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Abstract

Background: Somatic cells can be reprogrammed to induced-pluripotent stem cells (iPSCs) by introducing few

reprogramming factors, which challenges the long held view that cell differentiation is irreversible. However, the

mechanism of induced pluripotency is still unknown.

Methods: Inspired by the phenomenological reprogramming model of Artyomov et al (2010), we proposed a

novel Markov model, stepwise reprogramming Markov (SRM) model, with simpler gene regulation rules and

explored various properties of the model with Monte Carlo simulation. We calculated the reprogramming rate and

showed that it would increase in the condition of knockdown of somatic transcription factors or inhibition of DNA

methylation globally, consistent with the real reprogramming experiments. Furthermore, we demonstrated the

utility of our model by testing it with the real dynamic gene expression data spanning across different

intermediate stages in the iPS reprogramming process.

Results: The gene expression data at several stages in reprogramming and the reprogramming rate under several

typically experiment conditions coincided with our simulation results. The function of reprogramming factors and

gene expression change during reprogramming could be partly explained by our model reasonably well.

Conclusions: This lands further support on our general rules of gene regulation network in iPSC reprogramming.

This model may help uncover the basic mechanism of reprogramming and improve the efficiency of converting

somatic cells to iPSCs.

Background

In embryonic stem cells (ESCs), the promoters of Oct4,

Sox2 and Nanog can be bound by their own products

together or separately and an auto feedback loop forms.

They also can activate other pluripotent genes and inhi-

bit lineage specific genes. In this way, embryonic stem

cell state is reinforced [1]. Differentiated cells are repro-

grammed to induced-pluripotent stem cells (iPSC) by

ectopic expression of factors which induce the

reestablishment of transcription regulation in embryonic

stem cell state.

However, up to now, the reprogramming efficiency is

still low and the mechanism of reprogramming is not

fully understood. In order to enhance the reprogram-

ming rate and reduce the reprogramming latency, the

changes of gene expression and epigenetic modifications

in the reprogramming process [2,3] and their differences

among somatic cells, iPSCs and ESCs [4] are studied

extensively, showing that epigenetic modifications and

gene expression change dramatically during reprogram-

ming. In addition, epigenetic modification (e.g. DNA

methylation and histone modification) plays an impor-

tant role in development. Knockout experiments show

that the deletion of DNA methyltransferase or histone
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modifiers leads to embryonic lethality. Loss of such epi-

genetic modifications in ESCs will affect cell differentia-

tion [5]. As the epigenetic landscape shows dynamic

change during differentiation and reprogramming, we

considered not only the gene expression but also epige-

netic modifications in our model to study the basic prin-

ciples in reprogramming, which may serve as an

important medium for gene expression change in

reprogramming.

Several models have been established to explain the

phenomena in reprogramming, standing to help improve

reprogramming efficiency. For example, MacArthur et

al. (2008) established a set of differential equations

according to the transcription regulatory network in

ESC and found that differentiated cells can achieve the

iPSC state by amplifying the transcription fluctuation

globally [6]. Furusawa et al. proposed that the trajectory

in the gene expression phase space is chaotic in the

stem cell state, while as the cell differentiates, the com-

plexity of the trajectory decreases. They inferred that

the differentiated cells might be reprogrammed by

increasing the diversity of expressed proteins [7,8].

Distinguished from these dynamic equation models,

Waddington depicted that cell differentiation is like a

ball rolling down the hill in the epigenetic energy land-

scape. The reprogramming process is just the opposite

by inducing a set of reprogramming factors (such as

Oct3/4, Sox2, c-Myc and Klf4 [9]) to push the system

going up with positive probability. Although all the cells

have the potency to be reprogrammed, only the cells

having overcome all the epigenetic barriers can be

reprogrammed to the iPSC state, which depends on

some stochastic events with small probability and thus

explains the low efficiency of reprogramming. This is

the “stochastic model” by Yamanaka (2009), opposite to

the “elite model” in which only a small portion of cells

can be reprogrammed [10]. Artyomov et al. (2010)

developed an Ising model taking account of several gen-

eral rules governing the interaction between the cell

type specific genes [11], which can be used to simulate

the rare and stochastic event of successful reprogram-

ming. Most of these rules are crucial and may reveal the

underlying principles of cell differentiation and repro-

gramming; whereas others are redundant and are lack of

experimental support. We developed a stepwise repro-

gramming Markov (SRM) model based on some of the

modified rules, which can partly explain gene expression

changes, morphology changes and the barriers in the

induced pluripotent process.

In this paper, we support the point that cells achieve

the pluripotent state gradually through several ordered

and well-defined stochastic events [2,3] and some of

them happen with small probability, as the epigenetic

state in some regions of genome are always hard to be

converted to an embryonic stem cell like state [4]. By

our model, we also showed that different types of cells

have different potential in reprogramming, as less differ-

entiated cells can achieve the iPSC state easier [12].

Results

Cell lineage tree, module tree and cell state

We assumed that as the cell differentiates, the number

of cell types increases exponentially, forming a binary

tree. Here we selected groups of cell type specific genes,

called modules, for all cell types in the cell lineage tree

and arranged them into a module tree with the same

hierarchical structure as the cell lineage tree. We

denoted neighbors of module A as Na , a set including

its sibling, children and parent module; descendents of

module A in set Pa and progenitors of module A in set

Qa (a set of all progenitor modules up to ESC) (Fig 1).

We identified the cell type with its corresponding gene

module as genes in a module only highly express in the

corresponding cell type and have similar behavior in

reprogramming. For example, ESC can be represented

by a module including Oct4, Nanog. They highly express

in ESC but express low in other cell types (see Addi-

tional file 1).

Figure 1 Module Tree. Standing at the green module, we see that modules having blue color are descendents of it; modules having yellow

color are neighbors of it and modules having red color are progenitors of it.
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The cell experiences dramatic change of gene expres-

sion and epigenetic patterning during reprogramming.

As the expression of the modules sequentially turn on

and their epigenetic states temporarily change from

“closed” to “open”, we assumed that the cell gradually

transits from a more to a less differentiated level in the

reprogramming process [3,13]. We defined that a cell is

in state k (or cell in level k) if the cell assumes one of

the cell types in the Kth level of the cell lineage tree.

The embryonic stem cell state is staten, while the initial

differentiated cell is in state 1. When the cell transits

from state1 to staten after many steps, the cell will stay

at state n in the suitable culture condition since endo-

genously expressed pluripotency genes can reinforce

their expression [1]. However, specific genes of different

cell types may express together; in this case, we cannot

say which cell type on the cell lineage tree the cell is in.

We denoted this state as partially reprogrammed state,

ε(detailed definition see below). On the other hand,

expression of modules in different lineage may be in

conflict with each other, disrupt cell’s transcriptional

regulatory network and finally leads to cell death,

denoted by state 0. Then we considered a Markov chain

transit among the states 0, 1, 2… n and ε in which state

0 and n are two absorbing states (Fig 2).

Each cell type or state is characterized by a particular

combination of the genetic and epigenetic state of all

modules. Since the genetic and epigenetic state of all the

genes in a module change in the similar manner in repro-

gramming, we defined the genetic state and epigenetic

state of a module by a single value respectively:
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pluripotency genes in ESC module enrich for H3K4me

and are depleted of DNA methylation, inferring the

open epigenetic state [5] (Fig S1(a), (b)); while other

modules are not open (Fig S1(c)). We defined cell death

(state 0) as all of the modules in a cell does not express

and defined partially reprogrammed state (state ε) if

more than one module is in open epigenetic state.

Rules of modules’ states transition

In order to determine the transition probabilities

between states in the Markov chain above, we first con-

sidered the state transition of modules in reprogram-

ming. We focused on two general phenomenological

gene regulation rules deduced in the light of Artyomov

et al. (2010) where six rules governing transcriptional

regulation in cell differentiation and reprogramming

were summarized: (a) the epigenetic state of a gene

affects its expression (b) gene expression auto-regulates

its epigenetic state (c) expression of sibling modules

repress each other (d) expression of a module puts inac-

tive epigenetic marks on its progenitor and sibling mod-

ules (e) expression of a module puts bivalent epigenetic

marks on its progeny (f) expression of a module put

negative epigenetic marks on modules on other lineage

and upper levels [11]. However, rule (d) and rule (e)

may be deduced by the others. Instead, rule (a), (b), (c),

(f) are relatively fundamental and supported by a lot of

experiments. Based on these four rules, we established

our SRM model with two simplified rules:

RULE1: effect on epigenetic state by gene expression.

Expression of a module makes its epigenetic state open

(for example, the auto-activation loop of Oct4, Nanog

and Sox2 mentioned above) [1] (shown as ④ in Fig 3).

It also makes its neighbors or non-descendent modules

close (shown as ③ in Fig 3), which maintains the iden-

tity of the cell and prevents cell differentiation. Besides,

the repression dominates the auto-activation when they

coexist [14]. Since the repression strength gets weaker

as the distance in the module tree gets shorter, the

repression by neighbor modules will be cancelled out by

auto-activation. One can compute the state of module

at the next time point, k+1, as follows:
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RULE2: effect on gene expression by epigenetic

state. When the epigenetic state of a module is open,

the module express otherwise the module doesn ’t

express (shown as ① in Fig 3). If more than one mod-

ule is in open epigenetic state, they will express low as

they repress each other and the cell gets to the par-

tially reprogrammed state (shown as ② in Fig 3). It

also shows that sometimes some genes in different

lineages express together in reprogramming [3], which

can be represented by state ε. Thus, one could com-

pute the state of module at the next time point, k+1,

as follows:
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Noticing that in the update by (1) for epigenetic states

all genetic states never change, one can see that the

update process does not depend on the order of selec-

tion for i. After doing (1) for all i, do (2) for all i, called

a round, in phase with one cell cycle, and repeat until

the cell gets to the equilibrium state when all the mod-

ules are invariant under RULE1 and RULE2. In equili-

brium state, the cell will be in one of the cell types,

death or partially reprogrammed state (see Additional

file 1).

Figure 3 Transcriptional regulatory Network (a) RULE1 (b) RULE2. Green rectangle: expressed gene; Red rectangle: repressed gene; Green

circle: active chromatin state; Red circle: repressed chromatin state; Triangle: protein. Dash Triangle: little mount of protein. The black curve

indicates repression with dash line indicating the effect is not strong. The green arrow indicates activation. RULE1 and RULE2 are represented by

①~④.
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The role of the reprogramming factors and procedure in

SRM model

The reprogramming factors can bind to genes associated

with differentiation or pluripotency, repressing or acti-

vating gene transcription respectively. In ESC, the

repression effect of the reprogramming factors is related

with the recruitment of repressive chromatin remodeling

complexes such as NuRD and Polycomb, resulting in

histone deacetylation and H3K27 trimethylation [12].

On the other hand, downregulation of somatic markers

is related with c-Myc mostly, which has significant effect

in the early reprogramming and seems more likely to

bind genes with accessible chromatin state [15]. Taking

into account these phenomena, we simulated the repro-

gramming factors repression as choosing a module with

open or bivalent epigenetic state (not 0) randomly and

making it close.

To simulate the activation of the reprogramming fac-

tors, as most of genes chosen in modules are regulated

by the reprogramming factors, a module is chosen ran-

domly with equal probability regardless of which epige-

netic state it is in (many reprogramming factor binding

targets in ESCs, iPSCs or partially reprogrammed cells

have repressive histone modification markers [15]),

made express and made its chromatin state open. How-

ever, in reality, the reprogramming factors are more

likely to activate some specific genes, which is similar

with knockdown of some specific transcription factors

and thus the reprogramming factors can’t induce them.

The consequence is shown below.

Further, transcriptional repression is always associated

with a single reprogramming factor binding. In contrast,

when bound by multiple reprogramming factors, gene

will be actively transcribed since basal transcriptional

machinery is recruited [12]. When the module chosen

to be repressed happens to be the same as the one to be

activated, the module will express and the epigenetic

state of the module will be open.

In sum, if the reprogramming factors repress module
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. In particular, if the cell is in stateε, the

reprogramming factors will activate a module randomly

and the cell leaves stateε. The cell can get out of the

partially reprogrammed state when cultured for longer

time [3].

In the reprogramming process, the reprogramming

factors will change the epigenetic state and/or expres-

sion of the module. Then, in one round, the epigenetic

state of each module will be further changed by the pro-

tein content in the cell according to RULE1 and the new

epigenetic state will change the module expression fol-

lowing RULE2. After two rounds, the cell gets to the

equilibrium state (see Method). Then, the reprogram-

ming factors take its effect again unless the cell is in the

absorbing state. Thus, the induction of the reprogram-

ming factors will take place every other round. The pro-

cedure is shown below:
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Kth level.

ii. The effect of the reprogramming factors is to acti-

vate a module and repress one.

iii. In one round:

∀i Î {1, 2...2n – 1}, Si is changed according to the

rule (1).

∀i Î {1, 2...2n – 1}, Gi is changed according to the

rule (2).

iv. Repeat iii once. Then, the cell would reach an equi-

librium state. Record the cell state transition.

v. Stop if cell reaches iPS state or dies, otherwise go to

ii.

Then, we could estimate all the transition probabilities

every two rounds in the Markov chain (see method and

Fig 2).

Estimating reprogramming rate and average

reprogramming time

We defined a vector x
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cell in state i, i=1…n, 0, ε. Define P as the transition
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. As the number of
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rounds 2k goes to infinity, lim P x

p
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 , in

which pn is the proportion of cells successfully repro-

grammed and dn is the death rate. Suppose there are 4

levels in the cell lineage tree. Then the reprogramming

rate is 0.02% when reprogrammed from the first level

(Table 1), which is consistent with the real experiment

where the reprogramming rate is about 0.001%~1% [12].

We estimated the reprogramming rates in the case of

other number of levels, which are roughly in the range

above when there are not too many levels between the

initial cell type and ESC (see Table S1). Our simulation

also showed that the reprogramming rate for cells from

different differentiated level is different. Further, we cal-

culated the average time needed for reprogramming by

computing the expectation of time arriving in state n

(n=4) on the condition that the cell is still alive: Expec-

tation (cell cycles needed for reprogramming |can be

reprogrammed) = 8.72 cell cycles.

From pn(k), the portion of cells reprogrammed after

2k rounds (cell cycles), it shows that the number of suc-

cessfully reprogrammed cells increase in the sigmoid

pattern (Fig 4). It takes 6 cell cycles to reach the half of

the maximum (response time). As the reprogramming is

achieved for some time, the epigenetic states of more

modules are not closed, since the module in the upper

level is already open. Thus, the repression effect of the

reprogramming factors is diminishing, as also observed

experimentally that withdrawal of c-Myc after day 5

would not affect reprogramming rate [15].

Simulating reprogramming in the condition of somatic

transcription factors knockdown or DNA methylation

inhibition

In the condition of knocking-down somatic transcrip-

tion factors, the reprogramming rate would be a little

higher, about 0.03%. The cell can get to the iPS state

faster with the average time 7.16 cell cycles and the

response time 5 cell cycles (see Additional file 1 and Fig

S2(a)). Also, it has been shown that knock down of

Pax5 will improve the reprogramming efficiency of B

cell [12]. Moreover, when treating the cells with DNA

methyltransferase inhibitor which attenuates the global

repression of DNA methylation, reprogramming effi-

ciency accelerates a lot, about 1.1% in 20 cell cycles (see

Additional file 1 and Fig S2(b)). Previous experiments

demonstrate that inhibition of Dnmt1 can improve

reprogramming efficiency [3].

Simulating gene expression changes in reprogramming

Suppose all of the cells are in state 1 initially, namely

x( )0
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0

0

0
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⎝
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⎜
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⎞

⎠
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⎟
⎟
⎟
⎟

 . We calculated the expression of modules

in different level in terms of cell cycles (or approxi-

mately reprogramming days). We defined the total

expression of all modules in Kth level at time t as the

portion of living cells arrived at state k at time t:

S t P arrived at state K at time t still alive at timek ( ) = ( | t P x P xt
k

t
n) [ ( )] / ( [ ( )] )= − +0 1 0 2 (3)

Figure 4 Number of Cells successfully reprogrammed increases in

the sigmoid Pattern

Table 1 Reprogramming rate and average reprogramming time of cells from different levels

Initial cell type First level Second level Third level Fourth level

Reprogramming rate (SRM model) 0.024% 0.26% 3.13% 100%

Death rate 99.98% 99.74% 96.87% 0%

Average reprogramming time (cell cycles) 8.72 6.00 3.42 0

When knockdown of somatic transcription factors, reprogramming rate from first level is 0.027% and average reprogramming time is 7.16 cell cycles. In

reprogramming Ising model, reprogramming rate from first level is 0.025%.
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[ ( )] ( ), ( )P x is the kth component of P x x  is the initit
k

t0 0 0 aal vector

The gene expression of modules in level 1 decreases

dramatically at the beginning of the reprogramming, as

the reprogramming factors inhibit the expression of

somatic genes. Next, some genes from upper level

express transiently but the cell can’t stay at the de-dif-

ferentiated state, so it drops back to state 1, leading to

a period when the gene expression in level 1 does not

change much. Finally, more and more living cells get to

the ESC state and stay there stably, so expression of

somatic genes drops rapidly again and decreases to

zero. The expression of ESC’s specific genes increases at

last, after the dramatic drop of somatic cell gene expres-

sion and the peak time of genes from other levels,

which agrees with the real experiment that the endo-

genously expression of ESC specific genes is the last

step in reprogramming. In the early time point, even if

pluripotency genes are activated by the reprogramming

factors, their chromatin state may close again when

inhibited by other modules. The auto-regulation loop

cannot form, so pluripotency genes express transiently

and their expression doesn’t show any increase in our

equilibrium state curve. Moreover, the reprogramming

factors only bind transiently and show weak binding

strength in intermediate reprogramming cells than ESCs

or iPSCs, as observed in [15]. Only in the late period

when repression by other modules attenuates can the

ESC specific genes continuously express, which may

explain the expression curve of ESC specific genes and

the long latency of reprogramming. The expression of

genes in all other levels first rise then drop although

their peak times are different. The genes in level 2 get

to peak earlier than level 3 (at cell cycle 7 and 12,

respectively). Only genes in these two levels express in

a large amount in reprogramming although total num-

ber of cell levels are different. As cell levels increases,

gene expression changes more dramatically as all the

curves become steeper (Fig 5). The tendency of gene

expression change in our model mimics the real data

roughly (Fig 7(b)).

Although some stochastic events will affect cell repro-

gramming, reprogramming follows a series of defined

steps [12]. In our model, the somatic cell de-differenti-

ates level by level and gene expression change follows

the same steps as observed in experiment. After ESC

specific genes express, still some adjustments of epige-

netic state of other modules are needed to get to the

equilibrium state, leading to a state more similar to ESC

state, as observed that there are some differences in

Figure 5 Change of gene expression is independent of how many Levels in the module tree. Assuming n=4~9, the expression of genes

in level1, level2, level3 and ESC is depicted in blue, green, red, light blue respectively, while the expression of genes in other levels are nearly

zero all the time.
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DNA methylation in early cultured and late cultured

iPSCs [12].

From the simulated gene expression, our model can

track cell type transition in reprogramming. For exam-

ple, in reprogramming of MEF, fibroblast will change to

tightly arranged round cells, inferring that mesenchymal

to epithelial transition (MET) takes place [13]. The

reprogramming model can simulate MET in reprogram-

ming process (the results are omitted due to space lim-

itation, see Additional file 1). These results may verify

the existence of MET and a series of cell type transfor-

mations toward less differentiated cell types during

reprogramming.

Reprogramming Ising Model

In order to simulate the fluctuations in reprogramming,

we computed the cell “energy” according to the epige-

netic and genetic interactions between different modules

based on a related model similar to Artyomov’s model

in [11], so that module state is changed approximately

by (1) and (2) when the perturbation is small. Construct

the four level cell lineage binary tree, but ESC in the

first level and initial somatic cell in the fourth level. The

state of each node in the corresponding module tree

contains the genetic and epigenetic state of specific

genes of such cell type. G=0,1 representing the

expressed and silenced genetic state respectively; while

S=-1, 0, 1 representing the closed, bivalent and open

epigenetic state respectively. Then the cell “energy” is

defined based on the interaction between genetic state

and epigenetic state of the nodes (see Method). At every

other cell cycle, the reprogramming factors, following

the same rule as in SRM model, will activate a node to

make its epigenetic state open [11] while repress a node

with open epigenetic state to make its epigenetic state

close randomly. Then the cell reaches equilibrium state

which can be found by Monte Carlo simulations and

cell type may change. There are much more varieties of

cell states than that in the SRM model. However, the

SRM model captures major cell states in reprogramming

[12].

We simulated 20000 cells for 25 cell cycles with 5

cells successfully reprogrammed. The reprogramming

rate is 0.025%, consistent with rare reprogramming

event. The successfully reprogrammed cells reach the

ESC state in 8~12 cell cycles (Fig S9), much shorter

than the time we can detect them, since it takes some

time for the total expression of pluripotent genes

increasing to reach the detection threshold as success-

fully reprogrammed cells divide faster and others die.

We averaged the epigenetic and genetic state of each

node in each cell cycle of the 20000 cells (shown as Fig

6, 7(a)). The epigenetic state of initial cell type node

changes from open to closed and arrives at bivalent

state finally (an example in Fig S10). The epigenetic

state of ESC node changes from closed to open, during

which change occurs rapidly from the 11th cell cycle

and on (some examples in Fig S11). From 13th cell cycle

and on, the epigenetic state of other nodes begins to

change rapidly from closed to bivalent state. In ESC,

many genes related to differentiation are in bivalent

state [16]. The time point of these three situations

agrees with the observation that initial epigenetic change

confines within genes with open epigenetic mark in

somatic cell and the repression markers are lost later on

[2]. We also found that the cell “energy” increases dur-

ing the reprogramming process, because of less repres-

sive histone markers and thus repression potential H3

(see Method) is less. In vivo, it is also known that pluri-

potent cells have the lowest DNA methylation level [5].

The expression of initial cell type node decreases

rapidly in the first several cell cycles; the expression of

ESC node increases rapidly from 11th cell cycle on; the

expression of upper level neighbor and sibling node first

increases and then decreases; the expression of nodes in

lineages other than that of the initial cell type remain

near zero. However, some nodes in other lineages may

be weakly expressed during late reprogramming and

may represent the partially reprogrammed state.

Then, we did Kmeans clustering of the real gene

expression data in reprogramming (see method). The

gene can be divided into 4 groups. The average profile

of each cluster matches the gene expression curve pre-

dicted in the reprogramming Ising model (Fig 7(b)). The

expression change of the first cluster resembles the

nodes in other lineages. We found that the cluster is

enriched in RNA processing and RNA splicing (Fold

enrichment>2, Benjamini<10-4). Besides, the genes

related with other lineage (e.g. nuclear protein Ldb1a

related to hemopoietic stem cell maintenance and ery-

throcyte formation, endoderm transcription factor

Figure 6 The epigenetic State of each Node in each Cell Cycle.

Same lineage in level 2, other lineage and neighbor are relative to

the initial somatic cell.
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Figure 7 The average Profiles of real Data match Gene Expression simulated by the reprogramming Ising Model (a) The genetic state of

each node at each cell cycle in reprogramming Ising model. Neighbor in the same level, other lineage in level 4 and upper neighbor are relative

to the initial somatic cell. (b) The standardized average profiles of gene expression in each cluster at each time point or in partially

reprogrammed cells. Genes in each node can be assigned to a cluster by similar gene expression pattern. Upper left, first cluster. Upper right,

second cluster. Lower left, third cluster. Lower right, fourth cluster.
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Gata6, glomerular protein Podxl, epidermal protein

Sprr1a, transcription factor Pax7 related with neuron

and skeleton development and transcription factor

Phox2b related with neuron development) are in this

group.

The expression change in the second cluster resembles

nodes of father and sibling. This cluster is enriched in

actin filament-based process and actin cytoskeleton

organization (Fold enrichment>2, Benjamini<0.05).

Besides, the genes that are related to basolateral plasma

membrane, adherens junction, mesoderm development

(such as hand2 which can be regarded as in the father

node) and embryonic skeletal system development (such

as Flnb which can be regarded as in the sibling node)

are in this group.

The average profile of the third cluster is very similar

to the curve of somatic cell node. Both of them arrive at

50% of the initial value at 4th cell cycle. We also did the

simulation without considering the repression of repro-

gramming factor. In that case, the expression of somatic

cell node decreases so slowly that arrives at 50% at 9th

cell cycle. It may mean that the reprogramming factor

has a significant role in repressing somatic specific

genes in the early reprogramming. This cluster is

enriched in appendage development, skeletal system

development and extracellular matrix, such as biglycan

(Fold enrichment>2, Benjamini<10-4), which are specific

genes of fibroblast. Besides, fibroblast marker Thy1 and

fibroblast structure genes Col1a1, Col1a2 are also in

this group.

The average profile of the last cluster resembles the

curve of ESC node. This cluster is extremely enriched in

condensed chromosome, chromosome in centromeric

region and cell division (Fold enrichment>3, Benja-

mini<10-26). This means that chromatin remodeling may

be the major event in late reprogramming and cell

obtains the ability of self-renewal gradually. Besides,

genes maintaining ESC state or related to self renewal

(such as Oct4, Klf5, Socs3, Sox2, Nanog, Fgf4) are in this

group.

In summary, the gene expression change predicted by

our reprogramming Ising model is consistent with the

real time-serial gene expression data in reprogramming.

Conclusions

In this paper, we attempted to explain observed phe-

nomena in reprogramming by a mathematical model.

Based on the model in [11], we simplified the regulation

of epigenetic and genetic network into two rules and

defined the role of reprogramming factors as repressing

and activating specific modules according to papers

studying the binding sites and function of these factors

[12,15]. The module state and cell state transition are

shown more clearly in SRM model than the

reprogramming Ising model and thus we could see that

the epigenetic barriers are created by the expression of

modules in lower levels and other lineage. Therefore, we

may design more efficient way to overcome these bar-

riers. We simulated the trajectory of rare reprogrammed

cell and showed that knockdown of somatic transcrip-

tion factors or inhibition of DNA methylation or other

repressive histone markers can accelerate reprogram-

ming. The SRM model can predict the gene expression

change in MET and Ising model can predict the expres-

sion change of cell type specific genes, which provides

support for these models and the proposed underlying

rules governing epigenetic and genetic regulatory net-

work in the cell. Reprogramming is a battle between the

reprogramming factors and the cell’s intrinsic transcrip-

tional network. Cells can only reprogram gradually in

several ordered and defined steps because of the inhibi-

tion of intrinsic interaction. The probability that the cell

can overcome all the barriers is very small. Thus, the

reprogramming efficiency is often very low. Besides add-

ing specific transcription factors of desired cell type, the

intrinsic network in the original cell must be disrupted

either by global fluctuation or knocking down specific

transcription factors in order to convert itself to the

desired cell type.

The two models construct a blue picture of cell type

conversion and may be used to study the cell type con-

version between different differentiated lineage and

transformation between cancer and normal cells. They

may be used to identify significant factors in cancer

development, for example EMT mentioned in the paper

is related to metastasis of cancer cells.

However, these two models are simple. They can only

simulate the gene expression and epigenetic change qua-

litatively but not quantitatively. We neglected some

degree of heterogeneity between modules. For example,

the expression level of different modules in “on” state is

not the same; the probability distribution of the repro-

gramming factors inducing different modules may be

non-uniform. Although these models can provide some

insight into the effect of adding histone modifiers or

DNA demethylase, knocking out apoptosis factors or

somatic cell specific transcription factors, only by taking

account of particular gene regulation network can these

models help experiment design. Meanwhile, the rules in

the model need further experimental verification. As the

development of single cell RNA-seq [17] and ChIP-seq

advance, the variations between cells can be revealed.

Using new technologies, we can understand the

mechanism underlying reprogramming more clearly.

We believe that reprogramming efficiency and the

safety of iPSC can be further improved by combing

experimental result with modeling. As the mechanism

of induced pluripotency is understood more

Hu et al. BMC Systems Biology 2011, 5(Suppl 2):S8

http://www.biomedcentral.com/1752-0509/5/S2/S8

Page 10 of 12



comprehensively, iPSC can be widely used in modern

molecular medicine.

Methods

Markov model development

Upon the reprogramming factors induction, cell will get

to another equilibrium state. We enumerated all possi-

ble cell state transitions as the reprogramming factors

can induce different modules. We calculated the transi-

tion probability between different levels in cell lineage

tree, that is, different states in the Markov chain, by

counting possible reprogramming factor induction sites

leading to such transition and dividing by the total

number of modules, assuming the reprogramming fac-

tors activate each module with equal probability (for

detailed calculation of transition probability, see Addi-

tional file 1).

Reprogramming Ising model development

Cell “energy” contains 4 terms. According to RULE2,

H1=-D•Gi•Si
cell i=1,2…15 (the node is numbered as in

Fig S9) depicts the effect of epigenetic state on genetic

state and H2=E•Gi•Gj, (i, j are neighboring nodes),

depicts the mutual repression. According to RULE1,

H3=M• Gi
cell

•Sj, (j is not the descendant of i), depicts

gene expression putting negative histone marks on

nodes in other lineages or upper levels and H4=-N•

Gi
cell

•Si depicts the effect of genetic state on epigenetic

state. Thus, the “energy” of the cell is H=H1+H2+H3

+H4, Gi and Si are the genetic and epigenetic state of

node i, respectively, Gi
cell and Si

cell are the average

genetic and epigenetic state of node i in the last step,

respectively. In the simulation, we assumed KT=1, E=50,

D=20, M=8, N=5, F1=4, F2=16, so that the cell type

transition probability in the reprogramming Ising model

is the same as that in the SRM model. The reprogram-

ming factors are like an external field, H5=δ(i,a)•F1•Si-

δ(i,b)•F2•Si,d i a,( ) =
≠
=

⎧
⎨
⎩

0

1

i a

i a
with a and b represent-

ing the repressed and activated nodes, respectively.

After the induction of the reprogramming factors,

using Metropolis algorithm, Si or Gi is adjusted accord-

ing to transition probability P e E

  E

E

KT= >
≤

⎧
⎨
⎪

⎩⎪

−
Δ

Δ
Δ

0

1 0

. In one

cell cycle, Si is first adjusted by

ΔE H H H S G S H H H S G Si
new

j j i
old

j j= + + ( ) − + + ( )( ) , , ( ) , ,3 4 5 3 4 5 ;

then, Gi is changed by

ΔE H H G G S H H G G Si
new

j j i
old

j j= + ( ) − + ( )( ) , , ( ) , ,1 2 1 2 .

After two cell cycles, the reprogramming factors act

again. “Temperature” KT sets the average “energy” scale

and represents the base-level transcription rates. If the

sum of all the Gi is smaller than 0.01, which is about

the fluctuation of Gi, cell dies and exits the simulation.

If the genetic state of ESC node is 1 while others are

less than 0.01, the reprogramming factors will be with-

drawn. As observed in the experiment, cell cannot be

reprogrammed unless the reprogramming factors are

withdrawn at the suitable time [12] (for the choice of

parameters and the relation of these two models see

Additional file 1).

Expression data

We collected microarray data from GSE10874 (Mikkel-

sen et al. [3]), GSE26100 (Koche et al. [2]) including

gene expression profiles at 0,1,2,4,8,12,16 days of MEF

reprogramming and cell lines MCV6, MCV8.1. MCV6

are the partially reprogrammed cells and MCV8.1 is a

clone from iPSCs [3]. We used Dchip [18] to normalize

the data and did model-based correction (processed

data is shown in Additional file 2). Before doing Kmeans

clustering, we filtered out 25274 probe sets with Present

calls in more than 20% chips and expression level more

than 20 in more than 50% chips and standardized the

expression data for each gene. Adding the MCV6

expression data between 16 days and MCV8.1, we used

correlation as the distance measure in Kmeans cluster-

ing. Then we picked the probe sets within 0.1 from the

center of each cluster to do gene function enrichment

analyses for the cluster using Bioinformative Resource

6.7 [19,20]. There are about 1500~2000 Entrez genes in

each of the filtered cluster.

Additional material

Additional file 1: Details and application of the model Including 11

figures and 1 table; Simulating MET in reprogramming; Mathematics

details

Additional file 2: Gene expression data This file includes normalized

gene expression data in different days in reprogramming.

Acknowledgements

We thank Professor Xiaowo Wang for comments on the manuscript. This

work is supported by NSFC grants 91019016, 31061160497 and NIH grant

HG001696.

This article has been published as part of BMC Systems Biology Volume 5

Supplement 2, 2011: 22nd International Conference on Genome Informatics:

Systems Biology. The full contents of the supplement are available online at

http://www.biomedcentral.com/1752-0509/5?issue=S2.

Author details
1Department of Molecular and Cell Biology, Center for Systems Biology, the

University of Texas at Dallas, 800 West Campbell Road, RL11 Richardson, TX

75080-3021, USA. 2MOE Key Laboratory of Bioinformatics and Bioinformatics

Div, TNLIST /Department of Automation, Tsinghua University, Beijing 100084,

China. 3School of Mathematics, Peking University, Beijing 100871, China.

Hu et al. BMC Systems Biology 2011, 5(Suppl 2):S8

http://www.biomedcentral.com/1752-0509/5/S2/S8

Page 11 of 12

http://www.biomedcentral.com/content/supplementary/1752-0509-5-S2-S8-S1.docx
http://www.biomedcentral.com/content/supplementary/1752-0509-5-S2-S8-S2.xlsx
http://www.biomedcentral.com/1752-0509/5?issue=S2


Authors’ contributions

ZRH designed the model, did the simulation and wrote the manuscript.

MQZ proposed the project, conceived of the paper and revised the

manuscript. MPQ revised the manuscript and helped analyzing the model.

All authors read and approved the manuscript.

Competing interests

The authors declare no competing interests.

Published: 14 December 2011

References

1. Jaenisch Rudolf, Young Richard: Stem cells, the molecular circuitry of

pluripotency and nuclear reprogramming. Cell 2008, 132:567-582.

2. Koche Richard P, Smith Zachary D, Adli Mazhar, Gu Hongcang,

Ku Manching, Gnirke Andreas, Bernstein Bradley E, Meissner Alexander:

Reprogramming factor expression initiates widespresd targeted

chromatin remodeling. Cell Stem Cell 2011, 8:96-105.

3. Mikkelsen Tarjei S, Hanna Jacob, Zhang Xiaolan, Ku Manching,

Wernig Marius, Schorderet Patrick, Bernstein Bradley E, Jaenisch Rudolf,

Lander Eric S, Meissner Alexander: Dissecting direct reprogramming

through integrative genomic analysis. Nature 2008, 454:49-55.

4. Lister Ryan, Pelizzola Mattia, Kida Yasuyuki S, Hawkins R David, Nery Joseph

R, Hon Gary, Antosiewicz-Bourget Jessica, O’Malley Ronan, Castanon Rosa,

Klugman Sarit, Downes Michael, Yu Ruth, Stewart Ron, Bing Renames,

Thomson A, Evans Ronald M, Ecker Joseph R: Hotspots of aberrant

epigenomic reprogramming in human induced pluripotent stem cells.

Nature 2011, 471:68-73.

5. Meissner Alexander: Epigenetic modifications in pluripotent and

differentiated cells. Nat Biotechnol 2010, 28(10):1079-1088.

6. MacArthur Ben D, Please Colin P, Oreffo Richard OC : Stochasticity and the

molecular mechanisms of induced pluripotency. PLoSONE 2008, 3(8):

e3086.

7. Furusawa Chikara, Kaneko Kunihiko: Theory of Robustness of Irreversible

Differentiation in a Stem Cell System: Chaos Hypothesis. J. theor. Biol

2001, 209:395-416.

8. Furusawa Chikara, Kaneko Kunihiko: Chaotic expression dynamics implies

pluripotency: when theory and experiment meet. Biology Direct 2009,

4:17.

9. Takahashi Kazutoshi, Yamanaka Shinya: Induction of pluripotent stem cells

from mouse embryonic and adult fibroblast cultures by defined factors.

Cell 2006, 126:663-676.

10. Yamanaka Shinya: Elite and stochastic models for induced pluripotent

stem cell generation. Nature 2009, 460:49-52.

11. Artyomov Maxim N, Meissner Alexander, Chakraborty Arup K: A model for

genetic and epigenetic regulatory networks identifies rare pathways for

transcription factor induced pluripotency. PLoS Comput Biol 2010, 6(5):

e1000785.

12. Stadtfeld Matthias, Hochedlinger Konrad: Induced pluripotency: history,

mechanisms, and applications. GENES DEV 2010, 24:2239-2263.

13. Li Ronghui, Liang Jialiang, Ni Su, Zhou Ting, Qing Xiaobing, Li Huapeng,

He Wenzhi, Chen Jiekai, Li Feng, Zhuang Qiang, Qin Baoming, Xu Jianyong,

Li Wen, Yang Jiayin, Gan Yi, Qin Dajiang, Feng Shipeng, Song Hong,

Yang Dongshan, Zhang Biliang, Zeng Lingwen, Lai Liangxue,

Esteban Miguel Angel, Pei Duanqing: A mesenchymal-to-epithelial

transition initiates and is required for the nuclear reprogramming of

mouse fibroblasts. Cell Stem Cell 2010, 7:1-13.

14. Mikkelsen Tarjei S, Ku Manching, Jaffe David B, Issac Biju, Lieberman Erez,

Giannoukos Georgia, Alvarez Pablo, Brockman William, Kim Tae-Kyung,

Koche Richard P, Lee William, Mendenhall Eric, O’Donovan Aisling,

Presser Aviva, Russ Carsten, Xie Xiaohui, Meissner Alexander, Wernig Marius,

Jaenisch Rudolf, Nusbaum Chad, Lander Eric S, Bernstein Bradley E:

Genome-wide maps of chromatin state in pluripotent and lineage-

committed cells. Nature 2007, 448:553-560.

15. Sridharan Rupa, Tchieu Jason, Mason Mike J, Yachechko Robin, Kuoy dward,

Horvath Steve, Zhou Qing, Plath Kathrin: Role of the murine

reprogramming factors in the induction of pluripotency. Cell 2009,

136:364-377.

16. Bernstein Bradley E, Mikkelsen Tarjei S, Xie Xiaohui, Kamal Michael,

Huebert Dana J, Cuff James, Fry Ben, Meissner Alex, Wernig Marius,

Plath Kathrin, Jaenisch Rudolf, Wagschal Alexandre, Feil Robert,

Schreiber Stuart L, Lander Eric S: A bivalent chromatin structure marks

key developmental genes in embryonic stem cells. Cell 2006,

125:315-326.

17. Tang Fuchou, Barbacioru Catalin, Wang Yangzhou, Nordman Ellen,

Lee Clarence, Xu Nanlan, Wang Xiaohui, Bodeau John, Tuch Brian B,

Siddiqui Asim, Lao Kaiqin, Surani Azim M: mRNA-Seq whole-transcriptome

analysis of a single cell. Nat Methods 2009, 6:377-382.

18. Li Cheng, Wong Wing Hung: Model-based analysis of oligonucleotide

arrays: Expression index computation and outlier detection. Proc. Natl.

Acad. Sci 2001a, 98:31-36.

19. Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis

of large gene lists using DAVID Bioinformatics Resourcecs. Nat Protoc

2009, 4(1):44-57.

20. Huang DW, Sherman BT, Lempicki RA: Bioinformatics enrichment tools:

paths toward the comprehensive functional analysis of large gene lists.

Nucleic Acids Res 2009, 37(1):1-13.

doi:10.1186/1752-0509-5-S2-S8
Cite this article as: Hu et al.: Novel Markov model of induced
pluripotency predicts gene expression changes in reprogramming. BMC
Systems Biology 2011 5(Suppl 2):S8.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Hu et al. BMC Systems Biology 2011, 5(Suppl 2):S8

http://www.biomedcentral.com/1752-0509/5/S2/S8

Page 12 of 12

http://www.ncbi.nlm.nih.gov/pubmed/18295576?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18295576?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21211784?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21211784?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18509334?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18509334?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21289626?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21289626?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20944600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20944600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11319890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11319890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19445676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19445676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16904174?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16904174?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19571877?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19571877?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20485562?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20485562?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20485562?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20952534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20952534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20621038?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20621038?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20621038?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17603471?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17603471?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19167336?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19167336?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16630819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16630819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19349980?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19349980?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19131956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19131956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19033363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19033363?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Results
	Cell lineage tree, module tree and cell state
	Rules of modules’ states transition
	The role of the reprogramming factors and procedure in SRM model
	Estimating reprogramming rate and average reprogramming time
	Simulating reprogramming in the condition of somatic transcription factors knockdown or DNA methylation inhibition
	Simulating gene expression changes in reprogramming
	Reprogramming Ising Model

	Conclusions
	Methods
	Markov model development
	Reprogramming Ising model development
	Expression data

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

