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Abstract: This article deals with a unique, new powertrain diagnostics platform at the level of a large
number of EU25 inspection stations. Implemented method uses emission measurement data and
additional data from significant sample of vehicles. An original technique using machine learning
that uses 9 static testing points (defined by constant engine load and constant engine speed), volume
of engine combustion chamber, EURO emission standard category, engine condition state coefficient
and actual mileage is applied. An example for dysfunction detection using exhaust emission analyses
is described in detail. The test setup is also described, along with the procedure for data collection
using a Mindsphere cloud data processing platform. Mindsphere is a core of the new Platform as a
Service (Paas) for data processing from multiple testing facilities. An evaluation on a fleet level which
used quantile regression method is implemented. In this phase of the research, real data was used, as
well as data defined on the basis of knowledge of the manifestation of internal combustion engine
defects. As a result of the application of the platform and the evaluation method, it is possible to
classify combustion engine dysfunctions. These are defects that cannot be detected by self-diagnostic
procedures for cars up to the EURO 6 level.

Keywords: cloud computing; exhaust emission testing and evaluation; new emission measurement
methods; PaaS; quantile regression

1. Introduction

Road traffic is considered one of the major sources of air pollution. It is a source of toxic
compounds such as aromatic hydrocarbons, lead, CO, NOx, and particulate matter [1,2].
According to [3] passenger cars account for 44% of greenhouse gases produced by general
road transport. Based on [4], road transport emits 42% of total NOx emissions, 47% of CO
emissions and 18% of PM emissions based on EU25 level. For the EU, manufacturers of
Internal Combustion Engines (ICE) are legislatively forced to produce more efficient engines
to reduce emissions. Observable trends include the deployment of direct fuel injection,
overall combustion chamber volume reduction, start-stop systems, using turbochargers
and many other components and new regulation and control proceses. Regulations and
standards are transferred to the national levels of member states. The requirements to meet
emission limits for newly manufactured cars are gradually increasing, see [5]. Emission
limits are determined by Euro standards. At present, Euro 6 cars and lower emission
standards prevail. These cars do not have to meet the strict requirements of EURO 7-e.g.,
Euro 7 rules ensure that vehicles are not tampered with and emissions can be controlled by
the authorities in an easy way by using sensors inside the vehicle to measure emissions
throughout the lifetime of a vehicle [5].
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Currently, cars with a combustion engine defect are being operated and this allows
relatively unlimited operation of the damaged car (e.g., sensors, intake leaks, engine leaks,
injection system defects, SW modifications, etc.). The operator either does not know about
the defect, or the performance or fuel consumption is not influenced to an extent that the
engine will be repaired. Unfortunately, larger quantities of harmful emissions are produced
in the mentioned case. Another problem is the expertise and limited skills of service
technicians who can not properly analyse/repair serious engine management dysfunctions.
Series-produced cars are measured as part of emissions measuring in Periodic Technical
Inspections (PTIs) in static mode (steady load and engine speed). In these cases, the
measured data is not continuously evaluated within the fleet. In addition, measurement
under load in dynamic mode on a dynamometer using a dilution tunnel, is carried out
as part of the development process for the purpose of reference and validation tests of
combustion engines of cars (e.g., during the type-approval process). In the dynamic mode,
cars are additionally tested in the mode of so-called “driving cycles”. The emissions tests
mentioned are not initiated/motivated by the intention to measure a large number of cars
and perform continuous complex analyzes using data from a large number of vehicles and
the application of machine learning. The execution of the above-mentioned tests is not
carried out in order to find defects based on a critical concentration of error manifestations
from a large number of measured data.

The methodologies for vehicle emissions testing need to constantly reform and capture
the real behavior of vehicles in real-world conditions. Emerging technologies can be used
to enhance them. As the use of cloud processing platforms increases in various industrial
areas, potential uses could be found in the automotive emission testing sector.

The objective of this research is to have the ability to determine whether the vehicle
is being operated with an internal combustion engine fault, based on a combination of
gathered information. In particular using the results of an original emission tests on a
significant sample of vehicles and regardless of whether there is a fault stored in the
memory of the electronic control unit. To achieve this, the data regarding an emission
production (NOx, HC, CO, CO2, O2, smoke absorption value, lambda factor), vehicle
mileage, engine volume, Euro class, Engine Condition State (ECS) are monitored. Our
evaluation platform uses combined data from a significant sample of technical inspection
stations (on a European level) and a common evaluation cloud with the application of
machine learning techniques. The stations have at their disposal common diagnostic and
measurement tools, determined by legislation in individual EU member states.

In the beginning of the article the proposed emission test is discussed thoroughly along
with the proposed test setup. A static testing method using a chassis dynamometer and
an emission analyzer was designed. This static method is based on a procedure of testing
the engine at certain engine speed and engine load, until the value of produced emission
compounds stagnates. According to [6] instantaneous emission measurements on chassis
dynamometers are becoming increasingly common for car-makers and for environmental
emission factor measurement and calculation. The dynamics of gas transport in both the
exhaust system of the car and the measurement system last significantly longer than 1 s and
can introduce considerable inaccuracy into the continuous measurement. Above described
method can compensate for this phenomenon.

This section is followed by the experimental part, in which the relevance of the
proposed test is analyzed. The emission measurement investigates the relationship between
the power produced by an internal combustion engine and the various emission compounds
produced in exhaust gases. The next section deals with the proposition of the use of cloud
processing platform. The developed topology of the evaluation technique is focused on
gathering emission data from many testing facilities. The data processing is presented in
the next segment. The solution uses quantile regression models to evaluate a simulated
data set and ultimately provides information to distinguish vehicles, with any variations
related to emissions production. The outcome of the article is a finalized proof of concept.
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The whole methodology can be tested using real vehicle data. The aim of future
work is to establish experimental testbeds for new measurement procedure. The data
collection and evaluation method can be deployed using the concepts described in this
article. Testbeds will implement this new method for emission evaluation with the idea of
opening a discussion about the application at the EU25 level.

2. Background

The negative effect of road traffic-generated, tailpipe emissions on people’s health
is, in general, indisputable. As an example, several epidemiological studies have found a
definite association between airborne Particulate Matter (PM) and adverse health effects.
Particulate matter is associated with pulmonary and cardiovascular diseases, while less
clear traces lead to cancer and psychological problems. One epidemiological study even
found that exposure to traffic-related air pollution during pregnancy and during the first
year of life was associated with increased autism in children [7–9]. The direct emissions
of motor vehicles also influence the global climate change phenomenon [10]. The primary
emissions formed by road vehicles contain gaseous substances that form a secondary layer
of aerosol, which is prone to oxidation [11]. Oxidized substances can change their chemical
composition and become either more or less toxic [12].

As this article deals with a unique, new platform and an original emission evaluation
technique for light-duty vehicles, only applicable emission evaluation procedures will be
discussed. The direct emissions of road vehicles are measured with the help of standardized
driving cycles that help to establish whether the vehicle is compliant with the most current
emission test standards. New European Driving Cycle (NEDC) has been critiqued in the
past for not adequately covering the entire operating range of a combustion engine [13,14].
This driving cycle, designed in the 1980s, is now considered outdated and not relevant
because it is too uniform.

The worldwide harmonized light vehicles test cycles are part of the Worldwide Harmo-
nized Light Vehicles Test Procedures (WLTP). The procedure of emission testing with WLTP
is considered more relevant for simulating a real-world emission profile of a vehicle in
laboratory conditions. A transition from NEDC to WLTP was made from 2017–2019. Along
with WLTP, a Real Driving Emissions (RDE) test is required for road vehicles which fulfill
EURO 6d-TEMP emission standards. This test is conducted with the help of a Portable
Emissions Measurement System (PEMS), which provide very accurate real-time monitoring
of the pollutants emitted by internal combustion engines (HC, CO, CO2, NOx and PM).
This methodology was developed because there were inconsistencies found between NOx
produced during vehicle operation on the road and during laboratory tests (Dieselgate
2015) [15]. The Volkswagen emissions scandal, also known as Dieselgate, erupted in
September 2015 after the U.S. Environmental Protection Agency (US EPA) announced that
German carmaker Volkswagen had equipped its diesel cars with software that detected
that the engine was operating in exhaust test mode, and changed engine settings to tem-
porarily reduce the amount of Nitrogen Oxides (NOx) produced, so that its vehicles met
the legal limit.

Literature Review

Emission measurement techniques and the subsequent evaluation of their values
are the subject of constant research. The purpose of this publication is to point out the
methodology of data evaluation, in order to reveal the dysfunction of the combustion
engine. In already published literature, it is possible to find approaches for measuring and
evaluating emission data from vehicle, which point to some useful data. In [16] a method
was developed for the identification of vehicles with impaired functional performance of
the particulate filter system. By using the developed method diesel vehicles with properly
working after-treatment systems can be distinguished from vehicles with removed or
malfunctioned particle filters. In [17] a new approach for static NOx measurement in PTI
was developed, that can be used for detecting high emitting vehicles. The cause of high
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NOx production may be a malfunction of one of the power management components of
the combustion engine.

It is possible to use vehicle emission and operational data for the purposes of emission
production modeling. In [18] an approach was developed, where neural networks and
regression analysis is used to predict fuel consumption and emission levels at different
vehicle conditions. In [19] models are used to predict values of various emission compounds
including nitrogen oxidex, hydrocarbons and fuel consumption based on instantaneous
speed and acceleration levels of the vehicle.

Combined with the possiblities of remote cloud processing, vehicle emissions testing
can be enhanced and emerging technologies can be used to improve them. Some researchers,
such as mentioned in [20], propose using IoT or GSM-based, emission monitoring systems,
where they combine multiple gas sensors with IoT solutions but do not propose further
use or method for processing the data. A Networked Remote Sensing System (NRSS)
described in [21], is built on the concept of exhaust gas remote sensing systems mounted
on roadways to measure all passing vehicles. The concentrations of CO2, CO, HC, NOx
and particulate matter can be measured by RSS very quickly and, by utilizing cameras,
high emitting vehicles can be identified. The NRSS proposes to interconnect measurement
devices and provide a complex, real-time monitoring system to record emissions of many
vehicles simultaneously.

As mentioned in [22] IoT is used to bring all emission data under one system to
preform data analyses in the cloud. Their team also performed critical cloud processing
tasks to predict future events of emissions. In [23] the authors propose building a new cloud
framework for transportation systems for monitoring various aspects affecting the vehicle,
including emission data. The application will be created for a project based on criteria
stated in [24], which will help to find the right cloud system and data processing technique.
The cloud system must run our own application on top of its platform, efficiently and
supportive of our proposed third- party system, without compromising security. Article [25]
describes how the vehicle to cloud service must be oriented to Software as a Service (SaaS)
or Platform as a Service (PaaS) to handle big data. The big data mentioned in that article
includes greenhouse gas emission data and service statistics; the two key components
implemented in our application.

The research gap addressed by the described scientific activities is the absence of
evaluation of vehicles with engine dysfunction based on accumulated information from
a large number of cars. The solution provides a new concept of a test platform (PaaS) for
the level of a large fleet and model utilization based on the principle of machine learning.
Thanks to the tools of this methodology, it is possible to identify vehicles with increased
production of one or more components of exhaust emissions.

3. Research Methodology

One of the goals of the new platform and the investigated emission test methods is to
evaluate the relationship between the power produced by an internal combustion engine
and the various emission compounds produced in exhaust gases. Therefore, a specific test
procedure is proposed and described in more detail in the following section.

To achieve the possibility for evaluation of impact on a regional or national level,
the testing and evaluation must be separated into multiple phases as follows:

1. test setup definition,
2. vehicle database establishment with respect to selected categories—vehicle parameters

(vehicle type, volume of combustion chambers, type of fuel used, date of manufacture,
types of exhaust aftertreatment systems installed and the engine systems condition),

3. fleet level evaluation.

3.1. The Emission Test Concept

The most important criteria in designing the emission test for evaluation of different
engine emission emitting profiles are: (i) test repeatability and (ii) ability to compare differ-
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ent engine units. Because of the inability to determine the volume of emitted compounds
during dynamic tests in the proposed type of vehicle testing facility, a static testing method
had to be designed. By determining the usable power of the engine unit, a variety of static
conditions can by simulated as a substitute for dynamic testing. The static emission method
is conducted as follows:

1. Measurement of maximum torque (Nm), power (kW) of the engine unit, and estab-
lishing the engine speed (RPM) at which the 100% of maximum engine power occurs
(testing point 3).

2. Calculation of 75% of maximum power at wheels (kW) and establishing the engine
speed (RPM) at which 75% of maximum engine power occurs (testing point 2).

3. Calculation of 50% of maximum power at wheels (kW) and establishing the engine
speed (RPM) at which the 50% of maximum engine power occurs (testing point 1).

4. Execution of emission test at specified engine speeds (RPM) and loads (%).

Various engine loads (50%, 75% and 100%) are tested at the calculated engine speeds to
analyze behavior of the unit in different conditions for the purpose of determine emission
compound formation. Testing points 3a, 2a and 1a capture measurements at 75% engine
load. Testing points 3b, 2b and 1b then capture 50% engine load. Along with other data,
these values of the measured emission components will later be used as input variables for
the new evaluation method. Additional measuring conditions can be added in the order of
pursuance to a certain emission component. Figure 1 captures the specific measured range
of the proposed emission testing procedure. Every harmful emission compound has its
own specific conditions for formation, so each measurable emission compound must be
monitored separately. The accuracy class of the emission tester must be considered, and the
measuring mistake must be calculated in the results. For the test results to be valid for each
vehicle, the vehicle systems status and testing conditions must follow specific propositions.
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Figure 1. Testing points for the proposed emission testing cycle.

3.2. Testing Procedure and Facility Concept

At a regional level, defining a testing procedure for a single vehicle is crucial for a
solid foundation and reliable results to gauge EU fleet level impact on various emission
compound formations. As was mentioned, the objective of this research is to have the ability
to determine whether the vehicle is being operated with an internal combustion engine
fault, based on a combination of gathered information. The idea is that the evaluation
platform uses combined data from a significant sample of technical inspection stations
(on a European level), using a common evaluation cloud with the application of machine
learning techniques. By inspection technician are monitored and stored: vehicle mileage,
engine volume, Euro class, ECS determined by the service technician (uses common service
diagnostic devices and quick visual inspection, see Table 1). The stations have at their
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disposal serial diagnostic tool (OBD-II reader) and other measurement tools determined by
legislation in individual EU member states.

Table 1. ECS determination principle.

Type of Defect Value ECS

OBD-II-Readiness code 1/0
All 0→ 1
1× 1→ 2
2× 1→ 3
3× 1→ 4

4 or 5× 1→ 5

Uneven engine run 1/0

OBD-II-Active pending DTC 1/0

OBD-II-Active permanent DTC 1/0

Visual engine state 1/0

All the systems of ICE that have the potential to have an impact on excessive emission
compound formation must be tested. These are monitored by the “On-Board Diagnostic”
system; however, an additional systems check may be required. This prefatory control must
be conducted by authorized and trained personnel to maximize the relevance of the results.
As the result of the prefatory control is one of the variables for the statistical evaluation, a
sophisticated approach should be considered when evaluating vehicles for their system´s
functional status. However, this is not within the scope of this article, so the assessment is
simplified into ECS. It is graded 1 to 5, with 1 being the best possible grade for the system´s
operational status. This grading system separates the emission measurement data that is
used for establishing the emission production profile for vehicles with similar parameters
(with grades 1 and 2). Vehicles with grades 3 and worse are the ones that the evaluation
method is designed to search for in its application. Hereafter, this variable will be referred
to as the ECS. For petrol ICEs, the functionality of the oxidation catalyst must be evaluated,
the fuel metering system and the λ control system and others depending on the engine
type. For diesel ICEs, the correct operation of the fuel metering, the charge air control,
the correct function of the SCR catalyst and relevant processes and other installed exhaust
after-treatment systems, must also be evaluated depending on the engine type.

The equipment of the systems for the suppression of selected emission components
is determined by the level of compliance with EURO standards. The EURO 7 standard is
currently being discussed.

The developed topology of the emission testing facility is focused on gathering emis-
sion data from many testing facilities and numerous vehicles using just a roller chassis
dynamometer and basic emission analyzer, without the need for a dilution tunnel (de-
vice for creating a measurable emission flow sample in case of performing advanced
emission analysis).

Steps of the testing procedure:

1. Standard service procedures are carried out for establishing ECS (Visual inspection,
connection of OBD-II diagnostic interface: vehicle ID, reading of pending trouble
codes, permanent trouble codes, readiness code and uneven engine run check).

2. The vehicle is tested on the chassis dynamometer. The dynamometer creates a negative
traction force for tested vehicle (the measuring points are described in the Section 3.1).
Emission compounds (NOx, HC, CO, CO2, O2, smoke absorption value and lambda
factor) are measured with an emission analyzer.

3. Measured emission compounds for individual load points, vehicle information (make,
model, VIN, current mileage) are sent to the MindSphere application for processing.

4. The application, using the quantile regression model, determines the expected range
of emission components and evaluates whether the emission systems of the tested
powermanagement is fully functional or whether there is a defect within this system.

5. The test device receives from the cloud application the required dispersion of emission
components for individual load points, on the basis of which the test technician makes
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a decision about the state of the systems that have an influence on the emission
compounds formation.

Figure 2 displays the concept fot the testing facility and the equipment needed for the
proposed test. It also shows the data that need to be transferred to the cloud application
for evaluation.
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Figure 2. Concept for testing facility connection to MindSphere.

3.3. Testing Procedure and Facility Concept

The measurements in this article are submitted on a MAHA LP3000 roller chassis
dynamometer, which allows a variety of engine parameter measurement approaches. The
emission analyzer used for this emission test was the Bosch BEA050. The test vehicle was
an Audi A3 with specifications shown in Table 2.

Table 2. The testing vehicle parameter list.

Engine BXE, 1.9 TDI, Audi A3, Hatchback, Manual

Emission
standard EURO 4 EGR YES

Smoke absorption
value 1.5 (m−1) Catalytic converter YES

CO2 Average 135–138 (g/km) Turbocharged YES

CO 0.131 (g/km) Intercooler YES

HC x Lambda regulation NO

NOx 0.224 (g/km) DPF/FAP NO

HC NOx 0.248 (g/km) Engine displacement (cm3) 1896

Particles 0.02 (g/km) Power output (kW/RPM) 77/4000

Injection system Unit injector Torque (Nm/RPM) 250/1900

An engine ECU software modification was executed to capture the simulated behavior
of faulty turbocharger regulations. A turbocharger faulty regulation can be caused by
several factors. One very common factor is an excessive amount of soot contamination
on the variable-geometry turbocharger elements and their surrounding mechanisms. This
forms an obstruction which limits the actuation response of the variable geometry (the
boost pressure is under-regulated or over-regulated). In the event of this fault, the engine
management is in a limp mode, but many users accept limited performance and do not
take steps to repair the fault right away.

This simulation’s purpose is to simulate the mechanical pollution of the turbocharger
due to poor mixture formation and excessive soot production. The state of incorrect mixture
creation (where an excessive amount of air is present) is simulated by changing the values
stored in the FLASH memory of the ECU. The values of requested boost and all boost



Sensors 2023, 23, 477 8 of 18

limiters were raised by 118 mBar. Example of the changed area of the memory is highlighted
in Figure 3.
  

Requested boost(Injection quantity, RPM)/mBar 
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Figure 3. Value of requested absolute intake pressure (mBar).

As a result of the mentioned software modification, the state of influence of an ex-
cessive amount of air sucked in by the engine and entering the combustion process was
simulated. By forcing more air into the engine, the ECU measures this condition through
the MAF sensor and responds accordingly. The ECU then changes the setup of the EGR
valve to introduce more exhaust gases to the combustion process. Overall, it can be claimed
that this dysfunction has some impact on the emissions compounds formation (as seen in
Table 3 and Figure 4), which shows the impact on NOx emission values.

Table 3. Emission measurement results.

NOx Emissions
(ppm) Before Dysfunction After Dysfunction

Engine Speed
(RPM) 50 % Load 75% Load 100% Load 50 % Load 75% Load 100% Load

1830 179 375 1895 176 404 1930

2726 169 369 1662 153 422 1722

4000 166 315 1688 161 333 1750

The experimental measurement indicates the possibility of detecting a certain engine
management dysfunction via the acquired measurement data from the emissions test.
Similarly, software modification can be used to simulate a number of ICE malfunctions.
This will be the subject of follow-up research on ICE fault simulations.

3.4. Vehicle Emissions Profile Evaluation

This section describes the possibility for remote data collection to the IoT operation
system on a cloud and unique measuring application. In a real-life application of the
proposed method the data can be gathered during analysis in test facilities, as mentioned in
Section 3.2. Each IoT platform offers various services. In the following paragraph, the initial
evaluation of the IBM Watson and the Siemens MindSphere is described in the context of
finding the right platform for this application.
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IBM Watson cloud and Siemens MindSphere are standard IoT cloud platforms used in
industrial applications. It is possible to develop original applications using their software
tools (e.g., programmed in Python). IBM offers an IoT platform, node-red and cloud-object
storage database. MindSphere offers a MindConnect IoT platform along with Mendix
development application.

The emission processing application requirement is to be built specifically for its
dedication along with a specific dashboard/user interface.

Using Mendix, it is possible to create a new application faster, along with the option
of using MindSphere’s powerful connectivity. Thus, MindSphere has become our platform
of choice. MindSphere is the PaaS application. It uses cloud services like AWS, which is
very reliable, secure and always accessible with very minimal downtime, even though the
data is collected at fleet level.

The emission data processing, cloud application can be created on top of a framework
native to Mendix IDE and MindSphere. The cloud application requirements include
database creation, user interfaces and import/export of the measured data. The fleet level
data collected in testing facilities can be sent through the REST API endpoint to the cloud
application (as seen in Figure 5). Optional direct upload via spreadsheet is possible. Either
way, in both cases, the data is imported/exported as a JSON variable. Then, the emission
application binds JSON objects to Mendix objects (or vice versa) to do data processing and
send results, respectively. The input data from a single vehicle can then be compared with
data from the established emission profile database, as described in Section 4. Figure 6
represents the process of data collection and transfer, back and forth to the MindSphere
and testing facilities.
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Figure 5. Concept for data evaluation.
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Figure 6. New platform for data collection.

4. Fleet Level Evaluation

For each testing point, three linear quantile regression models were created to model
the 50% (median), 75% (Q75) and 90% (Q90) quantiles of the natural logarithm of emission
compounds (NOx measurement values were used throughout the paper as an example).
The logarithmic transformation of the dependent variable was applied due to the high
skewness of the emission compounds in all testing points. The independent variables were
identical for all models, i.e., volume of engine combustion chamber (in thousands cm3),
EURO emission standard category and mileage overall system condition (in tens of thou-
sands km). All independent variables were considered as numerical with no transformation
or standardization, except for the vehicle EURO emission class, which was considered as
categorical. The variable (describing types of exhaust gas aftertreatment systems installed)
was excluded from a set of independent variables due to its significant association with the
EURO emission standard category. Inclusion of both variables would cause instability of
regression coefficients. The set of independent variables could be modified once applied
in real-world circumstances. The models were fitted using R software (version 4.1.1, rq
function, quantreg package) and the significance level was set to 0.05 [26].

The advantage of using quantile regression is its robustness and resistance to
outliers [27,28]. Furthermore, it does not make any strong assumptions about the distribu-
tion of independent or dependent variables or residuals. Obtained regression coefficients
have clear interpretations and can provide valuable information about the importance of
independent variables. Moreover, quantile regression allows us to predict the emission com-
pounds (with the model for the median) and approximately determine acceptable upper
bounds of emissions (with models for Q75 and Q90), based on specified vehicle parameters.

The dataset contains information about 9986 vehicles. Only those vehicles with lower
ECS (that is, values 1 or 2) were used to build the models. Out of all such vehicles
(4595 vehicles), 50% (2297 vehicles) were dedicated as the training set and used to build
the models, 25% (1149 vehicles) were used as the first test set to assess the fit level of
the quantile regression model for the median of the natural logarithm of the emission
compounds (as an expected prediction model for the emission compounds), i.e., to display
correlograms and calculate the adjusted coefficients of determination (R2adj) for each
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testing point. The rest (25%, 1149 vehicles) and vehicles with higher ECS (that is, values 3, 4
or 5, 5391 vehicles) were used as the second test set to evaluate the accuracy of the models
with respect to our original goal; to use these models to detect vehicles with any of the
engine subsystem malfunctions that have an impact on the monitored, produced exhaust
emission compounds.

We expect a high proportion of the vehicles with 3–5 ECS to show real emission
compounds of above Q75 and Q90. Such results indicate that it would be possible to
use the models for preliminary detection of the vehicles, with possible engine subsystem
malfunctions based on unexpectedly high emission compounds. Finally, a cut-off value was
found for the minimal number of testing points, in which a vehicle must exceed Q75 and
Q90 to be suspected of possible engine subsystem malfunctions with acceptable accuracy.
For that purpose, the ROC curve was used. Overall accuracy, sensitivity and specificity
were evaluated.

The description of the linear quantile regression models for the median of the natural
logarithm of the emission compounds for each testing point is available in Table 4. Results
show substantial stability of regression coefficients (except for the intercept), which suggests
stable importance of the independent variables in modelling the emission compounds in
all testing points. With a 1000 cm3 increase of the combustion chamber volume, we expect
approximately a 2–4% increase in emission compounds in all testing points. Accordingly,
with a 100,000 km increase in mileage, we expect approximately a 3–7% increase in emission
compounds in all testing points. As expected, higher Euro Emission Standard category led
to a decrease in emission compounds of approximately 50% for Euro 3, 75% for Euro 4, 82%
for Euro 5 and 92% for Euro 6, in comparison with the baseline category of Euro 2.

Table 4. Sample NOx data for Testing Points (TP).

Eng.
Disp.
(cm3)

Veh.
EURO
Class EC

S TP 1
NOx

(ppm)

TP 2
NOx

(ppm)

TP 3
NOx

(ppm)

TP 1a
NOx

(ppm)

TP 2a
NOx

(ppm)

TP 3a
NOx

(ppm)

TP 1b
NOx

(ppm)

TP 2b
NOx

(ppm)

TP 3b
NOx

(ppm)

1598 E5 4 23 56 511 24 42 515 15 26 441

1896 E3 2 57 101 1149 40 92 1012 17 49 985

1968 E6 2 8 11 188 7 15 175 1 11 151

By applying exponential function to the predicted values for the first test set, we
obtain predicted NOx values in original units. The goodness of fit is presented with the
correlograms with adjusted coefficients of the determination displayed, see Figure 7. All
testing points, except for the testing point 1b, show very good performance of the quantile
regression models with adjusted coefficients of determination above 0.950. Further, the
quantile regression model for the median is not used because we do not aim to build a
prediction model for the emission compounds. However, by assessing its goodness of
fit, we aim to verify the application of the quantile regression itself for estimation of the
acceptable upper bounds of emission compounds.

Whether or not testing point 1b would have any significance (in the context of poten-
tial engine management dysfunction detection via NOx measuring) is a point of further
discussion, being that production is at its lowest across the entire testing range. If this were
not the case for real world data measurements, additional independent variables would
need to be added to the data.

All regression coefficients (except for the intercept) are very similar to the coefficients
presented in Table 5, suggesting that the effect of each independent variable is relatively con-
stant over the entire distribution of emission compounds in all testing points. Tables 6 and 7
present the quantile regression models for the 75% quantile and the 90% quantile of the
natural logarithm of the emission compounds.
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Table 5. Quantile regression models for the median of the natural logarithm of emission compounds
for each testing point. The values represent exp(β̂) where β̂ stands for the estimated regression
coefficients. All regression coefficients are significant with p < 0.001.

Testing Point

1 1a 1b 2 2a 2b 3 3a 3b

Inter
-cept 85.703 73.245 26.518 164.948 141.144 104.001 1798.837 1697.458 1609.175

Eng.
disp.

(×103 cm3)
1.032 1.025 1.048 1.029 1.041 1.023 1.033 1.032 1.037

Mileage
(×105 km) 1.061 1.047 1.039 1.051 1.042 1.068 1.050 1.051 1.048

E3 STD 0.480 0.483 0.507 0.474 0.485 0.497 0.496 0.495 0.487

E4 STD 0.238 0.243 0.251 0.239 0.236 0.252 0.247 0.247 0.243

E5 STD 0.172 0.174 0.172 0.171 0.171 0.177 0.177 0.177 0.174

E6 STD 0.078 0.076 0.081 0.077 0.076 0.081 0.079 0.079 0.077

Table 6. Quantile regression models for the 75% quantile of the natural logarithm of emission
compounds for each testing point. The values represent exp(β̂) where β̂ stands for the estimated
regression coefficients. All regression coefficients are significant with p < 0.001.

Testing Point

1 1a 1b 2 2a 2b 3 3a 3b

Inter
-cept 98.221 77.504 43.530 186.047 153.052 120.426 1990.715 1838.081 1745.733

Eng.
disp.

(×103 cm3)
1.030 1.030 1.029 1.028 1.034 1.026 1.028 1.037 1.033

Mileage
(×105 km) 1.049 1.053 1.014 1.054 1.053 1.046 1.047 1.054 1.044

E3 STD 0.494 0.494 0.501 0.481 0.493 0.506 0.499 0.486 0.490

E4 STD 0.243 0.248 0.243 0.242 0.246 0.250 0.249 0.243 0.249

E5 STD 0.174 0.181 0.178 0.171 0.176 0.179 0.179 0.174 0.179

E6 STD 0.077 0.080 0.077 0.077 0.079 0.080 0.080 0.078 0.079

Table 7. Quantile regression models for the 90% quantile of the natural logarithm of emission
compounds for each testing point. The values represent exp(β̂) where β̂ stands for the estimated
regression coefficients. All regression coefficients are significant with p < 0.001.

Testing Point

1 1a 1b 2 2a 2b 3 3a 3b

Inter
-cept 112.980 90.018 48.772 212.902 172.872 140.140 2128.675 1957.509 1818.451

Eng.
disp.

(×103 cm3)
1.030 1.033 1.034 1.026 1.027 1.032 1.031 1.032 1.027

Mileage
(×105 km) 1.037 1.038 1.046 1.038 1.050 1.027 1.042 1.045 1.049

E3 STD 0.496 0.487 0.495 0.490 0.493 0.510 0.497 0.496 0.496

E4 STD 0.241 0.245 0.247 0.249 0.251 0.243 0.248 0.248 0.249

E5 STD 0.174 0.179 0.175 0.171 0.177 0.175 0.180 0.178 0.180

E6 STD 0.076 0.077 0.078 0.078 0.079 0.078 0.080 0.079 0.080
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Figure 7. Correlograms present the goodness of fit of the quantile regression model for the median of
the natural logarithm of the emission compounds as the potential prediction model for the values for
each testing point. The adjusted coefficients of determination (R2

adj) are also displayed.

The second test set is passed to the models and the proportions of vehicles (with a
real value of emission compounds above Q75 and Q90) are determined for each testing
point (see Table 8). As expected, the proportions corresponding to vehicles with ECS values
of 1 or 2 reflect the definition of Q75 and Q90 (i.e., above these estimates, approximately
25% and 10% of the vehicles are in each testing point). The results show that the vehicles
with ECS values of 2 contributed to this phenomenon, even though in the training set the
ratio of vehicles with ECS values of 1 and 2 was balanced. Nevertheless, these results can
also be perceived as another confirmation that the built models for Q75 and Q90 work as
anticipated. The proportions corresponding to the vehicles with ECS values of 3, 4 or 5
increase with a higher coefficient (i.e., almost 100% of vehicles with ECS values of 5 were
above Q75 in each testing point (except for in testing point 1b).
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Table 8. The proportions (%) of vehicles with a real value of emission compounds above the estimate
of the 75% quantile and 90% quantile for each testing point, based on ECS.

Engine Condition State

TP 1 (n = 553) 2 (n = 596) 3 (n = 1786) 4 (n = 1795) 5 (n = 1810) 1–2
(n = 1149)

3–5
(n = 5391)

1 6.5/0.0 43.3/19.1 70.0/49.9 89.4/70.4 100.0/89.0 25.6/9.9 86.5/69.9

1a 4.7/0.0 46.5/19.1 74.4/53.2 96.3/76.7 100.0/96.3 26.4/9.9 90.3/75.5

1b 18.4/2.7 33.2/18.1 39.4/28.6 44.2/34.9 53.2/43.1 26.1/10.7 45.6/35.6

2 5.2/0.0 43.0/17.3 66.4/46.3 86.1/68.4 99.6/86.7 24.8/9.0 84.1/67.2

2a 4.5/0.0 47.0/23.5 75.4/53.4 96.3/76.1 100.0/95.8 26.5/12.2 90.6/75.2

2b 7.1/0.0 43.5/19.1 69.8/47.3 91.6/72.1 100.0/91.7 25.9/9.9 87.2/70.5

3 0.0/0.0 49.8/20.0 99.4/79.1 100.0/100.0 100.0/100.0 25.8/10.4 99.8/93.1

3a 0.0/0.0 48.8/21.6 99.9/94.2 100.0/100.0 100.0/100.0 25.3/11.2 100.0/98.1

3b 0.0/0.0 48.8/21.5 100.0/99.0 100.0/100.0 100.0/100.0 25.3/11.1 100.0/99.7

Table 9 presents the vehicle distribution to testing points ratio for which vehicles
from the second test set had emission values higher than Q75 and Q90 (with respect to
their ECS).

Table 9. The distribution of the vehicles (absolute frequencies) based on the number of testing points
in which the vehicles from the second test set had value emission compound values higher than Q75
and Q90 (with respect to their ECS).

Number of
Testing Points
above Q75/Q90

Q75 Q90

ECS
(1–2)

ECS
(3–5)

ECS
(1–2)

ECS
(3–5)

0 344 0 633 0

1 197 0 169 1

2 99 0 198 17

3 128 1 92 101

4 158 31 44 303

5 130 166 11 645

6 56 476 2 912

7 30 898 0 1267

8 6 2200 0 1510

9 1 1619 0 635

Finally, the optimal cut-off value is found for the minimal number of testing points
in which a vehicle must exceed Q75 or Q90 to be suspected of possible engine subsystem
malfunctions (see Figure 8). The optimal cut-off value for the classification based on the
model for Q75 is 6 (i.e., if the real value of emission compounds exceeds the estimate
of Q75 in at least 6 testing points, the vehicle should be seriously suspected of possible
engine subsystem malfunctions). The overall classification accuracy for the cut-off value
6 is 95.6%, the sensitivity is 96.3% and the specificity is 91.9%. The optimal cut-off value
for the classification based on the model for Q90 is 4 (i.e., if the real value of emission
compounds exceeds the estimate of Q90 in at least 4 testing points, the vehicle should be
seriously suspected of possible engine subsystem malfunctions). The overall classification
accuracy for the cut-off value 4 is 97.3%, the sensitivity is 97.8% and the specificity is 95.0%.

The results suggest that the prediction ability of the number of testing points in
which the real value of emission compounds exceeded either Q75, or Q90, is comparable.
The overall accuracy, sensitivity, and specificity were slightly higher for the classification
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based on the model for Q90. Even though the performance of the quantile regression
models for testing point 1b was clearly unsatisfactory, the presented approach (based on
the combination of the information from all testing points), is not sensitive to the effects of
possible inaccuracies caused by one testing point with low significance for overall results.
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Figure 8. Analysis of the prediction ability of the number of testing points in which the real value of
emission compounds exceeded Q75 (left) or Q90 (right) to be suspected of possible engine subsystem
malfunctions with ROC curves (AUC = area under the ROC curve).

5. Discussion

In Europe, there are a large number of vehicles that are operated with a combustion
engine dysfunctuon that affects the production of emission compounds. Some defects in
emission systems cannot be detected by the OBD-II on-board diagnostic system or by means
of a mandatory periodic technical inspection. Emission testing during PTI is different from
homologation emission tests and only a part of the emission components are measured (e.g.
only smoke absorption coefficient is often measured in diesel engines; internal car emission
systems for NOx reduction not need to be tested). The measurement is aplied by unloaded
engine (at idle speed, increased idle speed, overrun speed). The proposed method is based
on the measurement of emission compounds, much the same as in homologation tests.
The chassis dynamometer enables to generate negative tractive force for tested vehicle and
measure the vehicle under higher loads that correspond more to normal use. Due to the
possibility of stabilization of values of emission compound under static load, continuous
measurement with a regular emission analyzer is more accurate and reliable than during
short dynamic tests of an unloaded internal combustion engine. The uniqueness lies
in the comprehensive service of the platform, which evaluates the measured emission
components including vehicle information in a cloud application. Statistical operations
are carried out within the framework of comparison with historical data of the same or
very similar vehicles. The test equipment obtains the required dispersion of emission
components for individual load points, and the technician it can be clearly evaluated
whether the vehicle is being operated with a defect that affects emissions.

The emission cloud application is created on PaaS and has various advantages for
further expansion of the data processing application. Some of the benefits are simple
sharing of emission data among different applications created within PaaS and remote
access to the data and high computing power to run the model irrespective of current
system condition. This prototype application is part of a new approach to a methodology
of emission data measurement and processing.

The evaluation concept follows an analysis of a single vehicle in comparison with
the fleet level dataset. The measurement could be then displayed to the testing facility
technician to indicate whether the vehicle fulfills the expected produced values of exhaust
emission compounds with respect to a vehicle’s features.
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Statistical modelling of exhaust emission compounds was based on quantile regression,
which used predefined vehicle parameters for estimating the median (the 75% quantile
and 90% quantile of emission compounds), to predict the emission profile and determine
approximate, acceptable upper bounds of emission compounds. The optimal cut-off value
was found for the minimal number of testing points in which a vehicle must exceed
the estimates of the 75% quantile or the 90% quantile of the emission compounds to be
suspected of possible engine subsystem malfunctions. The results suggested that if a
vehicle exceeds the estimated 90% quantile in at least 4 testing points, it should be seriously
suspected of engine subsystem malfunctions. The overall classification accuracy based on
this approach reached 97.3%.

As previously mentioned, the data for evaluation is generated. The data generation
imitates, to some extent, the general dependencies of the measured emission compounds
with the vehicle´s EURO emission class, mileage, installed emission aftertreatment systems
and others. The set of these independent variables could be modified once applied in
real-world circumstances. The aim of future work is to establish experimental testbeds for
measurement and data collection. These will implement this new method for emission
measurements. The gathered data will create a database of valid samples from real-world,
vehicle emissions.

In this phase of the research, real data was used, as well as data defined on the basis of
knowledge of the manifestation of internal combustion engine defects. The dataset created
in this way is used for the first phase of research and verification of the proposed method
and developed algorithms. The subsequent phase will exclusively use real measured data.

It is also possible to use the methodology described in the article in an extended
version, in which a specific detected defect would be assigned to the detected excessive
emission production (after the inspection of the vehicle by a diagnostic technician). With
this step, it would be possible to introduce additional parameters about the condition of
the vehicle into the database of measured vehicles, which would help to determine not
only that the vehicle is being operated with an engine fault, but also what specific fault it is.

6. Conclusions

A real-world vehicle fleet is comprised of vehicles with high variance of maintenance
schedules and previous operational conditions, these can highly influence the production
of various exhaust emission compounds. The proposed method for emission testing and
data processing provides a framework for emission compound prediction based on the
parameters of an individual vehicle. Although the proposed measurement technique
is laboratory-based, it captures the behavior of an engine unit at a variety of engine
speeds and loads. The proposed methodology has the goal of detecting the vehicles with
any of the engine subsystem malfunctions that impact the level of monitored emission
compounds produced.

Currently, new concepts of E/E architecture of cars are being developed, enabling the
implementation of sophisticated telemetry operations, including the provision of informa-
tion to the cloud. These are 2030+ architectures (they use a service oriented gateway or a
high performance computer). Therefore, new power management services for the internal
combustion engine can be assumed. Provided that emission diagnostic services/algorithms
are implemented, vehicles can provide information about the current status of emission
systems directly to the cloud. That is, without the need to use emission testing within
PTI. Therefore, the research described in this article is a preliminary step for applications
of future cloud services focused on the online evaluation of combustion engine dysfunc-
tions. Our cloud application and researched algorithms can be implemented within new
architectures using PaaS.

Author Contributions: Conceptualization, P.S. and T.H.; data curation, A.V., T.H., T.K. and J.J.L.;
formal analysis, T.H. and T.K.; funding acquisition, P.S., M.K. and T.M.; investigation, A.V., M.K., T.M.
and J.J.L.; methodology, P.S., T.H. and A.V.; software, A.V. and J.J.L.; supervision, P.S.; visualization,



Sensors 2023, 23, 477 17 of 18

J.J.L. and T.K.; writing—original draft, T.H., A.V., J.J.L., T.K. and P.S.; writing—review & editing, T.K.,
T.M. and P.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the European Regional Development Fund in “A Re-
search Platform focused on Industry 4.0 and Robotics in Ostrava Agglomeration” project, reg. nr.
CZ.02.1.01/0.0/0.0/17_049/0008425 within the Operational Programme Research, Development
and Education and partly by the Ministry of Education of the Czech Republic by grant of SGS No.
SP2022/9 VSB–Technical University of Ostrava, Czech Republic.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to ongoing research in area of interest.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cui, H.; Chen, W.; Dai, W.; Liu, H.; Wang, X.; He, K. Source apportionment of PM2.5 in Guangzhou combining observation data

analysis and chemical transport model simulation. Atmos. Environ. 2015, 116, 262–271. ISSN 1352-2310. [CrossRef]
2. Liu, T.; Wang, X.; Hu, Q.; Deng, W.; Zhang, Y.; Ding, X.; Fu, X.; Bernard, F.; Zhang, Z.; Lv, S.; et al. Formation of secondary aerosols

from gasoline vehicle exhaust when mixing with SO2. Atmos. Chem. Phys. 2016, 16, 675–689. ISSN 1680-7324. [CrossRef]
3. EEA 2022. Greenhouse Gas Emissions from Transport. Available online: https://www.eea.europa.eu/ims/greenhouse-gas-

emissions-from-transport (accessed on 12 April 2022).
4. Leeuw, F.; Fiala, J. Indicators on Urban Air Quality—A Review of Current Methodologies; ETC/ACC: Bilthoven, The Netherlands,

2009.
5. Commission Proposes New Euro 7 Standards to Reduce Pollutant Emissions from Vehicles and Improve Air Quality. 2022.

Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_22_6495 (accessed on 17 June 2022).
6. Weilenmann, M.; Soltic, P.; Ajtay, D. Describing and compensating gas transport dynamics for accurate instantaneous emission

measurement. Atmos. Environ. 2003, 37, 85137–85145. ISSN 1352-2310. [CrossRef]
7. Strak, M.; Janssen, N.A.H.; Godri, K.J.; Gosens, I.; Mudway, I.S.; Cassee, F.R.; Lebret, E.; Kelly, F.J.; Harrison, R.M.; Brunekreef, B.;

et al. Respiratory Health Effects of Airborne Particulate Matter: The Role of Particle Size, Composition, and Oxidative Poten-
tial—The RAPTES Project. Environ. Health Perspect. 2012, 120, 1183–1189. ISSN 0091-6765. [CrossRef] [PubMed]

8. Volk, H.E.; Lurmann, F.; Penfold, B.; Hertz-Picciotto, I.; Mcconnell, R. Traffic-Related Air Pollution, Particulate Matter, and Autism.
JAMA Psychiatry 2013, 70, 71–77. ISSN 2168-622X. [CrossRef] [PubMed]

9. Karakatsani, A.; Analitis, A.; Perifanou, D.; Ayres, J.G.; Harrison, R.M.; Kotronarou, A.; Kavouras, I.G.; Pekkanen, J.; Hämeri, K.;
Kos, G.P.; et al. Particulate matter air pollution and respiratory symptoms in individuals having either asthma or chronic
obstructive pulmonary disease: A European multicentre panel study. Environ. Health 2012, 11, 75. ISSN 1476-069X. [CrossRef]
[PubMed]

10. He, D.; Liu, H.; He, K.; Meng, F.; Jiang, Y.; Wang, M.; Zhou, J.; Calthorpe, P.; Guo, J.; Yao, Z.; et al. Energy use of, and CO2
emissions from China’s urban passenger transportation sector–Carbon mitigation scenarios upon the transportation mode choices.
Transp. Res. Part A Policy Pract. 2013, 53, 53–67. ISSN 0965-8564. [CrossRef]

11. Robinson, A.L.; Donahue, N.M.; Shrivastava, M.K.; Weitkamp, E.A.; Sage, A.M.; Grieshop, A.P.; Lane, T.E.; Pierce, J.R.; Pandis, S.N.
Rethinking Organic Aerosols Semivolatile Emissions and Photochemical Aging. Science 2007, 315, 1259–1262. ISSN 0036-8075.
[CrossRef] [PubMed]

12. Turóczi, B.; Hoffer, A.; Tóth, Á.; Kováts, N.; Ács, A.; Ferincz, Á.; Kovács, A.; Gelencsér, A. Comparative assessment of ecotoxicity
of urban aerosol. Atmos. Chem. Phys. 2012, 12, 7365–7370. ISSN 1680-7324. [CrossRef]

13. Weiss, M.; Bonnel, P.; Hummel, R.; Provenza, A.; Manfredi, U. On-Road Emissions of Light-Duty Vehicles in Europe. Environ. Sci.
Technol. 2011, 45, 8575–8581. ISSN 0013-936X. [CrossRef] [PubMed]

14. Mellios, G.; Hausberger, S.; Keller, M.; Samaras, C.; Ntziachristos, L. Parameterisation of Fuel Consumption and CO2 Emissions of
Passenger Cars and Light Commercial Vehicles for Modelling Purposes; Publications Office of the Europan Union: Luxembourg, 2011.
ISBN 978-92-79-21051-8.

15. Luján, J.M.; García, A.; Monsalve-Serrano, J.; Martínez-Boggio, S. Effectiveness of hybrid powertrains to reduce the fuel
consumption and NOx emissions of a Euro 6d-temp diesel engine under real-life driving conditions. Energy Convers. Manag.
2019, 199, 111987. ISSN 0196-8904. [CrossRef]

16. Bainschab, M.; Schriefl, M.A.; Bergmann, A. Particle number measurements within periodic technical inspections: A first
quantitative assessment of the influence of size distributions and the fleet emission reduction. Atmos. Environ. X 2020, 8, 100095.
ISSN 2590-1621. [CrossRef]

17. Fernández, E.; Valero, A.; Alba, J.J.; Ortego, A. A New Approach for Static NOx Measurement in PTI. Sustainability. 2021, 13, 23.
ISSN 2071-1050. [CrossRef]

http://doi.org/10.1016/j.atmosenv.2015.06.054
http://dx.doi.org/10.5194/acp-16-675-2016
https://www.eea.europa.eu/ims/greenhouse-gas-emissions-from-transport
https://www.eea.europa.eu/ims/greenhouse-gas-emissions-from-transport
https://ec.europa.eu/commission/presscorner/detail/en/ip_22_6495
http://dx.doi.org/10.1016/j.atmosenv.2003.05.004
http://dx.doi.org/10.1289/ehp.1104389
http://www.ncbi.nlm.nih.gov/pubmed/22552951
http://dx.doi.org/10.1001/jamapsychiatry.2013.266
http://www.ncbi.nlm.nih.gov/pubmed/23404082
http://dx.doi.org/10.1186/1476-069X-11-75
http://www.ncbi.nlm.nih.gov/pubmed/23039312
http://dx.doi.org/10.1016/j.tra.2013.06.004
http://dx.doi.org/10.1126/science.1133061
http://www.ncbi.nlm.nih.gov/pubmed/17332409
http://dx.doi.org/10.5194/acp-12-7365-2012
http://dx.doi.org/10.1021/es2008424
http://www.ncbi.nlm.nih.gov/pubmed/21815612
http://dx.doi.org/10.1016/j.enconman.2019.111987
http://dx.doi.org/10.1016/j.aeaoa.2020.100095
http://dx.doi.org/10.3390/su132313424


Sensors 2023, 23, 477 18 of 18

18. Dia, H.; Boongrapue, N. Vehicle emission models using Australian fleet data. Road Transp. Res. 2015, 24, 14–26. ISSN 1037-5783.
19. Ahmed, O.; Ramadan, I.; Shawky, M. Modelling Vehicle Emissions and Fuel Consumption Based on Instantaneous Speed and

Acceleration Levels. Eng. Res. J.-Fac. Eng. (Shoubra) 2022, 51, 106–116. [CrossRef]
20. Francis, A. IoT Based Vehicle Emission Monitoring System. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 2019, 8, 410–412.

ISSN 2278-3075.
21. Kang, Y.; Ding, Y.; Li, Z.; Cao, Y.; Zhao, Y. A networked remote sensing system for on-road vehicle emission monitoring. Sci.

China Inf. Sci. 2017, 60, 043201. ISSN 1674-733X. [CrossRef]
22. Mehta, Y.; Pai, M.M.M.; Mallissery, S.; Singh, S. Cloud enabled air quality detection, analysis and prediction-A smart city

application for smart health. In Proceedings of the2016 3rd MEC International Conference on Big Data and Smart City (ICBDSC),
Muscat, Oman, 15–16 March 2016; pp. 1–7. ISBN 978-1-5090-1365-4. [CrossRef]

23. Hsu, C.-Y.; Yang, C.-S.; Yu, L.-C.; Lin, C.-F.; Yao, H.-H.; Chen, D.-Y.; Lai, K.R.; Chang, P.-C. Development of a cloud-based service
framework for energy conservation in a sustainable intelligent transportation system. Int. J. Prod. Econ. 2015, 164, 454–461.
ISSN 0925-5273. [CrossRef]

24. Namasudra, S.; Roy, P.; Balusamy, B. Cloud Computing: Fundamentals and Research Issues. In Proceedings of the 2017 Second
International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM), Tindivanam, India, 3–4
February 2017; pp. 7–12. ISBN 978-1-5090-4799-4. [CrossRef]

25. Ozpinar, A.; Yarkan, S. Vehicle to Cloud. In Web Services; IGI Global: Hershey, PA, USA, 2019. pp. 1223–1242. ISBN 9781522575016.
[CrossRef]

26. Koenker, R. Quantile Regression. R Package Version 5.86. 2021. Available online: https://cran.r-project.org/web/packages/
quantreg/quantreg.pdf (accessed on 28 September 2022).

27. Hao, L.; Naiman, D.Q. Quantile Regression; Sage: Thousand Oaks, CA, USA, 2007.
28. Li, M. Moving beyond the linear regression model: Advantages of the quantile regression model. J. Manag. 2015, 41, 71–98.

ISSN 0149-2063. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.21608/erjsh.2022.146374.1050
http://dx.doi.org/10.1007/s11432-016-9010-1
http://dx.doi.org/10.1109/ICBDSC.2016.7460380
http://dx.doi.org/10.1016/j.ijpe.2014.08.014
http://dx.doi.org/10.1109/ICRTCCM.2017.49
http://dx.doi.org/10.4018/978-1-5225-7501-6.ch063
https://cran.r-project.org/web/packages/quantreg/quantreg.pdf
https://cran.r-project.org/web/packages/quantreg/quantreg.pdf
http://dx.doi.org/10.1177/0149206314551963

	Introduction
	Background
	Research Methodology
	The Emission Test Concept
	Testing Procedure and Facility Concept
	Testing Procedure and Facility Concept
	Vehicle Emissions Profile Evaluation

	Fleet Level Evaluation
	Discussion
	Conclusions
	References

