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Abstract

N6-methyladenosine (m6A) is one of the most common RNA modifications in eukaryotes, mainly in messenger RNA

(mRNA). Increasing evidence shows that m6A methylation modification acts an essential role in various

physiological and pathological bioprocesses. Noncoding RNAs (ncRNAs), including miRNAs, lncRNAs and circRNAs,

are known to participate in regulating cell differentiation, angiogenesis, immune response, inflammatory response

and carcinogenesis. m6A regulators, such as METTL3, ALKBH5 and IGF2BP1 have been reported to execute a m6A-

dependent modification of ncRNAs involved in carcinogenesis. Meanwhile, ncRNAs can target or modulate m6A

regulators to influence cancer development. In this review, we provide an insight into the interplay between m6A

modification and ncRNAs in cancer.
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Introduction
Up to now, more than 100 kinds of RNA modifications

have been confirmed [1]. Among them, m6A RNA

methylation is one of the most thoroughly studied modi-

fications. m6A RNA modification occurs by methylation

of the sixth N atom of adenine (A) in mRNAs or

ncRNAs [2]. m6A modification sites tend to be found in

the stop codons and 3′-Untranslated region (3′-UTR) of

mRNA with a typical consensus sequence RRACH (R =

G or A and H =A, C, or U) [3, 4]. Accumulating data

show that m6A RNA methylation acts by modulating

circadian rhythm, gene expression, cell differentiation,

stress response, inflammatory response, and carcinogen-

esis [5–10]. According to the global cancer statistics,

there were estimated 18.1 million new cases and 9.6 mil-

lion deaths in 2018 [11]. Recent studies have shown that

m6A modification acts a vital role in the diagnosis,

treatment and prognosis of cancer patients as well as in

carcinogenesis. It also regulates fly sex, virus genome,

meiosis of yeast, tissue differentiation, germination, and

collateral generation of Arabidopsis [12–15].

Noncoding RNAs (ncRNAs) including microRNAs

(miRNAs), long non-coding RNAs (lncRNAs) and circu-

lar RNAs (circRNAs) act pivotal roles in cancer [16–18].

m6A modification can affect ncRNA splicing and matur-

ation involved in carcinogenesis (Table 1). In this review,

we summarize the latest progress about the interplay be-

tween m6A modification and ncRNAs in cancer.

Molecular compositions of m6A RNA methylation
Molecular compositions of m6A RNA methylation in-

clude m6A methyltransferase, m6A demethylase, and

m6A recognition factors (Fig. 1). m6A methyltransfer-

ases, called “writers” contain methyltransferase-like 3

(METTL3) [19], METTL14 [20], Wilms tumor 1-

associated protein (WTAP) [2], KIAA1429 [21], METT

L16 [22] and RNA-binding motif protein 15/15B

(RBM15/15B) [23]. METTL3 regulates the circadian
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Table 1 m6A methylation modifies ncRNAs in cancers

m6A component Related non-coding RNA Cancer Function Role in cancer Regulation References

METTL3 miR-25-3p PDAC Writers Oncogene Up-regulation [45]

miR-221、miR-222 Bladder cancer Writers Oncogene Up-regulation [46]

miR-106b, miR-18a/b, miR-3607,
miR-423, miR-30a, miR-320b/d/e

arsenite-induced carcinogenesis Writers Oncogene Up-regulation [47]

miR-1246 CRC Writers Oncogene Up-regulation [49]

miR-143-3p Lung cancer Writers Oncogene Up-regulation [50]

METTL14 miR-126 HCC Writers Anti-oncogene Down-regulation [48]

METTL3 lncRNA FAM225A NPC Writers Oncogene Up-regulation [67]

lncRNA LINC00958 HCC Writers Oncogene Up-regulation [65]

lncRNA RP11 CRC Writers Oncogene Up-regulation [68]

MALAT1 NSCLC Writers Oncogene Up-regulation [69]

METTL14 XIST CRC Writers Anti-oncogene Down-regulation [70]

METTL3/METTL14 LNCAROD HNSCC Writers Oncogene Up-regulation [66]

ALKBH5 lncRNA NEAT1 GC Erasers Oncogene Up-regulation [71]

lncRNA FOXM1-AS glioblastoma Erasers Oncogene Up-regulation [57]

YTHDF1 LINC00278 ESCC Readers Anti-oncogene Down-regulation [72]

IGF2BP2 lncRNA DANCR Pancreatic cancer Readers Oncogene Up-regulation [60]

PDAC pancreatic ductal adenocarcinoma, HCC hepatocellular cancer, NPC nasopharyngeal cancer, GC gastric cancer, CRC colorectal cancer, NSCLC non-small cell

lung cancer, HNSCC head and neck squamous cell carcinoma, ESCC esophageal squamous cell carcinoma

Fig. 1 m6A modification is a dynamic and reversible process. m6A modification can be executed by “Writers” (METTL3/14, WTAP, KIAA1429,

RBM15/15B, METTL16), demethylated by “Erasers” (FTO and ALKBH5) and regulated by “readers” (YTHDF1–3, YTHDC1–2, IGFBPs, eIF3

and HNRNPA2B1)
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clock of hepatic lipid metabolism and hematopoiesis

[24, 25]. METTL3/14 depletion promotes myeloid dif-

ferentiation and suppresses the progression of acute

myeloid leukemia (AML) [26, 27]. METTL16 main-

tains the levels of methyl donor S-adenosylmethionine

(SAM) [28]. WTAP connects METTL3/14 to form a

complex, anchored to the nucleus to catalyze m6A

methyltransferase [2].

m6A methylation is dynamic and can be reversed by

m6A demethylase, also named as m6A “erasers”, contain-

ing fat mass and obesity-associated protein (FTO) and

alkB homologue 5 (ALKBH5) [29, 30]. FTO shares the

motifs with Fe (II)- and 2-oxoglutarate-dependent oxy-

genase and is related to increased fat mass [31]. FTO

harbors an efficient oxidative demethylation activity and

reduces the m6A levels of mRNAs [30]. ALKBH5 is re-

sponsible for RNA splicing and stability and causes the

degradation of abnormal transcripts in spermatocytes

and round spermatids [32].

m6A recognition factors, known as “readers,” consist

of YT521-B homology (YTH) domain family (YTHD

F1/2/3) [33], YTH domain-containing proteins (YTHD

C1/2) [12], heterogeneous nuclear ribonucleoprotein

(HNRNP) protein families [33], eukaryotic translation

initiation factor 3 (eIF3) [23], and insulin-like growth

factor-2 mRNA-binding proteins 1/2/3 (IGF2BP1/2/3)

[34]. m6A recognition factors act in oligodendrocyte

progenitor cells and oligodendrocyte fate [35]. YTHD

F1 controls pre-crossing axon guidance in the spinal

cord by regulating m6A-modified Robo3.1 [36].

HNRNPA2B1 can initiate the immune response to

DNA viruses by regulating interferon-α/β and

stimulator of interferon genes (STING)-dependent

antiviral signaling [37].

m6A modification of miRNAs in cancer
As is known to us, the dysregulation of miRNAs is in-

volved in various bio-behaviors, such as mouse prenatal

development, immune response, inflammatory response

and carcinogenesis [38–41]. METTL3 or HNRNPA2B1

facilitates pri-miRNA processing by recruiting RNA-

binding protein DiGeorge syndrome critical region 8

(DGCR8) [42, 43]. METTL3 suppresses osteogenic pro-

cesses by promoting the maturation of miR-7212-5p and

downregulating its target fibroblast growth factor recep-

tor 3 (FGFR3) [44].

Tumor proliferation and tumorigenesis

m6A methylation can modify the maturation of miR-

NAs involved in cell proliferation and tumorigenesis

(Fig. 2). miR-25-3p acts as a pivotal role in pancreatic

ductal adenocarcinoma (PDAC). Cigarette smoke con-

densate (CSC) mediates METTL3 to promote miR-25-

3p maturation in PDAC tumorigenesis [45]. METTL3

also enhances the binding of pri-miR-221/222 with

DGCR8 involved in the proliferation of bladder can-

cer [46]. m6A modification affects arsenite-induced

carcinogenesis via modifying multiple miRNAs (miR-

106b, miR-18a/b, miR-3607, miR-423, miR-30a, miR-

320b/d/e) [47].

Tumor invasion and metastasis

METTL14 promotes the maturation of pri-miR-126 and

suppresses the invasion and metastasis of hepatocellular

Fig. 2 m6A methylation modifies miRNAs to regulate tumorigenesis and metastasis in multiple cancers including PDAC, lung cancer, HCC,

bladder cancer, and CRC
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carcinoma (HCC) [48]. METTL3 facilitates the matur-

ation of pri-miR-1246 to enhance the metastasis of colo-

rectal cancer (CRC) [49]. METTL3 also accelerates the

maturation of miR-143-3p, leading to the formation of

METTL3/miR-143-3p/vasohibin-1 axis to favor the me-

tastasis of lung cancers [50].

m6A modification of lncRNAs in cancer
LncRNAs, a subgroup of non-coding RNAs over 200

nucleotides in length can be modified by m6A

methylation in cancer (Fig. 3). m6A methylation fa-

cilitates lncRNA X-inactive specific transcript

(XIST)-mediated transcriptional repression [51–53].

YTHDC1 preferentially recognizes the m6A residues

of XIST and RBM15/15B and participates in XIST-

mediated gene silencing [53]. However, RBM15/m6A-

MTase complex is reported to act a minor role in

XIST-mediated gene silencing [54]. YTHDF2 recog-

nizes m6A methylation site of lnc-Dpf3 to promote

its degradation and enhances the binding of lnc-

Dpf3 with hypoxia-inducible factor 1-alpha (HIF-1α),

leading to the suppression of the glycolysis and mi-

gration of dendritic cells [55]. METTL3 can modify

metastasis-associated lung adenocarcinoma tran-

script 1 (MALAT1) to form the METTL3/MALAT1/

miR-145/focal adhesion kinase (FAK) axis, contribut-

ing to the aggravation of renal fibrogenesis in ob-

structive nephropathy [56].

Fig. 3 m6A methylation modifies lncRNAs to participate in tumorigenesis and metastasis in multiple cancers including GSC, HNSCC, NPC, ESCC,

lung cancer, GC, HCC, pancreatic cancer and CRC
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Tumor proliferation and tumorigenesis

ALKBH5 has been found upregulated in glioblastoma

and prompts the proliferation of glioblastoma stem-like

cells (GSCs). A lncRNA antisense to forkhead box M1

(FOXM1-AS) promotes the interaction of ALKBH5 with

forkhead box M1 (FOXM1) nascent transcripts to in-

crease FOXM1 expression and GSCs tumorigenesis [57].

LncRNA Differentiation antagonizing non-protein cod-

ing RNA (DANCR) contributes to the tumorigenesis of

multiple cancers [58, 59]. IGF2BP2 serves as an m6A

reader to modify DANCR and favors the oncogenicity of

pancreatic cancer [60]. MALAT1, the first lncRNA to be

found associated with lung cancer, possesses a triple

helix structure at its 3’end [61–63]. METTL16 interacts

directly with MALAT1 triple helix and promotes cancer

cell proliferation [64].

Tumor invasion and metastasis

Long non-coding RNA 00958 (LINC00958) is upregu-

lated by METTL3 and facilitates HCC cell migration and

invasion by sponging miR-3619-5p [65]. METTL3/14

enhance the migration of head and neck squamous cell

carcinoma (HNSCC) by upregulating lncRNA activating

regulator of DKK1 (LNCAROD) [66]. METTL3-family

with sequence similarity 225 member A (FAM225A)-in-

tegrin β3 (ITGB3)-FAK/PI3K/Akt axis facilitates the me-

tastasis of nasopharyngeal cancer [67]. METTL3

mediates lncRNA RP11–138 J23.1 (RP11) or MALAT1-

miR-1914-3p-Yes associated protein (YAP) axis to en-

hance the migration and invasion of CRC and non-small

cell lung cancer (NSCLC) [68, 69]. METTL14 increases

the m6A levels of XIST and suppresses the invasion of

CRC [70]. ALKBH5 favors the invasion and metastasis

of gastric cancer (GC) by demethylating lncRNA nuclear

paraspeckle assembly transcript 1 (NEAT1) [71]. YTHD

F1 restrains esophageal squamous cell carcinoma

(ESCC) by interacting with long intergenic non-protein

coding RNA 278 (LINC00278), but ALKBH5 harbors an

opposite function [72].

m6A modification of circRNAs in cancer
CircRNAs, a novel subset of ncRNAs generated by back-

splicing, play a crucial role in protein translation [73].

METTL3 and YTHDC1 are associated with the metabol-

ism of circular RNA zinc finger protein 609 (circ-

ZNF609) and promote its production [74]. Minigenes of

ribosomes-circRNAs (Ribo-circRNAs) can facilitate pro-

tein translation in drosophila heads and circ-ZNF609

boosts protein translation and myoblasts cell prolifera-

tion [75, 76]. m6A methylation has been reported to

affect protein translation of cricRNAs [77, 78]. m6A mo-

tifs are enriched in circRNAs, and a single m6A site is

regarded as a trigger to initiate the translation of cir-

cRNAs. m6A regulators METTL3/14, FTO, YTHDF3,

and initiation factor eIF4G2 are involved in m6A-driven

protein translation [78]. Mammalian cells can recognize

the m6A modification on circRNAs to inhibit innate im-

munity by abrogating immune gene activation and adju-

vant activity [79].

In addition, the dysregulation of circRNAs is associ-

ated with the progression of multiple cancers, such as

breast cancer, gastric cancer (GC), gallbladder cancer

and cervical cancer [80–83]. YTHDC1 interacts with

circRNA NOP2/Sun RNA methyltransferase 2 (cir-

cNSUN2) to facilitate its cytoplasmic export, which leads

to colorectal liver metastasis by forming a circNUSN2/

IGF2BP2/high mobility group AT-hook 2 (HMGA2)

RNA-protein ternary complex in the cytoplasm [84].

m6A modification can be involved in the progression of

GC by regulating circRNA poliovirus receptor-related 3

(circPVRL3) [85].

m6A regulators are regulated by ncRNAs in cancer
NcRNAs have the capabilities to affect m6A levels in-

volved in multiple biological processes (Table 2). miR-

NAs can modulate the binding between METTL3 and

its target mRNAs to participate in the reprogramming

efficiency of mouse embryonic fibroblasts (MEFs) [86].

miR-149-3p inhibits adipogenesis lineage differentiation

and potentiates osteogenic lineage differentiation by tar-

geting FTO [87]. miR-1266 inhibits CRC progression by

targeting FTO [88]. miR-145 suppresses the proliferation

of HCC by targeting YTHDF2 [89]. Similarly, miR-33a

and miR-448 suppress the proliferation of NSCLC by

targeting METTL3 and eIF3a [90, 91]. METTL3 is also

downregulated by miR-600, which induces the apoptosis

of lung cancer [92]. miR-141 suppresses the proliferation

of pancreatic cancer by forming the miR-141/IGF2BP2/

P13K/Akt axis [93]. Hepatitis B X-interacting protein

(HBXIP) inhibits let-7 g expression to upregulate

IGF2BP2, thus leading to the formation of a positive

feedback loop of HBXIP/let-7 g/IGF2BP2/HBXIP to ac-

celerate cell proliferation in breast cancer [94]. miR-497

partially reverses transforming growth factor beta 1

(TGFβ1)-induced epithelial-mesenchymal transition

(EMT) and pulmonary fibroblast proliferation through

inhibiting eIF3a in alveolar epithelial cells [95].

lncRNAs also regulate m6A methylation in cancer.

LncRNA derived from hepatocytes (lnc-HC) interacts

with HNRNPA2B1 to inhibit cholesterol metabolism in

hepatocytes [96]. Long intergenic non-protein coding

RNA 470 (LINC00470) interacts with METTL3 to sup-

press the stability of phosphatase and tensin homolog

(PTEN) to facilitate GC progression [97]. LncRNA

miR503 host gene (miR503HG) also interacts with

HNRNPA2B1 to promote its degradation through an

ubiquitin-proteasome pathway in HCC [98]. Similarly,

long intergenic non-protein coding RNA 1234
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(LINC01234) interacts with HNRNPA2B1 to facilitate

cell proliferation and inhibit cell apoptosis in NSCLC

[99]. Lin-28 homolog B antisense RNA 1 (LIN28B-AS1)

interacts with IGF2BP1 to promote the proliferation and

metastasis of lung adenocarcinoma (LUAD) [100]. Long

intergenic Noncoding RNA for IGF2BP2 Stability (LINR

IS) promotes CRC proliferation by stabilizing IGF2BP2

[101]. The antisense RNA of growth arrest special 5

(GAS5-AS1) depends on ALKBH5 to suppresses the

growth and metastasis of cervical cancer [102]. Growth

arrest special 5 (GAS5) can suppress YAP-mediated

YTHDF3 to restrain the proliferative behavior of CRC

[103]. Antisense strand of the GATA binding protein 3

gene (GATA3-AS) enhances the interaction between

KIAA1429 and GATA binding protein 3 (GATA3) pre-

mRNA, leading to the formation of the GATA3-AS/

KIAA1429/GATA3 axis in HCC [104].

Clinical application of m6A methylation in cancer
m6A methylation serves as new biomarkers for diagnosis

and prognosis in cancer. m6A regulators METTL3,

YTHDC2 and HNRNPC are used to predict the progno-

sis in patients with HNSCC [105]. Upregulated METT

L3/FTO or downregulated YTHDF2 and METTL14 can

indicate a poor survival in GC, CRC, and HCC [48, 70,

106]. Low expression of METTL14 is associated with

tumor differentiation, clinical stage, and microvascular

invasion [48]. Low expression of ALKBH5 or FTO pre-

dicts an unfavorable marker in lung cancer and HCC

[107, 108]. IGF2BP2 is considered as a prognostic

marker in pancreatic cancer, esophagogastric junction

adenocarcinoma and CRC [60, 109, 110].

m6A methylation also participates in drug resistance

and cancer treatment. METTL3 stabilizes YAP and Rho

GTPase activating protein 5 (ARHGAP5) to induce cis-

platin resistance in NSCLC and in GC [69, 111]. HNRN

PA2B1 is overexpressed in tamoxifen-resistant breast

cancer and reduces 4-hydroxytamoxifen sensitivity [112].

In addition to METTL3 and METTL14, FTO and

YTHDF2 are overexpressed in AML [26, 27, 113, 114].

A recent study shows that FTO inhibitor (FB23) and its

derivative (FB23–2) promote myeloid differentiation and

apoptosis in AML by targeting FTO [115]. m6A methyla-

tion is also involved in estimating tumor microenviron-

ment and TME infiltration characterization so as to

provide insights into an effective immunotherapy for

cancer [116]. YTHDF2 is correlated with inflammation

infiltration, vascular reconstruction and distant metasta-

sis and predicts a poor prognosis in HCC [117].

In summary, the role of m6A modification in clinical

application has been widely validated. As for the core

members of m6A methylation, METTL3/14 exert their

functions in many biological processes. METTL3/14 can

be regarded as the most important and promising m6A

regulator and arouse our attention about their modifica-

tions on ncRNAs and the clinical application in cancer

diagnosis.

Conclusions and perspectives
Accumulating studies have been focused on how m6A

methylation modifies the stability, splicing and transla-

tion of ncRNAs or ncRNAs regulate m6A regulators in

cancer. The interaction between m6A methylation and

ncRNAs can impact the different life activities including

Table 2 NcRNAs modulate m6A regulators in cancers

Related non-coding RNA m6A component Cancer Function Role in cancer Regulation References

miR-33a METTL3 NSCLC Writers Oncogene Up-regulation [90]

miR-600 METTL3 Lung cancer Writers Oncogene Up-regulation [92]

miRNA let-7g METTL3 Breast cancer Writers Oncogene Up-regulation [94]

miR-1266 FTO CRC Erasers Oncogene Up-regulation [88]

miR-145 YTHDF2 HCC Readers Oncogene Up-regulation [89]

miR-488 eIF3a NSCLC Readers Oncogene Up-regulation [91]

miR-141 IGF2BP2 Pancreatic cancer Readers Oncogene Up-regulation [93]

lncRNA LINC00470 METTL3 GC Writers Oncogene Up-regulation [97]

lncRNA GATA3-AS KIAA1429 HCC Writers Oncogene Up-regulation [104]

lncRNA GAS5-AS1 ALKBH5 Cervical cancer Erasers Anti-oncogene Down-regulation [102]

lncRNA GAS5 YTHDF3 CRC Readers Oncogene Up-regulation [103]

lncRNA LIN28B-AS1 IGF2BP1 LUAD Readers Oncogene Up-regulation [100]

lncRNA LINRIS IGF2BP2 CRC Readers Oncogene Up-regulation [101]

lncRNA miR503HG HNRNPA2B1 HCC Readers Oncogene Up-regulation [98]

lncRNA LINC01234 HNRNPA2B1 NSCLC Readers Oncogene Up-regulation [99]

HCC hepatocellular cancer, GC gastric cancer, CRC colorectal cancer, LUAD lung adenocarcinoma, NSCLC non-small cell lung cancer
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cancer cell proliferation, invasion and metastasis. As for

the clinical application of m6A methylation, they can be

regarded as the potential targets for cancer diagnosis,

prognosis and treatment. The latest findings show that

lncRNA long intergenic non-protein coding RNA 266–1

(LINC00266–1) interacts with IGF2BP1 by encoding a

71-amino acid peptide, named RNA-binding regulatory

peptide, thereby promoting tumorigenesis [118]. How-

ever, the specific binding sites between m6A methylation

and ncRNAs need be further investigated.
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