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1 Introduction

The transition between metallic and insulating behaviour is a fascinating and enduring

area of study in condensed matter physics (e.g. [1–3]). A defining property of metals and

insulators is whether or not they conduct at zero temperature1 and hence a continuous

metal-insulating transition constitutes a quantum phase transition (e.g. [5]). In many

systems the transition arises within the context of strongly correlated electrons and it is

therefore natural to look for new paradigms within the context of holography.

A simple description of holographic matter at finite charge density is captured by the

electrically charged AdS-RN black brane in D spacetime dimensions. At zero temperature

this solution interpolates between AdSD in the UV and AdS2 × RD−2 in the IR, and this

locally quantum critical ground state [6] has a non-zero entropy density. The AdS-RN black

hole is translationally invariant in the RD−2 directions and, correspondingly, the real part

of the optical conductivity has a delta function peak at zero frequency, for all temperatures,

corresponding to the system being an ideal conductor. This infinite DC conductivity arises

1After a career thinking about the topic Mott wrote: “I’ve thought a lot about ‘What is a metal?’ and

I think one can only answer the question at T = 0. There a metal conducts, and a non-metal doesn’t.” [4].
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from the fact that momentum is conserved and there is no mechanism for dissipating the

current.

In order to obtain more realistic metallic behaviour the translation invariance can be

broken by incorporating a “holographic lattice”.2 This is defined to be a deformation of

the dual CFT by some type of periodic potential and is described by black holes with

suitably modified asymptotic behaviour in the UV. It is possible to have constructions

where the lattice deformation becomes irrelevant in the IR, in the RG sense, and the

AdS2 × RD−2 region of the geometry in the far IR at T = 0 is maintained. When this is

the case the low frequency behaviour of the optical conductivity at low temperatures, with

the scale set by the chemical potential, is captured by analysing perturbations about the

translationally invariant AdS2 × RD−2 geometry [17]. One finds that the system is in a

metallic phase with the DC conductivity scaling with temperature with an exponent fixed

by the least irrelevant operator in the locally quantum critical theory. Furthermore, for

T 6= 0, the optical conductivity is expected to have a Drude-peak instead of a delta function.

Various constructions of black holes describing holographic lattices have been made [18–

24] and Drude-peaks associated with coherent metallic behaviour are indeed observed.3

In addition, the scaling of the DC conductivity that was predicted in [17] was recently

confirmed in [24] by constructing black hole solutions down to very low temperatures. It

is worth emphasising that at T = 0, the arguments of [17] suggest that for these particular

metallic phases, governed by the locally quantum critical theory, the Drude-peak will be

replaced by a delta function. One of the results of this paper will be the construction

of different metallic ground states at T = 0, with vanishing entropy density, where the

real part of the optical conductivity diverges with a power law-like behaviour for small

frequency or, in some models, approaches a finite value.

The potential utility of using holographic lattices for studying transitions from metallic

to insulating behaviour, and also using them to find new insulating ground states, was

discussed in [21]. The key idea is to increase the strength of the holographic lattice aiming

to modify the IR properties of the T = 0 ground state. In [21] this idea was explored within

the context of D = 5 black holes with helical lattice deformations. For small deformations

it was shown that the system is in a metallic phase with the T = 0 black holes interpolating

between AdS5 in the UV and AdS2 × R3 in the IR. For larger deformations it was shown

that there is a transition to insulating behaviour, with the corresponding T = 0 black holes

approaching new IR configurations with broken translation invariance. For the insulating

phase, the real part of the optical conductivity was shown to vanish at small frequencies,

with a power law fixed by the IR geometry. It was also shown that there is an RG unstable

bifurcating solution, similar to [27], which separates the two phases.

2Alternatively, the translation invariance can be broken spontaneously, as in e.g. [7–9]. Momentum

dissipation can also be achieved by using massive gravity in the bulk, as in [10–13], or by treating charge

carriers in a probe approximation [14–16].
3In the interesting recent solutions [25] (see also [26]) the translation invariance is broken by massless

scalars, without being periodic. Furthermore, the scalars are marginal deformations of the AdS2 × RD−2

geometry.
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In this paper we carry out related investigations using the framework of holographic

Q-lattices, which were recently introduced in [24]. This framework utilises a classical

gravitational theory with a global symmetry in order to construct black hole solutions

that break translation invariance and yet have a metric which is co-homogeneity one. In

particular, the black hole solutions can be obtained by solving ODEs instead of PDEs which

considerably simplifies the analysis. In [24] a class of D = 4 models with a metric, gauge-

field and a neutral complex scalar field were studied. Anisotropic black hole solutions that

break translation invariance in one of the two spatial directions of the dual field theory

were constructed and shown to exhibit a transition from metallic to insulating behaviour.

The metallic phase was described by black holes whose T = 0 limit interpolates between

AdS4 in the UV and AdS2 × R2 in the IR. Insulating black holes were also constructed

down to very low temperatures, but the zero temperature ground states, which have zero

entropy, are currently obscure. In particular, the solutions do not seem to approach any

simple power-law type behaviour. While it would be interesting to further understand the

low temperature behaviour of the models studied in [24], one might expect that simple

extensions to the models will lead to more accessible low-temperature behaviour.

Here, in sections 2 and 3, we will consider D = 4 models with the same field content as

those studied in [24] but with additional couplings. We will find a new class of anisotropic

solutions, associated with broken translation invariance in one of the two spatial direc-

tions4 and vanishing entropy density, and show that they arise as the IR limit of black

hole solutions at T = 0 and non-vanishing chemical potential µ. Given that the T = 0

black holes break translation invariance one might expect that they are associated with

insulating behaviour, and for certain parameters we find this to be the case. However, for

other ranges of parameters we find that the T = 0 ground states exhibit novel metallic

behaviour. More precisely we will show that the real part of the conductivity behaves as

Re(σ) ∼ ωy, as ω → 0, where y is a parameter fixed by the D = 4 theory.5 We will also

show that the DC conductivity scales like σDC ∼ T y for T � µ and T � k. Thus the

ground states in models with y > 0 correspond to insulating behaviour, while in models

with y < 0 they correspond to metallic behaviour. It should be emphasised that these

incoherent holographic metals, with ground states which break translation invariance, are

quite distinct from the coherent holographic metals which have ground states built from

irrelevant deformations of the translationally invariant AdS2 × R2 solution. In particular,

our new metallic ground states are not amenable to being studied via the memory matrix

formalism described in [17]. There are also models with y = 0, leading to a constant DC

conductivity at T = 0. This latter type of behaviour was also seen in [11, 25] but, in

contrast to what we find here, there it was in the context of non-vanishing entropy density

and also with a temperature independent DC conductivity.

In section 4 of the paper, we consider a slightly more general class of models which

includes a real scalar field with two real “axion” fields. We show that the model admits new

4Ground state solutions at finite charge density which break the euclidean spatial symmetry to a helical

symmetry have been found in [27–30].
5We note that similar power-law behaviour for the optical conductivity at low frequencies was discussed

for D = 4 holographic metals in [31] and has also been seen for D = 5 helical metals and insulators [32, 33].
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solutions associated with ground states that break translation invariance in all of the spatial

directions of the dual field theory. We show that the ground states can again exhibit novel

insulating and metallic behaviour. We now find examples where the optical conductivity

and the DC conductivity exhibit scaling behaviours with different exponents. We also

find new AdS2 × R2 solutions supported by linear axion fields with broken translation

invariance. For a closely related set of models, with massless axion fields, we show in an

appendix that they give rise to a novel generalisation of “η-geometries” [34, 35]. Recall that

the η-geometries are conformal to AdS2 × R2 and have been emphasised as a framework

for holographically studying semi-local quantum criticality in [34].

In section 5 we present our calculation of the DC conductivity, σDC , for a general

class of finite temperature black hole solutions using a new approach. Instead of taking

a zero-frequency limit of the optical conductivity, as is usually done, we switch on a time

independent electric field from the start and then determine the response. By carefully

analysing regularity conditions we obtain an elegant expression for the DC conductivity in

terms of horizon data. This complements similar results for specific models in a transla-

tionally invariant context [36] and in the context of momentum dissipation [12, 25, 37].

2 Anisotropic ground states which break translation invariance in one

spatial direction

Consider a D = 4 model of gravity coupled to a gauge-field A and a neutral complex scalar

field z with action given by

S =

∫
d4x
√
−g
[
R− V (|z|)− 1

4
τ(|z|)F 2 −G(|z|)|∂z|2

]
, (2.1)

where F = dA and V, τ and G are functions of the modulus of the complex scalar. The

model has an abelian gauge symmetry in which A → A − dΛ, as well an abelian global

symmetry associated with constant phase rotations of z.

We can choose V, τ and G so that the model admits an AdS4 vacuum which will be

dual to a d = 3 CFT. We are interested in studying the behaviour of this CFT when

held at finite charge density with respect to the global symmetry associated with the bulk

gauge-field, and with a Q-lattice deformation. Recall from [24] that the Q-lattice utilises

the bulk global symmetry to break translation invariance. In the particular setting of the

model defined by (2.1) the Q-lattice introduces a phase in the asymptotic behaviour of the

complex field z that depends periodically on one of the spatial directions, and hence breaks

translation invariance explicitly.

We want to identify possible zero temperature black holes of this set-up, aiming to find

ground states with novel IR behaviour. In fact we have constructed finite temperature Q-

lattice black holes and cooled them down to low-temperatures finding that they can indeed

approach such configurations. We will describe these black hole solutions in section 3, but

we will first focus on describing the “fixed point solutions” solutions that capture the IR

behaviour of the ground states. As we will see these solutions involve simple power-law like

behaviour for the fields and they capture key low-energy features of the conductivity of the
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full AdS4 black holes. It is worth noting in advance that they are singular and moreover

have running scalar fields.

We will study models in which the scalar manifold appearing in (2.1), with coordinate

z and line element G(|z|)|dz|2, is non-compact and asymptotically, locally approaches hy-

perbolic space at the boundary, with real coordinates φ, χ and line element dφ2 + e2φdχ2.

Furthermore, in the IR region of the T = 0 black hole solutions we will see that the scalar

field is driven to this boundary φ→∞. In addition, we find, that the ground state solutions

are determined by the behaviour of the functions V, τ depending on exponentials of φ.

Assembling these ingredients, we therefore focus on finding fixed point solutions of the

following class6 of models:

S =

∫
d4x
√
−g
[
R− c

2

[
(∂φ)2 + e2φ(∂χ)2

]
+ n1e

αφ − n2
eγφ

4
F 2

]
, (2.2)

where c > 0, α and γ are constants. For simplicity, we will shortly focus on the one-

parameter family of models labelled by γ by setting c = 3, α = 1. We have also included

two additional constants, n1 and n2 > 0, which will play a minor role, as one can see by

rescaling the metric and/or the gauge-field A, but are added for later convenience. Observe

that the global symmetry of the bulk theory corresponds to constant shifts of the “axion”

field χ. The ansatz that we consider is given by

ds2 = −Udt2 + U−1dr2 + e2V1dx2
1 + e2V2dx2

2 ,

A = adt ,

χ = kx1 , (2.3)

with U, V1, V2, a and φ functions of r. In the black hole setting discussed in section 3, χ

will be a periodic field and hence we see that this ansatz is associated with breaking of

translation invariance in the x1 direction, whilst preserving it in the x2 direction. Gener-

ically the metric is cohomogeneity one and anisotropic in the x1, x2 directions. We also

note that this lattice breaks parity. The equations of motion lead to a system of differential

equations which are first order in U and second order in V1, V2, a and φ. Notice that the

ansatz (2.3) is left invariant under the separate scaling symmetries given by

x1 → κx1, eV1 → κ−1eV1 , k → κ−1k; (2.4)

x2 → κx2, eV2 → κ−1eV2 ; (2.5)

t→ κt, r → κ−1r, U → κ−2U, a→ κ−1a ; (2.6)

for constant κ.

We now look for new fixed point solutions of the form

U = L−2ru1 , eV1 = ev10rv11 , eV2 = ev20rv22 , a = a0r
a1 , eφ = eφ0rφ1 . (2.7)

6Related models have been studied in other holographic contexts e.g. [38–42].
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After substituting into the equations of motion we obtain algebraic equations for ten con-

stants. These imply that the radial exponents are given by

u1 =
2
(
8 + 2c− 4α+ 4γ − αγ + γ2

)
8 + 2c− 4α+ α2 + 4γ + γ2

,

v11 =
(−2 + α)(α+ γ)

8 + 2c− 4α+ α2 + 4γ + γ2
,

v22 =
(2 + γ)(α+ γ)

8 + 2c− 4α+ α2 + 4γ + γ2
,

a1 =
2
(
4 + c− 2α+ 2γ + γ2

)
8 + 2c− 4α+ α2 + 4γ + γ2

,

φ1 = − 2(α+ γ)

8 + 2c− 4α+ α2 + 4γ + γ2
, (2.8)

and this leads to an algebraic equation for the coefficients. While solutions exist for various

values of α, we just record the solution for α = 1 which is of most interest:

L2 =
4ck2(2 + c+ 2γ + γ2)(3 + c+ 3γ + γ2)2

n1
2e2v10(1 + γ)(3 + γ)(5 + 2c+ 4γ + γ2)2

,

a0 = ±
√
n1(1 + c)(5 + 2c+ 4γ + γ2)e

1−γ
2
φ0

√
2n2(2 + c+ 2γ + γ2)

√
3 + c+ 3γ + γ2

,

eφ0 =
n1e

2v10(1 + γ)(3 + γ)

ck2(3 + c+ 3γ + γ2)
. (2.9)

Notice that the constants n1, n2 only appear in (2.9) and do not appear in the expo-

nents (2.8). We also see that n1 > 0. Similarly k and ev10 appear in the combination

ke−v10 and again only in (2.9).

To simplify the presentation we will now restrict to a one-parameter family of models,

labelled by γ, by setting

c = 3, α = 1, γ > −1 . (2.10)

We then have L2, eφ0 > 0, as required for the fixed point solutions to exist, u1, v22, a1 > 0

and v11, φ1 < 0. In particular, we see that as r → 0 we have eφ → ∞ as we had assumed

in the discussion preceding (2.2).

2.1 Mode analysis

We next consider, within our ansatz (2.3), the static perturbations about the new fixed

point solutions. We consider

U = L−2ru1(1 + c1r
δ), eV1 = ev10rv11(1 + c2r

δ), eV2 = ev20rv22(1 + c3r
δ),

a = a0r
a1(1 + c4r

δ), eφ = eφ0rφ1(1 + c5r
δ) . (2.11)

for small ci. After substituting into the equations of motion and keeping terms linear in

the ci, we find a single solution with δ = −1, which just corresponds to shifting r → r−r+,

for constant r+, in the solution (2.7). In addition we find four pairs of solutions of the form

– 6 –
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δ±, each with δ+ ≥ δ− and δ+ + δ− = 1− u1 − v11 − v22. Two of these pairs are marginal

modes with δ+ = 0 and arise from the scaling symmetries (2.5), (2.6). Specifically, (2.6)

implies that if U(r), Vi(r), a(r), φ(r) solve the equations of motion at fixed k then so will

c−2U(cr), Vi(cr), c
−1a(cr), φ(cr). The remaining two pairs have

δ
(±)
+ = − 5 + 2γ + γ2

(11 + 4γ + γ2)

+

(
5 + 2γ + γ2

)1/2 (
87 + 46γ + 19γ2 ± 8

√
27− 9γ − 2γ2 − γ3 + γ4

)1/2

√
3 (11 + 4γ + γ2)

(2.12)

One can check that for γ > −1 we have δ
(±)
+ > 0 and hence correspond to RG irrelevant

modes. Combining these with the two δ+ = 0 modes as well as the δ = −1 solution we can

develop an IR expansion with five parameters. In section 3 we will discuss an embedding

of these solutions into a specific class of theories which have an AdS4 vacuum. The five

IR parameters are a sufficient number to be able, generically, to construct T = 0 domain

wall solutions interpolating between the new fixed point solutions in the IR and a Q-lattice

deformed AdS4 in the UV.

It is helpful to also note that there is a static perturbation corresponding to creating a

small black hole. Specifically, associated with the two δ+ = 0 solutions there is a solution

with δ− = 1 − u1 − v11 − v22 ≡ δT and c1 = c4 ≡ −ε, c2 = c3 = c5 = 0. This leads to

a regular Killing horizon at r = ε−1/δT ≡ r+ with temperature T ∝ ru1−1
+ and entropy

density s ∝ rv11+v22
+ . We are interested in realising the fixed point solutions as the near

horizon, zero temperature limit of black holes which approach these small black holes in

this limit. Now, for the fixed point solutions we are considering, with (2.10) and γ > −1,

we can check that u1 > 1 and v11 + v22 > 0. The condition u1 > 1 ensures that the surface

gravity of the small black hole solutions goes to zero as r+ → 0. The condition v11 +v22 > 0

implies that the entropy density goes to zero, and the two conditions together imply that

the entropy density is an increasing function of the temperature, giving a positive specific

heat as needed for thermodynamic stability.

2.2 Conductivity

In order to analyse the optical conductivity we consider7 the following consistent linear

perturbation about the fixed point solutions (2.7):

gtx1 = δhtx1(t, r) ,

Ax1 = δax1(t, r) ,

χ = kx1 + δχ(t, r) , (2.13)

where δhtx1 , δax1 , δχ are real. We then allow for time dependence by setting

δhtx1 = e−iωtδhtx1(r),

7Note that the optical conductivity in the x2 direction will have a delta function at finite temperature

due to the translation invariance in this direction.

– 7 –
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δax1 = e−iωtδax1(r) ,

δχ = ie−iωtδχ(r) . (2.14)

Substituting into the equations of motion leads to

δa′′x1 +

(
γφ′ +

U ′

U
− V1

′ + V2
′
)
δa′x1 +

(
ω2

U2
− n2a

′2eγφ

U

)
δax1 +

cke2φa′

ω
δχ′ = 0 , (2.15)

δχ′′ +

(
2φ′ +

U ′

U
+ V1

′ + V2
′
)
δχ′ +

ω2

U2
δχ− kωe−2V1

U2
δhtx1 = 0 , (2.16)

n2a
′eγφδax1 −

ckUe2φ

ω
δχ′ + δh′tx1 − 2V1

′δhtx1 = 0 . (2.17)

We can solve (2.16) for δhtx1 and substitute into (2.17). Next, after substituting in

the ground state solution and defining

Φ1 = r
γ2+8γ+23

2(γ2+4γ+11) δax1 ,

Φ2 = ω−1r
7γ2+16γ+57

2(γ2+4γ+11) δχ′ , (2.18)

we obtain differential equations that can be written in the form(
∂2
r + xω2r

−
4(γ2+3γ+10)
γ2+4γ+11 + r−2M

)(
Φ1

Φ2

)
= 0 . (2.19)

Here x is a constant given by

x =
144

(
5 + 2γ + γ2

)2 (
6 + 3γ + γ2

)4
k4e−4V1

n1
4(1 + γ)2(3 + γ)2 (11 + 4γ + γ2)4 , (2.20)

and M is a two by two matrix with eigenvalues given by

M1 = −(21 + 8γ + 3γ2)(43 + 16γ + 5γ2)

4(11 + 4γ + γ2)2
,

M2 =
(γ2 − 1)(23 + 8γ + γ2)

4(11 + 4γ + γ2)2
. (2.21)

Observe that (2.19) only depends on the frequency via ω2 and hence the Greens func-

tions and the conductivity will be symmetric functions of ω. We will continue assuming

that ω ≥ 0. The general solution of the differential equation (2.19), with either eigenvalue

Mi, is expressed in terms of Hankel functions:

Ψi = r1/2 c
(1)
i H

(1)

(11+4γ+γ2)
√

1−4Mi
2(9+2γ+γ2)

(
c0ω r

− 9+2γ+γ2

11+4γ+γ2

)

+ r1/2 c
(2)
i H

(2)

(11+4γ+γ2)
√

1−4Mi
2(9+2γ+γ2)

(
c0ω r

− 9+2γ+γ2

11+4γ+γ2

)
(2.22)

with c0 = (11+4γ+γ2)
(9+2γ+γ2)

√
x.

– 8 –
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To obtain the retarded Greens functions GΨiΨi for the fixed point solutions, we next

need to impose in falling boundary conditions as r → 0. For (2.3) the tortoise coordinate

is r∗ = r1−u1/(L(1−u1) and we want solutions which behave as e−iω(t+r∗). Observing that

r∗ ∼ r
− γ2+2γ+9

γ2+4γ+11 . We thus conclude that, for ω ≥ 0, we need to choose c
(1)
i = 0. Expanding

the functions at r →∞ we then have

Ψi = di

(
r

1
2

(1+
√

1−4Mi) + . . .+ GΨiΨi r
1
2

(1−
√

1−4Mi) + . . .
)
, (2.23)

for some constants di, and we obtain the scaling

GΨ1Ψ1 ∝ ω
4 (8+3γ+γ2)

9+2γ+γ2 , GΨ2Ψ2 ∝ ω
4 (3+γ)

9+2γ+γ2 . (2.24)

This scaling can also be obtained by solving the ω = 0 equations (2.19) and then using the

fact that ω only appears in (2.19) in the combination ω/r
9+2γ+γ2

11+4γ+4γ2 .

In the next section we will construct black hole solutions which approach AdS4 in the

UV and approach the new fixed point solutions in the far IR at T = 0. As explained in [31],

generalising arguments in [43], a matching procedure can be used to show that the low-

frequency behaviour of the imaginary part of the UV two point functions at low frequencies

is determined by the imaginary part of the IR correlation functions. From (2.24) we see

that the dominant contribution for small ω will be given by the solution Ψ2 and hence the

contribution to the real part of the optical conductivity for low frequencies will be given by

Reσ ∝ 1

ω
ImGΨ2Ψ2 ∝ ω

(1+γ)(3−γ)
9+2γ+γ2 . (2.25)

Taking the ω → 0 limit of (2.25) we conclude that for −1 < γ < 3 the conductivity

is going to zero and we have insulating behaviour. For γ > 3 the DC conductivity has a

power-law divergence and we have metallic behaviour. For γ = 3 we have an intermediate

behaviour where the DC conductivity approaches a constant.

Actually, some care is required here since in addition to the power-law, σ(ω) might

also have delta function contributions of the form δ(ω). While such delta functions can

be inferred, via Kramers-Krönig relations, from the existence of poles in the imaginary

part of the optical conductivity, this is not a straightforward calculation in the present

setting. However, we can obtain some insight by calculating the DC conductivity at finite

temperature. In section 5 we show that as T → 0 we have the scaling behaviour

σDC ∼ T
(1+γ)(3−γ)
9+2γ+γ2 , (2.26)

exactly in accord with (2.25). Note that σDC is finite for −1 < γ ≤ 3 implying that no

delta functions are present, at least for these values.

2.3 Scaling and finite temperature

In section 3 we will construct black holes whose zero temperature limit approaches the fixed

point solutions (2.7) in the IR. Using an argument in [44] we can deduce the temperature

– 9 –
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scaling of the entropy entropy density of these black holes. We first observe that under the

scaling

t→ ζ
− 9+2γ+γ2

(1+γ) t, x1 → ζ2x1 x2 → ζ−(1+γ)x2, r → ζ
11+4γ+γ2

(1+γ) r , (2.27)

the metric scales via ds → ζds. Note that we also have eφ → ζ−2eφ, and the one-form A

scales as A → ζ1+γA. Furthermore, without scaling k, the action given in (2.2) scales as

S → ζ2S. This is like an anisotropic version of the solutions dual to hyperscaling violation

in [40, 44, 45]. Now, for very low temperature black holes the entropy density, s, will scale

in the same way as rv1+v2 . Since the temperature T will scale in the same way as t−1 we

deduce that as T → 0 we should have the scaling

s ∼ T
(1+γ)2

9+2γ+γ2 , (2.28)

with, in particular, s→ 0 as T → 0. By a similar argument we can also conclude that the

scalar field φ and the sure of the field strength, F 2, scale as

eφ ∼ T−
2(1+γ)

9+2γ+γ2 , F 2 ∼ T
2(γ2−1)

9+2γ+γ2 . (2.29)

An alternative and more direct way to obtain (2.28) and (2.29) is to use the static

mode presented towards the end of section 2.1 to construct a small black hole and then

deduce the scaling from there.

3 Black holes in a UV completion

We would like to realise the fixed point solutions that we discussed in the last section as IR

ground states of black hole solutions with AdS4 asymptotics in the UV in the zero temper-

ature limit. A priori this is not guaranteed. Having a sufficiently large number of marginal

and irrelevant deformations in the ground states combined with a sufficient number of

marginal and relevant modes in the UV, provides very good evidence that T = 0 domain

wall solutions will exist, and that they can be heated up to finite temperature. However, it is

not clear that the black holes can be heated up to arbitrarily large temperatures as this will

depend on the details of the gravity theory. Indeed there are examples of AdS2×R2 ground

states, for example, which can only heated up to some maximal temperature (e.g. [46]).

For the UV completion we will keep the same field content of metric, gauge field and

scalar fields φ, χ. This still leaves a great deal of freedom in choosing a particular model

to analyse. We have found that the following model, which arose from adapting some

numerics for a model in another context, has several appealing features and is the one we

shall consider:

S =

∫
d4x
√
−g
[
R− 1

4
coshγ/3(3φ)F 2 + 6 coshφ− 3

2
(∂φ)2 − 6 sinh2 φ(∂χ)2

]
. (3.1)

Observe that the for the scalar manifold to be smooth at φ = 0, the axion field χ should

be a periodic field, with period π.

This model admits an AdS4 vacuum with unit radius. The field φ is dual to an

operator with dimension ∆ = 2 and the massless field χ is dual to a marginal operator
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with dimension ∆ = 3. We also note that as φ→∞ then we obtain (2.2) with c = 3, α = 1

and in addition n1 = 3, n2 = 2−γ/3.

This model also admits the standard electrically charged AdS-RN black hole solution,

with φ = χ = 0. Provided that this solution is dynamically stable (and that there are no

first-order transitions to other possible branches of black hole solutions), it will describe

the dual translationally invariant CFT at finite T, µ. At T = 0 it approaches the following

AdS2 × R2 solution in the far IR:

ds2 =
1

6
ds2(AdS2) + dx2

1 + dx2
2 ,

F =
1√
3
V ol(AdS2) , (3.2)

where ds2(AdS2) denotes the standard unit radius metric on AdS2.

The Q-lattice black holes, to be described below, lie within the ansatz given in (2.3).

It will be helpful to analyse the following linearised perturbations8 about the AdS2 × R2

solution, that lie within this ansatz:

U = 6r2(1 + u1r
δ), V1 = v10(1 + v11r

δ), V2 = v20(1 + v21r
δ),

a = 2
√

3r(1 + a1r
δ), φ = φ1r

δ, χ = kx1 . (3.3)

The corresponding perturbations are associated with operators with scaling dimension

∆ = −δ or ∆ = δ + 1 in the locally quantum critical IR theory that is captured by the

AdS2×R2 solution. We find after substituting into the equations of motion a single solution

with δ = −1 corresponding to shifting r → r − r+ in (3.2), and an additional four pairs of

solutions, each satisfying δ+ > δ− and δ+ + δ− = −1. There are two marginal modes with

δ+ = 0, corresponding to scaling x1, x2 in (3.2) and another mode with δ+ = 1. Finally

there is a mode depending on k, and just involving the scalar field, with δ+ = δφ where

δφ = −1

2
+

1

6

√
24e−2v10k2 − 3(12γ + 1) . (3.4)

When δφ ≥ 0 we can combine it with the modes with δ = 0, 0, 1 and the solution

with δ = −1 corresponding to shifts of r, to develop an IR expansion to the equations of

motion that depends on five parameters. This is a sufficient number to be able, generically,

to construct a domain wall solution interpolating between AdS2 × R2s in the IR and a

Q-lattice deformed AdS4 in the UV, to be discussed in the next sub-section.

Observe that (3.4) is minimised for k = 0 and also that δφ ≥ 0 provided that

2e−2v10k2 ≥ 1 + 3γ. It is worth emphasising, as in [21, 24], that the parameter v10 is

fixed by the full domain wall solution and depends on the UV data. We thus see that for

−1 < γ ≤ −1/3 we always have δφ > 0 at k 6= 0 and hence the AdS2×R2 solution is always

RG stable i.e. it has no relevant or marginal deformations. When −1/3 < γ ≤ −1/12 we

see that the AdS2 ×R2 solution is RG stable when 2e−2v10k2 > 1 + 3γ but is RG unstable

or marginal when 2e−2v10k2 ≤ 1 + 3γ. Finally, when −1/12 < γ we see that at k = 0, δφ is

complex and hence the corresponding mode violates the BF bound leading to a dynamical

instability of the AdS2 ×R2 solution and hence also the AdS-RN solution. We will return

to these points in the next subsection.

8Note that since φ = 0 in (3.2) we can add χ = kx1 for finite k.
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3.1 Q-lattice black holes

The ansatz for the Q-lattice black holes that we shall consider is again given by (2.3). It is

worth emphasising that since the field χ is periodic, the black hole solutions are periodic,

with x1 = x1 + π/k, and hence define a holographic lattice. The equations of motion lead

to a system of differential equations that are first order in U and second order in V1, V2, a

and φ. The black hole event horizon is taken to be at r = r+ and we can develop the

following expansion near r = r+:

U = 4πT (r − r+) + . . . ,

V1 = V1+ + z1V22(r − r+) . . . ,

V2 = V2+ + V22(r − r+) . . . ,

a = a+(r − r+) + z2V22(r − r+)2 . . . ,

φ = φ+ + z3V22(r − r+) . . . , (3.5)

where T is the temperature of the black hole given by

T = (4π)−1 12cosh(φ+)− a2
+coshγ/3(3φ+)

4V22
, (3.6)

and the constants z1, z2 and z3 can all be expressed in terms of V1+, V2+, a+, φ+ and k.

Thus, for given k, this expansion depends on six parameters r+, V1+, V2+, V22, a+ and φ+.

At the AdS4 boundary in the UV we can develop the following expansion as r →∞,

U = r2 − 3λ2

4
− M

r
+ . . . ,

V1 = log r − 3λ2

8r2
+
Vv
r3

+ . . . ,

V2 = log r − 3λ2

8r2
+
−Vv − φc

r3
+ . . . ,

a = µ+
q

r
+
qλ2(1− 2γ)

4r3
+ . . . ,

φ =
λ

r
+
φc
r2

+
λ(24k2 + 7λ2)

12r3
+ . . . . (3.7)

This gives a UV expansion that depends on seven parameters M,Vv, µ, q, λ, φc and k. Note,

in particular, that µ gives the chemical potential and λ parametrises the strength of the

Q-lattice deformation.

A parameter count, spelled out in [24], shows that we expect a three-family parameter

of black hole solutions, which we can take to be the three dimensionless quantities: T/µ,

λ/µ and k/µ. A detailed investigation of the full phase diagram as these three parameters

are varied is left for future work. Our principle objective here is to construct specific

examples of new black hole solutions whose T = 0 limit maps onto the new fixed point

solutions that we constructed in the last section, in the far IR.

Indeed we have constructed such black holes, for certain values of γ, and cooled them

down to very low temperatures, T � µ, in order to extract the T = 0 ground states.
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One way to verify that the functions approach the power law behaviour (2.7) close to the

horizon is to plot, for example, (r − r+) φ′ (r) as a function of r and identify a region where

this becomes a constant equal to φ1 in agreement with (2.7). We have also checked that

as T → 0 the entropy of the black holes scales with temperature exactly as in (2.28); see

figure 1. Similarly, we checked that φ+, the value of the scalar field at the black hole horizon,

diverges as the temperature is lowered exactly as given in (2.29) and that the horizon value

of F 2 as a function of temperature also agrees with (2.29). Finally, we have numerically

calculated the optical conductivity for some of the full black hole solutions and we find that

as T → 0 and ω → 0, i.e ω � µ, λ but ω � T , it approaches the behaviour given in (2.25).

Moreover, for some examples with insulating ground states, when −1 < γ < 3, we checked

that the DC conductivity is as an increasing function of temperature, for T � µ, while for

the metallic ground states, when γ > 3, it is a decreasing function, as expected.

3.1.1 −1 < γ ≤ −1/3

For these models the AdS-RN black hole is dynamically stable and the AdS2×R2 solution

in the IR at T = 0 is RG stable for all k 6= 0 (i.e. δφ > 0 in (3.4)). For these models it

is not clear what to expect a priori. We have found the following results. For γ = −2/3,

k/µ =
√

2/20 and λ/µ = 1/10 we find that the Q-lattice deformation gives rise to black

hole solutions at T = 0 which still approach the AdS2 × R2 solution (3.2) in the IR. The

fact that the ground states have non-vanishing entropy is illustrated in figure 1(a). These

black holes will be “conventional” holographic metals with the optical conductivity having

a Drude-peak and with DC resistivity scaling as ρDC ∼ (T/µ)2δφ as T → 0 [17].

With k/µ fixed, increasing the strength of the lattice deformation to λ/µ = 3/2, we

find black holes whose T = 0 limit approach the new fixed point solutions in the IR, as

illustrated in figure 1(a). Recall from (2.25) that for −1 < γ ≤ −1/3 these ground states

are insulating and we have thus realised a metal-insulator transition. Notice that for this

case we have from (2.28) that s ∼ T 0.014. The two curves in figure 1(a) show that we

have cooled the black holes down to low enough temperatures to differentiate between this

scaling behaviour, with a small scaling exponent, and the non-vanishing constant entropy

density of the solution that approaches AdS2 × R2 in the IR.

Since the AdS2 × R2 solution (3.2) is RG stable in the IR, the arguments presented

in [21] imply that it is likely that there is some kind of bifurcating solution separating the

metallic phase from the insulating phase, for some specific value of λ/µ (at fixed k/µ), and

it would be interesting to identify it.

3.1.2 −1/3 < γ ≤ −1/12

These models share some similarities with a model studied in [24]. In particular, the AdS-

RN black hole is dynamically stable, but the AdS2 × R2 solution in the IR at T = 0 is

RG unstable at k = 0, with relevant modes (i.e. δφ < 0 at k = 0 in (3.4)). For Q-lattice

deformations with small amplitude and small wavelength, i.e. λ/µ � 1 and k/µ � 1, the

black holes at T = 0 should still approach the AdS2 × R2 solution (3.2) in the IR. This is

because the lattice perturbation is expected to be irrelevant in the IR (i.e. δφ > 0 in (3.4)).

These black holes will again be conventional holographic metals. We have constructed such
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black holes for various values of λ/µ, k/µ, and λ/µ = 1/10, k/µ = 3
√

2/4 is a particular

example.

As k/µ is reduced or λ/µ is increased, the lattice deformation can grow in the IR and

eventually become RG relevant inducing a transition to a new IR behaviour at T = 0. It is

worth emphasising again that the RG instability of the AdS2 × R2 IR region depends not

just on k but also on v10, which depends in a nonlinear way on the UV data. For γ = −1/6,

λ/µ = 1/10 and k/µ =
√

2/20 we have shown that the T = 0 limit of the black holes do

indeed approach the new fixed point solutions in the IR. In particular we have checked

that as T → 0 the entropy of the black holes scales with temperature exactly as in (2.28);

see figure 1(b). Notice from (2.25) that for the range −1/3 < γ ≤ −1/12 the new ground

states are insulators. The black holes for these models provide a holographic example of a

metal-insulator transition which is driven by the metallic state becoming RG unstable.

3.1.3 −1/12 < γ

For these models the AdS-RN black hole is dynamically unstable. Thus, the AdS-RN black

hole only describes the high temperature phase of the CFT at finite µ when there is no

Q-lattice. At some critical temperature, the scalar field φ will condense leading to a new

class of black holes with scalar hair. While it would be interesting to construct these, our

aim here is to realise the new fixed point solutions found in the last section. We have found

for particular Q-lattices that this can indeed be achieved. For example, setting γ = 0 we

can take k/µ =
√

2/20 and λ/µ = 1 to find black holes whose zero temperature limit is the

insulating ground states; see figure 1(c). We also considered γ = 9/2 with k/µ =
√

2/20,

λ/µ = 1 and found black hole whose zero temperature limit is the new metallic ground

states; see figure 1(d).

4 Isotropic ground states with no spatial translational symmetry

The holographic Q-lattices introduced in [24] and studied further here, provide a rich

framework for studying metal-insulator transitions and finding novel ground states. It is

clear that there are many avenues for further investigation. In this section we briefly discuss

a new class of ground states which break translational symmetry in all spatial directions of

the dual field theory. Moreover, we will see some new features appearing in the conductivity.

We generalise the model (2.2), which has a single axion field to include two, χ1 and χ2:

S =

∫
d4x
√
−g
[
R− c

2

[
(∂φ)2 + e2φ(∂χ1)2 + e2φ(∂χ2)2

]
+ n1e

αφ − n2
eγφ

4
F 2

]
. (4.1)

The scalar fields φ, χ1 and χ2 can be viewed as parametrising three-dimensional hyperbolic

space H3. Following the discussion in section 2, the ground states with φ → ∞, which

we will focus on, can also arise in models where the scalar manifold locally approaches

H3. Alternatively, these models can be viewed as arising from set-ups where we have two

complex scalar fields, with the full action having a Z2 symmetry which exchanges the two

fields. In such set-ups we should choose the amplitudes of the two complex scalar fields

to be equal, and given by φ, with the two periodic axions χi, having equal field strength
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Figure 1. The blue curves indicate the low-temperature behaviour of the entropy for the Q-lattice

black holes which approach, in the IR and at T = 0, the new fixed point solutions of section 2. The

red-dashed line indicate the scaling behaviour expected from (2.28). Panel (a) is for γ = −2/3,

k/µ =
√

2/20 and λ/µ = 3/2, with s ∼ T 0.014. The green curve in this panel shows another black

hole solution for γ = −2/3, k/µ =
√

2/20, but with a smaller lattice deformation of λ/µ = 1/10,

which approaches a translationally invariant AdS2 × R2 solution with non-zero entropy density.

Panel (b) is for γ = −1/6, k/µ =
√

2/20 and λ/µ = 1/10 with s ∼ T 0.080. Panel (c) is for γ = 0,

k/µ =
√

2/20 and λ/µ = 1 with s ∼ T 0.11. Panel (d) is for γ = 9/2, k/µ =
√

2/20, λ/µ = 1 with

s ∼ T 0.79.

squared. Finally, we note that we can easily scale our results to obtain solutions to models

with no factors of e2φ coupling to (∂χi)
2 as we explain in the appendix.

With these comments in mind, we will explore possible fixed point solutions for the

action (4.1) by making the ansatz

ds2 = −U dt2 + U−1 dr2 + e2V
(
dx2

1 + dx2
2

)
,

A = a dt,

χ1 = k x1, χ2 = k x2 , (4.2)

with U , V , a and φ being functions of r. Clearly such solutions will break translation
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invariance in both of the spatial directions, but with an isotropic metric. We again look

for solutions with a power-law behaviour:

U = L−2ru1 , eV = ev0rv1 , a = a0r
a1 , eφ = eφ0rφ1 . (4.3)

Substituting into the equations of motion arising from (4.1) we find a new class of solutions

with

a0 = 0, e(2−α)φ0 =
n1e

2v0 (c− α (α− 2))

k2c (4 + c− 2α)
,

L2 =
2e−αφ0

n1

(c+ 4− 2α)(c+ (α− 2)(α− 6))(
c+ (α− 2)2

)2 , (4.4)

and exponents

v1 =
(α− 2)2

c+ (α− 2)2 , φ1 =
2(2− α)

c+ (α− 2)2 , u1 =
2(4 + c− 2α)

c+ (α− 2)2 . (4.5)

Observe that since a0 = 0 these solutions do not carry any electric charge. Also notice

that for the particular choice of α = 2, and arbitrary c > 0, ni, we have neutral AdS2×R2

solutions that are supported by axions along both of the R2 directions:

ds2 = L2ds2(AdS2) + dx2
1 + dx2

2,

A = 0, χ1 = k x1, χ2 = k x2 , (4.6)

with k2 = n1/c, L
2 = (2/n1)e−2φ0 and φ = φ0 a free parameter.

We now examine the static modes within the ansatz (4.2) about all of the new fixed

point solutions. This is achieved by expanding the equations of motion around (4.3) via

U = L−2ru1(1 + c1r
δ), eV = ev0rv1(1 + c2r

δ),

a = c3 r
a1+δ, eφ = eφ0rφ1(1 + c4r

δ) , (4.7)

for small ci, and utilising the exponent shift for the gauge-field given by

a1 =
c+ (α− 2) (γ − 2)

c+ (α− 2)2 . (4.8)

Substituting into the equations of motion and keeping terms linear in the ci then yields a

single solution with δ = −1, which corresponds to shifting the radial coordinate, and three

pairs of modes δ± satisfying δ+ + δ− = 1−u1−2v1. One of these has δ+ = 0 and the other

two have

δ
(1)
+ =−c+(α−6) (α−2)

2
(
c+(α−2)2

) +

√
(c+(α−6) (α−2))

(
9c2+16 (α−2)2 α−c (α−2) (7α+22)

)
2
√
c
(
c+ (α− 2)2

)
δ

(2)
+ =−(α− 2) (α− 4− γ)

c+ (α− 2)2 , (4.9)
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(where here we have not assumed for these modes that δ+ > δ−).

The solution with δ− = 1 − u1 − 2v1 (associated with the δ+ = 0 mode) can be used

to construct a small black hole, in an analogous manner to the discussion in section 2.1.

If r+ is the location of the horizon the temperature is given by T ∝ ru1−1
+ and the entropy

density is given by s ∝ r2v1
+ . It is natural to focus on the range of parameters given by

2 ≤ α <
√

4 + c , (4.10)

where the upper bound ensures that the black holes have zero surface gravity, u1 > 1 at

T = 0, and the lower bound ensures that φ→∞ as T → 0. We can check that this implies

L2, eφ0 > 0 as required. Also note that for the small black holes s → 0 as T → 0 except

for the axionic AdS2 ×R2 solution (4.6) with α = 2, where it goes to a non-zero constant,

as expected. It is also worth noting that the mode exponent δ
(1)
+ in (4.9) is always positive

in the range (4.10).

We noted above that the ground state solutions (4.3) do not carry any electric charge.

However, there is a mode for switching on the electric field given by the constant c3 in (4.7),

with c1 = c2 = c4 = 0. Specifically, the mode we are interested in has δ
(2)
+ in (4.9) (observe

that δ
(2)
− = −a1 and hence gives an uninteresting constant in (4.7)). Provided that δ

(2)
+ ≥ 0,

which means9

γ ≥ α− 4 , (4.11)

or α = 2, this mode provides a mechanism for introducing charge in domain wall solutions

interpolating between AdS4 in the UV and fixed point solutions in the IR in the context

of more general classes of theories (analogous to the discussion in section 3). Note in

particular that when α = 2, corresponding to the new axionic AdS2×R2 solution, we have

δ
(2)
+ = 0 implying that the charge deformation will be a marginal deformation (as it is in

the AdS2 × R2 solution with translation symmetry arising in the standard AdS-RN black

hole solution at T = 0). However, we note that since in (4.6) the wave number k is fixed

by specific constants in the model (i.e. k2 = n1/c), it might be challenging to construct

a domain wall solution that flows from this fixed point in the IR to AdS4 in the UV. It

would be interesting to explore this further.

To investigate the optical conductivity associated with the new ground states we con-

sider the perturbation

gtx1 = δhtx1(t, r) ,

Ax1 = δax1(t, r) ,

χ1 = kx1 + δχ1(t, r) , (4.12)

9For γ < α − 4 there appear to be other fixed point solutions, differing from (4.3), (4.4), that are

expansions (analogous to equation (10) of [21]) about the hyper-scaling violating solutions [40] which exist

when k = 0. When the k = 0 solutions are realised as IR ground states arising from breaking translation

invariance using an ionic or scalar lattice (without axions), it has been argued that the DC resistivity

would be exponentially suppressed at low temperatures [34]. By contrast when axions are used to break

the translation invariance we expect that the k 6= 0 ground states will give rise to power-law behaviour,

with the exponent fixed by the theory.
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around the background (4.3) (with no perturbation of χ2). Carrying out a similar calcu-

lation to that described in section 2.2, we find two decoupled modes involving the vector

field perturbation. By examining the small ω behaviour and using the matching procedure

of [31] we find that the scaling behaviour for the real part of the conductivity is given by

Reσ ∝ Max(ω

∣∣∣1− 2(α−2)γ

4+c−α2

∣∣∣−1
, ω

2+
2α(α−2)

4+c−α2 ) , (4.13)

where the absolute value in the first exponent, arising in the matching procedure, ensures

that the smallest possible exponent is −1 when γ = 4+c−α2

2(α−2) .

Further insight can be obtained by calculating the DC conductivity at finite tempera-

ture. In section 5 we show that the low temperature scaling is given by

σDC ∼ T
− 2(α−2)γ

4+c−α2 , (4.14)

which is aligned with the scaling of the optical conductivity provided that the first exponent

in (4.13) is the dominate one and that 1 − 2(α−2)γ
4+c−α2 ≥ 0. Assuming the constraints on the

parameters given in (4.10), (4.11), by considering the ω → 0 limit of Reσ from (4.13) and

the T → 0 limit of σDC form (4.14), there are three broad cases, which include various

novel metallic and insulating behaviour: firstly, when α − 4 ≤ γ ≤ 4+c−α2

2(α−2) , the scaling of

Reσ(ω) is given by the first exponent in (4.13) and is aligned with that of σDC . These

cases include insulators with σDC = 0 when α − 4 ≤ γ < 0, metals with σDC a nonzero

constant when γ = 0 and metals with infinite σDC when 0 < γ ≤ 4+c−α2

2(α−2) .

Secondly, when 4+c−α2

2(α−2) < γ < 1 + 2(4+c−α2)
(α−2) , the scaling of Reσ(ω) is given by the first

exponent in (4.13) and is not aligned with that of σDC . These cases include metals when
4+c−α2

2(α−2) < γ < 4+c−α2

(α−2) where Reσ(ω → 0) and σDC both diverge. It includes metals when

γ = 4+c−α2

(α−2) where Reσ(ω → 0) seems to be a constant and yet σDC diverges like T−2, which

indicates that Reσ(ω) has a delta function. Finally, when 4+c−α2

(α−2) < γ < 1 + 2(4+c−α2)
(α−2) we

seem to have Reσ(ω → 0) is vanishing but σDC is diverging, again indicating that Reσ(ω)

has a delta function.

Thirdly, when 1 + 2(4+c−α2)
(α−2) < γ we have the scaling of Reσ(ω) is now given by the

second exponent in (4.13). We seem to have Reσ(ω → 0) is vanishing but a diverging σDC
and hence there seems to be a delta function in Reσ(ω).

For the second and third cases, there is a misalignment of the scaling of the DC and

the optical conductivities, which indicates that there is a parametrical separation of scales

between the thermal time scale and the momentum relaxation time scale. It would certainly

be interesting to further understand the transport properties of these new metallic phases.

The delta functions in the optical conductivity at zero temperature that we are inferring

above, are associated with different physics to the delta functions that appear when a

holographic lattice becomes an irrelevant deformation of a translationally invariant AdS2×
R2 solution in the IR, as in [17]. In particular, in the latter examples, the weight of the

delta function is proportional to the electric charge of the domain wall solution, unlike the

present situation. This can be seen by considering electrically neutral domain wall solutions

that approach our new fixed point solutions in the IR, where we would be lead to similar
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conclusions concerning the scaling and hence the existence of delta functions. We expect

this to be a more general phenomenon for geometries with a running background scalar.

The different scaling properties of the DC and optical conductivity that we have seen

is reminiscent of the cuprates. Recall that for the cuprates σDC ∼ T−1 and for ω/T & 1.5

there is a scaling behaviour of the form |σ| ∼ ω−0.65 [47]. It is worth emphasising, however,

that our holographic results concerning the scaling of the optical conductivity, which was

derived at T = 0, is expected to hold for T � ω (and ω � µ).

Finally, we also highlight that for α = 2, corresponding to the axionic AdS2 × R2

solution (4.6), the DC conductivity will be constant; this is to be contrasted to the delta-

function that appears in the DC conductivity for the standard, translationally invariant

AdS2 × R2 solution.

5 Calculating the DC conductivity

In this section we present a new approach to calculating the DC conductivity for black hole

solutions and use it to obtain analytic expressions for the black hole solutions relevant to the

previous sections. We will illustrate the approach using the following general class of models

S =

∫
d4x
√
−g
[
R− c

2

[
(∂φ)2 + Φ1(φ)(∂χ1)2 + Φ2(φ)(∂χ2)2

]
+ V (φ)− Z(φ)

4
F 2

]
, (5.1)

which involves four functions, Φi, V and Z, of the real scalar field φ. We will assume the

model admits a unit radius AdS4 vacuum with φ = 0 and take Φi(0), Z(0) to be constants

greater than or equal to zero. We assume that in this AdS4 vacuum the field φ is dual to

a relevant operator with dimension ∆ < 3.

The background geometry is assumed to be of the form

ds2 = −U dt2 + U−1 dr2 + e2V1dx2
1 + e2V2dx2

2,

A = a dt, χ1 = k x1, χ2 = k x2 , (5.2)

where U, Vi, a and φ are functions of r only. As r → ∞ the metric approaches the AdS4

vacuum with a ∼ µ+q/r+. . . and the asymptotic behaviour of φ corresponds to a Q-lattice

deformation with, in particular φ→ 0 with a rate dependent on the dimension of the dual

operator (φ ∼ λr∆−3 in the standard quantisation). We also assume that there is a regular

event horizon at r = r+ where Vi and φ approach constant values, while a ∼ a+(r−r+) and

U ∼ 4πT (r−r+). Below we will use ingoing Eddington-Finklestein coordinates (v, r) where

v = t+ 1
4πT ln(r− r+). It is useful to solve the gauge-field equations of motion exactly via

q = −eV1+V2Z(φ)a′ . (5.3)

The usual approach to calculating the DC conductivity is to switch on an AC electric

field with frequency ω, find the response and then take the ω → 0 limit. Instead we will

switch on a constant electric field from the start. Specifically we consider the following

perturbation

Ax1 = −Et+ δax1(r) ,
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gtx1 = e2V1δhtx1(r) ,

grx1 = e2V1δhrx1(r) ,

χ1 = kx1 + δχ1(r) , (5.4)

which one can check is consistent with the linearised equations of motion. We find one

equation which we can algebraically solve for δhrx1 giving

δhrx1 =
Eqe−V1−V2

k2Φ1(φ)U
+
δχ′1
k
, (5.5)

(which requires that k 6= 0) and two further independent differential equations. The first

is given by

δh′′tx1 + (3V1
′ + V2

′)δh′tx1 −
e−2V1k2Φ1(φ)

U
δhtx1 − e−3V1−V2qδa′x1 = 0 (5.6)

while the second, arising from the gauge-field equations of motion, can be integrated once

to obtain the constraint

j = −eV2−V1Z(φ)Uδa′x1 + qδhtx1 (5.7)

where j is a constant.

To make further progress we need to impose boundary conditions at infinity and at

the black hole horizon. It is important to note that δχ1 only appears in (5.5); we will

assume that δχ1 is analytic at the black hole event horizon and falls off sufficiently fast at

infinity. Regularity of the perturbation as r → r+ is obtained by switching to Eddington-

Finklestein coordinates. The gauge-field will be well defined if we demand that δax1 ∼
− E

4πT ln(r−r+)+O(r−r+) and hence δa′x1 ∼ −
E
U +O(r−r+). For the metric perturbation,

we see from (5.5) that δhrx1 is diverging; this can be remedied by demanding that δhtx1
behaves as δhtx1 ∼

Eqe−V1−V2
k2Φ1(φ)

|r=r+ + O(r − r+). Notice that the behaviour for δa′x1 and

δhtx1 is consistent with (5.6).

We next consider the behaviour as r → ∞. From the expression for the gauge-field

we see that we have a deformation of an electric field in the x1 direction with strength E.

Now, (5.6) has two independent solutions, one of which behave as r0 and the other as r−3;

in order to have no additional deformations we demand that the coefficient of the former

vanishes. Observe that since we have also specified the boundary condition of δhtx1 at

the horizon this completely specifies the solution of (5.6). In addition, notice from (5.5)

that for suitable δχ1 the fall-off of δhrx1 can be as weak as desired and will not affect the

boundary data.10 From (5.7) we can now conclude that we should take δax1 ∼
j
r where we

now see that j is the electric current in the x1 direction which is induced by the electric

field deformation.
10Note that one can attempt to work from the start in a radial gauge with δhrx1 = 0. After solving (5.5)

one concludes that one needs to modify the ansatz in (5.4) to include a term ct in χ1, where c is a suitable

constant, to ensure that dχ1 is well defined at the event horizon. This in turn leads to an extra term in (5.6)

and hence to a deformation at the boundary δhtx1 ∼ c/k. Following the discussion at the end of section 3

of [24] we can deal with this by carrying out a diffeomorphism x1 → x1 − c/kt + f(r) where the function

f(r) satisfies ∂rf |r=r+ = − 1
U
c
k

, is smooth in the bulk and falls off sufficiently fast at the boundary. This

procedure also leads to (5.8).
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The DC conductivity is thus given by σDC = j/E. To obtain our final result we now

simply evaluate the right hand side of (5.7) at the black hole event horizon r = r+. Doing

so we obtain the elegant expression

σDC =

[
e−V1+V2Z(φ) +

q2e−V1−V2

k2Φ1(φ)

]
r=r+

, (5.8)

which gives the DC conductivity of the black holes, for all temperatures, in terms of black

hole horizon data.

5.1 Examples

The expression (5.8) can be used to obtain the DC conductivity for the black holes con-

structed in section 3 for all temperatures. The low temperature behaviour, as the black

holes approach the fixed point solutions of section 3, can be obtained by using the small

black hole solutions constructed in section 2.1. We find that both terms in (5.8) scale in

the same way and we obtain σDC ∼ T
(1+γ)(3−γ)
9+2γ+γ2 . Similarly, for the conventional holographic

metals described by black holes approaching AdS2×R2 in the IR, we find that the second

term in (5.8) dominates and we get σDC ∼ T−2δφ , with δφ given in (3.4), recovering the

result of [17] using the memory matrix formalism.

For the electrically neutral ground states discussed in section 4, by similarly analysing

the small black hole solutions, we find that the contribution from the second term in (5.8)

is sub-dominant to the first and that the first term leads to the scaling behaviour σDC ∼
T
− 2(α−2)γ

4+c−α2 .

We can also check the formula for σDC with some other examples in the literature.

Black holes with holographic Q-lattices were constructed numerically in [24] and the DC

conductivity was obtained for a range of finite temperatures by taking the ω → 0 limit

of the optical conductivity. We can compare these results (given in figures 1(c) and 2(a)

of [24]) to the results obtained by substituting the horizon data of the background black

hole solutions into (5.8) and we find excellent agreement. We have also checked that the

formula (5.8) gives the analytic expression for the constant DC conductivity found for the

analytic black holes found in [25]. Finally, we notice that second term in (5.8) is singular

as k → 0. However, if we consider neutral, translationally invariant black holes with

q = k = χ = 0, we can set the metric perturbation to zero in (5.4) and we are lead to σDC
given by the first term in (5.8). A simple example is the AdS-Schwarzschild black hole

with φ = 0 for which we obtain the known result σDC = Z(0) for all temperatures.

Note added. Results with some overlap with this paper appear in [48].
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A Non-translationally invariant η-geometries

We briefly comment on fixed point solutions of theories with massless axions of the form

S =

∫
d4x
√
−g
[
R− c

2

[
(∂φ)2 + (∂χ1)2 + (∂χ2)2

]
+ n1e

αφ − n2
eγφ

4
F 2

]
. (A.1)

In fact we can obtain the solutions by taking a scaling limit of the solutions that we found in

section 4. Specifically we scale the fields via φ→ βφ, χ→ βχ and the parameters via c→
c/β2, α → α/β, γ → γ/β and then set β = 0. From the fixed point solutions (4.4), (4.5),

after scaling k → βk, φ0 → βφ0, we find a new class of neutral solutions for the action (A.1)

given by the ansatz (4.2) with

a0 = 0, e−αφ0 =
n1e

2v0
(
c− α2

)
k2c2

, L2 =
2e−αφ0

n1

c

c+ α2
, (A.2)

and exponents

v1 =
α2

c+ α2
, φ1 =

−2α

c+ α2
, u1 =

2c

c+ α2
. (A.3)

It is illuminating to carry out the coordinate transformation r = ρ
1

1−u1 . In particular,

the metric reads

ds2 =
1

ρη

(
−L−2dt

2

ρ2
+

L2

(1− u1)2

ρ2

ρ2
+ e2v0(dx2

1 + dx2
2)

)
, (A.4)

with η = 2−u1
u1−1 = 2α2

c−α2 . This is a so-called “η-geometry” i.e. a geometry conformal to

AdS2 × R2 which has been discussed as a framework for holographically studying semi-

local quantum criticality [34, 35] (earlier work appeared in [49]). The perturbations of

these new axionic η-geometries, including the two-point functions, can be obtained by

scaling the results of section 4. Note that the special case of α = 0 the axionic AdS2 ×R2

solution is the same as that in equation (2.10) of [25] after setting µ = 0. In contrast

to [25], these solutions can be viewed, in the context of the discussion at the beginning

of section 4, as IR ground states of a holographic lattice with, for example, the functions

Φ1,Φ2 in (5.1) approaching constants in the IR and the UV.

Finally, we note that the analysis of this appendix can also be applied to the solutions

of section 2 to obtain new anisotropic fixed point solutions.
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