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Abstract

Embryonic stem cells (ESCs), characterized by their ability to both self-renew and differentiate 

into multiple cell lineages, are a powerful model for biomedical research and developmental 

biology. Human and mouse ESCs share many features, yet have distinctive aspects, including 

fundamental differences in the signaling pathways and cell cycle controls that support self-

renewal. Here, we explore the molecular basis of human ESC self-renewal using Bayesian 

network machine learning to integrate cell-type-specific, high-throughput data for gene function 

discovery. We integrated high-throughput ESC data from 83 human studies (~1.8 million data 

points collected under 1100 conditions) and 62 mouse studies (~2.4 million data points collected 

under 1085 conditions) into separate human and mouse predictive networks focused on ESC self-

renewal to analyze shared and distinct functional relationships among protein-coding gene 

orthologs. Computational evaluations show that these networks are highly accurate, literature 

validation confirms their biological relevance, and RT-PCR validation supports our predictions. 

Our results reflect the importance of key regulatory genes known to be strongly associated with 

self-renewal and pluripotency in both species (e.g. POU5F1, SOX2, and NANOG), identify 

metabolic differences between species (e.g. threonine metabolism), clarify differences between 

human and mouse ESC developmental signaling pathways (e.g. LIF-activated JAK/STAT in 

mouse; NODAL/ACTIVIN-A-activated FGF in human), and reveal many novel genes and 

pathways predicted to be functionally associated with self-renewal in each species. These 

interactive networks are available online at www.StemSight.org for stem cell researchers to 
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develop new hypotheses, discover potential mechanisms involving sparsely annotated genes, and 

prioritize genes of interest for experimental validation.

Introduction

Embryo-derived pluripotent stem cells are a powerful model system for biomedical research 

and the study of developmental biology. Among the most studied embryo-derived stem cells 

are human and mouse ESCs (hESCs and mESCs). Since first isolated from human embryos 

in 1998 [1], hESCs have been of particular interest to the research community as a tool for 

manipulating cell fate, analyzing characteristics of induced pluripotent stem (iPS) cells and 

cancer-stem-like cells, and testing potential medical and pharmaceutical applications [2].

All ESCs express common markers of pluripotency, such as POU5F1 (also known as 

OCT4), SOX2, and NANOG, but there are many known differences between species, 

including morphological, molecular, and epigenetic characteristics that are reflected in ESCs 

grown in culture. hESCs are derived from the inner cell mass (ICM) of blastocysts 5-8 days 

post fertilization and form flat, two-dimensional round colonies with well defined 

boundaries, whereas mESCs are isolated from the ICM of blastocysts 3.5-4.5 days post 

fertilization and form tight, dome-shaped colonies [3]. hESCs respond to cooperative 

signaling between NODAL/ACTIVINA-activated FGF and TGF-β signaling pathways to 

sustain prolonged self-renewal in vitro [1, 3, 4]. In contrast, mESCs grown in culture require 

growth factors, LIF and BMP4, to activate JAK/STAT signaling [5-7]. Self-renewal in 

mESCs can be boosted by small molecule inhibitors that block differentiation cues from the 

FGF/ERK signaling cascade and mimic WNT/β-catenin signaling [8]. Interestingly, the 

same culture conditions that support self-renewal in mESCs can drive differentiation in 

hESCs. For example, hESCs exposed to LIF and BMP4 yield extraembryonic phenotypes, 

and FGF inhibition promotes neuroectoderm commitment [9]. In general, well-defined, 

standard protocols exist for growing mESCs in culture using cell lines of similar genetic 

backgrounds (predominantly derived from 129S/P/T substrains) [10, 11]. However, hESC 

cell lines have been derived from genetically distinct embryos in multiple laboratories, each 

using different media cocktails and protocols to promote self-renewal and the pluripotent 

state; consequently individual hESC cell lines may respond differently when grown under 

the same culture conditions [12].

mESCs share epigenetic traits of preimplantation blastocysts and are said to be at the 

“naïve” or primitive developmental ground state of pluripotency, prior to X-chromosome 

inactivation and genomic imprinting [11]. These naïve ESCs show no differentiation bias, 

can self-renew indefinitely in vitro, and can be expanded clonally without compromising the 

pluripotent state [13]. In addition, mESCs can be genetically modified, then reintroduced 

into preimplantation embryos to generate high-grade chimeric mice [11, 14]. In contrast, 

hESCs are said to be “primed” for differentiation and female cells have typically undergone 

random inactivation of one X chromosome [11, 15], however, there is variability in 

imprinted genes and other DNA methylation patterns depending on culture conditions and 

passage number [15, 16]. Intriguingly, hESCs share many molecular and epigenetic 

characteristics with mouse pluripotent stem cells isolated from the post-implantation epiblast 

Dowell et al. Page 2

Stem Cells. Author manuscript; available in PMC 2015 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(mEpiSCs) [13, 14, 17], leading to the hypothesis that hESCs and mEpiSCs are both 

“primed.” Although the chimerism assay may not be used with human cells for ethical 

reasons, studies have shown that lower primate ESCs cannot produce high-grade chimeras 

when injected into blastocysts, nor can they contribute to the germline [13, 18], indicating 

that lineage potential is limited in vivo. While these phenotypic contrasts are clear, the 

molecular foundations of naïve versus primed ESCs have not yet been fully characterized.

Understanding the differences between pluripotent cell types is of increasing interest and 

value as we develop new methods to “reprogram” adult cells to an ESC-like state for 

ongoing research or therapeutic applications. In vitro methods used to reprogram different 

types of human and mouse adult cells into induced pluripotent stem cells (iPSCs) vary 

widely, use different combinations of reprogramming factors (e.g. POU5F1, SOX2, KLF4, 

KLF2, MYC, LIN28A) and experimental conditions, and yield ESC-like cells with different 

degrees of developmental potential [19-21]. In mouse iPSCs, Nanog is critical for both 

blocking differentiation and achieving a naïve pluripotent state [9]. Human iPSCs have also 

been shown to require NANOG to block differentiation, but, to date, attempts to derive or 

reprogram hESCs to a naïve state have been unsuccessful [13].

Because naïve mESCs and primed hESCs respond to different signaling pathways to sustain 

and exit the self-renewing state [13], cross-species systems-level analyses of these cell types 

can reveal molecular details that will assist researchers in assessing the pluripotent state of 

embryo-derived cells and reprogrammed adult cells, and reveal novel functional homologs 

that support self-renewal and related early developmental processes. While many systems 

biology studies have been conducted to explore the molecular basis of self-renewal and 

pluripotency through gene expression profiles or regulatory networks of transcription factor 

binding, these efforts have been largely species-specific, restricted to data from a small 

number of cell lines, limited to a single experimental platform, and/or focused on a single 

regulatory characteristic influencing cell fate [3, 9, 22-24]. The goals of this study are to 

discover potential novel regulators of ESC stem cell renewal in hESCs and perform cross-

species comparative analyses to further our understanding of shared and distinct molecular 

characteristics of hESCs and mESCs.

We applied a Bayesian network (Bayes net) machine learning approach based on species- 

and cell-type-specific data integration, which we previously applied to mESCs [25], to 

produce a consensus network that predicts gene function associations in the context of hESC 

self-renewal. Bayes nets, a type of supervised machine learning, are particularly useful for 

gene function discovery as they provide a statistically principled method to model 

relationships among genes given a solid foundation of biological knowledge [26-31]. To 

further our understanding of commonalities and differences between human and mouse 

ESCs, we generated comparative probabilistic networks for ESC self-renewal using a 

training set that included examples experimentally validated in hESCs, mESCs, or both 

species. The results of this study yield insights into novel genes involved in hESC self-

renewal, and provide new comparisons of the molecular characteristics of the most widely-

studied model ESC systems.
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Materials and Methods

Master Gene List and Training Set Construction

Using a homology report from Mouse Genome Informatics (MGI) [32], we created a master 

gene list of 17,342 protein-coding mouse and human gene orthologs with one-to-one 

homology associations (Supplemental Table S1) [33]. Our positive training examples 

(Supplemental Table S2) consisted of 2077 manually curated pair-wise gene relationships 

involving 365 genes associated with mouse and/or human ESC self-renewal based on 108 

recent journal articles (Supplemental Table S3), or annotated to early embryonic 

developmental signaling pathways by the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) [34] and WikiPathways [35]. Negative/background training examples were 

generated in a 1:10 ratio by randomly selecting 20,770 gene pairs not involving any genes in 

positive training examples (Supplemental Table S4).

Evidential Dataset Collection

We assembled a compendium of high-throughput hESC data, representing 83 independent 

research studies and consisting of ~1.8 million data points from 55 hESC cell lines (though 

predominantly H1 and H9), collected under 1100 conditions, using 6 different high-

throughput data types, and encompassing more than 12 billion gene-pair measurements 

(Table 1; Supplemental Table S5). For mESCs, we updated our existing compendium of 

high-throughput mESC data [25] to include work from 62 independent research studies, 

consisting of ~2.3 million data points from 35 mESC cell lines (all derived from 129S/P/T 

substrains), spanning 1085 conditions, using 5 different high-throughput data types, and 

encompassing more than 7 billion gene-pair measurements (Table 1; Supplemental Table 

S6).

Construction of Bayes Nets and Inference of Posterior Functional Relationship Scores

We trained separate naïve Bayes nets using the same gene list and training set, but with 

species-specific ESC data compendiums, to predict the probability of functional associations 

among 150,363,811 protein-coding gene pairs based on patterns observed in the integrated 

evidential data. Learning was achieved by computing the posterior probability of a 

functional relationship between training set gene pairs given all evidential data [36-39] as 

previously described (Equation 1) [25].

Supporting Information
Supplemental Tables S1 through S10 are available online at http://stemsight.org/stemdata.html#comp_info
Table S1. Protein Coding Gene Orthologs
Table S2. ESC Self-Renewal Positive Training Set Edges and Supporting Literature References
Table S3. Journal Articles Referenced to Curate Positive Training Set Edges
Table S4. ESC Self-Renewal Training Set Answer File (Positive and Negative Training Examples)
Table S5. hESC Data Compendium
Table S6. mESC Data Compendium
Table S7. hESC and mESC Network Gene Ontology Annotation Enrichment
Table S8. Comparative Network Topology Statistics
Table S9. Positive Training Set Posterior Edge Weight and Rank Order Novel Insights into Human Embryonic Stem Cell Self-
Renewal
Table S10. Differential Network Analysis
File S1. Detailed Methods and Materials
In addition, the following data files are available online at www.StemSight.org: mESC Network graph file (~10 million edges; edge 
weight ≥ 0.25) and hESC Network ((~16 million edges; edge weight ≥ 0.25).
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(1)

Where FR is a binary hidden variable representing whether a gene pair is functionally 

related, P(FR=1) is the predicted probability that a pair is functionally related, Ei represents 

the evidence score of the gene pair for the ith dataset, and Z is a normalization factor.

Naïve Bayes nets impose a strict assumption of independence between evidence data that is 

likely violated by many of our input datasets, as such, we performed regularization to 

quantitatively correct for the amount of redundant information contained in each dataset as 

compared to all other datasets in the compendium (Equations 2 and 3) as previously 

described [25].

(2)

(3)

Where Sk is a heuristic sum of shared information relative to the dataset's entropy used to 

weight the strength of prior belief in a uniform distribution for the dataset, H refers to 

Shannon entropy, and I(Di;Dk) refers to mutual information. This ultimately results in 

Equation 3 (a variation on Equation 1), such that P(FRij|E1, E2,...En) is the predicted 

probability that there is a functional relationship between genes i and j given evidence in 

datasets 1 through n, Z is a normalization factor, α is a pseudocount regularization parameter 

used to modulate the strength of regularization (higher pseudocount values weaken influence 

of redundant datasets), and Dk is the number of bins used to discretize continuous data 

values in dataset K.

A low Sk indicates that the information contained in the dataset is highly unique, while a 

high score indicates that the datasets contained shared (redundant) information. The 

redundancy score for each dataset used to train the Bayesian classifier is listed in 

Supplemental Tables S5 (hESC) and S6 (mESC). We conducted performance tests to 

evaluate effects of regularization and selected a pseudocount value of 70 to regularize mESC 

evidential data, and a value of 100 for hESC evidential data to achieve similar posterior 

probability distributions.

Computational Performance Assessment

To assess biological content and functional relevance of our networks, we used functional 

genomics tools [32, 40] to evaluate Gene Ontology (GO) term enrichment [41], validate that 

known gene pairs were strongly connected in the probabilistic network, and identify novel 

genes with strong functional linkages supported by evidential data. These computational 

validations, including standard machine learning metrics and cross validation, show that our 

networks are highly accurate and a powerful tool for comparative analysis (Supplemental 

Figure S1; additional details in Supplemental File S1, Supplemental Table S7).
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Network Topology and Correlation Analyses

To analyze the network topology we calculated the scaled degree (Ki) for each gene as 

previously described [25, 42]. To determine genes strongly associated with self-renewal 

(rather than the general connectivity measured by degree), we identified a set of “core” self-

renewal genes from our positive training set for each species as those genes tightly 

connected to other training set genes as previously described (173 mESC genes; 111 hESC 

genes) [25]. Then for every gene in the genome, we calculated the average posterior 

probability of functional relationship to these “core” self-renewal genes, which we refer to 

as the self-renewal correlation (SRC) score (Supplemental Table S8). We used these SRC 

values to rank genes from most strongly correlated to self-renewal (ranks near 1) to least 

correlated to self-renewal (ranks near 17,342) (Supplemental Table S9). We produced a 

differential network by subtracting the posterior edge weights for each gene pair (mESC 

minus hESC probability) to identify pairs strongly associated in one network, but not the 

other. Spearman correlation coefficients were used to determine the conservation of edge 

weights between networks (Supplemental Table S10).

Experimental Validation

H1 hESCs were obtained from WiCell Research Institute (Madison, WI). The hESCs 

(passages 30-50) were grown on mitotic-inactivated mouse embryonic fibroblast cells 

(MEFs) in ES Medium (ESM) containing DMEM/F-12 (Invitrogen, Carlsbad, CA), 20% 

knockout serum replacement (KSR, Invitrogen), 0.1 mM nonessential amino acids 

(Invitrogen), 2 mM L-glutamine (Mediatech, Inc, Herndon, VA), 0.1 mM beta-

mercaptoethanol (Sigma, St. Louis, MO), and 4 ng/ml FGF2 (PeproTech, Rocky Hill, NJ) 

[43, 44]. Embryoid body (EB) differentiation was carried out as previously described [45]. 

EBs at day 4 and 6 were harvested for RNA isolation. Quantitative RT-PCR (qPCR) was 

performed and adjusted to yield equal amplification of glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) as an internal standard.

Further Materials and Methods details are provided in Supplemental File S1.

Results and Discussion

We used a cell-type-specific naïve Bayes network methodology (Figure 1) [25] to create 

separate probabilistic biological networks for hESCs and mESCs focused on self-renewal 

and closely related biological processes (e.g. pluripotency and cell fate determination). As 

input data, our Bayes nets take: 1) a training set of prior knowledge (also known as a gold 

standard) comprised of protein-coding gene pairs known to be functionally related (positive 

training examples) and pairs believed to be unrelated (negative/background training 

examples), and 2) independent, whole-genome high-throughput datasets (observed 

evidential data). Based on these inputs, Bayes nets “learn” significant patterns in the 

evidence, assess data reliability, and then probabilistically predict novel relationships among 

protein-coding genes based on the most reliable data [46, 47]. (Additional details in 

Supplemental Figure S1 and Supplemental File S1.) The resulting networks consisted of 

150,363,811 gene pairs that predicted the strength of functional associations among 17,342 

protein-coding gene orthologs based on patterns observed in integrated genomic data. 
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Computational evaluations showed that these networks were highly accurate (Supplemental 

Figure S1). The topology of both the human and mouse networks show that a subset of 

genes (roughly 10%, or ~1700) are highly connected, as determined by scaled degree (a 

measure of global connectivity for each gene), while the majority of genes are less well 

connected. Further, the connectivity profiles are similar between both the human and mouse 

networks (Supplemental Figure S2, full results in Supplemental Table S8). We used GO 

term enrichment and network connectivity metrics to assess biological content and 

functional relevance of our these networks, validate that gene pairs known to significantly 

influence mESC self-renewal were strongly connected in these probabilistic networks, and 

identify novel genes with strong functional linkages supported by evidential data 

(Supplemental Tables S7-S8).

hESC Network Predicts Novel Self-Renewal Genes

Functional associations to known self-renewal genes (SRC scores, see Methods and 

Materials) were calculated for all 17,342 genes in the hESC network and sorted to determine 

SRC ranks. As expected, many well-studied genes in our training examples are highly 

ranked by this metric, including POU5F1, SOX2, and NODAL (Supplemental Table S8). 

The top 12 novel genes (not included in the positive training set) identified by SRC ranks 

were TUBB, HSP90AB1, PELI1, SEMA6A, SLC7A5, RGMB, PCBP1, TUBB6, HSPA4, 

SFRP1, LRRN1, and PRDM14 (Table 2). Literature validation of these genes confirmed that 

PRMD14 has recently been shown to play a role in hESC self-renewal and pluripotency [48, 

49], and several have been implicated in cancers, including HSP90AB1, SFRP1, SEMA6A, 

and PRDM14 [50-53]. TUBB and TUBB6 are β-tubulin genes, which could play a role in 

hESC colony morphology as β-tubulins help define cell shape [54] and could regulate self-

renewal through nuclear positioning [55]. Several other highly ranked genes are known to be 

involved in embryonic developmental signaling pathways: SFRP1 has been shown to play a 

key regulatory role in WNT receptor signaling and has been identified as a downstream 

target of Sonic Hedgehog signaling [56, 57]; SEMA6 has been associated with non-canonical 

WNT Receptor Signaling and Planar Cell Polarity signaling [52]; and RGMB has been 

shown to play a regulatory role in BMP signaling [58]. In further support of these 

predictions, we measured the expression of our top novel genes (excluding β-tubulins) in 

undifferentiated H1 hESC cell lines, and during differentiation into embryoid bodies. In all 

cases, expression levels of our novel candidate genes were significantly reduced in the 

differentiated state compared to the self-renewing state (Supplemental Figure S3).

Human and Mouse ESC Networks are Largely Similar and Significantly Correlated

To further evaluate our novel hESC network, we performed a comparative analysis with an 

updated version of our previous mESC network [25], generated using the same master list of 

protein-coding gene orthologs and training set. Differential network analysis showed that the 

mESC and hESC networks are highly correlated, and most genes share the same functional 

partners/interactors, as indicated by the posterior probability of edges (Spearman's rank 

correlation coefficient ρ = 0.43, p-value < 1×10−300; Supplemental Figure 4A). In particular, 

positive training set edges were significantly correlated between species (Spearman's rank 

correlation coefficient ρ = 0.4435, p-value = 1.08−93). Our results confirm the conserved 

roles of genes known to be involved in early developmental transcriptional regulation and 
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stem cell maintenance in both species, including POU5F1|Pou5f1 (hESC rank: 1|mESC 

rank: 1), SOX2|Sox2 (2|5), and NANOG|Nanog (128|56). The top 1% of genes most 

conserved in both the mouse and human ESC networks significantly overlap 

(Hypergeometric p-value= 9.17−15) and were highly enriched for embryonic-stem-cell-

related biological processes, including stem cell maintenance (GO:0010074), negative 

regulation of cell differentiation (GO:0045596), cell fate commitment (GO:0045165), 

regulation of transcription, DNA-dependent (GO:0042127), transcription factor activity 

(GO:0003712) and regulation of gene expression (GO:0010468) using Mus musculus 

(laboratory mouse) GO annotations (Table 3, Supplemental Tables S7 and S8). We observed 

some species-specific annotation biases [33] in that the same set of genes evaluated using 

Homo sapiens GO annotations indicated enrichment for transcription factor activity, 

regulation of transcription, and WNT receptor signaling pathway (GO:0016055).

As described in Methods, we identified 173 core self-renewal genes in the mESC network 

and 111 core self-renewal genes in the hESC network with a significant overlap of 73 shared 

genes (Supplemental Figure 4B; Supplemental Table S8; Hypergeometric p-value = 8.56−7). 

As expected, well-studied genes known to play a significant role in self-renewal and 

pluripotency across species were ranked highest in both networks. These key players 

included well-known transcriptional regulators: POU5F1|Pou5f1 (1|1), SOX2|Sox2 (2|5), 

and NANOG|Nanog (128|56) (Table 3, Supplemental Table S9). Highly conserved novel 

genes (not included in training set examples) included PARP1|Parp1 (21|97), a regulator of 

chromatin structure, transcription, and DNA damage repair that has recently been shown to 

be required for reprogramming mouse embryonic fibroblasts (MEFs) to a pluripotent state 

[59, 60]; and IFITM1|Ifitm1 (107|15), an interferon-induced transmembrane protein 

identified as a downstream target of WNT receptor signaling during gastrulation involved in 

somitogenesis and mesoderm formation [61].

In our training examples, we included components of KEGG signaling pathways and 

WikiPathways known to influence early development and ESC cell fate, such as FGF and 

JAK/STAT signaling [13, 35, 62, 63]. However, as these pathways include many 

homologous components, it is likely that only a subset of documented pathway participants 

are active in ESCs, and some interactions may be species specific (e.g. LIF-activated JAK/

STAT signaling in mESCs, and NODAL/ACTIVIN-A-activated FGF signaling in hESCs). 

As such, the bulk of training set genes with low SRCs in both networks consist of signaling 

pathway participants that appear to be more likely involved in signaling in a cellular context 

other than ESCs, such as FGF22|Fgf22 (15800|14199), WNT10A|Wnt10a (12140|10554), 

and INHBA|Inhba (12583|14301). Surprisingly, given its role in X-chromosome inactivation 

[15, 64], XIST|Xist (13765|11727) ranked poorly in both networks. This could be because, 

while it is measured by most human and mouse microarray platforms, it may not correlate 

with other specific gene expression regulatory and protein-DNA binding genes that are 

strongly associated with self-renewal. While our compendiums contain extensive high-

throughput data from a broad range of experimental techniques (Table 1), the bulk of our 

data for both species is derived primarily from gene expression studies (using microarray or 

RNA-seq technologies) and from protein-DNA binding data (from ChIP-chip and ChIP-seq 

assays). We show that these data can be highly informative for elucidating protein function 
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in a specific cellular context; however, the scarcity of additional high-throughput data types, 

such as protein-protein-binding assays performed in ESCs, limited our approach to 

identifying genes related primarily through expression or direct transcriptional regulation.

Predictive Networks Emphasize Important Signaling Pathway Differences

Although the mESC and hESC networks are highly correlated, suggesting that gene 

functional associations in the context of ESC self-renewal are largely conserved, there are 

striking differences (Table 3, Supplemental Table S10). Divergent functional linkages are 

particularly evident in developmental signaling pathways and our predictive networks 

recapitulate many known differences in signaling cues that prompt naïve mouse versus 

primed human ESCs to sustain or exit a self-renewing state. To visualize these differences, 

we created predictive mESC and hESC developmental signaling pathways using gene 

elements identified in subsections of KEGG pathways, overlaid with our predicted 

connection probabilities and functional correlations to self-renewal (SRCs) for those genes 

(Figures 2 and 3).

For example, FGF signaling has been shown to play an important role in regulating ESC 

self-renewal and differentiation (as well as myriad other processes) and may be involved in 

promoting the ESC transition from a naïve to primed pluripotent state [65]. Mice and 

humans have 22 FGF ligands and 5 FGFR receptors, each with specific expression patterns 

that change over time during early development, and different ligand-receptor pairs have 

varying functional roles depending on the cellular context. In mESCs, FGF4-activated ERK 

signaling promotes differentiation [65], whereas in hESCs, FGF2-activated ERK signaling 

sustains self-renewal [8, 65]. We compared functional associations among FGF ligand-

receptor pairs using our hESC and mESC networks and found our predictions clearly 

recapitulate known differences between species (Figure 2). The FGF2|Fgf2 (48|14300) 

ligand was strongly correlated to self-renewal in the hESC network only; while FGF4|Fgf4 

(3797|156) and FGF5/Fgf5 (2965|308) ranked highest in the mESC network only. In both 

species, these active FGF ligands were strongly linked to the FGFR1|Fgfr1 (126|302) and 

FGFR2|Fgfr2 (198|379) receptors, while the FGFR3|Fgfr3 (170|6063) and FGFR4|Fgfr4 

(1191|7560) receptors were strongly linked only in the human network. In addition, both our 

hESC and mESC networks showed high-ranking SRCs for the FGF19|Fgf15 (144|622) 

ligand, though in humans it was associated with the FGFR1|Fgfr1 (126|302) and FGFR3|

Fgfr3 (170|6063) receptors, while in mice this ligand was associated primarily with FGFR2|

Fgfr2 (198|379). In both species, FGF19|Fgf15 is expressed in the fetal brain and mediates 

differentiation to the neuroectoderm [66, 67].

We also examined LIF-activated JAK/STAT signaling, as LIF promotes self-renewal by 

activating the JAK/STAT3 and PI3K/AKT signaling pathways in mESCs, but is not required 

by hESCs to sustain self-renewal [13, 62]. While STAT3|Stat3 (202|485) is strongly 

associated with self-renewal in both species in our networks, it appears that the mode of 

regulation may be diverged. This difference is clearly supported in our probabilistic 

pathways focused on JAK/STAT signaling stimulated by the Interleukin-6 (IL-6) family of 

cytokines (Figure 3) [68]. In the mESC network, a strong connection exists between the LIF|

Lif (3457|1317) cytokine and its well-characterized signal transducer IL6ST|Il6st (also 
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known as gp130; 9107|347), which in turn is tightly linked to tyrosine kinase JAK3|Jak3 

(10600|3126) and then on to STAT3|Stat3 (202|485). These predicted linkages reflect the 

most well-documented LIF-activated IL-6 JAK/STAT signaling cascade in mESCs [69-71]; 

however these strong associations are not present in our hESC network. Our mESC results 

also showed functional linkages between LIF|Lif and the IFNGR2|Ifngr2 (5801|946) 

receptor, which associates most strongly with JAK1|Jak1 (2789|3808) and JAK2|Jak2 (6625|

1989), both of which strongly link to STAT3|Stat3.

In contrast, within the confines of this JAK/STAT pathway subset, the hESC network 

predicts that LIF and the many other IL-6 cytokines are not strongly associated with self-

renewal (based on SRC scores), and shows only weak connections between LIF and the 

Il6ST signal transducer [72]. Rather, in hESCs, the cytokines IL11|Il11 (2939|15541) and 

LIF|Lif were moderately associated with the IFNGR1|Ifngr1 (2701|6655) and OSMR|Osmr 

(2060|8138) receptors, which were moderately linked to the JAK1|Jak1 (2789|3801) and 

TYK2|Tyk2 (11394|8747) tyrosine kinases, respectively (note that while Tyk2 is annotated in 

the mouse JAK/STAT pathway by KEGG, it is not listed as a participant in the human 

KEGG pathway). Global expression profiling in mESCs has shown that the interferon 

gamma receptor IFNGR1|Ifngr1 is regulated by POU5F1|Pou5f1 [73], and although not 

documented as active in early embryonic development, OSMR|Osmr is predicted to have a 

strong functional association with POU5F1/Pou5f1 supported by both gene expression and 

protein-DNA-interaction data in the human network. In contrast to these moderate 

associations with STAT3, our hESC network predicts strong STAT3 associations with 

members of other signaling pathways, including TCF7L1, FGF2, FGFR1, and BMPR2, 

suggesting potentially significant cross-talk and/or alternate modes of STAT3 regulation. 

However, these strong associations are not observed for Stat3 in our mESC network, where 

Stat3 is most strongly associated with known LIF and JAK/STAT signaling pathway 

members, such as Fos, Pim1, and Spry4.

Metabolic Differences Between Species Highlighted in Predictive Networks

One of the most striking differences between our mouse and human ESC networks concerns 

threonine catabolism, which is required for mESC self-renewal, likely through the TDH|Tdh 

(L-threonine dehydrogenase) gene, which supports accelerated cell cycle kinetics by 

catabolizing threonine into glycine and acetyl-CoA, which is used by the TCA cycle to 

generate ATP [74, 75]. In our mouse network, TDH|Tdh (11393|26) has a strong correlation 

to mESC self-renewal and is tightly linked to many core self-renewal genes, including 

POU5F1|Pou5f1 (1|1), SOX2|Sox2 (2|5), RIF1|Rif1 (14|33), and NR0B1|Nr0b1 (5583|487). 

The functional relationship between Tdh and these genes is largely supported by ChIP-chip 

binding data from studies investigating the regulatory circuitry of mESCs and microarray 

data from a study analyzing mESC differentiation (Figure 4B). In contrast, TDH is not 

correlated to self-renewal in our hESC network and not tightly connected to any genes in our 

positive training set (Figure 4A). Differential and functional analyses of the mESC and 

hESC networks did not reveal a direct metabolic equivalent to threonine dehydrogenase in 

humans. Literature validation showed that the human TDH gene encoding threonine 

dehydrogenase has been rendered non-functional due to 3 mutations (2 AG-to-GG splice 

acceptor mutations in Exons 4 and 6, and a nonsense mutation in Exon 6) [74]. However, 
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hESCs grow at a slower rate than mESCs (with a doubling time of 35 hours as opposed to 

every 4-5 hours), and it is not yet known if the difference in growth rate might be due to the 

absence of TDH or if there may be some selective advantage for inactivating TDH in 

humans [74-76].

Comparative Network Analyses Reveal Novel Species-Specific Differences

To discover novel species-specific differences, we focused on the top 0.001% (1503) of 

gene pairs with the greatest difference between the mESC versus hESC networks 

(Supplemental Table S10). There were 86 genes involved in edges strongly supported only 

in the mESC network, including genes annotated to chordate embryonic development (GO:

0043009), stem cell maintenance (GO:0019827), negative regulation of cell differentiation 

(GO:0045596), and regulation of transcription, DNA-dependent (GO:0042127). In contrast, 

179 genes were involved in edges supported only by the hESC network, including genes 

annotated to WNT Receptor Signaling (GO:0016055), MAPK Cascade (GO:0000165), FGF 

Signaling (GO:0008543), ATP-Binding (GO:0005524), and cell cycle regulation (GO:

0051726), emphasizing the different set of developmental signaling cues observed in early 

cell fate decisions in hESCs.

These key differences were echoed when we compared the top 1% of novel genes ranked by 

SRC (the 173 highest ranking genes not included in our positive training set examples). Top-

ranked novel mESC genes were predominantly associated with differentiation and 

transcriptional regulation processes, whereas the novel hESC genes were largely related to 

regulation of translation (GO:0006417), microtubule-based process (GO:0007017), 

regulation of cell cycle (GO:0051726), cell division (GO:0051301), and cell adhesion (GO:

0007155). Although there are known differences in cell cycle controls that permit rapid cell 

cycling in ESCs, it is not yet known whether the cell cycle regulates pluripotency. Cell cycle 

length is not believed to determine pluripotency, because different pluripotent cell types 

divide at different rates [77]; however, the enrichment of cell cycle component genes in our 

novel hESC gene lists suggest that there may be functional differences in our mouse and 

human networks that can be mined to improve our understanding of how the core cell cycle 

machinery adapts to the timing requirements of primed and naïve ESCs.

Many of the genes most strongly correlated to self-renewal in the hESC network only (Table 

3) are involved in translational regulation and protein synthesis, such as the ribosomal 

proteins RPL10A|Rpl10a (37|8606), RPLP2|Rplp2 (38|7284), RPS3A|Rps3a (65|11303), and 

RPL6|Rpl6 (101|11695), as well as the translation initiation factor EIF3A|Eif3a (115|12160). 

Intriguingly, genome-wide studies have shown that LIN28|Lin28a (62|224), a known 

regulator of self-renewal and an RNA-binding protein [78], targets RNAs in hESCs 

including ribosomal and translation-supporting genes, which are important for growth and 

survival [79]. In contrast, Lin28a targets in mESCs are enriched for translational repressors 

of membrane-bound proteins, secretory proteins, and proteins destined for the endoplasmic 

reticulum/Golgi lumen [80], suggesting alternative regulatory roles for LIN28|Lin28a, 

despite supporting self-renewal in both species.
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Comparative Network Visualization Promotes Novel Gene Discovery

To make our probabilistic comparative networks readily available to the stem cell research 

community, we provide interactive, online visualization resources at www.StemSight.org 

that can be used to view our hESC and mESC networks independently or comparatively. 

StemSight Scout enables users to explore subnetworks centered on user-provided genes of 

interest, and highlights potentially novel self-renewal genes by coloring nodes based on their 

SRC score and illustrates the weight of predicted interactions by coloring edges based on 

inferred posterior probabilities. Edges included in our training set examples are color-coded, 

making it easy to visually segregate novel from known. For positive training set edges, links 

are provided to the original articles documenting the relationship, while for novel edges, the 

evidential data supporting that functional relationship is displayed with links to the studies in 

PubMed. The comparative view enables users to search for interactions among one or more 

genes in both networks simultaneously, and displays results in a convenient side-by-side 

window for direct comparisons (Figure 4), which is especially helpful for contrasting 

connectivity of gene hubs and pathway participants in the hESC versus mESC networks.

Conclusions

Determining the molecular underpinnings of stem cell self-renewal and cell fate 

determination is vital for understanding and refining the production of iPS cells, and has 

potential implications for targeting cancer stem cells and aging processes in adult stem cells. 

Our results confirm that multiple signaling pathways contribute to the balance between self-

renewal and differentiation in ESCs, and further suggest that these complex pathways should 

not be considered monolithically, but recognized as general mechanisms whose details and 

interactions are only partially understood. For example, while our results indicate that 

STAT3/Stat3 is strongly associated with self-renewal in both humans and mice, upstream 

regulation of signaling appears significantly diverged between species. Similar observations 

and conclusions can be drawn from our results for various members of WNT, NODAL/

ACTIVIN-A, FGF, and TGF-β signaling, as well as many other signaling and metabolic 

pathways.

Our computational integration of hundreds of high-throughput datasets provides an entry 

point to the greater understanding of these pathways. For example, our evaluation of STAT3 

interactions suggests potentially significant crosstalk and alternate modes of human STAT3 

regulation. As STAT3|Stat3 is a multi-functional gene implicated in phenotypes and 

disorders ranging from circadian rhythms to cancer, developing cancer therapies targeting 

the STAT3 pathway requires investigation of potential off-target effects, which in turn 

requires expanding our understanding of its context-specific regulation. Thus, unraveling the 

diversity of systems-level interactions and crosstalk is vital for the use of model organisms, 

and is likely key for dissecting the cell type-specific roles of multi-functional genes within 

humans. Similarly, the divergent role of TDH|Tdh between species in our networks likely 

reflects the distinct metabolic mechanisms of these cell types. While Tdh supports increased 

growth rates in mESCs, it is possible that the increased activity of translational regulatory 

genes in hESCs (such as the ribosomal and translation initiation genes identified only in our 

human networks) play a similar role in a human context.
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By focusing here on human and mouse ESC self-renewal, we have developed methods for 

cross-species and cross-context comparisons to assist stem cell researchers in evaluating 

known and novel genes involved in ESC self-renewal and differentiation. In the future, 

comparative networks for additional stem cell types, including mEpiSCs, iPSCs, ESCs from 

other species, as well as adult stem cells, could be used to further elucidate the mechanisms 

of self-renewal in general. Primed mEpiSCs would be particularly useful for investigating 

differences between the naïve and primed pluripotent state within mouse (i.e. naïve mESCs 

versus primed mEpiSCs), as well as for comparing primed pluripotent cells in different 

species (i.e. primed mEpiSCs versus primed hESCs).

While computational systems biology efforts such as ours begin to scrutinize complex 

molecular interactions, additional laboratory efforts are required to confirm these hypotheses 

and to determine precise mechanisms. The data generated by these efforts can be re-

incorporated into machine learning efforts to refine our training sets, provide additional 

input evidential data, and ultimately improve our understanding of context-specific, whole-

genome interactomes. As such, the full results of this study are freely available to the stem 

cell community at www.StemSight.org, where users can explore our hESC and mESC self-

renewal networks to place their results into a broader context, draw new hypotheses, or 

prioritize candidate genes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Bayes Net Machine Learning Methodology for Cell-Type-Specific Comparative 
Networks
To produce reliable, biologically relevant comparative predictive networks for mouse and 

human ESCs, we adapted our approach for cell-type-specific data integration and machine 

learning [25] as follows: 1. Prepared a master list of protein-coding mouse and human gene 

orthologs. 2. Curated a set of training examples focused on ESC self-renewal in a pairwise 

format. Positive (known) examples were extracted from recent literature and curated 

pathways; negative/background examples were randomly generated from the master gene 

list, excluding genes involved in positive edges. 3. Collected and standardized high-

throughput data from 83 human and 62 mouse ESC studies using diverse high-throughput 

data types (Table 1). Used distance/correlation metrics to distill data into a pairwise format. 

4. Iteratively tested and validated species-specific predictive networks for comparative 

analysis using the same training set, but with species-specific data compendiums as input.

Dowell et al. Page 18

Stem Cells. Author manuscript; available in PMC 2015 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Predicted FGF Signaling Pathway Relationships Across Species
These network models show the predicted strength of relationships between all known FGF 

signaling ligand-receptor pairs [65]. Gene nodes are colored by SRC score (light gray = 

weak SRC; dark blue = strong SRC) and edge color/thickness indicates the strength of 

predicted functional association between ligand and receptor (yellow/thin = low probability; 

teal/thick = high probability). A. The hESC FGF signaling model shows that the most 

strongly connected ligand-receptor pairs with high-ranking SRCs are FGF2 and FGF19 (the 

human ortholog of Fgf15), which are most strongly associated with FGFR1 and FGFR3. 
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FGF2 is known to activate FGF signaling in hESCs, while FGF19 has been associated with 

neuronal development. B. The mESC FGF signaling model showed that the most strongly 

connected ligand-receptor pairs with high ranking SRCs are Fgf4 and Fgf5, which are both 

associated with Fgfr1 and Fgfr2, and Fgf15 which is most strongly connected to Fgfr2. In 

mESCs, Fgf4 is known to activate FGF signaling, Fgf5 is associated with FGF signaling in 

the late stage blastocyst and epiblast, and Fgf15 has been shown to be involved in early 

neurodevelopment.
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Figure 3. Predicted JAK/STAT Signaling Pathway Relationships Across Species
Analogously to Figure 2, species-specific predictions are shown for a portion of the KEGG 

pathway map for JAK/STAT signaling focused on the IL-6 family of cytokines. A. The 

hESC predicted JAK/STAT signaling pathway showed that Stat3 is the gene most correlated 

to self-renewal, while upstream pathway participants exhibited lower SRC scores and 

weaker connection probabilities, suggesting that cytokines other than the IL-6 family, or 

signaling cross talk, may be required for STAT3 activation in hESCs. B. The mESC 

predicted JAK/STAT signaling pathway showed a strong connection between Lif and its 

putative target, Il6st. Further, key known mouse self-renewal genes in this pathway, 

including Lif, Il6st, and Stat3 are strongly correlated to other self-renewal genes as indicated 

by SRC score.

Dowell et al. Page 21

Stem Cells. Author manuscript; available in PMC 2015 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Differences in mESC and hESC Threonine Metabolism
We used our StemSight Scout data visualization tool (www.StemSight.org) to create 

network views centered around L-threonine dehydrogenase (TDH|Tdh), which supports 

accelerated cell cycle kinetics in mESCs, but is not functional in hESCs. Node and edge 

colors are as in Figures 2 and 3, except that edges contained in the positive training set were 

colored orange. A. The hESC TDH-centric network shows that TDH is weakly correlated to 

genes in our training set and has no strong functional associations to any known self-renewal 

genes. B. The mESC Tdh-centric network illustrated that Tdh is strongly correlated to self-

renewal genes and had strong predicted functional associations with known self-renewal 

genes, including Pou5f1, Sox2, Nr0b1, Klf2, Zfp42, Gdf3, and Fbx015.
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Table 1

Summary of Integrated Data in Human and Mouse ESC Data Compendiums

Data Type Datasets|Platforms Genes Measured Conditions Gene Pairs Redundancy

hESC Data Compendium

Gene Expression 72|16 1,206,852 597 10,409,092,802 0.00872

Protein-DNA Interactions 28|8 383,784 74 702,255,900 0.02718

Protein-Protein Interactions 3|3 13,648 3 154,876 0.05047

Epigenetic Markers 9|1 152,946 194 1,299,505,689 0.01053

Phylogenetic Profiles 1|1 2391 229 3267 3.9E-6

RNAi Screens 3|1 42,570 3 44,618,430 0.0195

mESC Data Compendium

Gene Expression 61|22 1,028,918 872 5,309,037,873 0.7110

Protein-DNA Interactions 102|14 1,311,167 210 1,507,210,159 0.0218

Protein-Protein Interactions 1 |1 207 1 207 2.2E-06

Phylogenetic Profiles 1|1 15,703 1 123,284,253 0.1728

RNAi Screens 1|1 16,891 2 131,795,730 0.1954

Notes: These data were collected from 83 hESC studies and 62 mESC studies, then standardized and integrated into a pair-wise format, and used as 

evidential data to generate predictive hESC- and mESC-specific networks focused on ESC self-renewal. Datasets were weighted based on the 

amount of shared mutual information (redundancy) contained in each as compared to all evidential datasets used by the Bayes net. A low mean 

redundancy indicates the dataset is highly unique. Dataset contributions to the top 0.001% (1503) of edges in the hESC and mESC networks are 

available in Supplemental Table S10.
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Table 2

Top Novel hESC Genes Most Strongly Correlated with Self-Renewal

Gene Symbol Gene Name Rank SRC (Scaled)

TUBB Tubulin, beta class I 1 0.8264

HSP90AB1 heat shock protein 90kDa alpha (cytosolic), class B member 1 2 0.8053

PELI1 pellino homolog 1 (Drosophila) 3 0.7805

SEMA6A sema domain, transmembrane domain (TM), and cytoplasmic domain, (semaphorin) 6A 4 0.7795

SLC7A5 solute carrier family 7 (cationic amino acid transporter, y+ system), member 5 5 0.7693

RGMB RGM domain family, member B 6 0.7684

PCBP1 poly(rC) binding protein 1 7 0.7669

TUBB6 Tubulin, beta 6 class V 8 0.7184

HSPA4 heat shock 70kDa protein 4 9 0.7653

SFRP1 secreted frizzled-related protein 1 10 0.7587

LRRN1 leucine rich repeat neuronal 1 11 0.7574

PRDM14 PR domain containing 14 12 0.7458

Notes: Genes were identified by selecting the top novel genes (those not involved in positive training set edges) rank ordered by our self-renewal 

correlation (SRC) score as described in Methods and Materials and Supplemental File S1.
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Table 3

Functional Similarities and Differences Between Networks

Shared Distinct

Gene (h|m) Rank (h|m) hESC Gene Rank (h|m) mESC Gene Rank (h|m)

POU5F1|Pou5f1 1|1 PELI1 5|8197 Utf1 7906|6

SOX2|Sox2 2|5 LRRN1 15|11119 Tcl1 14166|17

NODAL|Nodal 12|114 TUBG1 32|7004 Zfp428 13991|22

RIF1|Rif1 14|33 RPL10A 37|8606 Gjb3 13495|23

PARP1|Parp1 21|97 RPLP2 38|7284 Tdh 11393|26

LEFTY2|Lefty2 33|85 TALDO1 63|8745 Fbxo15 14921|35

MYC|Myc 40|38 RPS3A 65|11303 Zfp57 13784|63

JARID2|Jarid2 46|11 RPL6 101|11695 Eras 13432|92

ZFP42|Zfp42 78|27 EIF3A 115|12160 Dusp27 14812|134

IFITM1|Ifitm1 107|15 USO1 151|11350 Enpp3 16752|169

NANOG|Nanog 128|56 GPM6B 419|13693 Spats1 15033|172

Notes: Shared genes strongly associated with ESC self-renewal were identified by finding the intersection of the highest-ranking 1% of genes (173 

of 17,342) in each network ordered by SRC. Distinct genes were identified by taking the difference of SRC rank for all genes and selecting the top 

genes most strongly supported in one network, but not the other.
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