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Novel Kalman filtering method for the
suppression of gyroscope noise effects
in pointing and tracking systems
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Douglas E. Ehiers
University of Nebraska—Lincoln
Department of Electrical Engineering

and
Center for Electro-Optics
Lincoln, Nebraska 68588-0511
E-mail: marcelo @ gaucho.unl.edu

1 Introduction
Sensing equipment, such as TV cameras, radars, and navi-
gation instruments, is frequently carried by and operated in
a moving vehicle, such as an airplane, that undergoes rota-
tional motion. In such an environment, the equipment is com-
monly installed on a platform that is stabilized with respect
to its mounting base. The gimbals within the platform gen-
erate a counterrotation equal in magnitude and opposite in
direction to that of the base, maintaining the line of sight
(LOS) of the sensor (the image from the camera) on a pre-
selected object regardless of vehicle motion. This combined
motion, sensor-to-base and base-to-object, is commonly re-
ferred to as angular jitter or residual motion (inertial).

In precision stabilization platforms, a major jitter contrib-

Abstract. A primary cause of degraded performance in pointing and
tracking systems is the jitter in the line of sight. This jitter is caused by
the residual angular motion of the stabilized platform within the system.
A major contributor to this residual motion is the gyroscope noise. Thus,
to reduce angular jitter, lower-noise gyroscopes are selected, generally
at a premium cost. Another approach is to enhance the accuracy of the
gyroscopes electronically (by suppressing measu rement noise) before
their outputs are fed into the stabilized platform control system. Optimal
filtering techniques can be used for this purpose. The goal is to estimate
the platform motion so that the calculated value is closer to the actual
value than the measurement is. Enhanced performance is obtained at
the expense of added complexity, but in many cases this approach may
prove to be more economical than resorting to more precise and costly
lower-noise gyroscopes. This paper presents a novel Kalman filtering
method that provides more accurate angular motion estimates than the
measured values. The effectiveness of this method is evaluated through
a computer simulation case study. The simulation demonstrates that the
new approach yields excellent 3-D angular velocity estimates, very small
mean square estimation errors, and over a 5-to-i improvement (in the
mean-square sense) over angular velocity measurements obtained from
three orthogonal gyroscopes. The enhanced 3-D angular velocity esti-
mates can be fed into the platform stabilization control system rather
than feeding raw gyroscope measurements, thus significantly reducing
the contribution of gyroscope noise toward the overall jitter in a stabilized
platform. This would permit a relaxation on gyroscope noise specifica-
tions, which could lead to substantial savings while maintaining the same
error budget.

noise gyroscopes are selected, generally at a premium cost.
Another approach is to enhance the accuracy of the gyro-
scopes electronically (by suppressing measurement noise)
before their outputs are fed into the stabilizedplatform control
system. 1-3 Optimal estimation techniques, such as Kalman
filtering, can be used for this purpose. The ability of the
Kalman filter to produce more accurate values for measured
variables is attributed to the use (in the computation of the
estimate) of statistical information about the process that gen-
erated those variables, and about the noise in the measure-
ments of those variables.47 Furthermore, the filter incor-
porates knowledge about the system itself through a model
of its dynamical characteristics. The goal is to assess the true
angular motion of the platform base so that the estimated
value is closer to the actual value than the measurement is.
Enhanced performance is obtained at the expense of added
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utor is the gyroscope noise. To reduce angular jitter, lower-
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complexity, but in some cases this approach may provide a
cost-effective alternative to using higher-accuracy (and thus
more expensive) gyroscopes.
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In order to use Kalman filtering techniques, the angular
motion dynamics need to be described. Euler' s equations
provide the required model.8 They give a nonlinear set of
differential equations relating the angular acceleration about
one axis to the net torque applied to that axis, and to the
product of angular velocity components about the other two
axes orthogonal to the first. The nature of the system non-
linearities creates significant challenges in the implementa-
tion of the Kalman filter. In order to solve this complex
problem, a novel method to estimate 3-D angularjitter is used
in this paper. The key development in this new approach is
representing a nonlinear system with a pseudolinear model
that is mathematically equivalent. The concept is akin to
nonlinear state transformations,9 but is far more flexible, is
easy to obtain, and allows one to construct more general
models of nonlinear systems than direct nonlinear transfor-
mations. This approach allows us to apply the linear Kalman
filter directly to the equivalent linear model. This results in
a Kalman filtering method for nonlinear systems that is sim-
ple, accurate, and computationally efficient, and avoids many
of the complexities created by the extended Kalman filter.
An explanation of how to obtain mathematically equivalent
representations follows.

2 Equivalent Pseudolinear Representation of
Nonlinear Systems

In general, the development of nonlinear control systems
entails some form of system linearization. This can be ac-
complished by calculating the Jacobian matrices about an
operating condition,'° by feedback linearization' 1,12 or
through special state-space transformations)3'9 The ap-
proach developed in this paper does not require any of the
above. Instead, a nonlinear system is systematically decom-
posed into linear and nonlinear components. The nonlinear
terms are then redefined as a new set of state variables. This
leads to an equivalent-system representation that has a linear
form and is easy to obtain.

To show this development, consider a nonlinear system
with the following general state-space form:

i=AX+f(X)+g(X,U)+h(U),

where
U = system input vector
X = [x1 x2 ... x,1T = system state vector
A = [A, A2 ... AITiT
I

— Ui J2 mi
g =[g,g2...gT
h =[h1h2...h]T
A, = row vector of constant coefficients

= nonlinear operator with I = 1 n

g = nonlinear operator with i = 1 n
= linear or nonlinear operator with I =1 n.

The term AX in Eq. (1) contains linear operations within the
nonlinear system, the termf (X) embodies nonlinear functions
of the states, the term g (X, U) includes nonlinear combina-
tions of the states and inputs, and the term h(U) represents
functions of the inputs alone. Then the individual elements

of the state vector are given by the following set of first-order
differential equations:

k,=A,X+f1(X)+g1(X,U)+h,(U)

X2 _A2f2(X) + g2(X, U) + h2(U),

k,=A,7X+f(X)+g(X,U)+h(U)

(2)

A mathematically equivalent representation of the pre-
vious set of nonlinear differential equations can be obtained
by introducing the following set of variables:

z =f,(X) with i=1 n

v,=g,(X,U)+h,(U) with i=1 n

w =f(X) with i=1 n

This yields the following expressions:

i2=A2X+z2+v2

2=w2

n=wn

(3)

(4)

The previous representation, written in state-space form,
yields the following vector expression:

(1) XeqAeqXeq+BeqUeq

where

Xeq = [x, ... x, z1 ... z]T=[X ZIT,

Ueq = [v1 ... v, w1 ... w]T=[V WIT,

A [A I
eq

[0]

Beq
= '2n= identity matrix of order 2n.

(5)

Equation (5) has a linear form in terms of the vectors Xeq
and Ueq, and it is mathematically equivalent to the original
nonlinear system. A restriction in this development is that
the first time derivative of the nonlinear function f, needs to
existfori=l n.

The new state vector Xeq contains the actual nonlinear
system state variables x, through x,, and the pseudo-state-
variables z, through z,7 contain the system nonlinearities. The
lack of nonlinear terms in some of the equations would reduce
the number of auxiliary variables introduced, and the order
of the augmented system would be less than 2n.

OPTICAL ENGINEERING I October 1995 I Vol.34 No. 10 / 3017
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Analogously to Xeq, the vector Ueq 5 formed using pseudo-
inputs v1, which result from the relationships g,(X, U) and
h,(U).

This variable substitution scheme leads to an augmented
system that is mathematically equivalent to the original non-
linear system, but it has a linear form. The term pseudolinear
is introduced to differentiate between a truly linear system
and one that is artificially constructed through the introduc-
tion of new variables. This augmented equivalent linear sys-
tem can be used along with conventional linear Kalman fil-
tering designs, yielding a simple and effective estimation
method for nonlinear systems.

Alternatively to directly filtering the augmented state vec-
tor, the vector formed by the true states and the vector formed
by the pseudostates can be filtered separately. This approach,
called interlaced Kalman filtering (IKF), is presented in
Ref. 20, where a nonlinear estimation problem is solved with-
out requiring complex linearization processes or extended
Kalman filtering (EKF) techniques. This simplification is ob-
tamed at the expense of having to run two linear Kalman
filters simultaneously. However, the IKF has the advantage
over the EKF that the Kalman gains do not need to be con-
tinuously updated, significantly reducing the computational
burden. This is because the system representation does not
change with the operating states. This is not the case for the
EKF, since the Jacobian matrices need to be recomputed
every time the value for the state estimate changes. Then, a
change in the Jacobian matrices would lead to computing a
new set of Kalman gains. In addition, the EKF method in-
volves a nonlinear projection of the estimate. This must be
done through the nonlinear system dynamics. That is, we
find the predicted value of the estimate X(tk±1) by solving
X=f(X, U,t) at t = tk+1 ' subject to the initial conditions
x= ; at t = tk . In most cases, this is not and it is not
needed in the IKF approach.

In the preceding development, the system' s nonlinear
terms were split into the separate functions f(X), g(X, U),
and h(U), as shown in Eq. (1). This maintained separation
between those terms associated with the states only, those
associated with the inputs only, and those associated with
both. Alternatively, these functions could be lumped into a
single term, which could be treated as the input vector to the
pseudolinear system. The advantage to this is that no addi-
tional states are introduced, and the order of the pseudolinear
system is the same as that of the original nonlinear system.
This simplification leads to a variation of the IKF method
hereafter referred to as the pseudolinear Kalman filter
(PLKF), which does not require a second Kalman filter run-
ning simultaneously. In this new approach, the general state-
space form is given by

X=AX+j(X,U), (6)

wherej is now a nonlinear operator acting on the states and!
or inputs. A mathematically equivalent representation of this
nonlinear system can be obtained through the following
substitution:

j(X,U)=UD+Us,

where 1D represents terms that are associated with the states
and/or deterministic inputs, and U embodies the random

3018/OPTICAL ENGINEERING / October 1995 / Vol. 34 No. 10

inputs. The estimation of the system states can be accom-
plished analogously to the Kalman-filtering case with deter-
ministic inputs.22 To illustrate the PLKF process, consider
the discrete-time case where the system and measurement
models are described by

X(n+ l)=AX(n)+BDUD(n)+BSUS(n)
Y(n) =HX(n) + V(n),

where
X = state vector
Y = measurement vector
UD = deterministic pseudoinput

= random input with covariance Q
V = measurement noise with covariance R
A = system matrix

BD = deterministic input matrix
B = stochastic input matrix.

(8)

The mechanization of the PLKF process is realized by the
execution of the following steps:

• Step 0: Assume initial state vector and error covariance:

— 1)= assumed value

P(O — 1)= assumed value

• Step 1: Calculate Kalman gains:

K(n)=P(nfn— 1)HT[HP(nln_1)HT+R(n)]_l

• Step 2: Compute new state vector:

(n)=(nfn— 1)+K(n)[Y(n)—H(n)(nn— 1)]

• Step 3: Update error covariance estimate:

P(n) = [I—K(n)H]P(nn — 1)

• Step 4: Propagate state vector and error covariance:

(n+ 1In)=A(n)+BDUD(n)

P(n+ 1ln)=AP(n)AT+BsQ(n)B.

• Step 5: Make new measurement and repeat from
step 1 for new time index.

The particulars for the application of the PLKF method
to 3-D angular motion estimation follow.

3 The Pseudolinear Kalman Filtering Algorithm
for the Estimation of 3-D Angular Motion

In the case of 3-D angular motion, the system dynamics are
described by Euler' s equations of motion. Expressing that
motion along the body's principal axes of inertia leads to the

(7) following expressions23:

. '2'3 M1
(01= , W2W3+,

11 11
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w2 (i)1W3+ , (9)

BD [t12_I3

0 0. I3I M2 _____

. 1'2 M3
—

'2
L

'2 '2 Il
— 0 &I3I1 o

w3= w1w2+ ,
13 13 ______

13

where
11 = principal moment of inertia about roll axis

B [
0 0

'1 I

'2 principal moment of inertia about pitch axis j,, I— 0—0 I.
13

= principal moment of inertia about yaw axis '2 I

M1 = random torque applied to roll axis & I
0 0 —]

M2 random torque applied to pitch axis 13

M3 random torque applied to yaw axis
The vector UD is composed of the pseudo-state-variables,

(Ui body angular velocity along roll axis which contain the nonlinearities. It becomes a deterministic
2 body angular velocity along pitch axis input to the model describing the progression of angular ye-

(03 body angular velocity along yaw axis locities. To complete the overall pseudoequivalent model,
the means for propagating the nonlinearities (products of= body angular acceleration along roll axis
angular velocities) need to be devised. The state vector con-

body angular acceleration along pitch axis taming the nonlinearities was defined as
(03 body angular acceleration along yaw axis.

X=[z1 z2 z31T=[co2w3 wiw3 ]T . (12)
The system of equations (9) provides a set of nonlinear dif-
ferential equations, known as Euler' s equations, that corn- Differentiating each element in Eq. (12) leads to the following

pletely defines the angular motion of a rigid body in 3-D relationships:
space. To use them as system model for the discrete Kalman
filter they need to be expressed as difference equations. This i 32 (02(03
can be accomplished using a variety of forms, but for suf-
ficiently small time intervals an angular acceleration can be 2 (010)3 , (13)
approximated with a first forward difference between angular
velocities, as follows: Z3 O)2W1 + W1W2

co(n + 1) — w(n)
(10)

Using the first-difference approximations for continuous time
& , derivatives in Eq. (13) (forward difference on the left-hand

side and backward difference on the right-hand side of the

where equations) leads to the following state-space representation
for the progression in time of products of orthogonal angularn) = angular acceleration at time index n velocity components:

w(n + 1) — angular velocity at time index n + 1
Xz(n+1)=Xz(n)+U(n)+U(n) , (14)w(n) = angular velocity at time index n

it = incremental time step. where

UJ = F[X(n),X(n—1)]=[F1 F2 F3]T
Substituting Eq. (10) into Eq. (9), and after some manipula-
tions, the following state-space representation for the discrete- F1 [O)2(n) — w2(n— l)]w3(n)— [w3(n) —

w3(n
— 1)]w2(n)

time progression of 3-D angular velocities is obtained: F2 [w1(n) — w1(n— l)]w3(n)— [w3(n) —
w3(n —

1)1w1(n)

F3 [w1(n) — w1(n— l)]w2(n)— [w2(n) —
w2(n

— 1)]w1(n)X(n + 1) =X(n) + BDUD(n) + B U(n) , (1 1) = random term that forces the equality to hold.
Y(n)=X(n)+ V(n)

Equation (14) gives a linear model for the propagation of the
where state vector x. This model contains a nonlinear function of

xoJ = [w1 2 3 1T the state vector but it is linear in terms of the state vector

UD X = [z1 z2 z31T=fX= [w2w3 w13 ]T Xz thus complying with the linearity criteria with respect to
the pseudo-state-variables. This is a key consideration in de-U = [M1 M2 M3]T= random torque disturbances veloping a pseudolinear Euler equivalent model.

V( = [v1 v2 v3 = angular velocity measurement In order to treat the vectors UD and U as deterministic
noise, inputs to their respective system models, they should be ob-

tained separately. The IKF method makes this possible. Equa-
and the matrices BD and B are defined as follows: tions (11) and (14) provide the discrete-time models to be

OPTICAL ENGINEERING / October 1995 / Vol.34 No. 10 / 3019
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ESTIMATED
ANGULAR
VELOCITY

X(n)

used by each of the filters. The filtering process is illustrated
in Fig. 1 . The first filter estimates orthogonal angular velocity
components, and the second estimates their products (taken
two at a time). The measurements used by the first filter are
provided by angular rate sensors (gyros). Another set of in-
dependent measurements is supplied to the second filter. The
product of angular velocity components (taken two at a time)
can be sensed by an arrangement of linear accelerometers.24
This measurement scheme is illustrated in Fig. 2. Point 0
represents the rotational center of a vehicle around which the
angular velocity w = [w w ()3JT is exerted. Linear ac-
celerometers placed at points A, B, C, and D provide the
following outputs: A, AX, AX, A, A, A, A, A, and A,
where A is the acceleration at point D in the Z direction,
and likewise for the other outputs. Also, since the positions
of the accelerometer with respect to each other (RB/A, RC/A,
and RD/A) are known, all the necessary data are readily avail-
able to obtain independent measurements for the products of
angular velocity components, as follows:

,jY_AY AX_AX'B 'A C A+
2RB/A 2RC/A

AZ_AZ AY_AYC A D A+
2RC/A 2RD/A

Since the product of angular velocity components can be
measured as a linear combination of accelerometer outputs,
whatever noise is in the accelerometers will be reflected as
additive noise in the overall measurements. Furthermore, if
the accelerometer noise is Gaussian, the noise in the mea-
surements for angular velocity products will also be Gaussian,

x

Fig. 2 Linear accelerometer arrangement for angular motion deter-
mination.

(15)
since it results from linear combinations of Gaussian-
distributed noises.

We now have separate models describing the dynamics
of angular velocities and their products [Eqs. (11) and (14)],
and independent measurements for angular velocities (from
gyros) and products of angular velocity components (from
accelerometers). Furthermore, we can assume that the mea-
surement noises are Gaussian, and that the random distur-
bances U and U are Gaussian as well. Under these as-
sumptions the linear Kalman filter becomes the optimal
filter.25 As a trade-off between optimality and practicality,
let us replace the independent measurements provided by the

3020 / OPTICAL ENGINEERING / October 1995 / Vol.34 No. 10

ANGULAR
FILTER #1

VELOCITY
MEASUREMENTS

Fig. 1 Block diagram of interlaced Kalman filter.

z

z,

— I

I I
I I

x,---I-----i
Y,

/

AZ_AZ AX_AX
B A D A+
2RB/A 2RD/A

V



where
z = incremental step size on z

N = relative frequency of occurrence for z
N = total number of occurrences for z.

PRODUCTS OF
ANGULAR VELOCITY

MEASUREMENTS
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ESTIMATED
ANGULAR
VELOCITY

X(n)

___ __ ___-_ANGULAR
FILTER #1 (estimate)

VELOCITY _______
MEASUREMENTS I KALMAN _______________________ ______ -

(from gyros)
' +

GAINS KI
_____________________________________________________________________________

I _______
I X(nIn-1)

ESTIMATED
PRODUCTS OF

ANGULAR VELOCI1Y L DJ
Xz(n)

-jFILTER #2

I - 1
I I

I

A I GAINS K
I I

I I

I I

I

I Xz(fllfll)

Fig. 3 Block diagram of modified interlaced Kalman filter.

accelerometers with algebraic manipulations on the gyro out- sponding to angular velocities are independent (due to the
puts. In other words, the measurements for products of an- orthogonality between axes) and Gaussian-distributed, and
gular velocity components are now obtained by multiplying that the measurement noises are also independent (a common
angular velocity measurements. The resulting IKF process is assumption). Then
illustrated by Fig. 3. The issue now is the characterization of

To address this issue let us consider the measurement wi (w)

the measurement noise under the proposed algebraic- i
measurement scheme. Pz(Z) j px(W)py _ dw (19)

equation. Assuming the additive Gaussian noise v1 in the
angular velocity measurements, the measurement equations The analytical solution of Eq. (19) is rather involved. For

can be expressed as that reason, a numerical approach is used instead. The var-
iables x and y are generated using the random number gen-

Y(,.(n) = w(n) + v(n) for i = 1,2,3 . (16) erator of the XMATH software.27 The distribution is Gaus-
sian with zero mean and standard deviation of one. A total

Then the measurement equations for the product of angular of 8192 (213) points are generated for each variable. The

velocities are given by random variable z is generated through point-by-point mul-
tiplication. The probability density function of z can be de-

= Y2(n)Y3(n) fined as

(17) Pz= lim , (20)
Lz—*O, N—o Lz N

=Y1(n)Y2(n)

Now the statistical characteristics of the products of ran-
dom processes need to be analyzed. For this purpose, let x
and y be two random processes defining a third random pro-
cess z =xy. Then the system xy =z and x =w has a single
solution, namely x =w and y = ziw. Hence, the probability
density function of the random variable z =xy is given by
(see Ref. 26)

i 1 / z\
Pz(Z) I PxyL w,— dw . (18)J_W \ W/
From the nature of the angular velocity estimation problem,
it is reasonable to assume that the random variables corre-

For a sufficiently small step size, Pz can be approximated28
by the histogram of z. That is, Pz can be obtained graphically
by plotting the normalized relative frequency of z versus
itself. This is shown in Fig. 4, where the histogram envelope
is plotted for zz = 0.03. It is clear from this figure that the
resulting distribution of z is not Gaussian. However, the ran-
dom process z(t) is still white, since29 z(t) is uncorrelated
with z(t) for every t1 t.

A plot of autocorrelation function

is provided in Fig. 5. Note that the experimentally obtained

OPTICAL ENGINEERING / October 1995 / Vol.34 No. 10 / 3021
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Fig. 5 Autocorrelation function for product of two Gaussian pro-
cesses.

autocorrelation function R(t, t) is approximately equal to
1 .OS(t — )' with a delta function. This confirms that a
random process generated by multiplying two Gaussian-
distributed random variables is white. As long as the pro-
cesses are white, the Kalman filter can be validly applied. In
fact, the Kalman filter is the optimal linear estimator if the
random process is white, and it is the optimal estimator if
the process is Gaussian.3° Therefore, the IKF method pro-
vides an optimal linear estimation approach for solving the
problem of nonlinear angular velocity estimation. This ap-
proach is simpler than the EKF method in that it does not
require the continuous update of the Jacobian matrices, nor
the nonlinear propagation of the state estimate. This simpli-
fication is obtained at the expense of having to run two sep-
arate linear Kalman filters, but it is less computationally in-
tensive than the EKF method, since the nonlinear projection
of the state estimate is avoided.

As a further trade-off between optimality and practicality,
let us replace the second linear Kalman filter (estimating the
nonlinear terms, i.e., products of angular velocity compo-
nents) with a nonlinear operator acting on the estimates of

the first Kalman filter. This constitutes the pseudolinear Kal-
man filter (PLKF), which is schematically shown in Fig. 6.
Then the pseudolinear model describing the discrete-time
progression of 3-D angular velocities is given by

X(n+ l)=XW(n)+BDUD(n)+BSUS(n)
(21)

Y(n)=X(n)+ V(n)

where

X = [o o2 w3IT angular velocity vector
UD = f(&) = [23 W1(3 1T nonlinear terms

U = [M1 M2 M3 1T random torque disturbances

V0 =
[v1 v2 v3 1T= angular velocity measurement
noise

= [ G 31T PLKF estimate of angular
velocity vector.

Equation (21) provides a linear discrete-time Euler equivalent
model that can be used to estimate stabilized platform motion
(as a 3-D angular velocity) using the pseudolinear Kalman
filter. The result is a filtering technique that allows one to
estimate 3-D angular motion in a robust, computationally
efficient, and accurate manner. In fact, it is shown in Sec. 5
that results yielded by the PLKF are indistinguishable from
those obtained using the IKF and EKF methods. Then, the
more accurate values of platform motion obtained by this
method can be used as inputs to the stabilization control
system (rather than feeding the raw measurements) to reduce
the contribution of gyroscope noise to the overall jitter in a
stabilized platform. A description of a stabilization system
implementing this approach is presented in the section that
follows.

The direction in which one must look to obtain an image is
called the line of sight (LOS). Stabilizing the image is equiv-
alent to stabilizing its LOS. In the general case of a three-
axis stabilization system, such as the one schematically
shown in Fig. 7, the stabilization of the LOS is accomplished
by actuating the gimbals to generate a relative motion equal
in magnitude and opposite in direction to that of the base

3022 / OPTICAL ENGINEERING / October 1995 /VoI. 34 No. 10

1.6

1.4

1.2

Fig. 4 Probability density for product of two Gaussian processes.

1.2

6

o

-6OOO .4 .2000 0
TimeIndex

I . . I I I
__ 4 LOS Stabilization System Description

Estimated
Angular Rates

Auxiliary Calculations: K(n) = P(nln-l) HT [H P(nln-1) HT + R(n)]
P(n) = [I - K(n) H] P(nln-l) T
P(n+lIn) = A P(n) AT+ BsQ(n) Bs

Fig. 6 Pseudolinear Kalman filter for 3-D angular motion estimation.
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Fig. 7 Three-axis stabilization system.
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BEARING ASSEMBLY,
PITCH AXIS
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ROLL AXIS

COVERPLATE
BEARING

MOUNTING BASE
(ATTACHED TO VEHICLE)

GIMBAL, ROLL AXIS

GIMBAL, YAW AXIS

MOTOR, BEARING AND
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Fig. 8 Multiple rotating frames.

motion. The interdependence between rotating frames within
the gimbal system is shown in Fig. 8. The frame X0 Y0Z0
corresponds to the mounting base, X3 Y3Z3 corresponds to
the yaw gimbal (outer rotation), X2 Y2Z2 corresponds to the
pitch gimbal, andX1 Y1Z1 corresponds to the roll gimbal (inner
rotation). The LOS is represented by the vector Q. For the
LOS to be stabilized, i.e., not moving, the rate of change of
that vector must be zero (Q=0). This stabilization criterion
can be mathematically expressed by projecting all the angular
velocity vectors onto a common frame and equating the result
to zero, as follows:

o = 1i0+ w2j0 + w3k0 + WRl1 + wj2 +wk3 , (22)

where

0)2, 0)3 = base roll, pitch, and yaw rates,
respectively

0)R' 0)P' 0)Y = gimbal roll, pitch, and yaw rates,
respectively

jo, o, k0 = orthogonal unit vectors for base frame

ii, 2' k3 = unit vectors for roll, pitch, and yaw
gimbal axes, respectively.

For convenience, all vectors are projected onto the mounting-
base coordinate frame. The relationships between the unit
vectors within the gimbal system and the base are shown in
Fig. 9. From these relationships, the unit vectors i1, j2, k3 can
be expressed in terms of i0, j0, and k0, as follows:

k3=k0

j2 =j3 = — sina i0 + cosa j0 ,
(23)

ii =2 = cosO i3 — sinO k3

= cosO cosa i0 + cosO sina Jo — sinO k0

Substituting the equations in (23) into Eq. (22) allows us to
calculate the roll, pitch, and yaw gimbal rates required to
stabilize the LOS, as shown below:

0)1+0)2 tana
0)R cosO cosa + tana cosO sina

2 0)R cosO sims
wP=— , (24)cosa

WY=—0)3+wRsinO

The equations in (24) give the velocity setpoints for the
roll, pitch, and yaw servo motors. These variables are fed as
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inputs to the speed control system, commanding the servo- with white Gaussian noise with mean zero and variance 0. 1.
motors to rotate the gimbals at the speeds required to stabilize This scenario creates a condition of low signal-to-noise ratio
the LOS. The variables w w2, and (03 are measured using to be improved by the Kalman filter. The measured angular
three orthogonal gyroscopes. The noise in these measure- rates are shown in Figs. 1 1 (b), 12(b), and 1 3(b), correspond-
ments incorporates errors into the setpoint calculations, which ing to the roll, pitch, and yaw axes, respectively.
increases the LOS jitter. This effect can be suppressed using The PLKF method was used to estimate the actual angular
the PLKF method. The enhanced 3-D angular velocity es- velocities {shown in Figs. 11(a) to 13(a)I based on the noisy
timates of the jitter can be fed into the platform stabilization measurements available [shown in Figs. 1 1(b) to 13(b)]. The
control system rather than feeding raw gyroscope measure- results are provided in Figs. 14(b), 15(b), and 16(b), cone-
ments; this significantly reduces the contribution of gyro- sponding to the estimated angular rates for the roll, pitch,
scope noise toward the overall jitter in a stabilized platform. and yaw axes of the base. To ease the comparison, the plots
The advantage of this technique is that it facilitates the re- for actual roll, pitch, and yaw rates are repeated in Figs. 14(a),
laxation of gyroscope noise specifications, which can lead to 15(a), and 16(a), respectively. It can be concluded from these
substantial savings, while maintaining the same error budget. figures that the estimated rates provide excellent estimates
This approach is schematically shown in Fig. 10. of the actual rates, in spite of the very low signal-to-noise

5 Computer Simulation Results
ratio imposed. This is further attested by comparing the es-
timation errors with the measurement noise. The estimation

The performance ofthe PLKF-enhanced stabilization system
is evaluated in this section through a computer simulation
case study. In order to generalize the results, all variables
have been scaled to a platform having unitary inertia with
respect to one of its axes. The normalized angular rates for
the base motion are assumed to be random, with Gaussian

errors are plotted in Figs. 17(a), 18(a), and 19(a), correspond-
ing to the roll, pitch, and yaw axes, respectively. The cor-
responding gyroscope measurement noises are provided in
Figs. 17(b), 18(b), and 19(b), respectively. It is evident from
these figures that the gyroscope noise has been effectively
suppressed. This is confirmed by the mean-square-error

distribution, variance 0. 1 , mean zero, and bandlimited to
10 Hz. These angular velocities are plotted in Figs. 11(a),
12(a), and 13(a), corresponding to the roll, pitch, and yaw
rates, respectively. Three orthogonal gyroscopes are used to
sense these rates, providing measurements that are corrupted

(MSE) calculation results shown in Table 1 , corresponding
to the average of the results obtained for 70 Monte Carlo
experiments. The standard deviation corresponding to the
MSE data is provided in Table 2. Since the standard devia-
tions for these data are so small, high statistical confidence
can be placed in these results.

Taking the ratio between the estimated and measured val-
ues in Table 1 leads to the conclusion that the PLKF method

MOTION OF YAW GIMBAL WITH yields over a 5-to- 1 accuracy improvement in the estimated
RESPECT TO VEHICLE

[T ] 73 — a 0
versus measured values of angular rates (in the mean-square
sense). These enhanced estimates of platform base motion

1131 IC0SG Sina 0] 11°]
I I = I cosa 0 J
L 3J L J L°J

can be used in the gimbal rate setpoint determination
[Eq. (25)] to improve the accuracy of the calculations, ulti-
mately yielding lower LOS jitter. This is demonstrated by

13 cosa i + sina Jo the simulation results shown in Figs. 20 through 22. In these

xo
j3 = S1Th2 4 + cosa j

x3
k3 = k

figures, the rates for the residual motion (jitter) of the sta-
bilized element within the platform are given. Figure 20(a)
shows the residual roll rate of the stabilized element when

MOTION OF PITCH GIMBAL
WITH RESPECT TO YAW GIMBAL

72 [Te] 73

the PLKFestimated rates are used in the setpoint calculations
according to Eq. (24). Figure 20(b) shows the residual roll
rate when the raw measurements are used in the setpoint

1121 Icoso 0 -sinol 1'31

L ] L° o cosO ] L]
calculations. Likewise, Figs. 21 and 22 show equivalent
sults for the pitch and yaw axes, respectively. These figures
clearly show that a significant improvement is obtained using

Y2 Y3 2 cos9 13 - sinG k3 the PLKF method. This is further attested by the mean-square
J2 J3 values of the residual angular rates for each axis given in

x3 k2 = sine 13 + cose k3 Table 3. These results represent the average of 70 Monte
Carlo experiments. The standard deviations corresponding
to these data are given in Table 4. Once more, the standard

7 = [T#1 I

111 1 Ii 0 0 1121

L] L -4 Li
Y1

''2 l = 2

deviations are very small, and high statistical confidence can
be placed in these results.

In short, the simulation results embodied in Figs. 20—22
and Table 3 demonstrate that the mean-square residual mo-
tion of the stabilized element within the platform can be
reduced by nearly a factor of S when the PLKF estimates are

Ji = cos J2 + S1fl k2 used in the calculation of gimbal rate setpoints, instead of
xl

k1 = -sin f + cos k2 directly using the angular rates measured by orthogonal gy-
roscopes mounted at the base of the stabilized platform. This
may allow a relaxation in gyroscope noise specifications that

Y3

Y0

MOTION OF ROLL GIMBAL WITH
RESPECT TO PITCH GIMBAL

Fig. 9 Relationships between rotating frames.
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3-0 Gyroscopic Estimated Gimbal
Measurements Base Rates Rate Setpoints

(a)

1.5

0.5

0z

-1.5

Fig. 11 (a) Actual roll rate; (b) roll-rate measurement.

(b)

Position
Sensor

Fig. 10 Overall system diagram.
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Fig. 12 (a) Actual pitch rate; (b) pitch-rate measurement.
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Fig. 13 (a) Actual yaw rate; (b) yaw-rate measurement.
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Fig. 14 (a) Actual roll rate; (b) roll-rate estimate.
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Fig. 15 (a) Actual pitch rate; (b) pitch-rate estimate.

Table 1 Calculated mean-square estimation errors.

Roll Axis

Pitch Axis

Yaw Axis

PLKF

0.02063

0.02025

0.02079

Measured

0.11139

0.11138

0.11045

0.5

0

0.5

0

(b)

Table 2 Standard deviation of mean-square estimation errors.

Roll Axis

Pitch Axis

Yaw Axis

PLKF

0.00272

0.00263

0.00202

Measured

0.00454

0.00436

0.00427
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Fig. 18 (a) Pitch-rate estimation error; (b) pitch-rate measurement noise.

Table 3 Calculated mean-square residual angular rates. Table 4 Standard deviation for mean-square residual angular rates.

Using PLKF

0.02167

0.02092

0.02165

Using Measurement

0.10717

0.117 14

0.11663

Using PLKF

Roll Axis 0.00288

Pitch Axis

Yaw Axis
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_________________________________

1.5

Time (seconds)

(a)

—1

-1.5

Fig. 16 (a) Actual yaw rate; (b) yaw-rate estimate.
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Fig. 17 (a) Roll-rate estimation error; (b) roll-rate measurement noise.

2 3
Time (seconds)

Roll Axis

Pitch Axis

Yaw Axis

0.00273

0.00207

Using Measurement

0.03090

0.01307

0.03645



could lead to significant savings. Furthermore, in spite of the
considerably reduced complexity achieved by the PLKF
method, the estimation accuracy and the results produced by
the PLKF are indistinguishable from those yielded by the
IKF and EKF methods.

6 Summary and Conclusions
This paper presents a novel optimal estimation method used
to suppress angular jitter caused by noisy gyroscope mea-
surements. The technique, called PLKF, produces excellent
estimates of 3-D angular rates. The estimation improvements
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Fig. 19 (a) Yaw-rate estimation error; (b) Yaw-rate measurement noise.
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Fig. 20 RoIl jitter (a) using estimate; (b) using measurement.
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Fig. 21 Pitch jitter (a) using estimate; (b) using measurement.
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Fig. 22 Yaw jitter (a) using estimate; (b) using measurement.

0.5

0

over the measurements are demonstrated in a computer sim-
ulation case study. The example examines the effectiveness
of the estimation method under the difficult scenario where
the signal and noise are comparable in magnitude (low signal-
to-noise ratio). The improvements obtained over the direct
measurements are on the order of 5 to 1 (in the mean-square
sense). The enhanced angular rates are then used (instead of
raw gyroscopic measurements) to calculate the gimbal speeds
required to stabilize the LOS. These variables are used as
setpoints for the speed control system regulating the operation
of the gimbals. This leads to a 5-to-i reduction in the mean-
square angular rates (jitter) observed at the stabilized element
of the platform. This improvement is significant, and it could
result in the loosening of gyroscope noise specifications,
which could translate into considerable savings.
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