementary isomerization or methylation to compli-

cated modifications of ring structures, the number of tRNA

modifications is the largest and has the widest chemical var-

iety. Moreover, there are over 200 modifications on human

rRNAs. Thus, their less complicated nature and greater

abundance led to more investigations of tRNAs and rRNAs,

even beyond mRNAs. Early studies have demonstrated that

this variety of modifications leads to extra cellular functions

for diverse RNA species [7].
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The regulatory role of RNA modifications

Modifications on different RNAs were found to regulate

various cellular processes. Researchers demonstrated that

these modifications can initiate translation, stabilize tran-

scripts, splice pre-mRNA, facilitate nuclear export, etc.

[8–12]. With respect to RNA modifications and techno-

logical advances in high-throughput sequencing and mass

spectrometry, the mechanisms of different cellular pro-

cesses influenced by RNA modifications are underex-

plored, including the less ubiquitous modifications on rare

Fig. 1 Chemical structures of mRNA modifications. Chemical structures in eukaryotic mRNA including m6A, m1A, m5C, hm5C, Ψ, I, U and 2’-O-Me

Fig. 2 Locations of chemical modifications in mRNA. Chemical RNA modifications are shown in mRNA with their approximate distribution in

transcripts. m6A with a widespread distribution prefers to be located in the consensus motif in the 3’UTRs as well as the 5’UTRs, which closely

correlate with translation. Although m1A-containing mRNA is 10 times less common than m6A-containing mRNA, m1A is discovered in every

segment of mRNA, including the 5’UTRs, CDS and 3’UTRs and mostly in highly structured 5’UTRs. Analogous to m1A, m5C can occur in coding

and non-coding regions of mRNA, especially in GC-rich regions. Nevertheless, m5C within different positions regulates transcription differently.

Tet-family enzymes prefer to oxidize m5C modifications in coding regions, so hm5C has a greater possibility of being present in CDS.

Subsequently, Ψ is demonstrated to have a diversified location, whereas I is present at a large number of sites in the CDS, and U accumulates in

3’UTRs. 2’-O-Me focuses on decorating specific regions of mRNA that encode given amino acids. Additionally, as reversible modifications, most

have their own readers, writers and erasers
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RNA species. tRNAs, which have the greatest number of

types of different chemical modifications, regulate molecular

mechanisms by selecting and protecting the reading frame-

work, promoting tRNA decoding capability as well as chan-

ging codon-anti-codon connections [13–17]. Moreover, the

functions of 2’-O-Me, Ψ and m5C, which are abundant in

rRNA, have been investigated in detail. Without any doubt,

mRNA modifications play roles in modulating molecular

mechanisms. Subsequently, RNA modifications contribute to

tumorigenesis by regulating cell survival, differentiation, mi-

gration and drug resistance [18].

m6A RNA modification

Introduction to m6A RNA modification

m6A accounts for approximately 0.2~0.6% of total adeno-

sines in mammalian RNA [2, 5]. General m6A modifications

occur in mammals, plants, bacteria and even other types of

eukaryotic RNA [19–22]. In addition to their widespread

distribution, there is no less than 1-2 methylated adenosines

in every single mRNA [23]. Studies have reported that m6A

is located in the 3’ untranslated region (3’UTR), predomin-

antly in a consensus motif, GGm6ACU [24–26]. Recently,

m6A was also found in the 5’ untranslated region (5’UTR), a

region that closely correlates with translation. It has been re-

ported that methylated adenosine in the 5’UTR of mRNA

can support cap-independent translation commencement

and can increase translation [27, 28].

As a reversible mRNA modification, m6A has its own

writers, readers and erasers. Methyltransferase-like 3

(METTL3) was the first demonstrated m6A writer [29]. In

addition to METTL3, other proteins possessing methyltrans-

ferase (MTase) capability were recently identified, including

methyltransferase-like 14 (METTL14), Wilms tumour 1-

associated protein (WTAP), RNA-binding motif protein 15

(RBM15), KIAA 1429 and zinc finger CCCH-type containing

13 (ZC3H13) [30–33]. By binding to mRNA, readers, such

as members of the YT521-B homology (YTH) domain family

of proteins (YTHDF1, YTHDF2, YTHDF3, YTHDC1 and

YTHDC2) and heterogeneous nuclear ribonucleoprotein

(HNRNP) proteins (HNRNPA2B1 and HNRNPC) can exe-

cute the physiological functions of the modification [8, 10,

12, 34–38]. Additionally, eukaryotic initiation factor 3 (eIF3),

insulin-like growth factor 2 mRNA-binding proteins

(IGF2BP1, IGF2BP2 and IGF2BP3), fragile X mental retard-

ation 1 (FMR1) and leucine-rich pentatricopeptide repeat-

containing (LRPPRC) all can read m6A modifications [39,

40]. Both fat mass and obesity-associated protein (FTO) and

alkB homologue 5 (ALKBH5) are erasers of m6A modifica-

tions [11, 41, 42].

Regulatory role of m6A RNA modification in molecular

functions

Accumulation of pre-mRNA and diminution of mature

mRNA in cyclo-leucine-treated avian sarcoma virus-

infected cells and neplanocin A (NPC)-treated SV40 RNA

demonstrate that m6A is essential in pre-mRNA splicing

[43, 44]. Both cyclo-leucine and NPC are inhibitors of

methylation that can be used to investigate m6A [45, 46].

Subsequently, MTases and demethylases might be in-

volved in regulating RNA splicing. By changing RNA

structure and regulating the combination of RNA and

reader proteins, HNRNPC can modulate the splicing of

m6A-containing mRNAs [10]. More recently, by relying

on the RGG region in the low-complication region of

HNRNPG, a reader was reported to cooperate with modi-

fied pre-mRNA and the phosphorylated C-terminal do-

main of RNA polymerase II to modulate splicing [47].

Moreover, FTO is vital to mRNA splicing because it pre-

fers to bind to introns of nascent mRNA [48]. Another

splicing-related eraser is ALKBH5. Immunofluorescence

analysis revealed that ALKBH5 was tightly related to spli-

cing factors [11].

Writers, readers and erasers can all regulate mRNA ex-

port. By modulating the clock genes Per2 and Arntl,

METTL3 regulates the export of mature mRNA [49]. By

interacting with SRSF3 and regulating the combination of

SRSF3 and NXF1 on RNA, YTHDC1 mediates the export

of modified mRNA [50]. Subsequently, knockdown of

ALKBH5 leads to acceleration of mRNA export, suggest-

ing that m6A is essential to regulating mRNA export [11].

AU-rich element (ARE), iron-responsive element (IRE)

and cytoplasmic polyadenylation element (CPE) repre-

sent functional domains and are responsible for mRNA

decay in 3’UTRs [51]. Coincidentally, m6A accumulates

in 3’UTRs. Thus, the neighbouring sites of m6A and Hu

antigen R (HuR), which is supposed to bind ARE to in-

crease the stability of mRNA, lead to weak HuR function

and mRNA instability [52]. However, ELAV1/HuR, a po-

tential m6A-binding protein, can stabilize transcripts

with the cooperation of the ARE domain [53]. Subse-

quently, it was reported that the stability of mRNA was

decreased slightly in cells lacking ALKBH5 [11].

The YTH domain family of proteins has a conserved

m6A-binding pocket so that these proteins can tightly

bind to m6A in a consensus sequence and directly tran-

scribe the molecule [12, 26, 34–38]. Specifically,

YTHDF2 accelerates mRNA decay by transferring RNA

from the translatable pool to processing bodies [12].

Under heat shock conditions, dysfunction of FTO in

5’UTRs, which is regulated by YTHDF2, contributes to

the promotion of cap-independent translation [28].

Moreover, YTHDF1 can increase the efficiency of trans-

lation by binding m6A [37]. Subsequently, YTHDF3 can

regulate translation by both interacting with ribosomal

proteins with bound YTHDF1 and by decaying the

translation-related mRNA region with bound YTHDF2

[54, 55]. However, METTL3 can regulate translation

flexibly because it can either recruit eIF3 to the initiation
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complex directly to increase translation or can inhibit

translation efficiency [56, 57]. The translation efficiency

is increased when METTL3 is knocked out in mouse

embryonic stem cells (mESCs) and embryoid bodies

(EBs) [57] (Fig. 3).

m1A RNA modification

Introduction of m1A RNA modification

m6A has been reported to occur in DNA from a minor

cluster of microorganisms and in RNA from an exten-

sive range of organisms, and additionally, m1A was iden-

tified in the 1960s [58]. Rather than accumulating in

mRNA, m1A is predominant in tRNA and rRNA, but we

recently determined that it also exists in mRNA [59, 60].

However, m1A-containing mRNA is 10 times less com-

mon than m6A-containing mRNA [61, 62]. In tRNA and

rRNA, m1A conserves the tertiary structure and affects

translation [63, 64]. In mRNA, m1A has been discovered

in every mRNA segment, including the coding sequence

(CDS), 5’UTR and 3’UTR, although it is mostly found in

the highly structured 5’UTR [62]. As a result, the

location of the m1A methylated atom determines the

function and mechanism of this kind of modification.

Because the distribution of m1A is imbalanced, the

large number of m1A modifications on tRNA results in

more tRNA m1A MTases than writers on mRNA. How-

ever, TRMT6/61A recognized a T-loop-like structure

with a GUUCRA tRNA-like motif in mRNAs and deco-

rated it with the m1A modification, TRMT61B installed

m1A in mt-mRNA transcripts, and TRMT10C methyl-

ated the 1374 position of ND5 mt-mRNA [65, 66]. All of

these phenomena contribute to tRNA m1A MTases and

can function as mRNA writers. By binding to m1A-bear-

ing RNA, YTHDF1, YTHDF2, YTHDF3 and YTHDC1

act as readers [67]. Subsequently, similar to ALKBH5

functioning as an eraser for m6A, ALKBH1 and

ALKBH3 were able to demethylate m1A mRNA modifi-

cations [62, 68].

Regulatory role of the m1A RNA modification in molecular

functions

It has been reported that m1A methylation occurs in

highly structured or GC-rich regions of 5’UTRs (which

Fig. 3 m6A RNA modification regulates physiological processes in cell. m6A RNA modification in mRNA plays an essential role in cellular

processes, including mRNA splicing, mRNA export, mRNA stability and mRNA translation. Both readers (HNRNPC and HNRNPG) and erasers (FTO

and ALKBH5) can modulate the splicing of mRNA. After splicing and combination, pre-mRNA evolves into mature mRNA. Regulated by ALKBH5,

METTL3 and YTHDC1, mature mRNA is exported from the nucleus to the cytoplasm. Once exported to the cytoplasm, both ALKBH5 and ELAV1/

HuR can maintain mRNA stability. Finally, numerous enzymes contribute to the process of translation. YTHDF1, YTHDF2, YTHDF3, FTO and METTL3

together with eIF3 can regulate translation with different mechanisms individually
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is also the most frequent location) and may modify the

predicted secondary structure, which hints at the poten-

tial of m1A to alter mRNA structural stability [61,

62].Moreover, m1A methylation can not only increase

translation by decreasing the binding of the releasing

factor but also prevent effective translation of m1A-con-

taining CDS in mt-mRNA [26, 65]. Ultimately, it has

been reported that the protein level is higher when a

transcript carries the m1A modification around the initi-

ation codon [69].

m5C RNA modification

Introduction of the m5C RNA modification

m5C is a long-standing DNA modification that is essen-

tial for gene expression and epigenetic regulation [70,

71]. However, it can also be found in RNA. Although

the m5C RNA modification can appear in both coding

and non-coding regions, it has been reported to accumu-

late in the UTRs of mRNA and especially prefers to be

located in GC-rich regions [72]. Since a number of stud-

ies have investigated the function of m5C in specific

mRNAs, we concluded that m5C modifications in differ-

ent locations (5’UTRs, 3’UTRs, coding regions) exert dif-

ferent transcriptional regulation activities [73].

It was revealed that m5C RNA modifications are cata-

lysed by the NOL1/NOP2/SUN domain (NSUN) family

of proteins (NSUN1, NSUN2, NSUN3, NSUN4, NSUN5,

NSUN6 and NSUN7) as well as the DNA methyltrans-

ferase (DNMT) homologue DNMT2 [74–76]. However,

among such diversified writers, only NSUN2 can install

m5C on mRNA because rest of these proteins are writers

of tRNAs and rRNAs. Subsequently, Aly/REF export fac-

tor (ALYREF), a specific mRNA m5C-binding protein

that can read modifications, was identified as a reader of

m5C [77]. According to liquid chromatography-tandem

mass spectrometry analysis, YBX1 was defined as the

other m5C reader that can maintain the stability of tar-

get mRNA [78]. Knowledge is limited about the protein

factors responsible for removing modifications (Table 1).

Regulatory role of the m5C RNA modification in molecular

functions

ALYREF, the reader of m5C, can adjust the export of

transcripts by recognizing a unique RNA-binding motif

[77]. Subsequently, NSUN2 adds m5C to both p27

mRNA at cytosine C64 in the 5’UTR and p21 mRNA in

the 3’UTR [79, 80]. Deleting NSUN2 in human diploid

fibroblasts (HDFs) can induce the elevation of p27, and

overexpressing NSUN2 results in contrasting outcomes

[79]. These results suggest that the m5C catalysed by

NSUN2 in the 5’UTRs can limit the translation of p27.

However, the m5C modifications added by NSUN2 to

the 3’UTRs of p21 mRNA coordinate with the m6A

modifications added by METTL3/METTL14 together to

enhance the expression of p21 [80]. With regard to m5C

modification in mRNA coding regions, it was revealed

that in both bacterial whole-cell extracts and HeLa cell

extracts, m5C could diminish translation significantly

[27, 81]. Moreover, we demonstrated that when the m5C

modification was present on interleukin-17A (IL-17A)

mRNA, this modification could promote the translation

of IL-17A [82]. The results of the above investigations

revealed that the m5C RNA modification affects the ex-

pression of proteins by regulating both translation effi-

ciency and transcript export (Table 2).

Other RNA modifications

hm5C

m5C can be oxidized into hm5C via the function of the

Tet-family enzymes [91–93]. Moreover, hMeRIP-seq

showed that Tet-family enzymes prefer to oxidize m5C

modifications in coding regions; these results indicate

that hm5C is highly likely to be located in the introns

and exons of coding transcripts. However, in contrast to

m5C methylation in the coding regions of mRNA, which

plays a negative role in translation, hm5C tends to asso-

ciate with translation activation in Drosophila [69].

Ψ

As hm5C is analogous to the oxidization of m5C, Ψ is

produced by the isomerization of U. Ψ is the most abun-

dant RNA modification and prefers to accumulate in

tRNA and rRNA; however, it has also been reported to

be present on mRNA and snRNA [94, 95]. Interestingly,

the number of Ψ sites in mRNA ranges from 96 to 2084

in humans [84, 96–98].

However, by regulating U2 auxiliary factor (U2AF), Ψ,

which is near the 3’ splice site in the polypyrimidine

tract, prevents pre-mRNA splicing [83]. Expression of

heat shock-induced Pus7-dependent pseudouridylated

Table 1 Writers, readers and erasers of the predominant mRNA modifications

RNA
modification

Writers Readers Erasers

m6A METTL3; METTL14; WTAP;
RBM15; ZC3H13

YTH domain family of proteins (YTHDF1, YTHDF2, YTHDF3, YTHDC1 and YTHDC2); HNRNP
(HNRNPA2B1 and HNRNPC); eIF3; IGF2BP (IGF2BP1, IGF2BP2, and IGF2BP3); FMR1; LRPPRC

FTO;
ALKBH5

m1A TRMT6/61A; TRMT61B;
TRMT10C

YTHDF1; YTHDF2; YTHDF3; YTHDC1 ALKBH1;
ALKBH3

m5C NSUN2; DNMT2 ALYREF; YBX1 N.A.
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Table 2 mRNA modifications regulate the physiological process from transcription to translation

Modifications Process Enzymes
involved

Description Ref

m6A RNA
modification

mRNA
splicing

HNRNPC HNRNPC modulates the splicing of mRNAs by changing RNA structure and regulating the
combination of RNA and reader

[10]

HNRNPG HNRNPG cooperates with modified pre-mRNA and the phosphorylated C-terminal domain of RNA
polymerase II to regulate splicing

[47]

FTO FTO prefers to bind to introns of nascent mRNA [48]

ALKBH5 ALKBH5 relates to splicing factors tightly according to the analysis of immunofluorescence [11]

mRNA
export

METTL3 METTL3 regulates the export of mature mRNA by modulating clock genes Per2 and Arntl [49]

YTHDC1 YTHDC1 mediates the export of decorated mRNA by interacting with SRSF3 and regulating the
combination of SRSF3 an NXF1 on RNA

[50]

ALKBH5 Knockdown of ALKBH5 leads to acceleration in mRNA export [11]

mRNA
stability

ALKBH5 The stability of mRNA was decreased slightly in RNA lacking ALKBH5 [11]

N.A. Neighbouring sites of m6A and HuR weaken the function of HuR and increase the instability of
mRNA

[52]

N.A. ELAV1/HuR, which is one of m6A-binding proteins and stabilizes transcripts with the cooperation of
the ARE domain

[53]

mRNA
translation

YTHDF2 YTHDF2 regulates translation by transferring the bound RNA from the translatable pool to
processing bodies to promote mRNA decay

[12]

YTHDF2 induces the dysfunction of FTO in the 5'UTRs and contribute to promoting cap-
independent translation

[28]

YTHDF1 YTHDF1 increases the efficiency of translation by binding to m6A [37]

YTHDF3 YTHDF3 interacts with ribosomal proteins along with YTHDF1 to regulate translation [54]

YTHDF3 decays of convinced translation related region in mRNA together with YTHDF2 [55]

METTL3 When knocking out METTL3 in mESCs and Ebs, the translation efficiency is increased [57]

METTL3 recruits eIF3 to the initiation complex directly and enhance translation level [56]

m1A RNA
modification

mRNA
stability

N.A. m1A in highly structured or GC-rich regions of 5'UTRs alters mRNA structural stability by modifying
the predicted secondary structure

[61,
62]

mRNA
translation

N.A. m1A upregulated translation by depressing binding of releasing factor [26]

N.A. m1A prevents effective translation of CDS in mt-mRNA [65]

N.A. The protein level would be superior when the transcript was modified by m1A at/around the
initiation codon

[69]

m5C RNA
modification

mRNA
export

ALYREF ALYREF adjusts the export of transcripts by recognizing the unique RNA-binding motif [77]

mRNA
translation

NSUN2 Deleting NSUN2 in HDFs can induce the elevation of p27, and overexpressing NSUN2 induces the
opposite outcome

[79]

m5C catalysed by NSUN2 in 3'UTRs of p21 mRNA coordinates with m6A methylated by METTL3/
METTL14 together to enhance p21 expression

[80]

N.A. Translation diminishes significantly in both bacterial whole-cell extracts and HeLa cell extracts when
m5C modifies the coding regions of mRNA

[27,
81]

N.A. m5C found on IL-17A mRNA can promote the translation of IL-17A [82]

Other hm5C mRNA
translation

N.A. hm5C associates with translation activation in Drosophila [69]

Ψ mRNA
splicing

N.A. Ψ, which is near the 3' splice site in the polypyrimidine tract, prevents pre-mRNA splicing by regu-
lating U2AF

[83]

mRNA
stability

N.A. The higher expression of heat shock-induced Pus7-dependent pseudouridylated transcripts in wild-
type yeast than in Pus7-knockdown yeast indicates that Ψ has the capability to maintain stability of
RNA

[84]

mRNA
translation

N.A. Compared to U modifications located at similar sequences, Ψ-containing mRNA indicates an in-
crease in translation levels of approximately 25%

[84]

N.A. Ψ doubles the expression of an unmodified transcript [85]

N.A. When a separate Ψ modifies the special position of codon "UUU", mRNA translation can be limited [81]

Shi et al. Molecular Cancer           (2020) 19:78 Page 6 of 17



transcripts is higher in wild-type yeast than in Pus7-

knockdown yeast and indicates that Ψ has the capability

to maintain RNA stability [84]. Nevertheless, modifica-

tions were examined at similar sequences, and compared

to U-containing mRNA, Ψ-containing mRNA experi-

enced an increase in translation by approximately 25%

[84]. Such modifications could double the expression of

translation when compared to blank control transcript

without any modification [85]. Although Ψ can promote

translation and enhance the lifespan of RNA, it has

negative effects on protein expression [85]. It has been

reported that Ψ-containing mRNA exhibits a 30% de-

crease in protein expression. Specifically, bacterial

mRNA translation can be limited when a separate Ψ

modification is present at a given position of codon

“UUU”, especially at the third codon position [81].

Moreover, both in vitro and in vivo, the Ψ modification

might change the nonsense codons into sense codons

[99, 100]. Above all, some of these investigations were

conducted by Ψ in artificial mRNA, and the function of

Ψ in biological mRNA has yet to be elucidated.

I and U

Catalysed by adenosine or cytidine deaminating en-

zymes, RNA editing is a kind of programmed alteration

[101]. However, rather than permanent DNA mutations

or reversible RNA modifications, RNA editing has its

own limited lifespan and results in more permanent

modification [102].

Adenosine-to-inosine RNA editing (A-to-I editing),

also called I, is catalysed by adenosine deaminases acting

on RNA (ADARs) [101, 103, 104]. Recently, 1741 I sites

have been reported in CD regions of transcripts from

RNA-seq data of different human tissues [105]. More-

over, it has been reported that ADAR1 and ADAR2 act

only on double-stranded regions, which limits the areas

of mRNA that I can modify [106]. I can fasten pairs of

nucleotides; thus, this widespread modification in meta-

zoan mRNA can influence the native secondary struc-

ture of mRNA [86]. An in vitro translation system was

implemented to scientifically test the decoding of I, re-

vealing that guanosine, adenosine and uracil are the

products decoded from I by translation machinery [87].

However, with regard to cytidine-to-uridine RNA edit-

ing (C-to-U editing), also called U, it has been reported

that U accumulates in 3’UTRs, and over 70 new sites

have been discovered by transcriptome-wide research

[88, 107]. Subsequently, after exploring several intestinal

mRNAs, it was revealed that the protein level is altered

by C-to-U editing of RNA [88]. However, there is little

research on the relationship between the expression of

transcripts and U. The biological influence of U has yet

to be investigated.

2’-O-Me

Unlike how I and U are modifications on a base, 2’-O-

Me is methylation of ribose at the 2’ position [59]. It was

revealed that by escaping the suppression mediated by

IFN-induced proteins with tetratricopeptide repeats

(IFIT), 2’-O-Me-modifiedviral RNA disrupts native host

antiviral responses [89]. Surprisingly, 2’-O-Me focuses

on modifying specific regions of mRNA where the

encoded amino acids are immobilized; these amino acids

include glutamate, lysine and glutamine [90]. This

phenomenon hints at the hypothesis that 2’-O-Me has

the potential to affect translation efficiency, which has

previously been demonstrated in bacterial mRNA [81].

Regulatory roles of RNA modifications in pathogenesis

Aberrant m6A RNA modifications in diseases

In acute myeloid leukaemia (AML), FTO decreases m6A

abundance on ASB2 and RARA mRNA in several certain

subtypes of AML, including t(11q23)/MLL rearrange-

ments, t(15;17)/PML-RARA, FLT3-ITD, and/or NPM1

mutations [41, 108]. Moreover, by constraining

YTHDF2-mediated decay, FTO decreases m6A fre-

quency on MYC mRNA [109], METTL3 promotes

translation of BCL2 and PTEN mRNA by upregulating

the m6A levels and supports expression of SP1 by bind-

ing to the unique region with the help of the

Table 2 mRNA modifications regulate the physiological process from transcription to translation (Continued)

Modifications Process Enzymes
involved

Description Ref

I mRNA
structure

N.A. I fastens pairs of nucleotides to influence the native secondary structure of mRNA [86]

mRNA
translation

N.A. Guanosine, adenosine and uracil are the products decoded from I by the translation machinery [87]

U Protein
expression

N.A. Protein level alterations accompany C-to-U editing of RNA [88]

2'-O-
Me

Viral RNA
infection

N.A. 2'-O-Me-modified viral RNA disrupts native host antiviral responses by escaping suppression
mediated by IFIT

[89]

mRNA
translation

N.A. 2'-O-Me modifies specific regions of mRNA that are translated to glutamate, lysine and glutamine,
hinting that 2'-O-Me has the potential to affect translation efficiency

[90]
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transcription factor CEBPZ [110, 111], and METTL14

enhances mRNA expression of MYB and MYC [112].

All pathological pathways contribute to carcinogenesis

in AML. According to the datasets from The Cancer

Genome Atlas, nearly 10.5% of AML patients carry copy

number variations (CNVs) of ALKBH5, which predicts

poor prognosis and p53 mutations [113].

In gastric cancer (GC), METTL3 can cause m6A to ac-

cumulate on HDGF mRNA, which indicates prolifera-

tion and poor prognosis and enhances the stability of

zinc finger MYM-type containing 1 (ZMYM1) mRNA so

that it accelerates epithelial-mesenchymal transition

(EMT) and metastasis [114, 115]. However, METTL3

can also reduce m6A on SEC62 with the help of MiR-

4429 [116]. In hepatocellular carcinoma (HCC),

METTL3 enhances the degradation of m6A-containing

SOCS2 mRNA together with YTHDF2 [117]. Addition-

ally, YTHDF2 supresses ERK/MAPK signalling cascades

and cell proliferation by destabilizing the EGFR mRNA

[118]. Regarding clinical diagnosis, downregulated

METTL14 is detected in HCC patients, and the level of

expression in metastatic HCC is further decreased [119].

In pancreatic cancer, m6A and METTL3 protein and

mRNA levels were much higher in tumour specimens

than in para-cancerous specimens [120]. Meanwhile, up-

regulation of YTHDF2 destabilizes YAP mRNA by initi-

ating the AKT/GSK3β/cyclin D1 pathway, which

promotes proliferation and inhibits the migration of

pancreatic cancer [121].

In lung cancer, METTL3 enhances the translation of

EGFR and TAZ mRNA [56]. Furthermore, SUMOylated

METTL3 promotes non-small-cell lung cancer (NSCLC)

by diminishing the amount of m6A [122]. Moreover,

YTHDF2 enhances the translation of 6-phosphogluconate

dehydrogenase (6PGD) mRNA by binding to a given re-

gion in lung cancer cells [123]. Additionally, FTO is over-

expressed in human NSCLC tissues and stimulates lung

cancer by stabilizing and increasing the expression of

ubiquitin-specific protease 7 (USP7) [124]. In lung squa-

mous cell carcinoma (LUSC), overexpressed FTO acceler-

ates oncogene MZF1 expression by diminishing m6A and

stabilizing mRNA as well [125, 126].

For the nervous system, decreased levels of METTL3 or

METTL14 determine the diminution of m6A on

ADAM19 mRNA, which promotes protein expression

[127, 128]. Conversely, increased levels of ALKBH5 lead

to decreased levels of m6A on FOXM1 mRNA and en-

hance protein expression [129]. Consequently, a high level

of ALKBH5 predicts poor prognosis [130]. However, both

pathways can contribute to glioblastoma. Subsequently,

overexpressed METTL3 recruits HuR to modified SOX2

mRNA and enhances radio-resistance. Playing an onco-

genic role in glioblastoma, METTL3 hints at poor progno-

sis and a potential therapeutic strategy as well [131].

In prostate cancer, reduced YTHDF2 elevates m6A

contents dramatically, which suppresses proliferation

and migration [132]. In bladder cancer, increased

METTL3 predicts poor survival because with the help of

pri-miR221/222, upregulated METTL3 results in down-

regulated PTEN and tumorigenesis of cancer [133].

Aberrant m6A modification can also lead to carcin-

omas in the reproductive system. It has been reported

that m6A on KLF4 and NANOG can be suppressed by

the cooperation of ZNF217 and ALKBH5, especially in a

HIF-dependent manner, so that it enhances the stability

of mRNA and contributes to breast cancer in a hypoxic

microenvironment [134, 135]. Increased METTL3 leads

to enhancement of m6A on hepatitis B X-interacting

protein (HBXIP) and proliferation of breast cancer stem

cells (BCSCs) [136]. Moreover, elevated FTO leads to

downregulated methylation and degradation of BNIP3. It

is suggested that FTO enhances the colony formation

and metastasis of breast cancer [137]; Nevertheless, in

cervical squamous cell carcinoma (CSCC), high expres-

sion of FTO and low levels of β-catenin lead to chemo-

radiotherapy resistance, which hints that FTO is a

potential target to increase the chemoradiotherapy sensi-

tivity of CSCC [138]. In endometrial cancer, either mu-

tated METTL14 or reduced METTL3 limits the

expression of m6A. However, limited m6A activates the

AKT signalling pathway and stimulates proliferation and

tumorigenicity by decreasing the negative AKT regulator

PHLPP2 and increasing the positive AKT regulator

mTORC2 [139].

Besides the regular cancers with high incidence refer-

enced above, aberrant m6A modifications also play roles

in sensory organs. The fate of ocular melanoma can be

modulated by m6A modifications. With the help of

YTHDF1, the translation of methylated HINT2 mRNA,

a tumour suppressor of ocular melanoma, was signifi-

cantly accelerated, meaning m6A modification obviously

inhibits the progression of ocular melanoma. Moreover,

investigation of ocular melanoma samples indicated that

decreased m6A levels were highly associated with poor

prognosis [140].

Aberrant m1A RNA modification in diseases

Physiological functions lead to pathological impacts on

diverse diseases. In ovarian and breast cancers, demeth-

ylation of m1A by ALKBH3 induces increased modified

CSF-1 mRNA, which contains m1A in the 5’UTR near

the translation initiation site. Hence, accumulated

ALKBH3 means improved CSF-1 mRNA expression and

invasion of cancer cells [141]. Subsequently, ALKBH3,

considered the eraser of m1A, tightly correlates with the

mTOR pathway in gastrointestinal cancer and is attrib-

uted to the limited expression of ErbB2 and AKT1S1

after ALKBH3 knockdown; the downstream genes of
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m1A are associated with cell proliferation according to

Gene Ontology analysis [142]. Additionally, silencing of

ALKBH3 arrests the cell cycle at the G1 phase and con-

tributes to the progression, angiogenesis and invasion of

urothelial carcinomas by modulating NADPH oxidase-2-

reactive oxygen species (NOX-2-ROX) and TNF-like

weak inducer of apoptosis (TWEAK)/Fibroblast growth

factor-inducible 14 (Fn14)-VEGF signals [143]. As a clas-

sical chemical modification of mRNA, the pathological

pathways of m1A need to be elucidated.

Aberrant m5C RNA modification in diseases

Since m5C bridges transcription and translation, we

propose a hypothesis that m5C can also regulate the

pathological mechanisms of various diseases. For in-

stance, diminishing NSUN2 leads to decreased levels of

translation and an increased tumour initiating popula-

tion in skin cancer [144]. In breast cancer, NSUN2 is re-

ported to be upregulated as well at the mRNA and

protein levels [145]. For patients with urothelial carcin-

oma of the bladder (UCB), m5C-modified 3’UTR in

HDGF mRNA can be recognized by YBX1 and activate

the oncogene of UCB [78]. m5C can also be regarded as

a cancer biomarker because the amount of m5C RNA

modification is increased in circulating tumour cells

from patients with lung cancer [146].

Aberrant hm5C, Ψ, I, U and 2’-O-Me RNA modifications in

diseases

Although the amounts of hm5C, Ψ, I, U and 2’-O-Me

RNA modifications on mRNA are much lower than the

three predominant types of modifications, their roles do

not change and are vital to human disease. First, Ψ can

function as a biomarker for prostate cancer because cer-

tain nucleolar RNAs (H/ACA snoRNAs) and the dys-

kerin (DKC1) protein can upregulate the transformation

of U to Ψ and contribute to the advancement to cancer

[147]. Regarded as the gene encoding the Ψ synthase,

the mutation of DKC1 causes downregulated Ψ and X-

linked dyskeratosis congenita (X-DC) [148]. The risk for

cancer development is higher in patients with X-DC

than those without gene mutation [149]. Besides, H/

ACA snoRNAs are limited in acute leukaemia, lymph-

oma and multiple myeloma [150–152].

Subsequently, edited AZIN1 stimulates a serine to gly-

cine (S/G) conversion in HCC and leads to proliferation

and poor prognosis [153, 154]. In HCC and in cervical

cancer, increased editing of BLCAP activates the AKT/

mTOR signalling pathway or STAT3, which can increase

cell proliferation and limit apoptosis [155–158]. In

breast cancer, editing of DHFR transcripts at the 3’UTR

by ADAR1 stabilizes the mRNA and enhances cell

growth. Surprisingly, methotrexate, a chemotherapy

agent, prevents cancer cell division by targeting DHFR.

It is suggests that downregulated ADAR1 can contribute

to methotrexate treatment [159]. In gastric cancer,

ADAR2 edits the CDS of PODXL, which induces a histi-

dine to arginine conversion. The relationship between

reduced ADAR2 and increased malignancy hints that

transcript editing is essential to prevent cancer progres-

sion [160]. Additionally, adenosine deaminase RNA-

specific B1 (ADARB1), a special type of ADAR, is

expressed at low levels in H358 and A549 lung adeno-

carcinoma (LUAD) cells, which suggests that I might be

a potential target in diagnostic and prognostic progres-

sion for patients with LUAD [161].

Finally, uridine phosphorylase 1 (UPP1) is another en-

zyme that can reversibly catalyse the phosphorolysis of

uridine to uracil [162, 163]. It has been reported that ex-

pression of UPP1 significantly depends on lymph node

metastasis and tumour stage and size in patients with

thyroid carcinoma [164] (Table 3, Fig. 4).

Clinical prospects of RNA modifications

RNA modifications and enzyme complexes exhibit up-

regulated and downregulated levels of expression in can-

cers, which means RNA modifications can serve as

biomarkers to diagnose diseases in a manner that is

helpful and precise. For example, upregulated YTHDF2

is found in pancreatic cancer, increased m5C is detected

in lung cancer and accumulated Ψ contributes to the ad-

vancement of prostate cancer [121, 146, 147]. However,

other biomarkers need to be elucidated. Besides bio-

markers to diagnose cancers, RNA modifications are also

biomarkers to predict patient prognosis. Since they

stimulate or inhibit the progression of cancer, RNA

modifications have therapeutic potential. 3-

deazaadenosine (DAA) interrupts METTL3/14 and in-

hibits the decoration of m6A by obstructing SAH hydro-

lase [165], SPI1 is considered a potential target for AML

because of inhibition of METTL14 [112], and meclofe-

namic acid (MA), a non-steroidal anti-inflammatory

drug, silences FTO by competing for binding sites [166].

Novel targets for treatment of cancer require further

investigation.

Conclusion

In summary, chemical modifications in mRNA are vital

for many processes of cell life, such as pre-mRNA spli-

cing, nuclear export, transcript stability and translation

initiation. Importantly, RNA modifications play a critical

role in driving cell fate in cancer. The importance of the

relationship between RNA modification and various dis-

eases cannot be overly emphasized. In this review, we

redefined the bridge between transcription and transla-

tion and applied it to physiological and pathological pro-

cesses. To date, we have demonstrated 2 roles of mRNA

modifications in transcription. Generally, one type is
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mRNA modifications that can change the structure of

transcripts, and the other is mRNA modifications that

can regulate transcription by joining hands with a com-

plex of enzymes, such as METTL3 or NSUN2. Consider-

ing that modifications can regulate the fate of diverse

diseases, such modifications have the potential to be uti-

lized in targeted therapy. Surely, RNA modifications as

well as the related diseases mentioned above are a frac-

tion of those affecting human beings in nature. Thus,

these modifications need to be elucidated in the follow-

ing few years.
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