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ABSTRACT

The connection between colorectal cancer (CRC) and Wnt signaling pathway 

activation is well known, but full elucidation of the underlying regulation of the 

Wnt/β-catenin pathway and its biological functions in CRC pathogenesis is still 
needed. Here, the azoxymethane/dextran sulfate sodium salt (AOM/DSS) murine 

model has been used as an experimental platform able to mimic human sporadic CRC 

development with predictable timing. We performed genome-wide expression profiling 
of AOM/DSS-induced tumors and normal colon mucosa to identify potential novel CRC 

biomarkers. Remarkably, the enhanced expression of Notum, a conserved feedback 

antagonist of Wnt, was observed in tumors along with alterations in Glypican-1 and 

Glypican-3 levels. These findings were confirmed in a set of human CRC samples. Here, 
we provide the first demonstration of significant changes in Notum and glypicans 
gene expression during CRC development and present evidence to suggest them as 

potential new biomarkers of CRC pathogenesis.

INTRODUCTION

Colorectal cancer (CRC) is the third most common 

neoplastic disease worldwide and is the second leading 

cause of cancer death in the Western world [1]. It develops 

via a multistage process that involves the accumulation 

of genetic and epigenetic alterations. Wnt signaling 

pathway activation and mutations in the KRAS and APC 

genes in the majority of colorectal cancers have been 

demonstrated [2, 3]. However, little is known regarding 

the fine regulation of the Wnt/β-catenin pathway or 

its biological functions that might be involved in the 

pathogenesis of CRC. Recent studies have focused on 

the activity of Wnt signals, showing that they are tightly 

controlled by various extracellular molecules. Kakugawa 

and colleagues recently added greatly to our understanding 

of Wnt signaling and the central role of Notum in the 

regulation of this pathway [4]. Notum is a negative 

feedback regulator of Wnt. Initial studies in fruit flies 
suggested that it could act as a phospholipase enzyme able 

to cleave the link between the membrane and glypicans 

(GPCs), a family of heparan sulfate proteoglycans that 
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are linked to the outer leaflet of the plasma membrane 
by a glycosylphosphatidylinositol (GPI) anchor and that 

complex with Wnt [5]. However, Kakugawa et al. recently 

unveiled that Notum might be considered as a hydrolase 

enzyme which removes the acyl group from Wnt, thereby 

rendering the protein inactive. The acquisition or loss 

of the acyl group from palmitoleic acid can ably control 

the activation of Wnt signals [4]. Although Hedgehog is 

another signaling molecule whose activity is modified 
by lipids, it has been demonstrated that, unlike Wnt, 

Hedgehog is not a substrate for Notum and that, in flies, 
Notum does not interact with Hedgehog signaling [4]. 

It has been also shown that Notum contains binding sites 

for polysaccharides such as GPCs sugar chains, inviting 

speculation that GPCs bring together Notum and Wnt — 

thus modulating the enzymatic interaction of Notum with 

Wnt, rather than acting as a substrate for Notum to cleave 

GPI anchors [4].

In humans, colon carcinogenesis is a long, chronic 

process that is thought to occur over 10 to 20 years [6]. 

Experimental models that mimic the disease in rodents by 

chemical induction in less than a few months provide a 

means to understand the molecular alterations that arise 

in human CRC [7]. The well-established azoxymethane/
dextran sodium sulfate (AOM/DSS) mouse model is a 
suitable platform to study the most dramatic molecular 

and signaling changes that occur during different phases 

of CRC development. Although the model does not 

progress to metastasis, as shown by studies extending 

until 20–30 weeks from tumor induction, it mimics quite 

well many of the steps found in human sporadic CRC 

progression [8]. Indeed, AOM/DSS-induced tumors 
share many histopathological and genetic characteristics 

with sporadic human colon tumors [9]. Furthermore, a 

number of studies have shown that the AOM/DSS model 
is a reliable tool for the investigation of not only the most 

advanced phases of colorectal carcinogenesis but also 

the earliest events underlying CRC initiation. At an early 

stage, single aberrant crypts appear in the colonic mucosa, 

which are hard to evaluate in corresponding human 

pathological specimens [10].

It could be an optimal experimental platform for the 

investigation of new biomarkers, also through advanced 

approaches. In this view, the analysis of the genomic 

instability resulting in copy number aberrations through 

massive parallel sequencing, as already demonstrated 

for prostate cancer [11] or the detection of tumor-
derived circulating cell-free DNA in plasma samples [12] 
could represent new possibilities for the detection and 

monitoring of CRC to investigate in the AOM/DSS murine 
model.

Here, we performed a genome-wide expression 
profiling of colon mucosa to identify novel potential 
biomarkers that could be related to tumor initiation and 

progression after colon cancer induction via AOM and 

DSS in mice.

Interestingly, in addition to the preeminent activation 

of the Wnt/β-catenin pathway, we observed the enhanced 
expression of genes that encode Wnt antagonists, which 

might set up a negative feedback response to activated 

Wnt/β-catenin signaling in CRC. In particular, we found 
that the NOTUM gene was significantly up-regulated 
and that two heparan sulfate proteoglycans, Glypican-1 
(GPC1) and Glypican-3 (GPC3), which are under 

Notum control and act as competitive inhibitors of Wnt 

[13], were up- and down-regulated, respectively. Our 
preclinical results as well as the recent study of Kakugawa 

et al. [4] and the comments of Nusse [14], describing the 

mechanism by which Wnt signals can be down-regulated 
by the extracellular enzyme Notum in Drosophila, 
prompted us to investigate Notum and glypican levels 

in a set of human CRC samples. Strikingly, we found a 

significant alteration of these Wnt pathway molecular 
mediators in human colorectal adenocarcinomas with 

respect to normal mucosa.

Taken together, our results provide the first 
demonstration of a perturbed expression in the NOTUM, 

GPC1 and GPC3 genes in the context of colorectal 

carcinogenesis. Additionally, we show a significant 
correlation between the expression levels of these 

molecules and that of β-catenin, suggesting their role as 
novel biomarkers in advanced CRC.

RESULTS

AOM and DSS combination is effective in 

inducing colon cancer

Twenty weeks after AOM/DSS treatment (Figure 1A), 
the development of adenocarcinomas in the distal colon 

of mice was visually evident. Mice treated with AOM/
DSS showed engrossed intestines with polypoid tumors, 
whereas mice that received AOM or DSS alone displayed 
macroscopically normal colons that were indistinguishable 

from those of untreated mice (Figure 1B).

All AOM/DSS-treated mice developed tumors 
(100% incidence) and the mean number of total tumors/
mouse was 6.8 ± 2.7 (SD, standard deviation). After being 
isolated from the AOM/DSS treated mice, all lesions 
were analysed and confirmed to be adenocarcinomas 
(Figure 1C). These mouse lesions were histopathologically 

equivalent to human colorectal adenocarcinomas. 

They corresponded to well-differentiated enteroid 
adenocarcinomas and presented large numbers of flat 
and polypoid malignant tumors that were characterized 

by irregular, complex glands, an increased nucleus-
to-cytoplasm ratio and marked losses of polarity and 
desmoplasia. The AOM-treated mucosa was perfectly 
comparable with the normal mucosa of untreated mice, 

whereas the DSS-treated mucosa was characterized 
by complete epithelial regeneration at 20 weeks after 

inflammatory stimulation (Figure 1C).
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An additional group of animals, which were treated 

according to the AOM/DSS protocol, was sacrificed 5 weeks 
after treatment, and colon samples were collected for the 

immunohistochemistry of early stage CRC development. 

All samples presented 3–5 aberrant crypt foci (ACF), the 

earliest histopathological manifestations of colon lesions, 

which were characterized by clusters of abnormal tube-like 
glands in the lining of the colon and 1–3 low dysplastic 

microadenomas with sizes of less than 1 mm.

The macroscopic observation and histopathological 

analyses were made independently by two observers 

masked with respect to the treatment group and confirmed 

Figure 1: Experimental procedure and macroscopic and histological observation of the AOM/DSS murine 
model. A. Schematic experimental procedure for groups treated with AOM-alone and/or DSS. Control group (untreated littermate controls) 
not represented. B. Macroscopic observation of the distal regions of colons from control, AOM-, DSS- and AOM/DSS-treated mice at the 
end of the 20th week (only 3 of 6 animals per group are shown). Evident macroscopic lesions detectable only in AOM/DSS-treated colons. 
C. Hematoxylin/eosin staining of tumors and normal colons. Colon mucosae of AOM-only and DSS-only treated mice show the same 
histological characteristics of the control group. Adenocarcinomas with a high degree of dysplasia are detectable in AOM/DSS-treated 
mice. 20x original magnification. Scale bar, 50 μm.
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that the AOM/DSS model reliably reproduces, within a 
predictable time line, colorectal lesions distinctive of 

human CRC development, as reported in previous studies 

[7, 9]. On this basis, we investigated the transcriptional 

profile of advanced adenocarcinomas.

Gene expression profile via microarray analysis

RNA from colon adenocarcinomas (AOM/DSS-
treated) was analysed using MouseWG-6 v2.0 Expression 
BeadChips and compared with normal mucosae (untreated 

controls), AOM-only mucosae and DSS-only treated 
mucosae of mice euthanised on the 20th week.

The hierarchical clustering of array expression data 

showed a clear distinction between AOM/DSS-treated 
animals and the other groups (Figure 2). In addition, the 

AOM- or DSS-only treatments did not significantly affect 
the transcriptome, as their data clustered together with 

those of the untreated animals.

Linear model analysis (BH corrected p-value ≤ 
0.05 |log

2
FoldChange| ≥ 1) of the 45280 probes present 

in the MouseWG-6 v2.0 Expression BeadChips, 
detected 2036 probes as differentially expressed in the 

adenocarcinoma group, 36 probes in DSS-mucosa and 44 
probes in the AOM-mucosa group. The complete list of 
the gene probes and their expression levels, as determined 

by statistical analysis, is provided in Supplemental Table 

1. Qiagen’s Ingenuity Pathway Analysis version 7 program 

(IPA7, http://www.ingenuity.com) was applied to all 2036 
probes (1502 genes) that were differentially expressed in 

the adenocarcinoma group.

Amongst the 50 most up-regulated and the 50 
most down-regulated genes in adenocarcinomas, it is 
worth noting that several Paneth cell-specific genes, 
including those that code for defensins (DEFA5, 

DEFA-RS2, DEFA4) [15], secretory phospholipase 

A2 (PLA2G2A), frizzled-5 (FZD5) and matrix 

metallopeptidases (MMPs), were differentially 

expressed. In addition to the expected up-regulation 
of AXIN2, which is widely accepted to be an important 

downstream effector of the Wnt signaling cascade [16], 

a high number of other important targets and members 

of the Wnt signaling pathway were differentially 

expressed in adenocarcinoma. They included SOX4 

(SRY (sex determining region Y-box 4), PLA2G2A 

(phospholipase A2, group IIA), CCND1 (cyclin D1), 
WNT6 (wingless-type MMTV integration site family, 
member 6), WIF1 (WNT inhibitory factor 1), CD44, 

DKK3 (dickkopf WNT signaling pathway inhibitor 3), 

TCF4 (transcription factor 4), SFRP (secreted frizzled-
related protein), FZL5 (frizzled-5), LGR5 (leucine rich 

repeat containing G protein coupled receptor 5) and 

EPHB2 (Eph receptor B2), as shown in Table 1 and 

Supplemental Table 1. Other interesting regulatory 

genes of the Wnt, Hh (Hedgehog), and BMP (Bone 

Morphogenetic Proteins) pathways were found to be 

up-regulated, such as NOTUM (log
2
 FC = 4.3) and 

GPC1 (Glypican-1) (log
2
 FC = 4.3), or down-regulated, 

such as GPC3 (Glypican-3) (log
2
 FC=−1.15). KRT23 

(keratin 23), which was recently identified as a putative 
immunologic target for colon cancer prevention [17], 

was also significantly up-regulated in the tumors.

Figure 2: Hierarchical clustering of gene expression data. Hierarchical clustering was generated by R hclust function, using 

Euclidean distance and average linkage as metrics.
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Table 1: Top up and down regulated genes in adenocarcinoma, AOM- and DSS-treated colon 

mucosae

Accession

number

Gene name Gene description log2FC log2 

average

expression

BH corrected

p-value

Experimental

group

13240 Defa6 defensin, alpha, 6 6.78 9.44 5.95E-22 adenocarcinoma

18780 Pla2g2a
phospholipase A2, group IIA 

(platelets, synovial fluid) 6.68 10.19 3.28E-22 adenocarcinoma

100503970 AY761185 defensin related… 6.61 9.37 2.36E-20 adenocarcinoma

18946 Pnliprp1
pancreatic lipase-related 
protein 1

6.40 9.94 3.28E-22 adenocarcinoma

13222 Defa-rs2 defensin, alpha, 3 6.04 9.41 2.60E-18 adenocarcinoma

13238 Defa4 defensin, alpha, 4 5.72 9.26 5.20E-17 adenocarcinoma

16673 Krt36 keratin 36 5.25 9.97 4.66E-19 adenocarcinoma

17384 Mmp10
matrix metallopeptidase 10 

(stromelysin 2)
5.22 9.59 5.87E-17 adenocarcinoma

94214 Spock2 sparc/osteonectin 5.11 9.33 4.86E-20 adenocarcinoma

17386 Mmp13
matrix metallopeptidase 13 

(collagenase 3)
5.02 10.19 1.10E-16 adenocarcinoma

77583 Notum
Notum pectinacetylesterase 
homolog (Drosophila)

5.00 9.21 1.04E-16 adenocarcinoma

94179 Krt23
keratin 23 (histone deacetylase 

inducible)
4.78 10.49 4.48E-17 adenocarcinoma

17082 Il1rl1 interleukin 1 receptor-like 1 4.75 9.35 1.07E-21 adenocarcinoma

13218 Defa-rs1 defensin, alpha, related 

sequence 1
4.72 9.12 1.92E-17 adenocarcinoma

230810 Slc30a2
solute carrier family 30 (zinc 

transporter), member 2
4.69 9.02 3.28E-22 adenocarcinoma

23966 Odz4
teneurin transmembrane 

protein 4
4.67 9.30 4.55E-20 adenocarcinoma

213948 Atg9b autophagy related 9B 4.67 9.14 8.28E-20 adenocarcinoma

18791 Plat plasminogen activator, tissue 4.65 9.86 4.51E-17 adenocarcinoma

18947 Pnliprp2
pancreatic lipase-related 
protein

4.51 9.19 1.89E-17 adenocarcinoma

68713 Ifitm1 interferon induced 

transmembrane protein 1
4.48 11.11 3.43E-16 adenocarcinoma

99709 AI747448 autophagy related 9B 4.35 9.65 1.96E-13 adenocarcinoma

56753 Tacstd2
tumor-associated calcium 
signal transducer 2

4.35 9.15 5.20E-17 adenocarcinoma

20210 Saa3 serum amyloid A 3 4.34 9.17 3.51E-18 adenocarcinoma

14733 Gpc1 glypican 1 4.31 11.01 1.03E-15 adenocarcinoma

12006 Axin2 axin2 4.16 10.22 1.37E-15 adenocarcinoma

14038 Wfdc18
WAP four-disulfide core 
domain 18

4.16 9.48 1.82E-14 adenocarcinoma

(Continued )
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Accession

number

Gene name Gene description log2FC log2 

average

expression

BH corrected

p-value

Experimental

group

13216 Defa1 defensin, alpha 1 4.08 8.92 1.13E-15 adenocarcinoma

11833 Aqp8 aquaporin 8 -4.96 13.31 1.05E-14 adenocarcinoma

12351 Car4 carbonic anhydrase 4 -4.70 12.54 2.68E-18 adenocarcinoma

192113 Atp12a
ATPase, H+/K+ transporting, 
nongastric, alpha polypeptide

-4.44 12.63 1.18E-12 adenocarcinoma

56857 Slc37a2
solute carrier family 37, 

member 2
-4.43 10.94 1.82E-14 adenocarcinoma

11537 Cfd complement factor D -4.20 11.50 5.17E-05 adenocarcinoma

20341 Selenbp1 selenium binding protein 1 -4.12 13.61 2.56E-16 adenocarcinoma

13170 Dbp D site albumin promoter 
binding protein

-3.91 11.05 1.05E-08 adenocarcinoma

72082 Cyp2c55
cytochrome P450, family 2, 

subfamily c, polypeptide 55
-3.90 12.58 6.66E-12 adenocarcinoma

380997 Cyp2d12
cytochrome P450, family 2, 

subfamily d, polypeptide 12
-3.70 10.82 7.34E-17 adenocarcinoma

23919 Insl5 insulin-like 5 -3.68 11.12 1.77E-15 adenocarcinoma

20500 Slc13a2
solute carrier family 13, 

member 2
-3.68 12.17 7.29E-13 adenocarcinoma

72273 2210404O07Rik
small integral membrane 

protein
-3.66 12.49 1.92E-14 adenocarcinoma

216225 Slc5a8
solute carrier family 5 (iodide 

transporter), member 8
-3.56 12.81 7.78E-13 adenocarcinoma

21818 Tgm3
transglutaminase 3, E 

polypeptide
-3.47 11.03 2.63E-13 adenocarcinoma

382097 Gm1123 predicted gene 1123 -3.45 11.67 3.95E-13 adenocarcinoma

20342 Selenbp2 selenium binding protein 2 -3.43 11.25 1.59E-14 adenocarcinoma

11522 Adh1
alcohol dehydrogenase 1 

(class I)
-3.37 13.98 9.73E-12 adenocarcinoma

20363 Sepp1 selenoprotein P, plasma, 1 -3.34 12.83 3.79E-14 adenocarcinoma

68416 Sycn syncollin -3.34 14.97 9.25E-12 adenocarcinoma

64385 Cyp4f14
cytochrome P450, family 4, 

subfamily f, polypeptide 14
-3.29 12.48 1.58E-12 adenocarcinoma

234669 Ces2b carboxyesterase 2B -3.24 11.00 6.07E-15 adenocarcinoma

13105 Cyp2d9
cytochrome P450, family 2, 

subfamily d, polypeptide 9
-3.22 11.05 2.32E-12 adenocarcinoma

20887 Sult1a1
sulfotransferase family 1A, 

phenol-preferring, member 1 -3.19 12.30 1.78E-15 adenocarcinoma

13346 Des desmin -3.16 11.60 1.53E-10 adenocarcinoma

13113 Cyp3a13
cytochrome P450, family 3, 

subfamily a, polypeptide 13
-3.13 11.30 1.46E-14 adenocarcinoma

(Continued )
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Accession

number

Gene name Gene description log2FC log2 

average

expression

BH corrected

p-value

Experimental

group

53315 Sult1d1
sulfotransferase family 1D, 
member 1

-3.12 11.12 1.28E-14 adenocarcinoma

393082 Mettl7a2 methyltransferase like 7A2 -3.11 9.63 4.52E-10 adenocarcinoma

13101 Cyp2d10
cytochrome P450, family 2, 

subfamily d, polypeptide 10
-3.10 11.64 5.38E-14 adenocarcinoma

56643 Slc15a1

solute carrier family 15 

(oligopeptide transporter), 

member 1

-3.02 10.38 5.60E-17 adenocarcinoma

14734 Gpc3 glypican-3 -1.15 8.94 1.14E-08 adenocarcinoma

93695 Gpnmb
glycoprotein (transmembrane) 

nmb
1.81 10.01 1.26E-05 AOM

12653 Chgb chromogranin B 1.57 10.46 2.95E-06 AOM

15360 Hmgcs2
3-hydroxy-3-methylglutaryl-
Coenzyme A synthase 2

1.49 12.65 3.87E-02 AOM

75646 Rai14 retinoic acid induced 14 1.37 7.32 2.45E-02 AOM

76459 Car12 carbonic anyhydrase 12 1.28 10.38 7.15E-04 AOM

21990 Tph1 tryptophan hydroxylase 1 1.12 8.88 2.82E-07 AOM

26914 H2afy
H2A histone family, member 

Y
-2.61 8.71 3.08E-15 AOM

13170 Dbp D site albumin promoter 
binding protein

-2.56 11.05 5.15E-04 AOM

225742 St8sia5

ST8 alpha-N-acetyl-
neuraminide alpha-2,8-
sialyltransferase 5

-2.3 9.07 1.75E-07 AOM

108017 Fxyd4
FXYD domain-containing ion 
transport regulator 4

-2.22 10.23 1.04E-05 AOM

393082 Mettl7a2 methyltransferase like 7A2 -1.83 9.63 1.93E-04 AOM

192113 Atp12a
ATPase, H+/K+ transporting, 
nongastric, alpha polypeptide

-1.66 12.63 8.85E-04 AOM

229599 Gm129
circadian associated repressor 

of transcription
-1.65 8.93 7.08E-06 AOM

17748 Mt1 metallothionein 1 -1.6 14.81 3.45E-06 AOM

380997 Cyp2d12
cytochrome P450, family 2, 

subfamily d, polypeptide 12
-1.52 10.82 1.75E-07 AOM

66184 Rps4y2 ribosomal protein S4-like -1.52 8.43 1.55E-09 AOM

17829 Muc1 mucin 1, transmembrane -1.4 9.57 1.31E-04 AOM

67133 Gp2
glycoprotein 2 (zymogen 

granule membrane)
-1.27 10.00 3.27E-03 AOM

20208 Saa1 serum amyloid A 1 -1.22 11.16 3.60E-03 AOM

12346 Car1 carbonic anhydrase 1 -1.21 14.02 1.05E-02 AOM

(Continued )
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Accession

number

Gene name Gene description log2FC log2 

average

expression

BH corrected

p-value

Experimental

group

56857 Slc37a2
solute carrier family 37, 

member 2
-1.21 10.94 2.07E-03 AOM

13105 Cyp2d9
cytochrome P450, family 2, 

subfamily d, polypeptide 9
-1.2 11.05 1.29E-03 AOM

67204 Eif2s2

eukaryotic translation 

initiation factor 2, subunit 2 

(beta)

-1.19 11.80 7.47E-06 AOM

27409 Abcg5
ATP-binding cassette, sub-
family G (WHITE), member 5

-1.17 11.49 4.01E-03 AOM

13034 Ctse cathepsin E -1.15 11.54 8.49E-04 AOM

53376 Usp2 ubiquitin specific peptidase 2 -1.14 9.19 6.67E-05 AOM

207952 Klhl25 kelch-like 25 -1.06 8.24 6.88E-07 AOM

208715 Hmgcs1
3-hydroxy-3-methylglutaryl-
Coenzyme A synthase 1

-1.03 14.25 6.52E-03 AOM

20692 Sparc
secreted acidic cysteine rich 

glycoprotein
-1.01 10.58 7.42E-03 AOM

67080 1700019D03Rik RIKEN cDNA 1700019D03 
gene

-1 11.38 1.40E-03 AOM

66660 Sltm
SAFB-like, transcription 
modulator

2.36 8.82 3.75E-02 DSS

12653 Chgb chromogranin B 1.6 10.46 2.62E-06 DSS

75646 Rai14 retinoic acid induced 14 1.4 7.32 2.57E-02 DSS

18030 Nfil3 nuclear factor, interleukin 3, 

regulated
1.29 9.42 8.39E-05 DSS

21990 Tph1 tryptophan hydroxylase 1 1.24 8.88 5.26E-08 DSS

11551 Adra2a adrenergic receptor, alpha 2a 1.23 10.69 7.68E-03 DSS

76459 Car12 carbonic anyhydrase 12 1.16 10.38 1.94E-03 DSS

104158 Ces1d carboxylesterase 1D 1.13 11.21 3.84E-02 DSS

242705 E2f2 E2F transcription factor 2 1.04 9.05 6.36E-05 DSS

66811 Duoxa2 dual oxidase maturation factor 

2
1 9.91 1.01E-02 DSS

13170 Dbp D site albumin promoter 
binding protein

-3.68 11.05 4.09E-06 DSS

26914 H2afy
H2A histone family, member 

Y
-2.57 8.71 3.93E-15 DSS

229599 Gm129
circadian associated repressor 

of transcription
-1.87 8.93 1.18E-06 DSS

225742 St8sia5

ST8 alpha-N-acetyl-
neuraminide alpha-2,8-
sialyltransferase 5

-1.65 9.07 4.46E-05 DSS

(Continued )
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Interestingly, the majority of down-regulated 
genes in the tumors were cell membrane transporters 

that are involved in the movement of ions or small 

substrates across the intestinal membrane, such as 

AQP8 (aquaporin 8), a marker of normal proliferating 

colonic epithelial cells that is involved in fluid transport 
in the colon; CAR4 (carbonic anhydrase 4), which has 

established roles in bicarbonate production and secretion 

in the intestine; ATP12A (ATPase, H+/K+ transporting), 
which is responsible for potassium absorption; 

SLC37A2 (solute carrier family 37 (glucose-6-phosphate 
transporter) member-2) and SELENBP1 (selenium-
binding protein).

The AOM-only treated and DSS-only treated groups 
displayed a small set of altered genes, with very low log2-
FC values, compared with the AOM/DSS treated colon 
mucosa. Among the altered genes, the common up-/down-
regulated ones, which were found in both experimental 

groups, were genes that are mainly involved in (i) gene 

expression regulation, such as H2AFY (H2A histone 

family, member Y), DBP (the D site of albumin promoter 
binding protein), EIF2S2 (eukaryotic translation initiation 

factor 2, subunit 2), GM129 (circadian associated 

repressor of transcription), RPS4Y2 (ribosomal protein S4, 

Y-linked 2); (ii) membrane receptors and transporters, 
such as GPNMB (glycoprotein NMB), FXYD4 (frizzled 

family receptor 4), MUC1 (mucin 1), ATP12A (ATPase, 

H+/K+ transporting), SLC37A2 (solute carrier family 37 

(glucose-6-phosphate transporter), member-2), CTS-E 

(cathepsin E), SPARC (secreted protein, acidic, cysteine-
rich); and (iii) metabolism, such as HMGCS2 (3-hydroxy-
3-methylglutaryl-CoA synthase-2), TPH1 (tryptophan 

hydroxylase 1); and SAA1 (serum amyloid A1). It is 

also worth noting that genes coding for detoxification 
enzymes were altered in both groups: in particular, MT1 

(metallothionein 1), CYP2D12 and CYP2D9 (cytochrome 

P450) were found to be down-regulated in AOM-
treated mice, whereas CES1D (carboxylesterase 1D) 
and CYP2DL2 (cytochrome P450) were up- and down-
regulated, respectively, in DSS-treated mice. Both groups 
showed no alterations in inflammatory genes.

Single qPCR, which was performed on a subset 

of genes selected among that mainly dysregulated genes 

or involved in Wnt pathway control, confirmed the 
microarray analysis results: NOTUM, GPC1, AXIN2, 

WNT6, IL1RL1, DEFA-6, LGR5, and SOX4 were found 

to be up-regulated, whereas GPC3, AQP8, SFRP1, and 

CAR4 were down-regulated (Figure 3).

Accession

number

Gene name Gene description log2FC log2 

average

expression

BH corrected

p-value

Experimental

group

393082 Mettl7a2 methyltransferase like 7A2 -1.64 9.63 9.21E-04 DSS

66184 Rps4y2 ribosomal protein S4-like -1.44 8.43 4.32E-09 DSS

108017 Fxyd4
FXYD domain-containing ion 
transport regulator 4

-1.42 10.23 2.94E-03 DSS

21685 Tef thyrotroph embryonic factor -1.34 9.95 2.17E-03 DSS

217166 Nr1d1
nuclear receptor subfamily 1, 

group D, member 1 -1.2 10.00 2.45E-02 DSS

53376 Usp2 ubiquitin specific peptidase 2 -1.17 9.19 6.03E-05 DSS

12346 Car1 carbonic anhydrase 1 -1.12 14.02 2.45E-02 DSS

17829 Muc1 mucin 1, transmembrane -1.1 9.57 1.94E-03 DSS

13034 Ctse cathepsin E -1.08 11.54 1.77E-03 DSS

20692 Sparc
secreted acidic cysteine rich 

glycoprotein
-1.07 10.58 5.73E-03 DSS

192113 Atp12a
ATPase, H+/K+ transporting, 
nongastric, alpha polypeptide

-1.05 12.63 3.84E-02 DSS

380997 Cyp2d12
cytochrome P450, family 2, 

subfamily d, polypeptide 12
-1.04 10.82 6.48E-05 DSS

56857 Slc37a2
solute carrier family 37, 

member 2
-1.04 10.94 8.74E-03 DSS

The fourth column shows the Log2FC of adenocarcinoma, AOM-treated mucosa and DSS-treated mucosa, respectively, vs 
normal mucosa. The significance level is indicated by a corrected p-value.
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Two main pathways are altered in 
adenocarcinomas: the LPS/IL-1-mediated 

inhibition of RXR function and the  

Wnt/β-catenin signaling pathway

Our microarray data set was analysed using IPA7 to 

discern whether specific biological pathways or functional 
gene groups were differentially affected in tumors and 

which of these pathways were still altered in AOM-only 
and DSS-only treated mucosa after a period of mucosal 
regeneration.

The results of the gene ontology analysis 

showed that the top 3 canonical pathways altered in 

adenocarcinomas were the LPS/IL-1 mediated inhibition 
of RXR function, Wnt/β-catenin signaling and the super-
pathway of melatonin degradation (Figure 4).

The metabolic super-pathway of melatonin 
degradation was the pathway with the majority of genes 

being significantly down-regulated. Several mechanisms 
by which melatonin controls colon cancer have been 

proposed and involve the inhibition of tumor angiogenesis, 

maintenance of the intracellular level of glutathione, 

and modulation of mitotic and apoptotic processes [18]. 

However, further studies and controlled clinical trials are 

still needed in order to establish melatonin’s role in cancer 

treatment more concretely.

We focused our attention on the top 2 significantly 
dysregulated pathways both of which enclosed the highest 

number of genes (Supplemental Table 2).

An examination of the LPS/IL-1-mediated inhibition 
of the RXR function signaling pathway revealed the 

strong transcriptional up-regulation of several genes that 
are linked to inflammation and injury response, including 
IL1β (interleukin 1 beta), IL1RL1 (IL1 receptor-like 1), 
TNF (tumor necrosis factor), TNFRSF11B (TNF receptor 

superfamily, member 11b), APOC4 (apolipoprotein 

C-IV), APOE (apolipoprotein E), and GST (glutathione 

S-transferase), but the down-regulation of PPARGC1A/B 

(peroxisome proliferator-activated receptor gamma, 
coactivator 1 alpha/beta). Reductions in the expression 
of transport proteins, such as ABCG5/8 (ATP-binding 
cassette, sub-family G, member 5/8) and ABCC3 

(ATP-binding cassette, sub-family C, member 3), and 
metabolizing enzymes, such as GSTT1 (glutathione 

S-transferase theta 1), MGST1/3 (microsomal glutathione 

S-transferase 1/3) and CYP2C9 (cytochrome P450, 

family 2, subfamily C, polypeptide 9), were also detected. 

The decreased expression of these genes has been recently 

shown to cause impaired metabolism, transport and/or 
biosynthesis of lipids, cholesterol and xenobiotics [19–21].

As expected, the Wnt/β-catenin signaling pathway 
was found to be largely involved in tumor progression. As 

shown in Figure 4 and Supplemental Table 1, the major 

up-regulated genes were the ligands WNT5A, WNT6, and 

WNT10A; the Wnt receptor FZD10, the scaffolding protein 

AXIN2, which is essential for β-catenin degradation; 
the Wnt inhibitory proteins (WIF1, DKK3); TCF4, the 

β-catenin transcriptional partner and the Nemo-like kinase 
(NLK), which leads to low LEF/TCF/β-catenin complex 
binding to DNA and LEF1/TCF4 degradation [22].

Other genes, whose functions have been shown 

to correlate with the Wnt/β-catenin signaling pathway, 
were LGR5, EPHB2, EPHB4, EPHB6, NOTUM, GPC1 

and GPC3 [22, 23]. Interestingly, only a few altered 

genes were found in the AOM-only and DSS-only treated 
colon mucosae. Moreover, NFKB and AKT were equally 

detected to be hub genes of the most altered molecular 

pathways in both experimental groups, even without the 

direct deregulation of their expression level (data not 

shown). In fact, only the residual activity of the NFKB 

inflammatory response pathway and the antiapoptotic 
activity of AKT appeared to persist during the regeneration 

of the colon mucosa, which occurred after either the 

AOM-only or DSS-only treatments.

Correlation of Notum overexpression with 

intracellular β-catenin staining and changes of 
glypicans tissue distribution

In the context of the Wnt/β-catenin pathway, we 
focused our attention on the regulation of Notum expression 

in CRC murine lesions as Armadillo, an ortholog of human 

and murine β-catenin, is known to regulate Drosophila 
Notum [23]. We performed immunohistochemistry on 

advanced adenocarcinomas and early lesions of animals 

sacrificed 5 weeks after tumor induction (Figure  5). 
Intracellular β-catenin (nuclear and cytoplasmic staining) 
was observed in all CRC FFPE sections, whereas 

membrane-bound β-catenin was detected only in 
normal colon mucosa. Dysplastic ACF exhibited intense 
intracellular β-catenin staining, which is consistent with 
previous reports [7, 9], and the same pattern was observed 

for microadenomas, adenomas and adenocarcinomas.

Notum overexpression was associated with 

intracellular β-catenin localization (100% of cases) and 
also observed in early lesions. Glypican-1 staining showed 
the same type of Notum staining positivity, although a 

mild cytoplasmic signal was also observed in early lesions. 

Positive staining for Glypican-1 was observed in 90% of 
all studied ACFs (21 positive of 24 analysed), whereas 

Glypican-3 exhibited evident membrane staining in 
normal colon mucosa and a negative signal in all (100%) 

dysplastic colon crypts. Similarly, no membrane staining 

was present in the most advanced tumors. However, we 

observed extracellular staining in these tumors that is 

indicative of a marked release of Glypican-3 from the cell 
membrane (Figure 5).

Notum and glypicans gene expression and 
protein localization in human CRC samples

To investigate the eventual correspondence between 

our observations in the CRC murine model and human 

colorectal carcinogenesis, we analysed the mRNA levels 
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of NOTUM, GPC1 and GPC3 in 10 representative human 

tissue samples, including primary CRC specimens and 

normal distal colorectal mucosa from the same patient. 

In this pilot study, a statistically significant up-regulation 
of NOTUM and GPC1 ( p-value < 0.0001) and down-
regulation of GPC3 ( p-value < 0.001) mRNA levels were 
observed in all tumor samples. The relative expression 

levels were determined with the ∆∆C
T
 method individually 

for each patient with the normal mucosa serving as the 

calibrator (Figure 6A). The expression level values ranged, 

respectively, from 66 to 4408 for NOTUM (median value 

520.45), from 1.57 to 6.77 for GPC1 (median value 2.76), 

and from 0.2 to 1.2 for GPC3 (median value 0.69).

To assess Notum, Glypican-1 and Glypican-3 
protein localization in human CRC samples, we performed 

immunohistochemical analysis on 10 tumor cases and 

10 normal matched mucosa specimens. As previously 

observed in mouse specimens, the analysis revealed a 

strong increase of membrane/cytoplasmic staining in 
tumors for Notum and Glypican-1 in 100% (10/10) and 
80% (8/10) of tumors, respectively, and a weak staining 
for Glypican-3 in 80% (8/10) (Figure 6B).

DISCUSSION

The aim of our study was to identify novel genes 

that are specifically deregulated in colorectal cancer 
using a reliable preclinical platform represented by the 

chemically induced mouse model of sporadic CRC. The 

AOM/DSS model employed in this study (one injection 
of AOM, one cycle of DSS – “two step model”) is an 
acute inflammation-related model in which the initial 
inflammatory microenvironment is important to promote 
and accelerate the malignant progression which starts 

after the AOM administration. Nevertheless, the most 

advanced adenomas and adenocarcinomas lack the strong 

Figure 3: Multi-Gene qPCR validation of differential gene expression. Gene expression levels were measured in the four 

different conditions: Untreated (white circle), DSS (grey square), AOM (blue square) and AOM/DSS (red circle). The results are expressed 
as Delta C

T
 values between the C

T
 value of the gene of interest and the C

T
 value of β2-microglobulin. Each dot represents the evaluation of 

the gene levels in a single mouse. Statistically significant differences were calculated using Student’s t-test: ***p < 0.0005; **p < 0.0078.
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Figure 4: Enriched canonical pathways of the differentially expressed genes as determined by Ingenuity Pathway 
Analysis (IPA). The significance of canonical pathways was determined by IPA’s default threshold [–log(p-value)]> 3 for adenocarcinoma 
and [–log (p-value)] > 1.3 for colon mucosa of AOM-only and DSS-only treated mice. P-value calculated by Fisher’s exact test. The 
associated gene number above each column represents the number of differentially expressed genes that were involved in the respective 

canonical pathways. The percentage of genes that were up- or down-regulated is represented in red or green, respectively. In the lower 
figure, the Wnt/β-catenin pathway has been added and shows the IPA overlay of analysis in adenocarcinoma (up-regulated genes in red, 
down-regulated genes in green). Direct or indirect interactions are shown by complete or dashed lines, respectively.
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inflammatory background observed in other mouse 
models, which proceed through repeated cycles of DSS 
administration (one injection of AOM, three cycles of 

DSS). In that case, the inflammation becomes chronic 
and non-resolved [24], as seen in human IBD-related 
CRC where chronic inflammation always precedes and is 
directly linked to tumor formation [25, 26]. Changes in 

gene expression are extensive in those models, especially 

in genes involved in the inflammatory response and 
immune defence [27]. Conversely, tumors generated 

by our “two step” AOM/DSS treatment accurately 
recapitulate the pathogenesis observed in human sporadic 

noninflammatory CRC [28]. We observed that the 
molecular assessment of AOM/DSS-induced tumors is 
characterized by a mild inflammatory background with 
a number of genes linked to inflammation and innate 
immune response, as will be discussed in detail hereafter, 

but without alterations in the key inflammation pathway 
mediators, e.g., the NFKB, IL-10, IL-6, TNFA and TGFβ 

genes [29, 30].

Few data are available on the long-term adaptive 
response of colon mucosa with respect to an independent 

low genotoxic stress effect (such as a single dose of the 

mutagen AOM) or to mild inflammatory stress (a single 
cycle of DSS administration). Therefore, we decided to 
analyse the colon mucosa of mice treated with single AOM 

and DSS administrations, following a regeneration time 
of 20 weeks. We observed a very small number of altered 

genes in both AOM-only and DSS-only treated mice with 
respect to the normal mucosa of untreated mice (Table 1). 

We confirmed that both the AOM-only and DSS-only 
treated mice showed not only morphologically normal colon 

mucosa but also no molecular alterations approximately 

20 weeks after the initial AOM or DSS stimulation 
(Figure 1). Indeed, hierarchical clustering of gene 

expression profiles (Figure 2) revealed reasonable overlap 
between the genes altered in the AOM and DSS mucosae 
compared with the normal mucosa of the control group, 

proving that almost complete colon mucosa regeneration 

can occur after both AOM and DSS treatments. We also 

Figure 5: Representative results of immunostaining for β-catenin, Notum, Glypican-1, Glypican-3 in FFPE mouse 
tissue sections. Membrane-bound β-catenin, Notum and Glypican-1 were observed in normal colon mucosa, whereas dysplastic ACF 
(Aberrant Crypt Foci), microadenomas, and adenocarcinomas exhibited more intense (++) staining (nuclear or cytoplasmic). Glypican-3 
staining was less intense (+) than Glypican-1 staining (++), and the adenocarcinoma showed a negative signal (-) with respect to nuclear 
or cytoplasmic compartments along with more intense (++) extracellular staining. Incubation with a primary antibody was omitted in the 

negative control. Sections were counterstained with hematoxylin: 20x and 40x original magnification. Scale bar, 50 μm.
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confirmed that the carcinogen AOM minimally affects the 
molecular functions of the treated colon mucosa without a 

subsequent DSS-induced inflammatory phase in the AOM/
DSS colorectal cancer model, which is in accordance with 
the findings of Tanaka et al. [8].

Gene expression profiling in the adenocarcinoma 
showed the differential expression of 2036 probes with 

a |log
2
 FC| ≥ 1, including 1092 (53.6%) that were up-

regulated and 944 (46.4%) that were down-regulated. 
In general, we observed a significant variation in 
the expression of genes, particularly those related to 

cell growth, immune response, cellular transport and 

the regulation of morphology. Our data indicate that 

antimicrobial α-defensins, known as components of the 

Figure 6: A. qPCR analysis of NOTUM, GPC1 and GPC3 differential gene expression in human 
samples. Gene expression levels were measured in human colorectal adenocarcinomas with respect to normal colon 

mucosae, and results are expressed as fold changes, considering the C
T
 value of the gene of interest and the C

T
 value of 

β-actin. Data are represented as mean +/− SD). Statistically significant differences were calculated using Student’s t-test:  

***p < 0.0001; **p < 0.001. B. Representative results of immunostaining for Notum, Glypican-1 and Glypican-3 in human tissue sections. 
Strong staining (++) in CRC cases for Notum and Glypican-1; weak staining (−) in CRC cases for glypican-3. Incubation with a primary 
antibody was omitted in the negative control. Sections were counterstained with hematoxylin: 20x and 40x original magnification. Scale 
bar, 50 μm.
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innate immune system, are among the most up-regulated 
genes in adenocarcinomas. The presence of abnormally 

high defensins expression levels has been identified 
in a variety of human tumors [31]; however, their role 

in carcinogenesis requires further investigation. Other 

markers of Paneth cells, such as secretory phospholipase 

A2 (PLA2G2A), MMP10 and MMP13, were also up-
regulated, confirming that these cells are a cellular 
component of colon tumors, which is in agreement with 

previous reports [32, 33]. Interestingly, the presence of 

Paneth cells in colon cancers has been suggested to be a 

likely consequence of Wnt pathway activation [34].

We also reported the up-regulation of interleukin 
1 receptor-like 1 (IL1RL1), interleukin-1 beta (IL1β) 

and other genes involved in the “LPS/IL1 mediated 
inhibition of RXR function”, which were all identified 
by IPA ontology analysis. The above observation is 

consistent with other data that report that the transgenic 

overexpression of IL1β in gastric mucosa is sufficient to 
induce gastric cancer in mice [35]. New findings have 
recently indicated that IL1β may promote colon tumor 

growth and invasion via the activation of cancer stem 

cell self-renewal and epithelial-mesenchymal transition 
(EMT) [36]

As expected, the second most dysregulated 

canonical pathway in adenocarcinoma was the 

Wnt/β-catenin pathway. Wnt target genes are varied 
and context-specific [37] because Wnt/β-catenin signaling 
controls proliferation, cell fate determination and 

differentiation in numerous developmental stages and 

in adult tissue homeostasis. Furthermore, Wnt signaling 

components are positively or negatively regulated by TCF/
β-catenin [38–41].

Our results indicate that the Wnt-induced 
activation of AXIN2 and DKK3 as well as suppression of 

FZD5, secreted frizzled-related protein 1 (SFRP1) and 

transforming growth factor beta 3 (TGFB3) constituted 

negative feedback loops, which are able to dampen Wnt 

signaling. In addition, IL1β has been shown to indirectly 

activate β-catenin signaling by inducing canonical 
WNT7B expression and by inhibiting the expression 

of canonical Wnt antagonists [42]. Furthermore, we 

observed the up-regulation of IL1β and IL1RL1. We 

detected significant over-expression of TCF4, which is in 

accordance with Wnt-induced TCF/LEF gene expression 
and constitutes a positive feed-forward circuit that 
reinforces Wnt signaling. This feature has been observed 

elsewhere during colon carcinogenesis [43]. These various 

Wnt pathway self-regulatory loops are mostly used in a 
cell-specific modality, affording additional complexity to 
Wnt response amplitude and duration control.

Importantly, with regard to Wnt/β-catenin signal 
modulation, the results of our microarray analysis 

identified the overexpression of NOTUM and the 

alteration of GPC1 and GPC3 expression. There has 

been a recent renewed interest in the involvement 

of Notum and glypicans in the modulation of Wnt 

signaling. The secreted enzyme Notum has been found 

to inactivate Wnt by removing a lipid that is linked to 

the Wnt protein and that is required for the activation 

of Wnt receptor proteins [4]. Wnt signals also turn on 

the expression of the gene encoding Notum, leading to 

negative feedback regulation that intrinsically limits 

signaling. Originally discovered in fruit flies in screens 
for genes that interact with the Wnt protein Wingless, 

NOTUM gene encodes a secreted hydrolase, which has 

recently been identified in hepatocellular carcinoma with 
mutant β-catenin [44].

The Notum-enhanced expression in murine 
colorectal adenocarcinoma reflects its activation in the 
canonical Wnt/β-catenin pathway, implying the crucial 
involvement of Notum dysregulation in CRC pathogenesis. 

Our clinical findings in a set of human sporadic colorectal 
adenocarcinomas confirmed the transcriptional and protein 
up-regulation of Notum. This finding was in agreement 
with the over-expression of Notum observed in human 
primary colorectal and gastric cancers and their cell lines 

as shown in the expression database of the International 

Genomics Consortium (http://www.intgen.org/), where 
Notum overexpression is also reported in breast, lung, 

ovarian and endometrial cancers.

In addition, we observed the over-expression of 
GPC1 and under-expression of GPC3 in murine tumors. 

As the activity of NOTUM has been demonstrated 

to involve the release of GPI-anchored glypicans 
(analogous to Drosophila Dip and Dally) from the cell 
surface [45], we further investigated the involvement 

of such genes in the Wnt/β-catenin pathway in not only 
the tumors but also preneoplastic lesions detected in the 

colon of AOM/DSS-treated animals at 5 weeks after 
tumor induction. Immunohistochemistry confirmed the 
overexpression of Notum in 100% of the adenocarcinomas 

analysed. High levels of the protein were significantly 
associated with the intracellular (nuclear or cytoplasmic) 

accumulation of β-catenin (Figure 5). In contrast, the 
expression of the two glypicans followed a different 

trend. Glypican-3 exhibited marked membrane staining 
in normal colon mucosa, whereas a negative signal was 

observed in both early and late colon lesions. This finding 
provided further evidence supporting the functional 

link between Notum and Glypican-3. In fact, the use of 
a cellular system in which Glypican-3 stimulates Wnt 
signaling provided evidence that Notum can act as a 

negative functional regulator of this growth factor [46]. 

Glypican-3 has been shown to be an inhibitor of cell 
proliferation, and it can induce apoptosis in certain types 

of tumor cells [47]. Recent reports have indicated that 

Glypican-3 displays a tissue-specific pattern of expression 
during tumor progression. Glypican-3 expression is 
reduced in the progression of cancers that originate from 
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GPC3-positive tissues, such as ovarian cancer [48] and 
mesothelioma [49]. Conversely, the expression of this 

glypican is up-regulated in hepatocellular carcinomas, 
although Glypican-3 is not expressed in the liver, 
suggesting that in this case it behaves as an oncofoetal 

protein [50]. Recent studies have also showed a down-
modulation of Glypican-3 and an up-regulation of 
Glypican-1 gene expression in glioblastoma [51]. The 
molecular and immunohistochemical analysis performed 

in our human CRC set revealed very similar results, 

indicating the significant association of GPC1 over-
expression and GPC3 under-expression in tumor lesions 
with respect to the normal colon mucosa (Figure  6).

Possible mechanisms at the basis of the transcriptional 

control of these two glypicans have been investigated. In 

several malignant tumors, including ovarian carcinoma, 

cholangiocarcinoma, mesothelioma, and breast cancer, 

GPC3 is down-regulated as a result of hypermethylation of 
the GPC3 promoter [48, 49, 52, 53]. Also, the involvement 

of miRNAs in postrascriptional control of GPC3 has been 

shown in hepatocellular carcinomas [54].

With regard to GPC1, few data have been reported 

describing transcriptional modulation of the gene in different 

kinds of tumors, but without a functional explanation 

[55]. However, the existence of other overlapping levels 

of regulation, possibly at level of translation have been 

suggested; as such, the existence of translation-level 
regulation has been described in some genes involved in the 

biosynthesis of glycosaminoglycans and proteoglycans [56].

Here, we showed the inverse correlation between 

gene expression and protein distribution of Notum and 

Glypican-3. The progressive accumulation of Glypican-3 
in the adenocarcinoma extracellular environment may 

be explained by the release of Glypican-3 from the 
cell membrane. Nevertheless, the possibility that this 

release, in turn, could be due to the enzymatic activity of 

Notum, which is contextually up-regulated during CRC 
development, has been overcome by the last findings 
of Kakugawa et al [4]. Other mechanisms mediated by 

sheddase (protease or heparanase) could be responsible 

of the cleavage of cell surface attached Glypican-3 
although further studies are needed to clarify this point. 

Currently, the mechanism of Glypican-3 shedding into 
the extracellular space and sera is of general interest, and 

the possibility of using GPC3 as a serological marker in 

different cancer types is under investigation [57].

Less is known regarding Glypican-1, which, in our 
study, showed a very similar expression pattern to that of 

Notum in late lesions, although some positive staining was 

also observed in 90% of the analysed ACFs. This finding 
suggests that Glypican-1 is important but not essential 
for tumor initiation. Glypican-1 expression has also been 
found to be significantly increased in a large proportion 
of pancreatic tumors [58, 59]. However, the functional 

link between Notum and Glypican-1 would benefit from 
in-depth investigation.

Numerous genetic and functional studies performed 

in Drosophila, Xenopus, zebrafish and mammals have 
demonstrated that glypicans may regulate the signaling 

activity of Wnts, Hedgehog (Hh), BMPs and FGFs in a 

tissue-specific manner [60–62].
For example, the activation of the Hh pathway, which 

is deeply involved in CRC development, can be due to the 

removal of the functional inhibitory effect which is exerted 

by GPC3 through the competition of GPC3 with the receptor 

Patched for Hh binding [45]. Interestingly, no transcriptional 

dysregulation of the principal genes involved in Hh signaling 

pathway was observed in our CRC model.

In the particular case of Wnts, GPI-anchored 
glypicans have been proposed to stimulate signaling by 

facilitating and/or stabilizing the interaction between Wnts 
and their cell surface receptors [63]. However, glypicans 

can also act as competitive inhibitors of Wnt signaling 

when secreted into the extracellular environment [64]. 

On this basis, our data on Glypican-1 and Glypican-3 
dysregulation are of high interest, as they can help depict 

a more comprehensive picture of Wnt signal modulation 

in the tumor microenvironment.

In summary, we have demonstrated the following 

for the first time. Notum is over-expressed in early and 
late lesions of the AOM/DSS murine model of sporadic 
CRC and in human colorectal adenocarcinomas. Notum 

expression levels are correlated to β-catenin abnormal 
distribution, indicating that Notum expression is associated 

with canonical Wnt signal modulation in CRC pathogenesis. 

Glypican-1 and Glypican-3 dysregulation is related to Notum  
and β-catenin alterations mostly in AOM/DSS-induced 
colorectal adenocarcinomas and in human colorectal tumors 

but also, in some cases, in early murine CRC stages.

These data suggest that Notum, Glypican-1 and 
Glypican-3 may be included in the variegated landscape 
of the different regulators of Wnt/β-catenin signaling. 
Furthermore, the promising results obtained in the set 

of human CRC samples encouraged us to suggest them 

as new biomarker candidates for CRC that should be 

validated in further clinical studies.

MATERIALS AND METHODS

Animals and sample processing

A total of 30 6-week-old Balb/c mice were 
intraperitoneally injected with a single dose of 10 mg/
kg azoxymethane (AOM) (Sigma-Aldrich, St. Louis, 
MO) on day 1, followed by a single weekly cycle of 2% 

dextran sulfate sodium (DSS) (MP Biomedicals, Solon, 
OH; MW 36–50 kDa) administered in their drinking water. 
The mice were divided into four groups: 1) AOM/DSS 
treated, 2) AOM treated, 3) DSS treated, and 4) untreated 
(control). At the end of the 20th week, 6 mice per group 

were euthanised. Early colorectal lesions were investigated 

at an age of 5 weeks by immunohistochemistry in an extra 



Oncotarget17www.impactjournals.com/oncotarget

group of 6 AOM/DSS-treated mice. All animal procedures 
were performed in accordance with institutional guidelines 

for laboratory animal care and in adherence with ethical 

standards. The study was approved by the Italian Ministry 

of Health according to the decree n. 336/2013-B.
The large intestine was removed from each 

mouse, cut open longitudinally along the main axis 

and flushed with cold PBS. The tumor masses from 
AOM/DSS treated mice, AOM-only and DSS-only 
treated colon mucosa, as well as normal mucosa, were 

cut, immediately placed in 5 volumes of RNAlater 

(Ambion, Austin, TX), and then stored at -80°C for RNA 
extraction. Other areas of the large intestine were fixed 
in 4% paraformaldehyde for 24 hours and embedded in 

paraffin. Histological sections (4 μm) of formalin-fixed 
paraffin-embedded (FFPE) samples were then prepared 
using routine procedures for histopathological analyses 

and immunohistochemistry.

CRC patient samples

Tissues from 10 patients (5 males and 5 females; 

mean age of 74.1 ± 7.5 years) with CRC were obtained 

in collaboration with the Medical University of Plovdiv, 

Bulgaria. All patients signed informed consent in 

accordance with the WMA Declaration of Helsinki (2013). 
The study was approved by protocol # R-1838/15-07-
2013. All patients were staged as T3N0 according to WHO 

classification (7th Revision of the TNM system) with a G2 

grade of cellular differentiation. On the basis of the TNM 

classification, none of them had detected metastasis at the 
time of diagnosis which gives us grounds to assume that 

these cases could be possibly comparable to the mouse 

tumors.

All tissue samples were analysed by two 

independent pathologists.

Tumor tissue and distal normal mucosa were 

isolated from all patients during surgical resection, fixed in 
formalin and embedded in paraffin. A portion of the tumor 
and normal mucosa was placed in RNAlater (Ambion, 

Austin, TX), immediately frozen after surgery and stored 

at -80°C until nucleic acid extraction.

RNA extraction and purification

Total RNA was isolated from each tissue using 

TRIzol® reagent (Invitrogen, Carlsbad, CA) according 

to the manufacturer’s instructions. RNA was estimated 

qualitatively using an Agilent 2100 Bioanalyzer 

(Agilent, Santa Clara, CA) and quantified using a 
NanoVuePlus spectrophotometer (GE Healthcare, Milan, 
Italy). Any genomic DNA contamination was removed 
from the total RNA using a DNA-free kit (Ambion, 
Austin, TX, USA). Purified RNA was stored at -80°C 
until it was used.

RNA microarray analysis

Murine cRNA was synthesized with an Illumina 

RNA amplification kit (Ambion), starting from 500 ng of 
total RNA and following the manufacturer’s instructions. 

MouseWG-6 v2.0 Expression BeadChip hybridization, 
washing and staining were also carried out. Arrays were 

scanned on an Illumina BeadStation 500. BeadChip array 

data quality control was performed with the Illumina 

GenomeStudio software. The average probe intensity 

signal was calculated using GenomeStudio without 

background correction. Raw data were analysed with 

the oneChannelGUI [65] Bioconductor package [66]. 

Average probe intensities were log
2
 transformed and 

normalized by means of the Lowess method [67]. The 

number of genes to be evaluated was reduced by applying 

an interquartile (IQR) filter that removed non-significant 
probe sets (i.e., non-expressed and non-changing sets) 
[68]. Differentially expressed transcripts were detected 
by linear model analysis (BH corrected p-value ≤ 0.05 
|log

2
FoldChange| ≥ 1). The following comparisons were 

considered: DSS-Control, AOM-Control, (AOM/DSS)-
Control. Detected genes were loaded into IPA.

Gene ontology analysis

The biological interpretation of the microarray 

data was conducted using Qiagen’s Ingenuity Pathway 

Analysis version 7 (IPA7, http://www.ingenuity.com). 
Two parameters in the canonical pathway analysis, 

LogRatio and the p-value, measured the significance of the 
association between the data set and the canonical pathway. 

LogRatio represented the ratio of the number of genes from 

the dataset that mapped to the pathway divided by the total 

number of genes that mapped to the canonical pathway. 

The p-value was calculated with Fisher’s exact test.

Quantitative real time PCR (qPCR)

1 μg of murine DNase-treated RNA was 
retrotranscribed using RETROscript™ reagents (Ambion) 

and qPCRs were carried out using gene-specific primers 
(QuantiTect Primer Assay, Qiagen; Chatsworth, CA, USA; 

GAPDH:QT00079247, B2M:QT01149547, DEFA6:QT00 

162491, IL1RL1:QT01063062, WNT6:QT01660883, 

SOX4:QT01755971, GPR49:QT00123193, AQP8:QT001 

60559, CAR4:QT00095340, SFRP1:QT00167153, 

NOTUM:QT01749559, GPC1:QT00164017, GPC3: 

QT00118790, AXIN2:QT00126539), SYBR green 

and 7900HT RT-PCR Systems (Applied Biosystems, 
Milan, Italy). 1 μg of human DNase-treated RNA was 
reverse-transcribed using High Capacity cDNA Reverse 
Transcription kit (Applied Biosystems) and qPCRs were 

set up using Taqman® Gene Expression Assays (Applied 

Biosystems; Assay ID: NOTUM:Hs00394510_m1; 
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GPC1:Hs00892476_m1; GPC3:Hs01018936_m1) and 
Taqman® Gene Expression Master Mix (Applied 

Biosystems). Reactions were run on 7900HT Fast RT-
PCR System (Applied Biosystems). Data were analyzed 
using SDS software 2.3 (Applied Biosystems). Relative 
gene expression was quantified using the threshold 
cycle (C

T
) value and normalized to housekeeping 

genes β2-microglobulin and GAPDH (for murine RNA 
analysis) and β-actin and RNA18S5 (for human RNA 
analysis).

The results of the murine sample analysis were 

expressed as Delta C
T
, which represents the difference in C

T
 

values between the gene of interest and the β2-microglobulin 
reference gene. GAPDH normalized data gave comparable 
results (data not shown). Relative expression in the human 

tumor samples compared with distal normal colon tissue 

(calibrator) was calculated according to the method of 

Fold Change (2^-(DeltaDelta C
T
)). β-actin and RNA18S5 

normalized data gave comparable results.

Statistical calculations were performed with Prism 

3.0 software (GraphPad Software). Student’s unpaired 

t-test was used to analyse the qPCR results. The data 
were considered to be significant at p < 0.001.

Histopathological analysis and 
immunohistochemistry

Both murine and human FFPE sections were 

stained using hematoxylin (H) and eosin (E) according 

to standard histochemical procedures. Mouse 

colonic mucosa lesions (Aberrant Crypt Foci - ACF, 
microadenoma, adenoma, adenocarcinoma) were 

diagnosed according to the histopathological criteria 

described by Boivin et al [69]. Immunohistochemistry 

was performed on 4-μm-thick FFPE tissue sections 
after antigen retrieval in sodium citrate buffer (10 

mM sodium citrate, pH 6), for 40 minutes at 95°C. 
The samples were incubated with rabbit anti-human/
mouse Notum (ThermoFisher Scientific Inc, IL, USA, 
1:300); goat anti- human/mouse Glypican 1 (Santa 
Cruz Biotechnology, Santa Cruz, CA, USA, 1:50), 

rat anti-mouse Glypican 3 (Novus Biologicals, LLC, 
Littleton, CO, USA, 1:50); rat anti-human Glypican 3 
(ThermoFisher Scientific Inc, IL, USA, 1:100) or rabbit 
anti-mouse β-catenin (Santa Cruz Biotechnology, Santa 
Cruz, CA, 1:100) antibodies overnight at 4°C, followed 
by biotin-labelled secondary antibody and HRP-
conjugated avidin for 30 minutes at room temperature. 

Detection was achieved using a substrate/chromogen 
mixture (DAB) and hematoxylin counterstaining. 
Incubation with the primary antibody was omitted for 

the negative controls. The immunostained slides were 

observed under a microscope, and the image data were 

analysed using NIS FreeWare 2.10 software (Nikon, 

Japan). A semi-quantitative intensity scale ranging from 
(−) for 10–20% immunopositive cells (low staining) to 

(+) for 40–60% immunopositive cells (medium staining) 

and (++) 80–100% immunopositive cells for intense 

staining was adopted.
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