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Abstract

Plasmodium species, the causative agent of malaria, have a complex life cycle involving two

hosts. The sporozoite life stage is characterized by an extended phase in the mosquito sali-

vary glands followed by free movement and rapid invasion of hepatocytes in the human

host. This transmission stage has been the subject of many transcriptomics and proteomics

studies and is also targeted by the most advanced malaria vaccine. We applied Bayesian

data integration to determine which proteins are not only present in sporozoites but are also

specific to that stage. Transcriptomic and proteomic Plasmodium data sets from 26 studies

were weighted for how representative they are for sporozoites, based on a carefully assem-

bled gold standard for Plasmodium falciparum (Pf) proteins known to be present or absent

during the sporozoite life stage. Of 5418 Pf genes for which expression data were available

at the RNA level or at the protein level, 975 were identified as enriched in sporozoites and

90 specific to them. We show that Pf sporozoites are enriched for proteins involved in type II

fatty acid synthesis in the apicoplast and GPI anchor synthesis, but otherwise appear meta-

bolically relatively inactive in the salivary glands of mosquitos. Newly annotated hypothetical

sporozoite-specific and sporozoite-enriched proteins highlight sporozoite-specific functions.

They include PF3D7_0104100 that we identified to be homologous to the prominin family,

which in human has been related to a quiescent state of cancer cells. We document high lev-

els of genetic variability for sporozoite proteins, specifically for sporozoite-specific proteins

that elicit antibodies in the human host. Nevertheless, we can identify nine relatively well-

conserved sporozoite proteins that elicit antibodies and that together can serve as markers

for previous exposure. Our understanding of sporozoite biology benefits from identifying key

pathways that are enriched during this life stage. This work can guide studies of molecular

mechanisms underlying sporozoite biology and potential well-conserved targets for marker

and drug development.
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Author summary

When a person is bitten by an infectious malaria mosquito, sporozoites are injected into

the skin with mosquito saliva. These sporozoites then travel to the liver, invade hepato-

cytes and multiply before the onset of the symptom-causing blood stage of malaria. By

integrating published data, we contrast sporozoite protein expression with other life stages

to filter out the unique features of sporozoites that help us understand this stage. We used

a “guideline” that we derived from the literature on individual proteins so that we knew

which proteins should be present or absent at the sporozoite stage, allowing us to weigh

26 data sets for their relevance to sporozoites. Among the newly discovered sporozoite-

specific genes are candidates for fatty acid synthesis while others might play a role keeping

the sporozoites in an inactive state in the mosquito salivary glands. Furthermore, we show

that most sporozoite-specific proteins are genetically more variable than non-sporozoite

proteins. We identify a set of conserved sporozoite proteins against which antibodies can

serve as markers of recent exposure to sporozoites or that can serve as vaccine candidates.

Our predictions of sporozoite-specific proteins and the assignment of previously

unknown functions give new insights into the biology of this life stage.

Introduction

Malaria is a mosquito transmittable disease resulting in over 220 million clinical cases and half

a million deaths annually. Most deaths are caused by Plasmodium falciparum (Pf), one of the

five species of Plasmodium that can infect humans. The infection begins with the deposition of

liver-infective sporozoite forms in the skin by blood-feeding mosquitoes. These sporozoites

travel to the liver where they invade, differentiate and multiply asymptomatically inside hepa-

tocytes for approximately a week before releasing red blood cell (RBC)-infective merozoites

into the circulation. The subsequent asexual multiplication, rupture and re-invasion of the par-

asites into circulating RBCs cause the symptoms associated with malaria.

Identifying specific sporozoite proteins will aid in the understanding the biology of this

highly motile stage in which the parasite is directly exposed to the body’s immune system, sim-

ilar to blood stage-infective merozoites. Sporozoites deposited in the skin can take up to 90

minutes to reach the liver [1], a much longer potential exposure to immune system than the 90

seconds of merozoites. Mosquito midgut-derived and circulating sporozoites are less infec-

tious for hepatocytes than those that have resided in the salivary gland [2,3]. The ability to

improve and remain infective in the salivary gland of mosquitoes for an extended period of

time (approximately 1 week) is an intriguing phenomenon that is poorly understood [4]. It is

suggestive of a molecular landscape where the parasite is kept in low activity but can quickly

activated to evade immune systems, invade and develop in hepatocytes. Understanding the

specific molecular make-up of sporozoites will shed light on this aspect of its biology and may

reveal new targets for interventions.

A number of studies have identified genes that are expressed in sporozoites during both

their development in mosquito midgut (oocyst) and in the salivary gland. They have identified

expression at the RNA level[5] and at the protein level[6] with a specific emphasis on surface

proteins[7]. The studies varied in their focus and resolution, with RNA level studies facing the

challenge of their relevance for protein expression[8] while proteomics studies face challenges

in detecting low abundance proteins. More importantly, while such studies address the ques-

tion what is present in the sporozoite, they do not address what is specific to it. Therefore, to
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prioritize sporozoite specific proteins, we implemented a naïve Bayesian data integration in

which both transcriptomics and proteomic data were included. This method has been applied

before to identify transcripts and proteins that are specific to P. falciparum’s gametocyte life

stage[9] and to detect genes involved in the cilium in eukaryotes [10]. For informed data inte-

gration, gold-standard lists representing proteins that are either sporozoite specific or non-

sporozoite specific were manually assembled from the existing literature on individual pro-

teins. Using this gold standard, published Plasmodium datasets were weighted by the presence

of sporozoite specific proteins and the absence of proteins known to be absent from sporozo-

ites, allowing us to obtain an extended list of predicted sporozoite specific proteins. We classi-

fied 90 proteins as sporozoite-specific, of which 67 were not part of the gold standard.

“Conserved, hypothetical proteins with unknown functions” were examined using sensitive

homology and orthology detection tools [11,12] to predict their function and shed light on the

biology of sporozoites.

From the proteins that in the assembled proteomics data were identified to be present in spo-

rozoites, we examined whether we can identify a limited set of proteins for which human antibod-

ies are generated[13] and that can serve as markers of exposure to sporozoites. As attractive

targets would be conserved between different P. falciparum strains, we sequenced three P. falcipa-

rum strains, NF54, NF135 and NF166, and required selected proteins to have limited genetic

diversity between those strains as well as in sequenced genomes in PlasmoDB[14].

Methods

Sporozoite protein and transcriptomic data sets

The data integration was performed using transcriptomic and proteomic data sets from 22

studies describing all life cycle stages of P. falciparum (S1 Table). Data sets were obtained from

PlasmoDB version 43 [14], and literature (S1 Table). In addition to that, transcriptomics data

on the liver and blood stage of Plasmodium cynomolgi and the sporozoites of Plasmodium

vivax were included, as well as proteomics studies covering the sporozoite stage of P. vivax and

the liver stage of P. yoelii, respectively, resulting in a total of 48 data samples from 26 different

studies (S1 Table). Data from non-falciparum studies were converted into P. falciparum IDs

using the orthologs lists available on PlasmoDB, favouring orthologs that are syntenic in the

case of multiple options.

Gold standards

Bayesian data integration requires gold standards, in this case of proteins known to be either

highly enriched in sporozoites or depleted from them. We required positive gold standard pro-

teins to be present dominantly in sporozoites based on western blot or immunofluorescent

assay data, resulting in a selection of 31 sporozoite-specific proteins (Table 1).

The negative gold standard was curated by searching literature for non-sporozoite proteins.

We selected 19 proteins based on their literary evidence of absence from sporozoites. Addi-

tionally, 20 gametocyte specific proteins [41] were added to the negative gold standard,

increasing the total number to 39 negative gold standard proteins (S2 Table). These proteins

spanned the remaining P. falciparum life cycle stages in the human host, with the majority

being found in (a)sexual blood stages.

Bayesian data integration

The used data sets were examined for their correlations with each other (S1 Fig). By and large

most data sets show little correlation. We did leave the few correlated data sets in to keep the
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data integration transparent and maximize the amount of included information. Oocyst-

derived and salivary gland sporozoites showed high correlations with each other, which led us

to combining all respective studies into the “sporozoite” data input and not make a distinction

between those stages.

Proteomic data were converted into unique peptide counts for each protein identified

and transcriptomic data were converted into expression percentiles for a total of 5668 P. falcip-

arum gene IDs. Proteomic and transcriptomic data was binned consistently for all data

sets, with 0, 1, or>1 identified unique peptides, or into four bins, containing transcripts that

are in the percentile> 80, the “80> percentile> 60”, the “60> percentile> 40” and the

40> percentile, respectively. The data sets were then weighted according to their presence of

gold standard proteins and their absence of negative gold standard proteins. Each bin in each

data set was given a log2 score based on the likelihood of it containing sporozoite gold stan-

dard proteins and the likelihood of it containing non-sporozoite proteins, according to the

right side of Eq (1), where B = present in bin, S = sporozoite specific and nonS = not sporozoite

Table 1. Positive gold standard members, based on the presence of proteins in western blot or immunofluorescent assay data.

Gene ID Name Evidence

PF3D7_0104000 Thrombospondin-related sporozoite protein Labaied et al.[15]

PF3D7_0107600 Eukaryotic translation initiation factor 2-α kinase 2, putative Matuschewski et al.[16]

PF3D7_0207300 Serine repeat antigen 8 Arisue et al.[17]

PF3D7_0304000 Inner membrane complex protein 1a, putative Khater et al.[18]

PF3D7_0304600 Circumsporozoite (CS) protein Singh et al.[19]

PF3D7_0408600 Sporozoite invasion-associated protein 1 Arevalo-Pinzon et al.[20]

PF3D7_0408700 Perforin-like- protein 1 Yang et al.[21]

PF3D7_0417100 mRNA-binding protein PUF2 Gomes-Santos et al.[22]

PF3D7_0511400 Unknown function protein Schlarman et al.[23]

PF3D7_0517600 F-actin-capping protein subunit β, putative Ganter et al.[24]

PF3D7_0615100 Enoyl-acyl carrier reductase Vaughan et al.[25]

PF3D7_0626300 3-oxoacyl-acyl-carrier protein synthase I/II Vaughan et al.[25]

PF3D7_0702300 Sporozoite threonine and asparagine-rich protein Fidock et al.[26]

PF3D7_0809100 Erythrocyte membrane protein 1 Zanghi et al.[27]

PF3D7_0812300 Sporozoite surface protein 3, putative Harupa et al.[28]

PF3D7_0816500 Small heat shock protein HSP20, putative Montagna et al.[29]

PF3D7_0822700 Thrombospondin-related protein 1, putative Klug et al.[30]

PF3D7_0830300 Sporozoite invasion-related protein 2 Siau et al.[31]

PF3D7_1137800 Sporozoite surface protein essential for liver stage development Al-Nihmi et al.[32]

PF3D7_1138200 Unknown function protein Schlarman et al.[33]

PF3D7_1147000 Sporozoite and liver stage asparagine-rich protein Silvie et al.[34]

PF3D7_1201300 Liver stage associated protein 1 Siau et al.[31]

PF3D7_1207300 LIMP protein, putative Santos et al.[35]

PF3D7_1208200 Cysteine repeat modular protein 3 Douradinha et al.[36]

PF3D7_1216600 Cell traversal protein for ookinetes and sporozoites Bergmann-Leitner et al.[37]

PF3D7_1221400 Inner membrane complex protein 1h, putative Tremp et al.[38]

PF3D7_1302200 Protein UIS3 Matuschewski et al.[16]

PF3D7_1335900 Thrombospondin-related anonymous protein Ejigiri et al.[39]

PF3D7_1342500 Sporozoite protein essential for cell traversal Yang et al.[21]

PF3D7_1442600 TRAP-like protein Steinbuechel et al.[40]

PF3D7_1475400 Cysteine repeat modular protein 4 Douradinha et al.[36]

https://doi.org/10.1371/journal.pcbi.1008067.t001
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specific. The Bayesian score for an individual protein is then the sum of the scores for the bins

in which it occurs (one bin per data set).

log
2

PðSjBÞ

PðnonSjBÞ

� �

¼
XN

i
log

2

PðBijSÞ

PðBijnonSÞ

� �

ð1Þ

As the expected number of sporozoite-specific proteins was unknown, no prior was

included, rather we used cutoffs based on the position of known sporozoite specific proteins to

define sporozoite specific proteins and sporozoite enriched proteins.

We calculated a false discovery rate, corrected for the prior probability that a protein is

enriched in sporozoites using Eq 2, see ref [10] for details. Here specificity and sensitivity are

based on positions of the gold standard proteins in a 5 fold cross validation.

cFDR ¼
1� specificity

1� specificityþ sensitivity � Oprior

ð2Þ

Overrepresentation of function categories in sporozoite proteins

GO terms were acquired from PlasmoDB and formatted into a.gmt file according to the format

specified by the GSEA server at the Broad Institute[42]. GSEAPreranked on the ranked list of

sporozoite-specific proteins was used with the conservative “preranked” option in the “classic

mode”, i.e. using Kolmogorov Smirnoff statistics to determine enriched GO terms. The large

variable protein families RIFIN, STEVOR and PfEMP1 (var genes) were left out of the analysis.

A new GO term for gliding motility in Plasmodium was assembled by searching literature for

proteins associated with gliding motility in sporozoites, ookinetes and merozoites. For this we

extended the list of glideosome associated proteins assembled by Lindner et al.[43] with 10

new proteins possibly associated with the glideosome. These proteins were either annotated

with the motility GO term GO:0071976 (SSP3, CelTOS, LIMP protein, plasmepsin VII and gli-

deosome-associated connector), or otherwise known to be involved in gliding motility (CTRP

[44], SIAP1[45], GAPDH[46], GAP40[47], IMC1l[48]). Similarly we added a list of GPI-

anchored proteins to the set of processes for which we examined enrichment using the list of

Gilson et al.[49], based on the hypothesis that the type II fatty acid synthesis was required for

the creation of GPI anchors [50]. To investigate Pfam domain enrichment in sporozoite pro-

teins, Pfam annotations for all proteins were downloaded from PlasmoDB and were used as

gene sets in the GSEA. To prevent the GSEA analysis results for enriched pathways to be

affected by the large numbers of hypothetical proteins in P. falciparum, those were filtered out

before the analysis. Furthermore, proteins that were part of the gold standard were left out of

the analysis to prevent circular arguments and therewith overestimating the enrichment. For

the enrichment of type II fatty acid synthesis we originally relied on the GO terms of Plas-

moDB, which turned out to be significantly enriched in sporozoites (FDR = 0.004), but after

manual examination, showed many discrepancies with the review by Shears et al.[50], and

included a protein like PF3D7_0208500, a mitochondrial acyl carrier protein that is not in the

apicoplast. We thus also used the protein list of Shears et al.[50] to examine enrichment of api-

coplast FAS II in the sporozoites. Proteins for which no transcriptomic and proteomic data

were available were left out as well. Manual examination of the Gene Set Enrichment Analysis

results showed that some gene sets were significantly enriched in sporozoites only because

they were depleted from the low scoring proteins. Therefore, we required for the significantly

enriched processes in sporozoites that they actually contained proteins in the set of “sporozoite

enriched proteins.”
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Sequencing of P. falciparum strains

NF54 originates fromWest Africa, and is isolated from a woman infected in the Netherlands

nearby an airfield[51]. The NF135 clone is a clinical isolate that originates from Cambodia

[52]. The NF166 clone is a clinical isolate from a child that visited Guinea[53]. Whole genome

sequencing of the three strains was performed with Illumina NextSeq 500, resulting in raw

paired-end fastq reads of 151 base pairs (bp).

Quality control and trimming

To examine the quality of the raw fastq reads, FastQC (version 0.11.5) was used[54]. The Nex-

tera Transposase sequence contamination at the 3’ ends of the reads were trimmed off with a

stringency of 12 bp, using Trim Galore (version 0.4.3)[55]. CleanNextSeq_paired was used to

remove excess of G’s from 3’ ends of the reads after 100 bp[56]. Only reads with a minimal

length of 35 base pairs were retained.

Alignment and variant calling

The P. falciparum 3D7 reference genome (v3.0, PlasmoDB, plasmodb.org, 14 chromosomes,

mitochondrial genome and apicoplast genome) was indexed and the trimmed fastq reads were

aligned to the reference genome using Bowtie2 (version 2.2.8) with the local alignment setting

[57]. The SAM files obtained were converted to BAM files and subsequently sorted and

indexed with SAMtools (version 1.4.1)[58]. SNPs and indels were called using SAMtools and

BCFtools (version 1.4.1). Alignments were visually inspected with the Integrative Genomics

Viewer (IGV, version 2.3.98)[58]. Coverage was calculated with BEDtools (version 2.26.0)[59].

Filtering of SNPs and indels

Filtering of SNPs and indels was performed with BCFtools (version 1.4.1)[58]. SNPs with a

base Phred quality (Q)> 30 were used for further analysis. Furthermore, we required that the

proportion of high quality bases (the DP4 scores in the VCF files) supporting the indel or the

SNP in> = 75% of the called bases to include them for further analysis.

Effect of SNPs and indels on protein sequences

The effect of the mutations on the predicted protein sequences was determined using the

Genomic Ranges package in R [60]. Amino acid sequences of all proteins were compared to

amino acid sequences of the reference genome and with each other. Any variation at the

amino acid level between reference and the examined strain and among the examined strains

was denoted.

Homology detection

Homology detection of P. falciparum proteins with unknown function was done using

HHPred[11] with default settings (HHblits, 3 iterations). For orthology detection we used best

bidirectional best hits at the level of sequence profiles[12].

Detecting a set of proteins that elicit antibodies in all chloroquine
chemoprophylaxis (CPS) volunteers

We used a greedy “set cover” algorithm that in each step selects, from a list of evolutionary

conserved sporozoite proteins (less than eight nonsynonymous SNPs per kb in PlasmoDB),

the one that is immunogenic (elicits antibodies) in the highest numbers of volunteers subjected
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to CPS for which no immunogenic protein was already in the set. In the analysis from Obiero

et al. [13], some long proteins were split into separate peptides. Those were analyzed separately

by the algorithm: i.e. as if they were separate proteins. When multiple proteins were immuno-

genic in the same number of volunteers for which no immunogenic protein had been selected

yet, we chose from those the one that had the highest immunogenicity in all the volunteers.

We furthermore required genes to have maximally two non-synonymous SNPs in the com-

bined NF135 and NF166 strains.

Results

Data integration

At least 26 studies, containing 48 data sets have been published of P. falciparum, P. cynomolgi,

P. vivax and P. yoelii transcripts and proteins at various developmental stages, including 11

that were specific to the sporozoite stage (S1 Table). In order to optimally exploit those data to

obtain sporozoite-enriched proteins we integrated them in a Bayesian manner (Methods).

Integrating the data sets using the sets of 31 positive and 39 negative gold standard proteins

(Tables 1 and S2) produced a list of all proteins in P. falciparum ranked according to their like-

lihood of being sporozoite-specific (S3 Table). The score distribution of the negative and posi-

tive gold standard proteins varied depending on using all available data sets, or proteomic or

transcriptomic data separately (Fig 1). The Bayesian integration using only transcriptomic

data sets resulted in a ranked list where 14 negative gold standard genes scored higher than the

lowest scoring positive gold standard gene (Fig 1A). This overlap was lower when using only

proteomic data sets (Fig 1B), but still contained 8 proteins. The least overlap between positive

and negative gold standard members was observed when combining transcriptomic and prote-

omic data (Fig 1C). This also produced an outlier, STARP. Although this protein was identi-

fied as being a sporozoite protein [26], in our combined data sets it scored 42 times lower than

the second to last scoring positive gold standard protein. It therewith does not appear specific

to sporozoites in the available data. STARP was excluded from the score distribution of gold

standard proteins that was used to define the sporozoite specific proteins (see below), but gold

standard list and integration where not changed post hoc. Based on the observed overlaps, we

decided to continue our research using the ranked list based on the combined proteomic and

transcriptomic data sets.

Sporozoite specific proteins and sporozoite enriched proteins

Proteins were considered sporozoite-specific when ranking in the first quartile of the gold stan-

dard protein list i.e. scoring above 12.27 in the final integrated list of scores, which represents a

factor of being at least 212.37 ~5200 more likely to be specific to sporozoites than to any of the

other stages. Do note that hereby we ignore the prior probability of a protein being sporozoite

specific at all. Such a prior is standard in Bayesian data integration. Nevertheless, in this case a

prior of e.g. 1/5, is given the high cut-off for sporozoite specific proteins that we used, not very

relevant. As we did not consider STARP to be sporozoite specific (see above), we considered

proteins that scored higher than the second to lowest positive gold standard protein (LIMP

protein, score = -1.31) in the final integrated list of scores, to be enriched in sporozoites.

Finally, the abundance of unique peptides by mass-spectrometry was assessed for each protein.

Proteins were deemed present in sporozoites when identified in two independent studies or

with more than 1 unique peptide in at least one study, rather than when having a higher score

than a specific cut-off value. Our analysis thus identified 90 sporozoite-specific proteins, 975

sporozoite-enriched proteins (non-overlapping with the sporozoite specific proteins) and 2736

that were present in sporozoites (S3 Table). Out of the 90 sporozoite-specific proteins, 67 were
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not part of the positive gold standard list. We validated our predictions by 5-fold cross valida-

tion (5-fold CV) by randomly skipping 1/5th of the gold standard proteins from the data inte-

gration and assessing their predicted sporozoite specificity based on the remaining data (Fig

1D). When we include a prior probability of 1/5 that a protein is enriched in sporozoites, the

false discovery rate corrected for the prior (cFDR, Methods), is, based on the ranking of gold

standard proteins in the cross validation, 20% of the combined set of the sporozoite specific
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Fig 1. Bayesian data integration identifies sporozoite-specific genes in P. falciparum. Bayesian score distributions of the proteins from the negative gold standard,
the positive gold standard and the remaining proteins when the integration is done A) using only RNA data, B) only proteomic data and C) RNAdata plus proteomic
data.D) cross validation of our predictions (5-fold cross validation) with all data sets (Black solid line) and predictions with individual data sets (dashed colored lines).

https://doi.org/10.1371/journal.pcbi.1008067.g001
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and the sporozoite enriched proteins. The high sensitivity and specificity indicated that novel

sporozoite-specific proteins would also score higher than non-sporozoite specific proteins. We

also compared the ranking of the gold standard proteins based on the integrated data with a

ranking based on individual data sets of sporozoite RNAs and proteins. The cross validation

separated the gold standard proteins better than individual data sets, supporting the integra-

tion of multiple data sets (Fig 1D).

Function prediction of non-annotated proteins

Many of the genes in the P. falciparum genome encode hypothetical proteins with unknown

molecular function [61]. The fraction of unknowns that is specific for sporozoites (32 out of

90, 36%) is at least as high as in the rest of the genome (32%). To improve understanding of

their potential functions, we examined the proteins for domains with known functions from

any species using sensitive homology detection with HHpred[11], combined with manual

examination of conserved residues. We compared sporozoite specific proteins with PFAM

domains, the human proteome, and the proteome of Toxoplasma gondii, an apicomplexan

related to P. falciparum that is present in the HHpred database. The sporozoite specific protein

with the highest score that was not part of the gold standard, PF3D7_0104100, showed (barely)

significant sequence similarity with the prominin family (E = 10E-4) and low levels of se-

quence identity with e.g. human prominin-2 (12%). To cross-check the homology of PF3D7_

0104100 with prominin we examined homology with T. gondii proteins. The sequence similar-

ity between the P. falciparum protein and T. gondii TGME49_218910 (E = 3.4e-44) and be-

tween the T. gondii protein and the human prominin-2 were highly significant (E = 2.3e-21),

indicating that PF3D7_0104100 is indeed member of the prominin family. PF3D7_0104100

has like the prominin family five (predicted) transmembrane regions with most of the protein

localized outside the cell (Fig 2). Analysis of a sequence alignment with orthologs in other

Fig 2. Predicted membrane topology of Pf3D7_0104100, a sporozoite-specific protein that is homologous to the prominin/CD133 protein family. The level of
polymorphisms among P. falciparum strains is indicated for the separate regions using the color scale below the cartoon of the protein as the average number of
polymorphisms per nucleotide in the strains in PlasmoDB. PF3D7_0104100 has a high density of polymorphisms within P. falciparum strains that are concentrated in
the second extracellular loop. Cysteines that are conserved among the homologs in Plasmodium species are indicated. The cysteines that are conserved also in human
homologs are in bold. Note that the conserved cysteines occur in close proximity to each other, suggesting the formation of disulphide bonds.

https://doi.org/10.1371/journal.pcbi.1008067.g002

PLOS COMPUTATIONAL BIOLOGY Plasmodium sporozoite-specific genes from data integration

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1008067 April 30, 2021 9 / 22

https://doi.org/10.1371/journal.pcbi.1008067.g002
https://doi.org/10.1371/journal.pcbi.1008067


Plasmodium species reveals the conservation of ten cysteine residues that are all predicted to

be extracellular (Fig 2). Such extracellular cysteines can form disulphide bonds as has been

observed for other extracellular Plasmodium protein domains [62] and has been suggested for

human prominin[63]. Two pairs of the extracellular cysteines were conserved between the

human prominin and PF3D7_0104100 (Figs 2 and S2). We were able to predict molecular

functions of three other sporozoite specific proteins and 27 sporozoite enriched proteins using

HHpred and best bidirectional hits with human proteins at the level of sequence profiles (S4

Table)[12].

Over-represented domains and pathways

We examined whether specific protein domains and pathways were over- or under-repre-

sented in the sporozoite proteins using Gene Set Enrichment Analysis[42]. For this we aug-

mented the list of proteins involved in specific processes from PlasmoDB with the glideosome

and glycosylphosphatidylinositol (GPI) anchor proteins that we considered specifically rele-

vant to sporozoites (Methods)[42]. At the domain level there was an over-representation of

three protein domains: PF09175 (also named Plasmod_dom_1, unknown function), PF08373

(the RAP domain, putatively RNA binding) and PF12879 (the C-terminal domain of the SICA

proteins that are associated with parasitic virulence). Two of these three domains are either

unique to Plasmodium species (PF12879) or to P. falciparum (PF09715). At the level of path-

ways, we observe significant enrichment of the Type-II fatty acid synthesis (FAS-II, Fig 3) and

Fig 3. Apicoplast fatty acid synthesis proteins are enriched among sporozoites. The width of the arrows is determined by the Bayesian score reflecting the level of
over representation of that enzyme in sporozoites, e.g. 16 for ACS2 and 8 for FabB/F (S3 Table). For PDH that consists of three proteins, the width of the arrow was
determined by the average of those three. Most of FASII proteins are enriched in sporozoites, except PKII, FABZ and LipA. The scheme is a simplification of the
pathway as depicted by Shears et al.[50], to which ACS2 was added as it is highly enriched in sporozoites and relevant for fatty acid synthesis.

https://doi.org/10.1371/journal.pcbi.1008067.g003
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the GPI anchor biosynthesis pathways. The enzymes present in the FAS-II pathway are located

in the apicoplast–a reduced plastid-like organelle that shares similarity with chloroplasts of

algae and plants [64]. This over-representation is consistent with its essentiality for sporozoite

development [65]. Interestingly, P. falciparum has fourteen Acyl CoA synthetases [66], of

which the distribution over the various fatty acid metabolizing processes is largely unresolved.

There is one Acyl CoA synthetase, ACS2, that is specific to sporozoites and that would be an

interesting candidate to convert the fatty acids produced in the apicoplast to acyl-CoA (Fig 3).

Curiously, there was no enrichment in sporozoites of members of the acyl-ACP thioesterase

family (PF3D7_1135400 and PF3D7_0217900). Acyl-ACP thioesterases play an important step

in the pathway by hydrolyzing the acyl moiety from the ACP before it can be converted to

acyl-CoA.

The second enriched pathway is GPI-anchor biosynthesis, with three proteins (GPI manno-

syltransferases 1, 2 and 3: PF3D7_1210900, PF1247300 and PF3D7_1341600) enriched in spo-

rozoites. GPI represents a class of glycolipids found as either free lipids or attached to proteins

[67,68]. Surface parasite proteins (such as the merozoite surface proteins 1, 2 and 4) anchor to

the parasite cell-membrane via GPI moieties [69]. Sporozoites shed surface proteins (such as

circumsporozoite protein and thrombospondin related anonymous protein) when moving

[70]. With GPI being used to anchor proteins to the parasite surface, it would have to be syn-

thesized constantly to replace the surface proteins shed during motility. There was no enrich-

ment of the glideosome or of GPI anchor proteins among proteins specific to the sporozoite.

However, 39 of the 52 glideosome associated proteins are “present” in the sporozoite stage

(75%), representing a slight overrepresentation when compared to the 2,736 of 5,447 proteins

(50,2%) detected in sporozoites (Fisher’s exact, P = 0.0018). Similarly, there are 19 out of 28

GPI-anchor proteins identified in Gilson et al.[49] among the proteins present at the sporozo-

ite stage, but they are not specifically enriched in sporozoites and hence are also expressed in

other developmental stages. The fact that proteins involved in movement (such as glideosome

and GPI) are enriched but not specific to sporozoites indicated that sporozoite share a com-

mon movement machinery with other the life-cycle stages.

Protein functions of sporozoite-specific proteins in the context of
sporozoite biology

Apart from examining over represented pathways we also examined the individual sporozoite

specific proteins with regard to their potential function in sporozoite biology. One of the inter-

esting features of sporozoites is their inactivity in the sporozoite glands, which is among others

maintained by translational repression with the Puf2 protein [71]. In view of the observation

that the translational repression occurs in two waves [71], it is interesting that the sporozoite

specific protein PF3D7_0411400 contains a Dead box helicase like its paralog of DOZI that is

involved in translational repression in gametocytes of Plasmodium berghei [72]. From a gene

expression regulatory perspective are furthermore interesting: three Zinc finger proteins

(PF3D7_0615600, PF3D7_0521300, PF3D7_1008600), and the transcription factor AP2-04

that has mainly been implicated in ookinetes [73]. With respect to the epigenetic regulation,

the histone deacetylase sir2b (PF3D7_1451400) that is involved in epigenetic silencing of var

gene expression[74] is sporozoite specific, in contrast to its paralog sir2a that is not enriched in

sporozoites. Examining the sporozoite specific signaling proteins with respect to their potential

function in maintaining the temporal inactivity of the parasite we noted the RAC-beta serine/

threonine protein kinase PfAKT (PF3D7_1246900) and two 14-3-3 domain proteins

(PF3D7_1422900 and PF3D7_1362100). The PfAKT that is involved in Artemisinin resistance

[75] is specifically interesting in view of the role of its metazoan orthologs, AKT1/2/3, in
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regulating cellular metabolism to support cell survival [76]. In human it phosphorylates a

large number of targets, a number of which are after phosphorylation bound by 14-3-3

proteins. Two 14-3-3 proteins are sporozoite specific: Pf14-3-3I (PF3D7_1422900) and

PF3D7_1362100. Pf14-3-3I has been shown to bind phosphorylated Histone H3 [77]. The Raf

kinase inhibitor RKIP (PF3D7_1219700), which may be a substrate of the calcium -dependent

protein kinase 1 [78], may also be involved in keeping sporozoites in an inactive state as its

human ortholog inhibits the MAPK pathway [79]. Furthermore, with respect to inactivity of

sporozoites it is interesting to mention that Prominin-1/CD133, one of the two human ortho-

logs of the Prominin gene (PF3D7_0104100), is known as a marker for dormant stem cells, e.g.

in melanoma [80] or in Neural cells [81], and has been shown to activate the PI3K/AKT path-

way [82]. Together, these data suggest that these proteins may also modulate sporozoite sur-

vival via a mammalian Akt-like pathway as previously shown in asexual blood stages.

Finally, the presence of the tubulin polymerization promoting protein p25 alpha

(PF3D7_1236600) as well as thioredoxin-like protein (PF3D7_0919300) and thioredoxin-like

associated protein 1 (PF3D7_1230100) whose orthologs are associated with tubulin in T. gondii

[83] are worth noting in view of the essential role of the microtubules in the sporozoite stage

[84]. In contrast to these proteins, the β-tubulin, the two α-tubulins and the other thioredoxin-
like associated proteins associated with tubulin [83] are not enriched in sporozoites. Given the

presence of β- and α-tubulins in all stages of the life-cycle, PF3D7_1236600, PF3D7_0919300

and PF3D7_1230100 may be crucial players involved in providing sporozoites with their char-

acteristic, thin cylindrical shape.

Under-represented pathways

In contrast to the paucity of upregulated processes, there is significant under representation

(FDR =< 0.001) of processes linked to splicing, translation, translation elongation, folding of

proteins as well as proteolysis (S5 Table). These processes are primarily modulated by a num-

ber of sporozoite specific proteins involved in transcriptional silencing e.g. PF3D7_0411400

that contains a Dead box helicase domain[72] and PF3D7_1451400, a histone deacetylase

involved in the epigenetic silencing of virulence (var) gene expression [74]. Furthermore, there

is significant depletion of proteins involved in carbon metabolism: glycolysis and citric acid

cycle (S5 Table).

Selecting sporozoite proteins as targets or markers of past infection

Antibodies that bind sporozoite proteins have been induced in 38 volunteers after chloroquine

chemoprophylaxis with P. falciparum sporozoites (CPS)[13] (S6 Table). Induced antibody pro-

files represent a blue print of immunogenic proteins in sporozoites, liver stages and early

blood stages. Here we focus on the set of sporozoite target proteins that may be used as mark-

ers of previous sporozoite exposure or may act as potential targets for vaccines. Minimal

sequence variation between Pf strains would thereby strengthen the candidature of the pro-

teins for epidemiological or clinical applications, however antibody eliciting proteins including

CSP, show relatively high levels of polymorphisms among sequenced malaria strains (S3 Fig),

and also sporozoite specific proteins show high levels of polymorphisms (S4 Fig). The selection

of proteins that could serve as markers of exposure or vaccine candidates is a compromise

between on the one hand protein sequence conservation and on the other hand the frequency

of volunteers with antibodies to that protein. As the maximum level of sequence variation

between candidate marker proteins we used 8 non-synonymous SNPs per kilobase, which is

lower than the variation in for instance Pfs48/45, a highly conserved gametocyte protein with

8.9 nonsynomymous SNP per kilobase. As the minimum number of people in which a protein
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should elicit antibodies we chose six (out of the 38). Using a “greedy search algorithm” (Meth-

ods) we selected a set of nine proteins of which at least one elicited antibodies per volunteer

(Table 1).

Variation in sporozoite proteins among selected Pf strains NF135 and
NF166

Aside from the criteria that the proteins selected as markers for sporozoite exposure are con-

served in sequenced P. falciparum strains in PlasmoDB, we also required them to be conserved

in two strains that have been used in research into heterologous protection after CPS: NF135

and NF166. We therefore sequenced these strains, as well as NF54 (Methods). The mean cov-

erage of mapped reads in the coding regions ranged from 28 for NF54 to 44 for NF166 (S7

Table). A Phred quality score cut-off of 30 was applied similar to other studies involving Plas-

modium vivax and P. falciparum sequencing and variant calling, [85–88]. Manual examination

of SNPs still uncovered SNPs with a high Phred score (> 100) that were polymorphic within a

single, in principle haploid genome, possibly reflecting mapping issues in duplicated regions.

Next to a Phred score of 30, we also required the presence of a variant nucleotide in at least

75% of the high quality bases. Both criteria were also applied to the indels. Numbers of called

SNPs and indels were roughly similar for NF135 and NF166, reflecting their independent geo-

graphic origins. As expected, NF54 showed much lower numbers of called SNPs and indels

than the other strains, as it is the parental line from which 3D7 is derived (S7 Table). As also

observed in Plasmodb, proteins in NF166 and NF135 showed high levels of polymorphisms

for antibody-binding proteins enriched in sporozoites (S4 Fig). Nevertheless, most of them

had few or no variations in the set of proteins that we selected as markers for previous expo-

sure (Table 2). Lowering the maximum allowed variation in these two strains further, e.g. to

zero polymorphisms for all proteins, did not allow us to select a set of proteins that together

elicited antibodies in all 38 volunteers.

Discussion

The sporozoites stage of the Plasmodium life cycle represents the parasite’s first interaction

with the human immune system and can be used to effectively vaccinate against infection [13].

The set of genes and proteins expressed at this stage has been determined in at least 11 studies

on Plasmodium spp, of which nine on P. falciparum, creating a conundrum of which dataset to

use when studying sporozoite biology, and when deciding to use multiple datasets, how to

Table 2. Putative markers of exposure to sporozoites. Genes selected by the greedy method to cover all volunteers with their gene ID, function and number of volun-
teers with antibodies after CPS immunization as reported by Obiero et al. [13]. The non-synonymous SNPs are given as a proxy for genetic variability, with PlasmoDB and
two sequenced laboratory strains as reference.

Gene ID function No. (%) of volunteers with antibodies Non-syn SNP/kb PlasmoDB Non-syn SNPs

NF135 NF166

PF3D7_0630600 Conserved hyp 20 (52.6) 2.8 0 1

PF3D7_0906500 Arginase 19 (50.0) 6.5 1 1

PF3D7_1456700 Conserved hyp. 19 (50.0) 2.9 0 0

PF3D7_0719700 40S ribosomal S10 15 (39.5) 0 0 0

PF3D7_1219100 Clathrin heavy chain 12 (31.6) 5.5 0 2

PF3D7_0301700 Hypothetical exp. 10 (26.3) 6.3 0 1

PF3D7_1122700 Conserved hyp. 9 (23.7) 7.8 0 0

PF3D7_1455800 LCCL prot. 6 (15.8) 4.1 0 0

https://doi.org/10.1371/journal.pcbi.1008067.t002

PLOS COMPUTATIONAL BIOLOGY Plasmodium sporozoite-specific genes from data integration

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1008067 April 30, 2021 13 / 22

https://doi.org/10.1371/journal.pcbi.1008067.t002
https://doi.org/10.1371/journal.pcbi.1008067


integrate the datasets. The individual sporozoite studies did not focus on determining which

expression patterns are specific to the sporozoite stage, rather they examined the presence of

transcripts or proteins. Such data of course can be integrated by combining them in a relatively

straightforward manner as has e.g. been done for sporozoite RNA expression[89], but that

does not address how specific the expression of a gene is to sporozoites. By combining RNA

and protein expression data measured across life stages with sets of proteins known to be pres-

ent or absent from sporozoites in a Bayesian manner we have created a single list of proteins

ranked by their overrepresentation in sporozoites relative to other stages. Such overrepresenta-

tion is relative, not absolute. Proteins scoring high on the list can still be expressed at other

stages than sporozoites, albeit it at much lower levels. Despite translational repression, which

is expected to reduce the correlation between mRNA and protein levels, including the mRNA

levels led to a better performance at the protein level than only including proteomics data.

Cross validation shows furthermore that the integrated list is better at separating the gold stan-

dard positive and negative data sets from each other than the individual data sets.

In this study, we did not separate datasets derived from oocyst sporozoites (the earliest

form of this stage) and salivary gland sporozoites (the mature form). There may have been sub-

tle differences in protein expression between sporozoites in the two differing host environ-

ments (midgut versus salivary gland) that were not detected. However, oocyst-sporozoite data

represent a minority of the combined data set (2/26) and are highly correlated with salivary

gland-derived sporozoite data (S1 Fig). A list of proteins with its own sporozoite specificity

score will be a valuable resource for studying sporozoite biology and understanding novel pro-

tein function. Genetic manipulations of malaria parasites can only occur during blood stage

development, which makes studying proteins that are essential for both blood and sporozoite

stages difficult. Using our list in combination with the recently published piggyBac whole

genome mutagenesis study [90], will allow researchers to determine the approach required for

generating a knockout parasite i.e. whether an inducible (for essential blood stage and low spo-

rozoite specificity score) or straight knockout (for a high sporozoite specificity score) system

should be considered.

In our analysis, we found an enrichment in the proteins involved in type II fatty acid syn-

thesis which is consistent with literature [65]. An increased output of lipids from this pathway

may feed into the production of GPI anchors that are made up of different sugar and lipid

components. We did observe a slight enrichment in proteins involved in creating GPI anchors,

i.e. the three GPI mannosyltransferases. Although there is currently no established relationship

between type II fatty acid pathway and synthesis of GPI anchors[50], it may be interesting to

pursue it for this stage of the life-cycle given the importance of CSP–the most abundant pro-

tein on sporozoites, that is anchored to the surface via a GPI anchor.

Processes involved in the production, folding and catabolism proteins were under-repre-

sented in the sporozoite specific and enriched list. Similarly, genes involved in metabolism

such as those part of glycolysis and citric acid cycle were also under-represented, suggestive of

sporozoites existing in a low metabolic state. Sporozoites are released in the mosquito’s circula-

tion as early as day 12 post blood meal [3] and make their way to the salivary gland. Neverthe-

less they are generally less infectious for liver cells until after a period of maturation within the

salivary gland[91]. Although the exact nature of this maturation is not known, there is evi-

dence that these parasites remain in a latent state until ejected into the human host[4,92]. To

understand how sporozoites exist in this state of inactivity, we have identified several interest-

ing targets such as an ortholog of AKT1/2/3, two 14-3-3 proteins, an ortholog of the raf kinase

inhibitor and an ortholog of the quiescent stem cell marker prominin/CD133.

Our integration prioritizes proteins based on their presence in datasets in which Gold Stan-

dard proteins are present and their absence from data sets in which negative Gold Standard
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proteins are present. Those gold standards were deliberately based on other types of data than

the ‘omics data that were integrated: western blot and immunofluorescent assay data. The

cross validation results with respect to the gold standard proteins underscore the quality of

gold standards. Nevertheless, for some of those proteins the evidence from those data is not

consistent with the ‘omics data types, like the STARP and LIMP proteins that score low on the

list of proteins ranked by their overrepresentation in sporozoites. One can then of course leave

such proteins out from the gold standards and redo the analysis. We have decided not do that

as it makes the procedure opaque and the runs the risk of circular arguments that inflate the

results. Nevertheless, we have left out the STARP protein in deciding upon which proteins to

call “enriched” in sporozoites.

Sequence variation among Plasmodium strains is pervasive [93], and is possibly responsible

for the limited heterologous protection after CPS vaccination with NF54 and challenge with

NF135 and NF166 [94]. Indeed as we have shown here both sporozoite specific proteins and

proteins that elicit antibodies are highly polymorphic, and only a fraction of those are conserved

between NF54, NF135 and NF166 (S4 and S5 Figs). The correlation between immunogenicity

and level of sequence conservation suggests that antigenic drift plays a role in the sequence vari-

ation. It is not clear whether antigenic drift would also be responsible for high variation among

sporozoite specific proteins, as we did not observe a correlation between the Bayesian score of

sporozoite specificity and the immunogenicity. Nevertheless, among the large number of sporo-

zoite proteins that elicit antibodies there are still proteins that show limited sequence variation

and allow selecting of a small set of proteins that are well conserved. Antibodies generated

against these targets could serve as markers of current or previous exposure to sporozoites and

are potentially useful in epidemiological settings with low and/or waning transmission for

instance in malaria elimination programs. Few of the identified conserved targets are (poten-

tially) membrane bound and could serve as targets for sporozoite vaccines.

In summary, we show a set of previously unidentified sporozoite-specific proteins and

assign functions potentially related to the enduring state of inactivity of the salivary gland spo-

rozoite. We further identify sporozoite-directed humoral immune responses and their poten-

tial as functional or diagnostic responses that can be elucidated in future studies.
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(PDF)

S3 Fig. Number of people in whom antibodies against Plasmodium protein were detected

by protein microarray after CPS immunization versus the density of non-synonymous

polymorphisms. Antibody prevalence shows moderate correlation with the number of Non-

synonymous SNPs per kb coding region of the respective gene (PlasmoDB).

(PDF)

S4 Fig. Combined levels of polymorphisms for strains NF135 and NF166 among stage-spe-

cific proteins. Sporozoite proteins, selected at various levels of stringency, gametocyte pro-

teins, and the remaining proteins. Sporozoite enriched or sporozoite specific proteins show

relatively high levels of polymorphisms, while gametocyte proteins are clearly depleted of poly-

morphisms. Furthermore, antigenic proteins of either stage are enriched in polymorphisms

relative to non-antigenic proteins.

(PDF)

S5 Fig. Venn diagram with Plasmodium falciparum proteins that elicit antibody responses

and have non-synonymous SNPs. SNPs in NF135 (blue) and NF166 (yellow) compared to the
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reference in NF54/3D7. The grey shaded area contains proteins without any SNPs, they are

hence identical to the 3D7 reference and NF54 strain in both NF135 and NF166. The overlap

(light green) shows proteins that have SNPs in both NF135 and NF166, and 27 proteins (dark

green) have the exact same SNPs in both strains.

(PDF)
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