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Abstract: Two new (1 and 2) and one known phenazine derivative (lavanducyanin, 3) 

were isolated and identified from the fermentation broth of a marine-derived Streptomyces sp. 

(strain CNS284). In mammalian cell culture studies, compounds 1, 2 and 3 inhibited  

TNF-α-induced NFκB activity (IC50 values of 4.1, 24.2, and 16.3 μM, respectively) and 

LPS-induced nitric oxide production (IC50 values of >48.6, 15.1, and 8.0 μM, respectively). 

PGE2 production was blocked with greater efficacy (IC50 values of 7.5, 0.89, and 0.63 μM, 

respectively), possibly due to inhibition of cyclooxygenases in addition to the expression of 

COX-2. Treatment of cultured HL-60 cells led to dose-dependent accumulation in the 

subG1 compartment of the cell cycle, as a result of apoptosis. These data provide greater 

insight on the biological potential of phenazine derivatives, and some guidance on how 

various substituents may alter potential anti-inflammatory and anti-cancer effects. 
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1. Introduction 

Modulation of molecular targets that control cancer development and progression is one approach 

for chemoprevention. For example, transcriptional regulation of NFκB has been intensely studied. 

Major cellular targets for NFκB are chemokines, immune receptors, adhesion molecules, stress 

response genes, regulators of apoptosis, transcription factors, growth factors, enzymes, and cell cycle 

regulators [1–3]. These include the anti-apoptosis genes bcl-2 and bcl-xl, cylcooxygenase (COX)-2, 

matrix metalloproteinase-9 (MMP-9), genes encoding adhesion molecules, chemokines, inflammatory 

cytokines, and cell cycle-regulatory genes [4–6]. In addition, the NFκB pathway is central in inducible 

nitric oxide synthase (iNOS) induction [7]. Activity of iNOS is tightly regulated and includes activation 

of IκB and mitogen-activated protein kinases (MAPKs) kinases [8–10]. In principle, agents that can 

suppress NFκB activation and iNOS have the potential of suppressing carcinogenesis [11]. 

In response to various external stimuli, such as proinflammatory cytokines, bacterial lipopolysaccharide 

(LPS), UV, ROS and phorbol ester, COX-2 is transiently elevated in certain tissues, and serves as an 

interface between inflammation and cancer [12,13]. Abnormally elevated COX-2 causes promotion of 

cellular proliferation, suppression of apoptosis, and enhancement of angiogenesis and invasiveness, 

which accounts for its oncogenic function [14]. Elevated levels of PGE2, generated by COX-2, mediate 

inflammatory responses [15]. In various types of human cancers, elevated PGE2 levels promote cell 

proliferation and tumor-associated neovascularization, and inhibit cell death, thereby favoring tumor 

growth [16].  

An additional consideration is cellular homeostasis. Cancer may be viewed as an example wherein 

the normal mechanisms of cell cycle regulation are dysfunctional, with either an over proliferation of 

cells and/or decreased removal of cells [17]. In fact, suppression of apoptosis during carcinogenesis is 

thought to play a central role in the development and progression of some cancers [18,19].  

We report here the isolation and biological evaluation of two new phenazine derivatives (1 and 2) 

as well as lavanducyanin (3) from a marine derived Streptomyces. Metabolites of this type have been 

isolated from terrestrial Streptomyces, Pseudomonas, and a variety of marine microorganisms [20–24]. 

These compounds are generally formed by microorganisms when they have stopped dividing. 

Metabolism is slow and it has been noted that phenazine-producing organisms survive longer in their 

natural environment compared to non-producing species [24]. It is likely that phenazine production 

serves to protect against other microorganisms and microbial competitors [25]. In addition to normal 

physiological function, various biological activities have been explored that might be of value for the 

treatment of human ailments [25–27]. For example, it has been shown that lavanducyanin strongly 

inhibits the growth of P388 and L1210 cells in culture [28]. Conversely, the potential of phenazines 

and lavanducyanin to promote cellular growth has been reported [29]. Growth promoting action was 

confirmed by the MTT assay, as well as an increase in cell number and DNA synthesis [30]. 

Lavanducyanin competitively inhibits 5-α-reductase derived from rat, dog and human prostate [31]. 

In earlier investigations [23,27], based on inhibition of NFκB activity and cellular proliferation, 

Streptomyces sp. strain CNS284 was selected for activity-guided fractionation. This resulted in the 

isolation of a diversity of phenazine derivatives, including some with modest activity against NFκB. 

Phenazines with bromine substituents were discovered to increased inhibitory activity; molecules with 

two bromine atoms were even more active, and bromine-substituted hydroxyphenazines demonstrated 
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higher activity than their methylated analogues [23]. Simultaneously, these compounds induced 

quinone reductase 1 (NQ01, QR1) and inhibited quinone reductase 2 (NQ02, QR2) as well as iNOS. 

With QR1 and QR2, several of the phenazine derivatives displayed IC50 in the nanomolar range. In 

particular, 2,4-dibromo-1-hydroxyphenazine was found to activate QR1 and glutathione S-transferase 

(GST) in cell culture, but in vivo activity of the compound was low as a result of poor bioavailability [27]. 

We now report related pharmacological studies conducted with two new bromine containing terpenoid 

phenazines (1 and 2) and lavanducyanin (3) produced by the marine bacterium Streptomyces sp.  

(strain CNS284). 

2. Results and Discussion  

2.1. Phenazines Isolation 

Fractionation of the fermentation broth of the marine-derived Streptomyces sp. (strain CNS284) 

resulted in the isolation of a complex mixture of brominated, terpenoid phenazines [32]. Among these 

were brominated terpenpoid phenazines 1 and 2 and also the known phenazine lavanducyanin (3)  

(Figure 1). All compounds belong to the terpenoid-substituted phenazines: compound 1: N-substituted 

brominated monoterpene phenazine; compound 2: N-substituted isoprenylated phenazine; compound 3: 

lavanducyanin, an N-monoterpenoid first discovered and isolated from Streptomyces aeriouvifer [28,29]. 

Figure 1. Chemical structures of phenazines 1–3. 

 

2.2. Phenazines Inhibit TNF-α-Induced NFκB Activity 

Activation of NFκB may promote cell proliferation or prevent cell death through apoptosis. 

Inhibition of NFκB signaling has potential application for the treatment or prevention of cancer; some 

inhibitors are known [33–40]. Using stably-transfected human embryonic kidney cells 293 (Panomics, 

Fremont, CA) that express a NFκB reporter when treated with tumor necrosis factor-α (TNF-α), 

treatment with phenazines 1, 2 and 3 led to dose-dependent inhibition with IC50 values of 4.1 ± 0.3, 

24.2 ± 2.6, and 16.3 ± 0.9 μM, respectively. Earlier we demonstrated that 2-bromo-1-hydroxyphenazine 

isolated from Streptomyces strain CNS284 and synthesized by a short and flexible route showed 

moderate inhibition of NFκB with an IC50 of 73 μM [23]. These results suggest inhibitory activity is 
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influenced by the N-substituent pattern as well as bromination at C-2. With the same treatment 

protocol, positive controls N-tosyl-L-phenylalanyl chloromethyl ketone (TPCK) [39] BAY-11-7082 [40], 

and resveratrol yielded IC50 values of 30 ± 4.2, 2 ± 0.28 and 2.5 ± 0.3 µM, respectively.  

2.3. Transcriptional Regulation of iNOS and COX-2 by Phenazines 

One of the key down-stream targets of NFκB is NOS, which catalyzes the oxidative deamination of 

L-arginine, producing NO, an important pro-inflammatory mediator [41]. Sustained high concentrations 

of NO contribute to carcinogenesis [42]. The bactericidal capacity of macrophages is in part mediated 

by the production of ROS and NO. In response to LPS and/or interferon-γ (IFN-γ), macrophages  

up-regulate iNOS, which catalyzes the oxidation of L-arginine to L-citrulline and NO. A second 

important down-stream target of NFκB is COX-2. This inducible form of cyclooxigenase generates 

prostaglandins, which are key players in the inflammatory response [15,43]. 

Figure 2. Effect of phenazines on COX-2 (black) and iNOS (gray) mRNA expression in 

RAW 264.7 cells. Total RNA was isolated using the TRIZOL® Reagent method 

(Invitrogen) from RAW 264.7 cells (2 × 105 cells/well) after treatment with samples. 

cDNA was synthesized using the RT2 First Strand Kit (C-03, SA Biosciences) protocol. 

cDNA was used for quantitative real time PCRs with fluorescent Power SyBR® Green 

PCR master mix (Applied Biosystems), employing GAPDH, iNOS, COX-2 specific 

primers, and a 7300 Real Time PCR System (Applied Biosystems). The results were derived 

from two independent RNA preparations employing identical triplicates in each analysis 

and quantitated using GAPDH as the internal control, following the manufacturer’s 

instructions. (A) GAPDH standard curve for quantitation of iNOS and COX-2 expression; 

(B) Levels of COX-2 (black) and iNOS (gray) mRNA expression. The concentration and 

duration of treatment had no significant effect on the viability of Raw 264.7 cells.  

 

As shown in Figure 2, LPS-treated RAW 264.7 cells were used as a model to assess the potential of 

phenazines 1, 2 and 3 to inhibit the expression of COX-2 and iNOS. Total mRNA samples were 

isolated, and cDNA was amplified with specific primers, using GAPDH as housekeeping gene. LPS 

induced the expression of COX-2 and iNOS mRNA by approximately 11- and 24-fold, respectively. 

Co-incubation with phenazines 1, 2 and 3 (50 µM) suppressed expression of iNOS mRNA by 21, 43, 

and 46% respectively, and COX-2 expression by 40, 50 and 51%, respectively (Figure 2). These inhibitory 
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results are not very discriminating, but do indicate transcriptional regulation, perhaps working in 

concern with NFκB. 

2.3. Inhibition of NO and PGE2 Production in LPS-Induced RAW 264.7 Cells 

Since the test phenazines (1–3) inhibited the NFκB signaling pathway, the effects on NO and PGE2 

levels were determined with LPS-treated RAW 264.7 cells. As shown in Table 1, when treated with a 

fixed concentration of 50 µM, phenazines 2 and 3 inhibited NO production by over 90%. Dose-response 

studies yielded corresponding IC50 values of 15.1 and 8.0 µM. Phenazine 1 was less active with 40% 

inhibition of NO production at 50 µM and a high IC50 value. The highest concentration of phenazines 

(50 µM) was somewhat cytotoxic with RAW 264.7 cells, but this effect was eliminated at concentrations 

in a range close to the IC50 values. All three phenazines reduced LPS-induced PGE2 production in a 

dose-dependent manner, with IC50 values 7.15, 0.89, 0.63 µM, respectively. Resveratrol, used as a 

standard drug, inhibited the production of both NO and PGE2 with IC50 values of 31.9 and 2.5 µM, 

respectively. Previously it was shown that a phenazine compound lacking N-substitution (2-bromo-1-

hydroxyphenazine) did not inhibit iNOS activity [23], so N-substitution plays an important role in the 

inhibition of NO production. 

Table 1. The effect of phenazines 1–3 on LPS-induced NO and PGE2 production in RAW 

264.7 cells. 

Compound NO NO NO PGE2 PGE2 

 
% inhibition  

(50 µM) 
% cell 

survival 
IC50, µM 

% inhibition 
(50 µM) 

IC50, µM 

Phenazine 1 40.1 ± 5 68.9 ± 3.8 >48.6 72.5 ± 16.3 7.15 ± 2.03 
Phenazine 2 98.1 ± 0.5 56.0 ± 5.1 15.1 ± 2.7 86.9 ± 12.9 0.89 ± 0.22 

Lavanducyanin 3 97 ± 0.7 58.3 ± 4.6 8.0 ± 0.39 80.6 ± 18.4 0.63 ± 0.16 
Resveratrol 93.0 ± 0.8 86.9 ± 3.9 31.9 ± 1.8 70.2 ± 13.9 2.5 ± 0.43 

2.4. Direct Inhibition of COX-1 and COX-2 Activity 

As described above, phenazines 2 and 3 strongly reduce the production of PGE2 with LPS-treated 

RAW 264.7 cells, but this does not directly correlate with the potency of inhibiting NFκB activity or 

COX-2 expression. Radical scavenging is one feature of phenazines [24]. However, based on the  

2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assay, none of the three phenazines demonstrate 

inhibition of greater than 15% when tested at a concentration of 200 μg/mL (data not shown). Another 

possible explanation could be the direct inhibition of cyclooxygenase. As shown in Table 2, all three 

phenazines inhibited both enzymes with IC50 values in µM range. The IC50 of phenazine 1 was 

approximately 3-fold lower with COX-2 than COX-1, but the IC50 values were not sufficient to explain 

the dramatic reduction of PGE2. Indomethacin was used as the positive control for ovine COX-1  

(IC50 0.42 ± 0.21 µM) and Celebrex® (celecoxib) was used as the positive for human COX-2  

(IC50 0.05 ± 0.03 µM). 
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Table 2. Phenazines inhibit ovine COX-1 and human COX-2 activities.  

 COX-1,  
IC50, µM 

COX-2,  
IC50, µM 

Selectivity 
COX-1/COX-2 

Phenazine 1 11.0 ± 0.53 4.0 ± 0.41 2.75 
Phenazine 2 5.6 ± 0.61 7.2 ± 0.13 0.78 

Lavanducyanin 3 30.0 ± 1.08 34.0 ± 1.1 0.88 
Indomethacin 0.42 ± 0.21 ND  

Celecoxib ND 0.05 ± 0.03  
ND: not determined. 

2.5. Phenazines Induce Apoptosis 

Apoptosis is a protective mechanism against the development of tumors. It eliminates damaged 

cells that may be wrongly induced to proliferate by different stimuli. When a cell reaches the G1 

check-point, it can enter S phase or, if there is evidence of damage, it can initiate the apoptotic  

process [44]. Apoptosis can be induced by physiological activators, oncogenes, chemotherapeutic 

drugs, and ultraviolet or gamma radiation [45]. As shown in Figure 3, after a 24 h incubation period 

with various concentrations of phenazines 1, 2 and 3, HL-60 cells accumulated in the subG1 phase of 

the cell cycle, indicative of apoptosis. This was confirmed by using a Phoenix Flow Systems, Inc. 

APO-BRDU™ kit, a two color TUNEL (Terminal deoxynucleotide transferase dUTP Nick End 

Labeling) assay for labeling DNA breaks and total cellular DNA (data not shown). The results suggest 

all three phenazines are active in this process, with phenazine 3 demonstrating the greatest potency, 

followed by 1 and then 2. Resveratrol was applied as a positive control. 

Figure 3. NIM-DAPI cell cycle analysis of HL-60 cells. HL-60 cells (2 × 105 cells/well) 

were treated with different concentrations of the indicated compounds for 24 h. The media 

were discarded, and 4',6-diamidino-2-phenylindole solution (NIM-DAPI; Beckman Coulter) 

was added just before the measurement using a Cell Lab Quanta™ SC (Beckman Coulter) 

flow cytometer. NIM-DAPI-stained cells were analyzed after excitation. The distribution of 

cells in each phase of cell cycle was exhibited in a DNA histogram and percentage in subG1 

was analyzed. Results are representative of two experiments in triplicate.  

 
  

0

20

40

60

80

100

120

Phenazine 1 Phenazine 2 Lavanducyanin Resveratrol

Pe
rc

en
ta

ge
 o

f c
el

ls
 in

 
Su

bG
1

0.7 µM

2 µM

6 µM

18 µM

55 µM



Mar. Drugs 2012, 10 457 

 

3. Experimental Section 

3.1. Cell Lines and Reagents 

Methanol (HPLC grade), ethyl acetate (HPLC grade), marine broth, actinomycetes agar, 

cyclohexamide, agar, dimethyl sulfoxide (DMSO), lipopolysaccharide (LPS), sulfanilamide, 0.1%  

N-(1-naphthyl)ethylenediamine, sulforhodamine B (SRB), tetradecanoylphorbol 13-acetate (TPA), 

2,2-diphenyl-1-picrylhydrazyl (DPPH), non-essential amino acids, and thiazolyl blue tetrazolium 

bromide (MTT) were purchased from Sigma-Aldrich, Inc. (St. Louis, MO, USA). Dulbecco’s Modified 

Eagle’s Medium (DMEM), antibiotic-antimycotic, Hygromycin B, MEM, sodium pyruvate, and 

Roswell Park Memorial Institute (RPMI) 1640 medium, were purchased from Invitrogen (Carlsbad, 

CA, USA). Reporter Lysis Buffer Luciferase Assay System was purchased from Promega (Madison, 

WI, USA). Tumor necrosis factor-α (TNF-α) was purchased from Calbiochem (Gibbstown, NJ, USA). 

All other chemicals were purchased from commercial sources and were of the highest grade and purity. 

3.2. NFκB Assay 

We employed human embryonic kidney cells 293 Panomic (Fremont, CA, USA) for monitoring 

changes occurring along the NFκB pathway. Stable constructed cells were seeded into sterile 96-well 

plate at 20 × 103 cells per well. Cells maintained in Dulbecco’s modified Eagle’s medium (DMEM) 

Invitrogen Co. (Carlsbad, CA, USA), supplemented with 10% FBS, 100 units/mL penicillin, 100 µg/mL 

streptomycin, 2 mM L-glutamine. After 48 h incubation, the medium was replaced and cells were 

treated with various concentration of test substances dissolved in PBS. TNF-α (Human, Recombinant, 

E. coli, Calbiochem, Gibbstown, NJ, USA) was used as an activator at a concentration of 2 ng/mL 

(0.14 nM). The plate was incubated for 6 h. Spent medium was discarded and the cells were washed 

once with PBS. Cells were lysed using 50 µL (for 96-well plate) Reporter Lysis Buffer from Promega, 

by incubating for 5 min on a shaker, and stored at −80 °C. The luciferase assay was performed using 

the Luc assay system from Promega (Madison, WI, USA) [46]. The gene product, luciferase enzyme, 

reacts with luciferase substrate, emitting light which was detected using a luminometer (LUMIstar 

Galaxy BMG). Data for NFκB constructs are expressed as IC50 values (i.e., concentration required to 

inhibit TNF-activated NFκB activity by 50%). As a positive control, two NFκB inhibitors were used: 

TPCK, IC50 = 3.8 µM and BAY-11, IC50 = 2.0 µM. 

3.3. Nitric Oxide (NO) Synthase Assay 

NO has a short half-life and is subsequently oxidized to the stable end product nitrite. The amount 

of nitrite was measured using the Griess reagent to assess the NO production [47,48]. RAW 264.7 cells 

(1 × 105 cells/well) were incubated in a 96-well culture plate for 24 h. The cells were treated with 

various concentrations of compounds dissolved in phenol-red free DMEM for 30 min followed by  

1 μg/mL of LPS treatment for 24 h. Nitrite in the media from cultured macrophages in each well was 

reacted with the Griess reagent [1:1 mixture (v/v) of 1% sulfanilamide in 2.5% H3PO4 and 0.1%  

N-(1-naphthyl)ethylenediamine in 2.5% H3PO4] and the absorbance was measured at 540 nm. The 

standard curve was created by using known concentrations of sodium nitrite.  
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3.4. Cell Viability Assay 

The cytotoxicity of the test substances (1–3) toward different cancer cells was determined as 

described previously [49–51]. Briefly, various concentrations of test compounds in DMSO were 

transferred to 96-well plates and incubated for 72 h at 37 °C in a CO2 incubator. The incubation was 

ended by the addition of trichloroacetic acid. The cells were then washed, air-dried, stained with SRB 

solution, and optical densities were determined at 515 nm using a ELx800NB Universal Microplate 

Reader, Bio-Tek Instruments. In each case, a zero-day control was performed by adding an equivalent 

number of cells to several wells, incubating at 37 °C for 30 min, and processing as described above. 

Percent cell survival was calculated using the formula:  

Percent cell survival = (ODcells+tested compound − ODday 0)/ODcells+10% DMSO − ODday 0) × 100 

3.5. Determination of PGE2 

RAW 264.7 cells (1 × 105 cells/well, 200 µL) were incubated in a 96-well culture plate in the 

presence of 5% CO2 at 37 °C for 24 h. The medium was changed to non-colored DMEM containing 

5% FBS, and the cells were treated with various concentrations of compounds for 30 min followed by 

1 μg/mL of LPS treatment for 24 h. Cell media were collected, diluted 18-times and used for 

measuring PGE2. Nunc-Immuno 96-well plates were coated with secondary antibody (goat anti-mouse 

IgG) affinity purified (Jackson Immuno Research Laboratories). Aliquots of cell media were added  

to the immune plate with primary PGE2 monoclonal antibody (Cayman Chemical) and a tracer  

PGE2-acetylcholinesterase (Cayman Chemical) and incubated overnight at room temperature in the 

dark. The next day, the wells were aspirated, washed, 200 µL of Elman’s reagent was added in each 

well, and incubated 2–5 h at 37 °C out of direct light until control wells reach an optical density 0.4–0.5. 

Gentle rotating/shaking was used to decrease the time required for color development. Absorbance was 

read at 412 nm [52]. The PGE2 concentration of each sample was calculated from a PGE2 standard 

curve (PGE2 from Cayman Chemical). The percent inhibition as a function of the inhibitor concentration 

was graphed to determine the IC50 values (concentration at which there was 50% inhibition).  

3.6. COX-1 and COX-2 Inhibition Assays 

Each COX reaction was initiated by adding 20 µL of arachidonic acid in Tris-HCl (pH 8.0) buffer 

to give a final concentration of 5 µM. The reaction was terminated after 2 min by adding 20 µL of  

2.0 M HCl. The surrogate standard PGE2-d4 was added to correct for errors or degradation during 

sample handling and for variation in injection volume or instrument response during LC-MS/MS. 

After 30 min, PGE2 and its surrogate standard were extracted from each incubation mixture using  

800 µL of hexane/ethyl acetate (50:50, v/v). The organic phase was removed, evaporated to dryness, 

and reconstituted in 100 µL methanol/water (50:50, v/v) for analysis using LC-MS/MS with an 

Applied Biosystems AP4000 triple quadrupole mass spectrometer as described previously [53,54]. The 

concentration of PGE2 in each sample was measured using LC-MS/MS, and the percent of COX 

inhibition by each test solution was determined by comparing the amount of PGE2 produced in the 

experiment with that produced in the negative control incubation. For IC50 value determination, 12 

different concentrations of each inhibitor were assayed three times. The IC50 value of each inhibitor 
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toward COX-1 or COX-2 was determined by plotting and analyzing the inhibition curve data using 

Graph Pad Prism 5 software [55]. The selectivity of each inhibitor was calculated as the ratio of the 

IC50 values (COX-1/COX-2) [53].  

3.7. Cell Cycle Analysis 

HL-60 cells (2 × 105 cells/well) were treated with samples for 24 h. The media were discarded and 

nuclear isolation medium (4',6-diamidino-2-phenylindole, NIM-DAPI; Beckman Coulter) was added 

just before the measurement using a Cell Lab Quanta™ SC (Beckman Coulter) flow cytometer.  

NIM-DAPI-stained cells were analyzed after excitation. The distribution of cells in each phase of cell 

cycle was exhibited in a DNA histogram and percentage in subG1 was analyzed [56]. 

3.8. Detection of Apoptosis 

HL-60 cells at a concentration of 2 × 106 cells/mL were incubated with testing phenazines at 

different concentrations for 24 h. The cells were fixed with 1% paraformaldehyde in PBS and treated 

with ethanol to permiabilize the cells. Positive and negative control cells were provided already fixed. 

The DNA labeling reaction was carried out at 22–24 °C overnight. This assay was run on a Cell Lab 

Quanta™ SC, Beckman Coulter flow cytometer equipped with a 488 nm Argon laser as the light 

source. Propidium Iodide (total cellular DNA) and Fluorescein (apoptotic cells) were used. Propidium 

Iodide (PI) fluoresces at about 623 nm and Fluorescein at 520 nm when excited at 488 nm. Following 

the manufacturer’s instructions, an APO-BRDU™ Kit (Phoenix Flow Systems, Inc.) with a two color 

TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) capability for labeling DNA 

breaks and total cellular DNA to detect apoptotic cells was used [57].  

3.9. Real Time Quantitative PCR 

RAW 264.7 cells (2 × 105 cells/well) were treated with test samples and total RNA was isolated 

with TRIZOL® Reagent (Invitrogen). RNA concentrations were measured using Nanodrop (ND 1000 

V.3.1.0) and partially dissolved RNA samples had an A260/280 ratio <1.6. cDNA was synthesized 

using a RT2 First Strand Kit (C-03, SA Biosciences) protocol. cDNA was used in quantitative real time 

PCRs, using fluorescent Power SyBR® Green PCR master mix (Applied Biosystems) and 7300 Real 

Time PCR System (Applied Biosystems). The results were derived from two independent RNA 

preparations employing identical triplicates in each analysis and quantified using GAPDH as the 

internal control, following the manufacturer’s instructions. The fluorescence intensity (Rn) corresponding 

to the cycle of threshold value (Ct) is used to quantitate a given mRNA, employing the GAPDH 

standard curve (Figure 3A). The equation Y = −3.9408 X + 31.791 was used to quantify the relative 

mRNA content, where Y represents the number of cycles corresponding to the Ct (i.e., fluorescence 

intensity for a given mRNA species), and X represents the log copy number (C0) from which the 

relative content of mRNA was quantitated. PCR was performed on the cDNA using the following 

sense and antisense primers (Invitrogen) [58,59]. 
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GAPDH 

Forward:  5′-ACA GTC AGC CGC ATC TTC-3′, 

Reverse:  5′-GTC CTT CCA CGA TAC CA-3′. 

β-Actin 

Forward:  5′-GCT ACA GCT TCA CCA CCA CAG-3′, 

Reverse:  5′-GGT CTT TAC GGA TGT CAA CGT C-3′. 

COX-2 

Forward:  5-′GAA GTC TTT GGT CTG GTG CCT G-3′, 

Reverse:  5′-GTC TGC TGG TTT GGA ATA GTT GC-3’. 

iNOS 

Forward:  5′-GGA GCG AGT TGT GGA TTG TC-3′, 

Reverse:  5′-GTG AGG GCT TGG CTG AGT GAG-3′. 

3.10. Evaluation of Antioxidant Capacity 

To evaluate antioxidant capacity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging 

was performed according to the method of Lee et al. [60]. Briefly, 95 µL of DPPH radical solution 

(316 µM) was added in a 96-well plate containing 5 µL of each compound dissolved in 100% DMSO, 

and incubated for 30 min at 37 °C. The absorbance of each well was measured at 515 nm using a 

microplate reader. The DPPH radical scavenging activity of each sample was evaluated by calculating % 

of inhibition as follows:  

% inhibition = (1 − Asample/Acontrol) × 100 

3.11. Statistical Analysis 

The results were expressed as the mean ± SD of triplicate experiments. Statistically significant 

values were compared using Student-Newman-Keuls and p-values less than 0.05 were considered 

statistically significant.  

4. Conclusions  

Natural products have proven to be a useful source of cancer therapeutic and chemopreventive 

agents. Thus far, terrestrial plants have been most widely studied, with the marine environment 

remaining largely unexplored. In previous studies, the chemotherapeutic potential of lavanducyanin (3) 

was investigated [28–31]. We now report the ability of this substance to inhibit the activity of NFκB, 

COX-1 and COX-2, as well as the production of NO and PGE2. In addition, and perhaps as a 

consequence, cellular apoptosis is induced. 

Beyond lavanducyanin, two new brominated terpenoid phenazines are reported along with their 

corresponding biological activity. Consistent with previous results [23], bromination at position-2 
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(phenazine 1) enhanced NFκB inhibitory activity by approximately 4-fold. This did not correlate with 

a greater reduction of NO or PGE2 production, but the compound did appear to induce apoptosis with 

greater efficacy, and inhibition of the catalytic activity of COX-2 was enhanced nearly 10-fold. 

On the other hand, potent (sub-µM) inhibition of PGE2 production was observed with phenazine 2 

and lavanducyanin (3). Additional definition of the mechanism of this response would be of interest 

since a strong correlation with the other activities monitored in this report was not apparent. This could 

be unique. In addition, the compounds are of interest due to the potential of modulating multiple 

targets. Although activity is generally not highly potent, this is not a prerequisite for effective 

chemopreventive activity. Another interesting aspect is the disparate activities mediated by structurally 

similar molecules, suggesting evaluation of a mixture could yield a better response with fewer  

side-effects than a single compound.  
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