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Novel measures of linkage disequilibrium that correct
the bias due to population structure and relatedness

B Mangin1, A Siberchicot1, S Nicolas2, A Doligez2, P This2 and C Cierco-Ayrolles1

Among the several linkage disequilibrium measures known to capture different features of the non-independence between alleles
at different loci, the most commonly used for diallelic loci is the r2 measure. In the present study, we tackled the problem of the
bias of r2 estimate, which results from the sample structure and/or the relatedness between genotyped individuals. We derived
two novel linkage disequilibrium measures for diallelic loci that are both extensions of the usual r2 measure. The first one, rS

2,
uses the population structure matrix, which consists of information about the origins of each individual and the admixture
proportions of each individual genome. The second one, rV

2, includes the kinship matrix into the calculation. These two
corrections can be applied together in order to correct for both biases and are defined either on phased or unphased genotypes.
We proved that these novel measures are linked to the power of association tests under the mixed linear model including
structure and kinship corrections. We validated them on simulated data and applied them to real data sets collected on Vitis
vinifera plants. Our results clearly showed the usefulness of the two corrected r2 measures, which actually captured ‘true’
linkage disequilibrium unlike the usual r2 measure.
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INTRODUCTION

Linkage disequilibrium, the non-independence of alleles at different
loci, has been widely used to infer important historical population
events or detect the effect of selection pressure (Barton, 2011 and
references therein). Two loci on a chromosome, with alleles A, a and B,
b respectively, are said to be in linkage equilibrium, or gametic phase
equilibrium, when each haplotype frequency is equal to the product of
the corresponding allelic frequencies. Linkage disequilibrium refers to
the deviation from this equilibrium and, when linkage phase is known,
is measured as a function of the statistics D¼pAB�pApB where pAB is
the frequency of the haplotype AB and pA (pB) is the frequency of the
A (B) allele.
Various measures have been published in the literature for assessing

statistical association between alleles at different loci (see for instance
Hedrick, 1987 for a comparative study of six measures for diallelic loci
and Cierco-Ayrolles et al., 2004 for an investigation of their statistical
properties). Most of these measures can be expressed as functions of
covariances or correlations between loci, and, among them, one of the
most commonly used for diallelic loci is the r2 measure, the square of
the loci correlation.
For association genetics, the extent to which measures of linkage

disequilibrium reflect the true association between a marker and
quantitative trait loci is an issue of considerable interest. Association
mapping analysis requires careful design of experiments, since popu-
lation structure and relatedness between individuals can lead to
spurious associations (Myles et al., 2009; Thornsberry et al., 2001).
The presence of individuals from different genetic origins within the
sample produces linkage disequilibrium between unlinked loci, simply

because of differences in allele frequencies. Consequently, such a
structured sample can lead to a biased estimate of linkage disequili-
brium, which may increase the rate of false positives statistically
associated to the trait without actually being involved in its variation.
Altshuler et al. (2008) and references therein mentioned this problem
and recently, Mezmouk et al. (2011) illustrated the strong effect
of structure corrections on the association mapping results using a
real maize data set. Moreover, samples for linkage disequilibrium
estimation are usually composed of unrelated individuals or indivi-
duals related through a pedigree so complex that it is ignored.
A biased estimate is also obtained when genotyped individuals are
not independent.
The r2 linkage disequilibrium measure is used at different levels to

design whole genome association mapping experiments. First, Pritchard
and Przeworski (2001) showed that to achieve the same power of
detection with a marker locus linked to the causal polymorphism, the
sample size had to be increased by a factor of 1/r2. The r2 measure was
therefore extensively studied in order to evaluate the power of
experiments to capture the genetic effects of causal polymorphisms
with genotyped markers (Pe’er et al., 2006). In particular, r2 decay
with physical and/or genetic distance between loci has often been
analyzed to determine the density of markers to use in whole genome
association scans (Stram, 2004). The long-range linkage disequili-
brium present in admixed populations makes this task much more
complicated. Also, analysis of the structure of r2 is performed follow-
ing association mapping to determine the physical window size in
linkage equilibrium flanking the causal polymorphism and thereby the
precision of its location. All these approaches rely on the assumption
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that the extent of r2 around the causal polymorphism depends only on
a drift-recombination process in a random-mating population with-
out selection. This assumption is hardly ever true in real life. Therefore
structure and relatedness were corrected for in association mapping
tests to take into account the non-independence of loci due to both
population differentiation and uneven levels of relatedness (Yu et al.,
2006). No corresponding correction for the r2 measure itself has ever
been developed to take into account the population differentiation
and relatedness present within the samples although a biased estima-
tion of linkage disequilibrium could lead to inappropriate choice of
marker density and therefore in many cases to a reduced power of
association tests.
In this study, our main objective was to tackle the problem of the

bias of linkage disequilibrium estimate, resulting from the structure of
the sample or the relatedness of genotyped individuals. We worked
with a measure based on genotypes only. Thus we avoided the
necessary preliminary step of inference of the haplotype phase.
Among the various methods measuring linkage disequilibrium
between loci with unknown phase (for example, Weir, 1996; Schaid,
2004), we focused on the one studied by Rogers and Huff (2009).
Following Weir’s pioneer work on a composite measure based only on
genotypic data to evaluate linkage disequilibrium (Weir, 1979), Rogers
and Huff (2009) validated this composite measure. We derived two
new measures of linkage disequilibrium for diallelic loci, extending
both the r2 measure and the work of Rogers and Huff (2009). We
proved that our structure-corrected measure is particularly useful for
fine mapping purposes as it is the factor by which the sample size has
to be increased in order to achieve the same power at a single
nucleotide polymorphism (SNP) locus in linkage disequilibrium
with the diallelic causal polymorphism as the one at the causal
polymorphism itself. After validating both measures by simulation
studies, we applied them to a real data set from Vitis vinifera plants.

MATERIALS AND METHODS
Theory
The r2 measure of linkage disequilibrium. The standard measures of linkage

disequilibrium, D and r2, are respectively equivalent to the covariance and the

correlation between alleles at two different loci l and m (Hill and Robertson,

1968). Consider two diallelic loci l and m, with alleles A and a at the l locus and

alleles B and b at the m locus. There are four possible haplotypes, AB, Ab, aB

and ab with respective frequencies pAB, pAb, paB and pab. The linkage disequili-

brium measure D is equal to:

D ¼ pAB � pApB

where pA and pB denote the respective frequencies of alleles A and B.

Let Xl (respectively Xm) denote the dummy random variable equaling 1

when an individual carries the A allele at locus l (respectively B allele at locus m)

and 0 otherwise. Then D¼Cov(Xl, Xm). By definition r2 ¼ D2

pAð1�pAÞpBð1�pBÞ, thus

it is equal to Cor2(Xl, Xm) as Var(Xl)¼pA(1�pA) and Var(Xm)¼pB(1�pB).

The case of sample structure. As in Ohta (1982), our aim is the decomposition

of the r2 measure of linkage disequilibrium into a first part due to the sample

structure and a second part clear of the structure effect. We prove that the part

clear of the structure effect has two major properties. First, it is unbiased for

unlinked loci, unlike the usual r2 measure of linkage disequilibrium. Second, it

is the proportion factor of increase of the sample size necessary to achieve the

same power when testing association at a SNP locus in linkage disequilibrium

with the causal locus, under the linear Q model of association (Yu et al., 2006).

Let us illustrate the idea leading to the decomposition of the r2 measure of

linkage disequilibrium by considering a simple situation. Assuming that

gametes are sampled from two different populations, we denote by S the

Bernoulli random variable that equals 1 when the gamete is sampled from the

first population and 0 otherwise. If S is known, a natural statistical way of using

this information, is to consider the conditional random variables Xl|S and Xm|S.

We propose the square of their correlation as a novel measure of linkage

disequilibrium and we denote this novel measure rS
2.

When allele frequencies are different between populations, the r2 measure is

not equal to zero for independent loci, as the ideal measure of linkage

disequilibrium should be. Based on the following property of the conditional

covariance,

CovðXl;XmjSÞ ¼ CovðXl;XmÞ � CovðXl; SÞVar�1ðSÞCovðS;XmÞ

it can be proved that rS
2 is equal to 0 for independent loci and thus that it

corrects the bias of the usual r2 measure (see APPENDIX A in Supplementary

Information).

As defined, the novel measure allows a straightforward generalization to

cases of samples composed of gametes coming from K different populations.

The only changes needed are to set S¼(S1,y , Sk,y , SK�1)
T where Sk is the

Bernoulli random variable that equals 1 when the gamete is sampled from the

kth population and 0 otherwise, and to use the Cov and Var matrix extensions.

The generalization to the case of admixed populations, which is modeled by a

known mixture
P
k

pikSk on K ancestral groups for each individual i, raises no

further problem.

We now derive the way to compute rS
2 sample value. Having sampled N

individuals, we consider the 2N derived gametes and the population structure

matrix S of the gametes in K populations. The Smatrix is composed of 2N rows

and K�1 columns. It can be obtained from Bayesian model-based clustering

methods, as in STRUCTURE (University of Chicago, IL, USA; Pritchard et al.,

2000) and BAPS (Abo Akademi University, Turku, Finland; Corander et al.,

2008) software applications, by removing the last column of the output

structure matrix, or from dimension-reduction methods, such as principal

component analysis (Patterson et al., 2006), non-metric multidimensional

scaling (Zhu and Yu, 2009) or sparse factor analysis (Engelhardt and Stephens,

2010) by considering K�1 dimensions.

Let Xl, Xm be the 0–1 column vectors of the observed gametic alleles at loci l

and m. We denote by SXl ;Xm ;S the sample variance-covariance matrix of Xl, Xm

and S. It consists in 3�3 blocks, namely

SXl ;Xl SXl ;Xm SXl ;S

SXm ;Xl SXm ;Xm SXm ;S

SS;Xl SS;Xm SS;S

0
@

1
A

Then r̂2Sðl;mÞ the estimate of the rS
2(l, m) measure is equal to

SXl ;Xm � SXl ;SS
�1
S;SSS;Xm

� �2

SXl ;Xl � SXl ;SS
�1
S;SSS;Xl

� �
SXm ;Xm � SXm ;SS�1

S;SSS;Xm

� � ð1Þ

The above equation is well defined if SS;S is not singular. Otherwise, it can be

proved with the help of linear algebraic theorems (Searle, 1971 (chapter 2,

p. 37)) that the number of ancestral groups can be reduced without loss of

information.

The measure on unphased genotypes (Weir, 1979; Rogers and Huff, 2009) is

defined by the correlation between Xl and Xm where Xl and Xm are now

multinomial random variables taking values 0, 1 or 2 according to the number

of A alleles in the genome at locus l (respectively m). As the population

structure matrix can be obtained for genotypes as well as for gametes, it is

straightforward to extend the rS
2 measure to phase-unknown genotypes.

We give here the main arguments to prove that the power of the detection

test at a SNP locus linked to the causal polymorphism is equal to the power at

the causal polymorphism if the sample size is increased by 1/rS
2. The power of a

t-test is an increasing function of its expectation, so we studied this expectation

both at the causal locus and at a SNP locus in linkage disequilibrium. First, we

show that r̂2Sðl;mÞ is the factor that reduces the power when testing the

association at the linked marker locus using the Q model and then we deal with

two samples of different sizes. The complete proof is given in appendix

(see APPENDIX B in Supplementary material).

The case of relatedness of sampled individuals. When the sample is composed

of N related gametes, the sample correlation r̂2ðl;mÞ is not a good estimate of

the r2(l, m) measure of linkage disequilibrium as the independence assumption

is violated. The same problem occurs for the sample value of the correlation
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conditionally to the structure, rS
2(l, m). However, if the covariance between the

pairs of gametes is known, then the observations can be decorrelated by

premultiplying the data by V�1/2 if it exists, where V is a matrix built from the

Vij covariances for all the (i, j) pairs of gametes. Assuming that V is invertible,

we denote SV
Xl ;Xm ;S the sample variance-covariance matrix of V�1/2[Xl, Xm, S]

which is equal to

½Xl;Xm; S��1N1
T
NV

�1

1TNV
�11N

½Xl;Xm; S�
� �T

V�1 ½Xl;Xm; S� � 1N1
T
NV

�1

1TNV
�11N

½Xl;Xm; S�
� �

:

We derive the estimate of the novel measure of linkage disequilibrium given the

covariance between gametes

r̂2V ðl;mÞ ¼
ðSV

Xl ;Xm Þ2

SV
Xl ;XlSV

Xm ;Xm

ð2Þ

and the estimate of the novel measure of linkage disequilibrium given both the

covariance between gametes and the sample structure

r̂2VSðl;mÞ ¼
SV
Xl ;Xm � SV

Xl ;SðS
V
S;SÞ

�1SV
S;Xm

� �2

SV
Xl ;Xl � SV

Xl ;SðS
V
S;SÞ

�1SV
S;Xl

� �
SV
Xm ;Xm � SV

Xm ;SðSV
S;SÞ

�1SV
S;Xm

� �
ð3Þ

where SV
:;: denotes the blocks in the matrix SV

Xl ;Xm ;S.

When the V matrix is not invertible, we propose to replace V�1 in equations

(2) and (3) by V�, the generalized Moore–Penrose inverse which is always

defined.

As in the case of sample structure, extension to genotypes of unknown phase

is straightforward by replacing all matrices and data related to gametes by the

corresponding genotypic information, with V becoming the covariance matrix

between genotypes.

The kinship coefficient which represents the degree of genetic covariance

among individuals is the genetic parameter that should be used in the Vmatrix.

It has already been proposed in association mapping methods to remove the

bias of the type I error of association tests due to different degrees of relatedness

between individuals and it was shown to be adequate (Yu et al., 2006).

Computer simulations
The aim was to show that these novel measures actually corrected the bias of

the usual r2 estimate. Simulation process was conducted differently for the rS
2

and the rV
2 measures.

For the rS
2 measure, each population was described by two parameters, pl, pm,

the A (respectively B) allele frequency of the first (respectively the second)

diallelic locus. The r2 measure of linkage disequilibrium was assumed to be the

same in both populations. In each population, a N sample was simulated using

a multinomial distribution M(1, pAB, pAb, paB, pab) where pAA, pAb, paB and pab
were the frequencies of the four allelic combinations linked to the above

parameters.

For consistency with our real data set on grapevine, simulations were

conducted with a sample size of 100 genotypes per population. First, we

studied three levels of linkage disequilibrium by setting r2 to 0.01, 0.25 and 0.5.

The allelic frequencies were chosen in order to show a strong differentiation

between the two populations either for both loci or for one locus only. Then,

we explored the whole parameter space for r2, pl and pm (see Supplementary

material).

For the rV
2 measure, two series of simulations were carried out. The first one

involved in simulating a sample composed of both independent and cloned

genotypes. A total of 80 genotypes were obtained by randomly associating two

gametes that were simulated as described above with the multinomial distribu-

tion. A single genotype, homozygous for the most common allele at both loci,

was chosen and repeated 19 times in order to create a set of 20 cloned

genotypes within the sample of 100 genotypes. The V matrix was the kinship

matrix with 1 diagonal. The cloned genotypes were assigned a kinship

coefficient equal to 1, whereas all other kinship coefficients were set to 0. We

studied three levels of linkage disequilibrium (r2¼0.05, 0.25, 0.4) and the allelic

frequencies at both loci were chosen as either high (0.5) or medium (0.2).

The second series of simulations focused on a sample composed of full and

half-sibs. A sample of 20 genotypes was simulated with a multinomial

distribution. These 20 genotypes were used as the parents of a complete half-

diallel of 190 F2 families with 200 members each. For a given genetic distance

between the two loci, the genotype of an offspring was obtained from the

genotypes of its parents using Mendelian laws. The allelic transmission from

parents to sampled descendants was preserved across replicates in order to limit

the randomness to the multinomial draw. Thus, the parent genotypes varied

across the replicates and the genotypes of descendants were rebuilt given the

allelic transmission and their parent genotypes. Two random samplings of

the descendants were used: either 100 individuals were randomly sampled in

the whole population (simple sampling) or 5 individuals were randomly

sampled in 20 randomly drawn families (hierarchical sampling). The V matrix

was the kinship matrix with 1 diagonal. The kinship coefficients between the

descendants were set to 1/4, 1/8 or 0 depending on the number of parents they

shared. We set r2 to 0.4, 0.25 and 0.05 and, based on a previous study on

grapevine (Barnaud et al., 2010, Figure 1), we linked these values to 0.1, 1 and

5 cM, respectively.

For both scenarii, we had to limit the number of replicates compared with

the structure simulations because computing the inverse of a matrix drastically

slowed down the computation.

Plant material
To illustrate the behavior of the novel linkage disequilibrium measures, we also

analyzed a real stratified population obtained by mixing cultivated and wild

grapevine accessions with different kinship levels. Respectively 92 and 91 plants

were selected among the wild and cultivated accessions of the V. vinifera

grapevine germplasm collection of the vassal INRA experimental station. The

91 cultivated accessions (CU sample) were selected in the ‘table east’

sub-population (table grape cultivars from Eastern Europe). This sub-popula-

tion was one of the three ones obtained by stratification analysis with

STRUCTURE software application, using 20 microsatellite markers spanning

the 19 chromosomes on the 2276 distinct genotypes of the cultivated V. vinifera

germplasm. The 92 wild accessions selected (WI sample) came mainly from

Western Europe and most particularly from France.

Molecular analysis
DNAwas extracted from these 183 accessions and genotyped at 176 SNP markers

using VeraCode technology (Illumina, San Diego, CA, USA). A total of 109 SNPs

belonging to 50 different genes within a 2-Mb region were used to estimate

linkage disequilibrium. In all, 67 additional SNPs originating from 67 different

genes scattered on the whole genome were used together with the 20 scattered

SSRs to measure relatedness between the 183 accessions. All SNPs were physically

localized on the sequence of grapevine genome by blasting their flanking

sequence on the 12�reference grapevine genome sequence (Jaillon et al., 2007).

Data analysis
Linkage disequilibrium analysis was performed for the 80 SNPs out of 109 with

a minimum allele frequency 410%. We checked stratification between wild

0e+00 1e+06 2e+06 3e+06 4e+06

0e+00 1e+06 2e+06 3e+06 4e+06

distance in bp

r2  e
st

im
at

e

distance in bp

r2 V
S
 e

st
im

at
e

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

Figure 1 r2 and rVS
2 estimates for a sample composed of 92 wild and 91

cultivated Vitis vinifera accessions as a function of physical distance (in bp)

between pairs of loci.
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and cultivated grapevine accessions by performing a phylogenetic analysis

based on the dissimilarity matrix estimated from the 87 markers scattered on

the whole genome (see above). We obtained a clear classification into two

genetic pools corresponding to wild and cultivated accessions (data not

shown). The structure matrix was obtained from the same 87 scattered markers

with STRUCTURE assuming no admixture. The kinship matrix was obtained

with the same 87 scattered markers with ML-Relate (Montana state University,

Bozeman, MT, USA), a software application that uses maximum likelihood to

estimate relatedness between individuals (Milligan, 2003).

RESULTS

Simulation study
Validation of the bias correction for structure. To validate the rS

2

measure, simulations were conducted on a two-population structured
sample.
Table 1 presents the mean (and its standard error) of the estimates

of rS
2 and r2, computed over 5000 replicates. The r2 measure was

estimated both in the first population (100 genotypes) and in the
whole sample (200 genotypes).
As expected, the higher the differentiation of the loci, the higher

was the bias of the r2 estimate. In all cases, the rS
2 measure corrected the

bias of the r2 estimate in the whole sample. Depending on allele
frequencies and linkage disequilibrium values, the r2 estimate either
under or overestimated the r2 value but in all cases r̂2S was nearly
unbiased. For the variability of the estimates, as shown by the standard
error, the trends were opposite. The difference in r̂2 variance between
the one and two-differentiated locus situations decreased with increas-
ing linkage disequilibrium whereas the opposite was observed for r̂2S.
However, the trends for the variability of r̂2S and r̂2 in the first
population, were the same, suggesting that this is the usual trend of
a correct estimate of linkage disequilibrium based on correlation
across gametes. r̂2S showed less unbiasedness and a smaller variance
than r̂2 in the first population because the sample size was twice
as large.
The rS

2 estimate was almost unbiased over the whole parameter
space, as the absolute difference between its mean over the 500
replicates and the r2 value was always o0.03 (see Supplementary
material).

Validation of the bias correction for relatedness. To validate the rV
2

measure, two scenarii were simulated, a clone scenario and a half-
diallel design. Tables 2 and 3 present the mean (and its standard error)

Table 1 Mean (and its standard error) of the r2 and the rS
2 estimates (over 5000 replicates) of a two-population sample of size (2�100)

r2 0.01 0.01 0.25 0.25 0.5 0.5

pop 1 p l 0.9 0.9 0.9 0.8 0.9 0.7

pop 2 p l 0.1 0.1 0.1 0.2 0.1 0.3

pop 1 pm 0.9 0.55 0.9 0.55 0.9 0.55

pop 2 pm 0.1 0.45 0.1 0.45 0.1 0.45

pop 1 r̂2 0.018 (0.0003) 0.015 (0.0002) 0.258 (0.0014) 0.251 (0.0007) 0.504 (0.0017) 0.501 (0.0008)

whole r̂2 0.460 (0.0007) 0.022 (0.0002) 0.673 (0.0007) 0.211 (0.0005) 0.801 (0.0006) 0.469 (0.0007)

r̂2S 0.014 (0.0002) 0.012 (0.0001) 0.253 (0.0010) 0.250 (0.0005) 0.502 (0.0012) 0.500 (0.0006)

p1 is the A allele frequency at the first locus in the first (pop 1) and the second (pop 2) population, pm is the B allele frequency at the second locus in the first (pop 1) and the second (pop 2)
population, the r2 measure was estimated with the sample of the first population (pop 1) and with the whole sample (both populations).

Table 2 Mean (and its standard error) of the r2 and the rV
2 estimates (over 5000 replicates) of a sample composed of 80 independent

genotypes and 20 clones

r2 0.4 0.4 0.25 0.25 0.05 0.05

p l 0.5 0.2 0.5 0.2 0.5 0.2

pm 0.5 0.2 0.5 0.2 0.5 0.2

r̂2 0.543 (0.0035) 0.450 (0.0049) 0.414 (0.0038) 0.308 (0.0047) 0.209 (0.0031) 0.098 (0.0028)

r̂2V 0.396 (0.0043) 0.407 (0.0051) 0.248 (0.0042) 0.261 (0.0047) 0.060 (0.0022) 0.063 (0.0024)

p l is the A allele frequency at the first locus, pm is the B allele frequency at the second locus.

Table 3 Mean (and its standard error) of the r2 and the rV
2 estimates (over 500 replicates) for two different samplings of 100 genotypes from a

complete half-diallel of 190 families of 200 full-sibs

r 2 0.4 0.4 0.25 0.25 0.05 0.05

p l 0.5 0.2 0.5 0.2 0.5 0.2

pm 0.5 0.2 0.5 0.2 0.5 0.2

dist (cM) 0.1 0.1 1 1 5 5

Hierarchical sampling of 5 full-sibs in 20 families

r̂2 0.403 (0.0113) 0.466 (0.0128) 0.276 (0.0094) 0.331 (0.0115) 0.083 (0.0045) 0.133 (0.0073)

r̂2V 0.399 (0.0116) 0.407 (0.0131) 0.258 (0.0097) 0.264 (0.0110) 0.063 (0.0040) 0.083 (0.0055)

Simple sampling of 100 genotypes

r̂2 0.400 (0.0108) 0.450 (0.0117) 0.239 (0.0088) 0.305 (0.0106) 0.075 (0.0044) 0.119 (0.0068)

r̂2V 0.400 (0.0107) 0.431 (0.0117) 0.240 (0.0088) 0.285 (0.0105) 0.072 (0.0044) 0.0115 (0.0064)

p l is the A allele frequency at the first locus, pm is the B allele frequency at the second locus.
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of the estimates of rV
2 and r2, over 500 replicates. In the clone scenario,

the large overestimation of linkage disequilibrium when using the r2

measure was expected since the cloned genotype was the most
common haplotype. In the half diallel design, as parents could have
different haplotypes and they all produced the same numbers of
offspring, the impact on the bias of r2 estimate was not predictable.
This bias was largely positive for medium allele frequencies whereas it
was positive but nearly null for common alleles.
r̂2V was always less biased than r̂2. Bias correction was nearly perfect

for common alleles but bias was only partially removed for medium
allelic frequencies in the worst situation of simple population sam-
pling with low r2. Variability was very close between r2 and rV

2

estimates. It was substantially larger in the half-diallel design than in
the clone scenario, most probably because the effective population size
was much lower in the half-diallel (only 20 parents) than in the clone
scenario (80).

Grapevine data
r2 and rVS

2 estimates are presented in Figure 1 as a function of the
physical distance between loci. With the r2 measure, long-range
linkage disequilibrium was questionable and could be due to either
the structure of the sample and/or the high mean level of relatedness
(0.32) within the wild sample as compared with the cultivated one
(0.10). With the rVS

2 measure, lower values overall were obtained, as
well as an expected exponential decline of linkage disequilibrium with
distance, which clearly demonstrated the efficiency of our novel
measure in correcting bias.
Figure 2 shows the difference between the estimates of r2 and rVS

2 ,
plotted as a function of the distance between loci. The positive bias
was removed all along the chromosome segment. However, for some
close loci, rVS

2 estimate was larger than r̂2, leading to a negative
removed bias.

DISCUSSION

We proposed two novel measures of linkage disequilibrium that
correct for the bias of the usual r2 measure due to the structure of
the sample or the relatedness of the genotyped individuals. These two
measures can be combined in order to correct for both sources of bias
and can be computed either on phased or unphased genotypes.
Estimation of these novel measures of linkage disequilibrium was
implemented in a R package (LDcorSV) and integrated in the SNiPlay

pipeline, which is freely available at http://sniplay.cirad.fr/cgi-bin/
home.cgi. These measures are based on formulae involving the
covariance between gametes or diploid genotypes. They make full
use of the added information given by the population structure or
kinship matrices.
We proved, in the case of a two-population structured sample,

that the estimate of the measure corrected for the structure of the
sample, rS

2, is unbiased for unlinked loci. We showed by simulation of
a two-population structured sample that the bias of the usual estimate
r̂2 increased with the differentiation of loci and with decreasing
linkage disequilibrium, as already shown by Ohta (1982). This bias
was always removed by the use of the rS

2 estimate. Our simulations
were limited to two populations having different levels of linkage
disequilibrium only because of different allele frequencies. Both
populations thus have similar r2 values and an unbiased estimate of
r2 can be clearly defined as an estimate with expectation r2. On the
contrary, in the case where the two populations would have
both different r2 values and different allele frequencies, it is not
clear what should be the correct measure of linkage disequilibrium,
and consequently what would be the bias of the usual r2 estimate.
If two populations diverged a long time ago and underwent very
different evolutions, it may be wrong to assume that they differ
only in allele frequencies. However, for geographically close popula-
tions, for recently admixed populations, or for genotypes pooled to
form a panel for association studies, assuming the r2 value is the
same is not unsoundness. Moreover, if we assume equal effective
population sizes and panmixia in each population, the approximation
of the expectation of r2 along the evolution process depends on Nc,
where N is the effective population size and c the per-generation rate
of recombination (Ohta and Kimura, 1971). Therefore, r2 may be
linked to the recombination rate, which is expected to be similar in
two close populations.
Another extreme clone scenario could be useful to show that the

r2 measure may also underestimate the true linkage disequilibrium
value, in which case the rV

2 estimate would be much larger than the
usual r2 estimate. Let nAB (respectively nab) denote the number of
haplotypes carrying A allele at the first locus and B allele at the second
locus (a and b alleles, respectively). If there were only one haplotype
carrying Ab and one haplotype carrying aB, the r2 estimated value
of the sample would be large, nearly equal to 1 if nAB and nab
were large. However, if the single Ab haplotype and the single
aB haplotype were both cloned, then the r2 estimated value of this
new sample would decrease to zero with an increasing number of
clones. Unlike the r2 estimate, the rV

2 estimate would remain equal to
the r2 estimate of the original sample and would thus be nearly
unbiased for a large sample size. By simulating a diallel design of
full-sibs, which is less extreme and thus more likely to reflect real
situations, we showed that the usual measure was always more
biased than the novel one. However, we observed a remaining bias
that was probably due to the small effective size of our sample as
observed by Yan et al. (2009) with a real maize data set when the
sample size was o50.
Analyses of the real data set revealed a number of close loci with a

linkage disequilibrium underestimated by the usual measure. This
negative bias appeared even when we performed exclusively the
structure correction (Supplementary Figure S1 in Supplementary
material), although it was never found in the simulation study. The
reason is probably that we performed simulations with exactly the
same r2 value in both populations, as our goal was to estimate the part
of linkage disequilibrium linked to the recombination rate within
populations in panmixia. In our real data set, these pairs of close loci
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showed a significant difference of r2 estimates between populations.
However, among these pairs, those with the highest differences
between r2 and rS

2, had low allelic frequency for one locus within at
least one population (Supplementary Figure S2 in Supplementary
material). Given the small sample size within each population (o100
accessions), one must proceed with caution when drawing conclusions
but this suggests that those loci had probably undergone selection.
Recently, Zaykin et al. (2008) proposed an extension of the r2

measure to handle multiallelic loci. Their T2 statistic, which is the
sum of the r2 measures over all pairs of alleles multiplied by a constant
term, was shown to be efficient for testing for independence between
loci in phase-known genotypes. The transformations using population
structure and kinship matrices could be applied to the T2 statistics to
correct for bias effects.
Kinship matrices are rarely known and there are several methods

and software applications for obtaining an estimated kinship matrix
based on molecular marker data (Loiselle et al., 1995; Lynch and
Ritland, 1999; Milligan, 2003). However, they all have the limited goal
of estimating pairwise kinship coefficients, none of them estimates a
whole kinship matrix. The estimates of pairwise kinship coefficients of
the whole sample, even when all of them are constrained to be positive
or null, do not provide a valid matrix for the rV

2 measure (that is, a
positive semi-definite matrix). The simplest method of building
a positive semi-definite matrix from a non-positive one, is to perform
a single value decomposition and set all negative eigenvalues to 0. We
used this method to analyze our real data set. However, as highlighted
by Saı̈dou et al. (2009), this projection method does not necessarily
lead to a valid kinship matrix (that is, a matrix with elements 40 and
o1). Which is the best method when computing the rV

2 measure,
either to use a valid kinship matrix or simply a valid variance-
covariance matrix, remains an open question. In the association
mapping context with a mixed model approach, Kang et al. (2008)
compared three different variance-covariance matrices of the random
genotype background effect: a SPAGeDi-based kinship estimate, a
genotype similarity estimate and a phylogeny control estimate. Based
on both the BIC criterion, which measures the goodness of fit of the
model, and the P-value distribution, which shows the correction
needed for inflated false positive tests, the three estimates gave
comparable results. For linkage disequilibrium estimation, we do
not have a clear criterion, such as the BIC or the P-value distribution,
that could help us to compare different variance-covariance matrices
on real data sets. However, we may rely on Kang et al. (2008)
comparisons to suggest that comparable results would probably be
obtained.
We proved that the sample size has to be increased by 1/rS

2 to
achieve the same power at a SNP locus in linkage disequilibrium with
a causal locus when using the association test corrected by the sample
structure (the Q model of Yu et al., 2006). If V is the variance-
covariance matrix of the K+Q model (Yu et al., 2006), then the rVS

2

measure can be proved to be the proportional factor of the association
test power. The proof follows the same steps as for the rS measure,
after premultiplying the K+Q model equation by V�1/2. The variance-
covariance matrix of this mixed linear model is generally unknown, as
it depends on the heritability of the observed trait. However, the rVS

2

measure could be computed for a range of heritabilities to help to
select the marker density, or could be estimated after the association
tests in order to assess the precision around the detected SNPs.
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