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ABSTRACT  18 

In this study, we developed a method that provides community-level surface dispersal profiles 19 

under controlled hydration conditions from environmental samples and enables us to isolate and 20 

uncover the diversity of the fastest bacterial dispersers. The method expands on the Porous 21 

Surface Model (PSM), previously used to monitor dispersal of individual bacterial strains in liquid 22 

films at the surface of a porous ceramic disc. The novel procedure targets complex communities 23 

and captures the dispersed bacteria on a solid medium for growth and detection. The method was 24 

first validated by distinguishing motile Pseudomonas putida and Flavobacterium johnsoniae strains 25 

from their non-motile mutants. Applying the method to soil and lake water bacterial communities 26 

showed that community-scale dispersal declined as conditions became drier. However, for both 27 

communities, dispersal was detected even under low hydration conditions (matric potential: -3.1 28 

kPa), previously proven too dry for P. putida KT2440 motility. We were then able to specifically 29 

recover and characterize the fastest dispersers from the inoculated communities. For both soil and 30 

lake samples, 16S rRNA gene amplicon sequencing revealed that the fastest dispersers were 31 

substantially less diverse than the total communities. The dispersing fraction of the soil microbial 32 

community was dominated by Pseudomonas which increased in abundance at low hydration 33 

conditions, while the dispersing fraction of the lake community was dominated by Aeromonas 34 

and, under wet conditions (-0.5 kPa), also by Exiguobacterium.  The results gained in this study 35 

bring us a step closer to assessing the dispersal ability within complex communities under 36 

environmentally relevant conditions. 37 

 38 

 39 
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IMPORTANCE  40 

Dispersal is a key process of bacterial community assembly. Yet, very few attempts have been 41 

made at assessing bacterial dispersal at the community level as focus has previously been on pure 42 

culture studies. A crucial factor for dispersal in habitats where hydration conditions vary, such as 43 

soils, is the thickness of the liquid films surrounding solid surfaces, but little is known on how the 44 

ability to disperse in such films varies within bacterial communities. Therefore, we developed a 45 

method to profile community dispersal and identify fast dispersers on a rough surface resembling 46 

soil surfaces. Our results suggest that within the motile fraction of a bacterial community only a 47 

minority of the bacterial types are able to disperse in the thinnest liquid films. During dry periods, 48 

these efficient dispersers can gain a significant fitness advantage through their ability to colonize 49 

new habitats ahead of the rest of the community. 50 

 51 

KEYWORDS 52 

Community motility, Pseudomonas putida KT2440, liquid film, soil, lake water, succession, porous 53 

surface model. 54 

 55 

Introduction:  56 

Dispersal is essential in order to ensure fitness in a world of limited and heterogeneously 57 

distributed resources and is recognized as a key contributor to community dynamics (1, 2). While 58 

dispersal has long been studied as an integral part of the ecology of animals and plants, its 59 

contribution to microbial ecology has received less attention (3–5).  60 

 61 
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Dispersal is traditionally divided into passive (caused e.g. by weather or human activities) and 62 

active, also termed motility, which requires metabolic energy (6). Motility is not limited to 63 

environments saturated with water, but is also commonly found on or near surfaces in 64 

unsaturated environments, such as the thin liquid films between soil particles or on the surface of 65 

leaves (7). Bacteria have evolved diverse mechanisms of active dispersal on surfaces  including 66 

swimming, swarming, twitching, sliding, and gliding, all of which  have been mainly described and 67 

studied in pure culture settings (8–11) using agar plates or glass slides for capture of motile cells 68 

(8, 9, 11, 12). Hence, it remains unclear how well these methods capture dispersal potential in 69 

more natural settings, such as in soils, and how the ability to disperse is distributed within the tree 70 

of life and within individual communities. There have been a few efforts to uncover the 71 

phylogenetic distribution of flagellar motility (13, 14) and gliding motility (12, 15),  but a 72 

comprehensive view of how the dispersal abilities vary across and within bacterial phyla is still 73 

lacking. 74 

 75 

This gap in our knowledge partly results from the lack of methods for mass assessment of 76 

dispersal potential of bacteria in environmental samples.  In a community, not all bacteria have 77 

equal potential for dispersal; though this is rarely assessed. To assess the dispersal potential of a 78 

community one could, in theory, isolate and test all its members but considering that there can be 79 

up to 109 bacterial cells in a gram of productive soil (16), this would be practically unfeasible. In 80 

addition, by studying strains in isolation, the effects of interaction between strains would be 81 

missed. Indeed, most past studies of motility have focused on the motion of single strains (8, 17, 82 

18) largely neglecting the vast possibilities of interactions which have only recently been 83 

uncovered (17). Bacterial co-cultures have been observed swarming together, combining their 84 
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skills to conquer barriers such as antibiotics (19) or to engage in metabolic cross-feeding (20). 85 

Motile bacteria have been demonstrated to carry non-motile bacteria as cargo (21) and inter 86 

kingdom cooperation has been described such as bacterial dispersal with the help of fungi and 87 

amoeba (22–26). It would seem logical that these complex interactions occur in natural 88 

communities but only very few attempts have been made to tackle motile bacteria in 89 

environmental samples at the community level (27–31).  90 

A few studies did address community-level motility in aquatic environments. Grossart et al. (29), 91 

Mitchell et al. (31) and Fenchel et al. (30), assessed swimming motility in ocean samples using 92 

microscopy and revealed a large percentage of motile bacteria, but did not identify these. Dennis 93 

et al. (27) used a syringe based-assay and 16S rRNA gene amplicon sequencing to uncover the 94 

identity of motile lake water bacteria showing a chemotactic response towards inorganic 95 

substrates. However, to our knowledge, only one study assessed dispersal and identity of 96 

dispersing bacteria in a complex natural community under conditions relevant for partially-water-97 

saturated habitats (e.g. surface or vadose zone soils, phyllosphere) (28). Using sand microcosms, 98 

Wolf et al. revealed that a subset of a soil community consisting mainly of the family 99 

Enterobacteriaceae and the genera Undibacterium, Pseudomonas and Massilia were able to 100 

expand to a distance of more than 2 cm from the inoculation point within 48 h (28).  While this 101 

study provided important insights into the identity of dispersers and their expansion rate, they 102 

only considered one hydration condition (7.5% moisture w/w, i.e., matric potential in the -20 to -103 

50 kPa range based on the particle size (32)). Yet, previous studies have stated that water is one of 104 

the primary factors controlling bacterial motility (33).  105 

In a non-permanently water saturated habitat such as soil, the ability to disperse is primarily 106 

dependent on the thickness of the water film surrounding solid surfaces. The hydration status of 107 
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soil in the vadose zone is highly variable and can increase or decrease rapidly, e.g. following 108 

rainfalls or droughts (7, 18, 33). At low matric potential, the thinning of the aqueous films between 109 

soil particles will lead to habitat fragmentation into separate micro habitats (34), with strong 110 

effect on the bacterial dispersal ability. 111 

The Porous Surface Model (PSM) is a 2D model system used for studying bacterial motility on the 112 

surface of a porous ceramic disc under controlled hydration conditions that mimics unsaturated 113 

soil surfaces.  Studies of fluorescently tagged pure cultures using the PSM  have demonstrated 114 

that flagellar motility is restricted to a relatively narrow range of water potential (0 to -2kPa) (18, 115 

34). However, it remains unclear how this knowledge on specific flagellated bacterial isolates can 116 

be translated at the scale of complex environmental communities.  117 

 118 

Hence, the aims of the current study were to (i) further develop the PSM for its use to assess 119 

bacterial dispersal of natural (untagged) bacterial communities and (ii) apply the method to a soil 120 

and a lake community to obtain community-level surface motility profiles under controlled 121 

hydration conditions and uncover the diversity of the fastest dispersers.  122 

 123 
 124 

Results 125 

Developing and validating the novel method with pure cultures. 126 

The Porous Surface Model (PSM) has previously been used to monitor bacterial dispersal under 127 

controlled hydration conditions (35). The challenge of the current study was to expand the 128 

method from being solely usable with fluorescently tagged cultures to evaluate dispersal of a 129 

broader range of complex natural communities, tracking the movement from the inoculation point 130 

at the center towards the edge of the ceramic disc. To achieve this goal, we devised a procedure 131 
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to get an imprint of dispersal on the ceramic disc by pressing agar plates onto the PSM surface 132 

(see method overview in the supporting information, Fig. S1). This step resembles the agar lift 133 

method used for visualization of the bacterial distribution on soil surfaces described in a previous 134 

study (36). 135 

 136 

Initial tests with P. putida KT2440 GFP and full agar plates pressed onto the ceramic disc of the 137 

PSM showed a clear discrepancy between the bacterial spatial distribution observed on the 138 

ceramic disc with epifluorescence microscopy before pressing and that captured on the agar plate. 139 

It was clear that pressing the agar plate onto the surface of the ceramic disc disturbed the 140 

bacterial distribution, so that the high density of cells at the inoculation point were often spread 141 

over a much larger area. To avoid this error, we developed a series of concentric annular 142 

hollowed-out agar plates, which were pressed sequentially, starting from the edge of the ceramic 143 

disc and leaving the center undisturbed until a full plate was used to capture the total community 144 

that had developed on the PSM disc (Fig. 1 and S1).   145 

 146 

To test the method, we inoculated a mixture of the motile strain P. putida KT2440 GFP and its non-147 

flagellated mutant P. putida K2440 dsRed fliM- which had previously been used for motility studies 148 

on the PSM (18, 35). This pure culture experiment demonstrated the ability of the method to 149 

clearly contrast the dispersal potential of these strains (Fig. 1 and Fig. 2). The non-motile strain 150 

generally stayed near the inoculation point. For the motile strain, the fastest dispersal was seen at 151 

-0.5 kPa with 4 out of 6 replicates reaching the edge of the pressed plate furthest from the 152 

inoculation point, i.e. the 25 - 41.3 mm section, after 40 hours incubation (Fig. 2).  Dispersal at -1.2 153 

kPa was not significantly different from that at -0.5 kPa, after 24 h (p= 0.229) or 40h (p= 0.857), 154 
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and no dispersal was registered at -3.1 kPa. This was consistent with the threshold for flagellar 155 

motility of -2.0 kPa previously reported for P. putida KT2440 (18).     156 

 157 

To test the ability of the method for capturing other types of motility than flagellum powered 158 

swimming we inoculated the  gliding bacteria Flavobacterium johnsoniae strain CJ1827 (37) and 159 

the non-motile mutant F. johnsoniae strain 2122 ∆gldK (38) on separate PSMs incubated at -0.5 160 

kPa. After 48h incubation the non-motile mutant (n=2) stayed near the inoculation point while the 161 

gliding bacteria (n=3) were recovered in the 11.5-15 mm section and, in one case, at the edge of 162 

the pressed plate, 25-41.3 mm section.  163 

 164 

Dispersal potential of environmental communities. 165 

Applying the novel method on extracted soil and lake bacterial communities confirmed that 166 

dispersal rate declined as conditions became drier (Fig. 3). However, surprisingly, for both 167 

community types, dispersal was detected even under the lowest hydration condition tested (-3.1 168 

kPa and one sample at -4.2 kPa, not shown), previously proven too dry for P. putida KT2440 169 

dispersal (Fig. 2). For the soil community, the slowest dispersal was detected at –3.1 kPa with 2 170 

out of 3 replicates dispersed to the 11.5-15mm section at 24 h, though all reached the most 171 

distant section of the plate (25 - 41.3 mm section) after 48 h (Fig. 3). To record the magnitude of 172 

the colonization of the ceramic plate sections a coverage score was introduced for the 173 

environmental samples, where the extent of colony coverage of the agar plates was roughly 174 

assigned into four categories. This scoring scoring indicated that even though soil bacteria reached 175 

the most distant sections of the plates after 48 h, the colonization was less at -3.1 kPa (1-25% to 176 

26-50% coverage) than at -1.2 kPa and -0.5 kPa (51-76% to 76-100% coverage). 177 
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The lake bacterial community study was mainly included for comparison purposes, as we assumed 178 

that this community would have experienced a weaker selection for dispersal ability on dry 179 

surfaces, and to demonstrate the versatility of the method. It was based on fewer replicates which 180 

limits interpretation, but revealed a similar picture with bacteria reaching the edge of the plate 181 

after 48 h for both dry (-3.1 kPa) and wet (-0.5 kPa) conditions though the extent of colonization 182 

was less for the dry samples (Fig. 3). Direct comparisons of the soil and lake data should be done 183 

with caution because the CFU counts suggested that more cultivable cells were inoculated for the 184 

lake than for the soil samples (34 x 103 vs 2-8 103 CFUs per inoculum, respectively). However, for 185 

both soil and lake communities it remains clear that we registered much faster dispersal at both -186 

0.5 kPa and -3.1 kPa (Fig. 3) compared to P. putida KT2440 (Fig. 1).  187 

 188 

Diversity of dispersers. 189 

DNA was extracted from the Nycodenz soil extracts and the lake filtrate used for inoculations, 190 

from agar plates reflecting the total community present on the ceramic disc (Full Plate), and from 191 

the community that developed upon inoculation of the environmental cell extracts onto  a 192 

‘standard’ 25% R2A solid medium plate with 20 g agar l-1, which provides conditions that are not 193 

conducive to motility (39) (the No Motility Reference Plate, shortened as ’Reference Plate’). All 194 

samples were sequenced using Illumina sequencing targeting the V3-V4 regions of the 16S rRNA 195 

gene. A total of 3.8 million sequences were kept after filtering for further analysis.  196 

Comparisons between the communities in the inoculum (Nycodenz extractions and the Lake 197 

filtrate) and the cultivable communities dispersed or not, confirm the expected cultivation bias 198 

(Fig S7-8). However, the cultivable community represented on the Full plates and Reference plates 199 

retained a high diversity with representatives of 261 unique genera for soil, and 143 for lake. In 200 
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addition, 4172 and 665 amplicon sequence variants (ASVs (40)) in soil and lake samples were not 201 

identifiable at the genus level. Moreover, the dominating genera in the cultivated soil 202 

communities, (Pseudomonas, Flavobacterium and Paenibacillus) were also among the abundant 203 

taxa of the Nycodenz extractions (Fig S7) and lake water filtrate (Aeromonas Flavobacterium and 204 

Exiguobacterium) (Fig S8), respectively.  205 

 206 

For each PSM we collected the DNA of the fastest dispersers i.e. that of the colonies of the pressed 207 

agar plate the furthest from the point of inoculation that presented growth. As the method did not 208 

allow for selective recovery of the cells unable to disperse we compared these ‘dispersed’ 209 

communities to the total community present on the Full Plate and the Reference Plate. 210 

Sequencing results from the soil community showed a dominance of Pseudomonas in the 211 

dispersed communities benefitting from increasingly dry conditions, and achieving almost total 212 

dominance at the driest conditions (-3.1 kPa and -4.2 kPa: 99.4 - 98.3% after 48 h) (Fig. 4). Under 213 

wet conditions (0.0 kPa and -0.5 kPa) the dispersed bacterial community consisted, besides 214 

Pseudomonas, mainly of Paenibacillus, Rahnella, Lysinibacillus and, after 48 h (-0.5kPa), also of 215 

Flavobacterium and Janthinobacterium. At moderate dryness (-1.2 kPa), Bacillus was almost equal 216 

in abundance to Pseudomonas (47.2% and 50.4% respectively) at 24 h but were reduced over time 217 

to 3.7% at 48 h in favor of Pseudomonas (50.8%), Paenibacillus (19.1%) and to some extent 218 

Janthinobacterium (11.7%). 219 

 220 

For the lake community, Aeromonas was the most abundant genus in all samples and almost 221 

completely dominated the dispersed community under dry conditions (91.9% after 24 h and 95.6% 222 

after 48 h, -3.1 kPa) (Fig. 5). Under wet conditions Aeromonas dispersed and colonized fast (79.1%, 223 
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after 24 h) but appeared to experience increased competition from Exiguobacterium over time 224 

(43.3% and 37.5% respectively after 48 h). 225 

 226 

The bacterial diversity, calculated using the Shannon Diversity index (Fig. 6 A, B and S3 A, B), 227 

revealed that diversity was significantly affected by the matric potential in the 24 h soil samples 228 

(p< 0.001, ANOVA based on comparison of the differences between Full Plates and dispersed 229 

communities). Both the dry (-3.1 kPa) and moderately dry (-1.2 kPa) conditions were significantly 230 

different from the wet (-0.5 kPa) and very wet (0.0 kPa) conditions (p<0.05 for all pairwise 231 

comparisons). The two dry (-3.1 and -1.2 kPa) and two wet (0.0 and -0.5 kPa) soil communities did 232 

not significantly differ from each other (Fig S3 B). At 48 h, the differences between the Shannon 233 

Diversity indices at the four matric conditions were not significant (p=0.121) in spite of a clear 234 

trend for decreasing diversity with drier conditions (Fig. 6 B). The difference in diversity between 235 

the dispersed community and that recovered on the Full plate could only be rigorously tested at 236 

48 h, due to the significant effect of matric potential at 24 h, but showed that the dispersed soil 237 

community had a significantly lower diversity (p=0.001) (Fig. 6 B).  238 

The lake data also indicated a trend for lower diversity in the dispersed community compared 239 

to the Full Plate at both 24 h and 48 h (Fig. 6 A and S3 A). As expected, the Shannon diversity 240 

values of the Nycodenz extract and the Lake filtrate were much higher than for the samples 241 

collected after cultivation on the agar plates (5.57 ± 1.45 S.D (n=4) and 3.82 (n=1), respectively) 242 

clearly indicating cultivation bias.   243 

 The phylogenetic diversity calculated using Faith’s Phylogenetic Diversity index (Fig. 6 C, D and 244 

S3 C, D) revealed a consistently narrow phylogenetic diversity of the fastest dispersers at all tested 245 

 o
n
 J

a
n
u
a
ry

 3
0
, 2

0
1
8
 b

y
 T

E
C

H
 K

N
O

W
L

E
D

G
E

 C
T

R
 O

F
 D

E
N

M
A

R
K

h
ttp

://a
e

m
.a

s
m

.o
rg

/
D

o
w

n
lo

a
d

e
d

 fro
m

 

http://aem.asm.org/


12 
 

matric potentials, compared to the total community of the Full Plate and the motility restricted 246 

Reference Plate for both the soil and lake community. 247 

 248 

A closer look at the phylogenetic distribution of the two dominant genera Pseudomonas and 249 

Aeromonas in soil and lake water, respectively, showed that the dispersed communities at 48 h 250 

consisted of multiple and diverse amplicon sequence variants (ASVs) (Fig. S4, Table S1 and Fig. S5, 251 

Table S2). Notably, a search of the literature uncovered that all the type strains with the closest 252 

sequence similarity to our ASVs possess the ability for active motility mainly by using flagella, 253 

except for one for which motility is unknown (table S1 and S2). Neither for the soil community nor 254 

for the lake water community was there a clear separation of ASVs between matric conditions 255 

visible in the phylogenetic trees (Fig. S4 and S5). 256 

 257 

A comparison of the Pseudomonas present in the total community of the Full Plate and the 258 

dispersed soil community at 48 h shows that only 11 out of 44 ASVs were solely present in the 259 

total community, and thus did not disperse from the center of the ceramic disc (Fig S6). This 260 

supports the general notion of Pseudomonads as efficient dispersers. Furthermore, 9 out of 44 261 

ASVs were solely detected in the dispersed community. This is most likely because they were 262 

below detection limit in the total community, as strains present in the dispersed community must 263 

also be present in the total community.  Other evidence of large enrichments in the dispersed 264 

community can be found in the heatmap (Fig. 4), where, in addition to Pseudomonas, 265 

Paenibacillus (at matric potential below -3.1) and Bacillus (at -1.2 kPa) also notably increased their 266 

abundance in the dispersed community compared to the total community of the Full Plate and the 267 

motility restricted Reference Plate. These results illustrate that there can be a large fitness gain 268 
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associated with dispersal for a motile strain i.e. going from being below detection limit to 269 

potentially very high relative abundance far from the inoculation point. By moving ahead of the 270 

pack, such strains benefit from decreased competition for nutrients and maximize their growth. 271 

 272 

Discussion  273 

Performance and limitations of the method 274 

In this study, we developed a method for assessing dispersal of natural bacterial communities 275 

under controlled hydration conditions. We achieved this by expanding on the Porous Surface 276 

Model already well established for single strain motility studies (18, 35, 39), and using agar plates 277 

to get an imprint of the colonization on the surface of the ceramic disc. The method proved 278 

effective in separating the dispersal of a motile flagellated P. putida strain from a non-motile 279 

mutant, which stayed near the inoculation point in the center of the ceramic disc on the agar plate 280 

imprints (Fig. 1 and 2).   It was also able to capture the effect of lowered matric potential, which 281 

resulted in a reduced dispersal rate of the motile strain and a cessation of all movement at -3.1 282 

kPa, in agreement with previous studies (18, 34). In addition, the method was able to detect 283 

dispersal of the gliding bacterium F. johnsoniae, indicating the potential for detection of other 284 

types of motility than swimming. 285 

 286 

The possibilities for precise control of hydration conditions are one of the key points that separate 287 

this method from the few previous studies on community motility (27–29). Calculations coupled 288 

with recent measurements of the liquid film thickness on the surface of the ceramic disc in the 289 

PSM model (18, 34, 35) provides us with a unique platform to study the behavior of microbial 290 

communities on surfaces as they are affected in their microhabitats by water film thickness. While 291 
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we only tested the effect of fixed hydration conditions in this study, exploring dynamic conditions 292 

such as dry-wet cycles would be straightforward. Indeed, recent studies with a synthetic soil 293 

community on the PSM demonstrated a clear effect of such cycles on competition and co- 294 

existence (41). 295 

 296 

We recognize that the results from using this method are biased by cultivation and are only valid 297 

for the fraction of bacteria able to grow under the selected growth conditions. However, we did 298 

find a high diversity of genera among the cultured community and that the most dominant genera 299 

e.g. Pseudomonas and Aeromonas were prominent parts of the original inocula. This indicates 300 

that, in spite of the existence of some cultivation bias, our method do provide information of 301 

relevance to the original communities.  302 

 303 

In addition, nutrient supplementation is often necessary to detect dispersal (28) and one of the 304 

strengths of this setup is that it does allow for easy isolation of strains of interest as we essentially 305 

already have them on agar plates. This has led to a culture collection of soil isolates able to 306 

disperse at -0.5 and -3.1 kPa for use in future studies (data not shown). A possible venue to 307 

decrease cultivation bias is to optimize the medium. We currently use a medium with a relatively 308 

low substrate concentration (25% R2A and R2B) to avoid selection of only fast growing bacteria, 309 

but this could be further improved by e.g. using a soil extract medium (42). Results are also likely 310 

affected by the extraction methods used to obtain microbial inocula from the environment, 311 

because extraction, and especially Nycodenz extraction (43, 44), affects the composition of the 312 

inoculum. However, this is not a limit to the method itself. The method would also be applicable 313 

when using intact environmental samples (for example, soil aggregates) placed in the center of the 314 
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ceramic disc. Finally, while there are benefits of using the agar plate sampling method (low 315 

detection limit for cultivable bacteria), a possible improvement would be to recover the dispersed 316 

community for DNA extraction directly from the surface of the PSM. The recovery rate and 317 

detection limit would need to be evaluated carefully.         318 

 319 

Dispersal of environmental communities under low hydration conditions 320 

When we applied the method to soil and lake water communities, the results extended previous 321 

pure culture studies in confirming that dispersal rates decline as conditions become drier. 322 

However, surprisingly, for both communities, relatively rapid dispersal was detected even under 323 

the lowest hydration conditions (-3.1 kPa). After 48 h, members of both communities had reached 324 

the maximum possible distance of 25-41.3 mm (Fig. 3). It is unlikely that the detection of cells 325 

several cm away from the inoculation point could have been caused by simple colonial growth (i.e. 326 

cell division and shoving) because colony expansion by growth only is very slow (e.g. diameter 327 

expansion rate of 17 µm h-1 for a P putida KT2440 at -3.6 kPa) (35). Therefore, this dispersal is 328 

likely facilitated by motility. This strong dispersal potential under low hydration conditions was 329 

particularly surprising for the lake water community because the selective value of such traits in 330 

the original habitat is not obvious.   331 

 332 

A possible explanation for the rapid dispersal at conditions previously thought to be too dry could 333 

be a difference in cell size between the model strains and the bacteria in the environmental 334 

samples. As discussed in Dechesne et al. (18) the effective thickness of the liquid-film on the 335 

surface of the ceramic disc is the limiting factor for flagellar motility. Pure culture studies on the 336 

PSM using the motile strains Pseudomonas protegens CHA0 and Pseudomonas putida KT2440 337 
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report a threshold for swimming and dispersal at -2.0 kPa (18, 34, 35). At -2.0 kPa the predicted 338 

effective liquid film thickness on the surface of the ceramic is less than 1.5 µm and decreases to 339 

approximately 0.4 µm at -3.6 kPa, close to the shorter dimension of P. putida KT2440 rods 340 

(measured by others as 0.74 µm (rod shaped) (45) and as 0.6 µm by us under nutrient rich 341 

conditions). Hence, motility becomes strongly limited in liquid films thinner than the cell diameter, 342 

due to exposing the cell surface to liquid-air interfaces, capillary pressure and pinning forces (18, 343 

35). As many bacteria from soil and aquatic environments are small, with diameters less than 0.4 344 

µm and some even passing through 0.2 µm filters (44, 46–48), it is possible for some of them to be 345 

able to actively disperse in the thinnest liquid films tested in this study. It should be noted, 346 

however, that as bacterial cell size can vary with the conditions, e.g. Pseudomonads have been 347 

known to change both size and shape as a response to starvation or other chemical stressors (45, 348 

49), the size of the bacteria used in this study should be measured under the actual imposed 349 

conditions to confirm this theory.   350 

 351 

Diversity of efficient dispersers 352 

Our results show that diversity decreased in the dispersed communities compared to the total 353 

community in the soil and lake samples. This indicates that, within natural communities, there is a 354 

less diverse sub community of bacteria with the potential for dispersal, which will most likely have 355 

important consequences for community composition, competition and microbial succession. The 356 

study by Wolf et al. (28), which is most comparable to ours, identified the most abundant 357 

dispersers in their soil community as members of the genera Enterobacteriaceae, Pseudomonas, 358 

Massilia and Undibacterium, with Enterobacteriaceae as the most dominant. Here, we also find 359 

both Pseudomonas and Enterobacteriaceae within the 20 most abundant ASVs in the dispersed 360 
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soil community and Pseudomonas is the most dominant disperser. We also find Paenibacillus and 361 

Cupriavidus, that Wolf et al. (28) detected in low abundance, but along with Enterobacteriaceae, 362 

they are only present in our study at relatively wet conditions, with matric potentials of -1.2 kPa or 363 

lower. Undibacterium was not present in either the initial community or in the dispersed, and 364 

Massilia was only detected in low numbers on one Reference Plate and in one of the Nycodenz 365 

extractions. The differences in the abundance and composition of communities between the two 366 

studies are most likely caused by a combination of various factors such as different initial 367 

communities in the inoculum, medium selection, and variation in hydration conditions. 368 

Nonetheless, it remains clear that Pseudomonads play a key role in the two soil communities as 369 

early colonizers of unoccupied habitats and possibly gaining a further advantage at relatively low 370 

hydration conditions where they dominate the community. 371 

 372 

Potential modes of dispersal 373 

Under dry conditions Pseudomonas and Aeromonas dominated the dispersed soil and lake 374 

communities (Fig. 4 and 5).  Many members of these two genera produce biosurfactants which 375 

have been shown to facilitate dispersal on surfaces (50–53) such as leaves, an ability which has 376 

been hypothesized to increase fitness for Pseudomonas (54, 55). We speculate that biosurfactants 377 

also play a role in increasing the connectedness in the liquid film on surfaces.  An important factor 378 

in our model system is the residual roughness of the ceramic surface, although polished, it can 379 

result in the fragmentation of the aqueous habitat as matric potential decreases along with the 380 

liquid film thickness, and the topography of the surface, as a result, becomes more apparent. 381 

Tecon et al. reports that a rapid decrease in connectedness of the aqueous habitat was found at -382 

2.0 to -5.0 kPa which influenced the motility of their tested flagellated bacteria (34). Hence, 383 

 o
n
 J

a
n
u
a
ry

 3
0
, 2

0
1
8
 b

y
 T

E
C

H
 K

N
O

W
L

E
D

G
E

 C
T

R
 O

F
 D

E
N

M
A

R
K

h
ttp

://a
e

m
.a

s
m

.o
rg

/
D

o
w

n
lo

a
d

e
d

 fro
m

 

http://aem.asm.org/


18 
 

biosurfactant production could be a strategy to overcome dispersal limitation under dry conditions 384 

for the two genera observed in our study. In addition members of the orders Exiguobacterales 385 

(Exiguobacterium) and Bacillales (Bacillus and Paenibacillus), which are frequent in the dispersed 386 

lake and soil community at wet conditions (Fig. 4 and 5) have also been found to produce 387 

biosurfactants giving rise to speculation that the benefit of surfactant production for increased 388 

dispersal ability might not only be limited to dry conditions (53). While we did not look for 389 

biosurfactant production in this study, it would be straightforward to screen the obtained isolates 390 

for biosurfactant production in the future (56).    391 

 392 

Alternative modes of surface motility apart from flagella powered swimming might play an 393 

increased role as conditions become dryer (7). Therefore, one of the strengths of the PSM for 394 

complex community studies is that it is not limited to investigate bacteria with swimming ability, 395 

as in the previous work by Grossart et al. (29)  and Dennis et al. (27),  but also enables studies of 396 

other modes such as sliding, gliding, biosurfactant aided movement, fungal highways (23), or even 397 

expansion by filamentous growth (32). The PSM could thus be instrumental to establish which of 398 

these modes of motility are relevant on rough unsaturated surfaces.  399 

The pure culture experiment with F. johnsoniae CJ1827 confirmed that gliding is possible, and can 400 

provide a detectable dispersal advantage, on the rough surface of the PSM. In the soil community 401 

experiments, Flavobacterium was detected in low abundance in the dispersed communities at -0.5 402 

to -4.2 kPa (Fig. 4).  Many members of this genus have been found to possess gliding motility (12, 403 

57, 58), while flagellar motility in the family Flavobacteriaceae is almost unheard of (59), and 404 

recent isolates of the order Flavobacteriales from leaf surfaces have also been reported as 405 

biosurfactant producers (53). While the role of chemotaxis was not directly measured, it is 406 
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possible that chemotactic organisms are enriched at the rim of the ceramic plate where the 407 

substrate concentration is highest thanks to the low cell density. As many pseudomonads are 408 

known to possess chemosensory systems (60), this might contribute to their prevalence in the 409 

dispersed communities.  410 

 411 

In theory, not all the strains we observe in our dispersed community have to possess the ability for 412 

active motility themselves, they might be non- motile strains hitching a ride with their flagellated 413 

or gliding companions (21). The co-dispersal of multiple species unveils a much more complex 414 

picture of interactions that could be addressed by future studies employing the current PSM 415 

model system. A possible next step could be to test the isolates obtained in this study to establish 416 

which are able to autonomously disperse, versus those that rely on others.   417 

 418 

Conclusion: 419 

A novel method to study motility at the community level was developed and tested on a soil and a 420 

lake microbial community. The results obtained suggest that within the motile fraction of a 421 

bacterial community only a minority of the bacteria is able to disperse under relatively low 422 

hydration conditions, previously thought too dry for flagellar motility. During dry periods, these 423 

highly efficient dispersers will gain a significant advantage with their ability to colonize new 424 

habitats ahead of the rest of the community. This highlights the need for increased focus on 425 

complex communities, rather than pure culture studies for the prediction of actual dispersal ability 426 

on solid surfaces such as soil. 427 

 428 

Materials and Methods 429 
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Bacterial Strains. 430 

The bacterial strain Pseudomonas putida KT2440 GFP, a tagged-derivative of a motile bacterium 431 

initially isolated from rhizosphere soil (61) was used as a motile model strain for flagellar motility 432 

and a nonflagellated mutant P. putida K2440 dsRed fliM- previously created (18) was used as a 433 

non-motile model strain.  434 

The bacterial strain Flavobacterium johnsoniae CJ1827 (37), was used as a model strain for gliding 435 

motility, and a non-motile mutant F. johnsoniae 2122 ∆gldK (38) was used as a non-motile model 436 

strain. All strains were routinely maintained on agar plates. P. putida strains on R2 agar (R2A, 437 

Fluka; Sigma-Aldrich, St. Louis, USA) and F. johnsoniae strains on CYE agar (62) medium at 25°C.  438 

 439 

Visualizing dispersal of non-fluorescent bacteria from environmental samples on the PSM.  440 

The porous surface model (PSM) has previously been described and used for observing motility 441 

and growth of fluorescent strains after their inoculation at the center of a ceramic disc (diameter = 442 

41.3 mm, thickness = 7.1 mm, maximum pore size <1.5 µm, 1 bar bubbling pressure; Soilmoisture, 443 

Santa Barbara, USA) simulating a soil surface, under controlled hydration conditions (35).  444 

Imposing suction on the disc controls the thickness of the liquid film on the ceramic surface.  445 

 446 

In this study, we have expanded the use of the PSM for environmental communities. As non-447 

fluorescent cells are not detectable on the surface of the ceramic disc by standard microscopy, we 448 

trapped the bacteria from the PSM by pressing small agar plates on top of the ceramic disc. This 449 

allows visualizing the colonization on the ceramic disc by observing the growth on the 450 

corresponding agar plates (Fig. S1). 451 

 452 
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The agar plates were obtained by pouring 6.3 ml 25% R2A with 20 g agar l-1 into the lid of a small 453 

plastic petri dish (StarTMDish diameter, 40 mm; height, 12.5 mm; Phoenix Biomedical Products, 454 

Mississauga, Canada) filling it to the brim. To further flatten the surface of the agar, the sterile lid 455 

of a standard petri dish (diameter 90 mm; height, 14.2 mm; VWR International, Søborg, Denmark) 456 

was pressed on top of the small agar plate before it had completely solidified. After drying the 457 

small agar plate was transferred into a big petri dish for storage. The PSM reservoirs were filled 458 

with 200-250 ml 25% R2B (Alpha Biosciences, Maryland, USA) and autoclaved before use.    459 

 460 

Preliminary tests with fluorescent strains revealed that pressing of agar plates on the ceramic discs 461 

provided a distorted image of the bacterial spatial pattern because cells are inevitably displaced 462 

along the contact plane. Therefore, we detected bacterial colonization in concentric annular 463 

sections of the PSM surface. By preparing agar plates with holes of diameters ranging from 11.5 464 

mm, 15 mm, 20 mm and 25 mm (Fig. S1) we could estimate dispersal by sequentially pressing 465 

these plates on the PSM starting with that with the biggest hole and finishing with a full plate (Full 466 

Plate).  467 

The holes were punched in the agar plates with a custom-made tool consisting of a teflon handle, 468 

for safe handling during flame sterilization, fitted to brass tubes of varying diameters (length: 12.5 469 

cm; diameters: 11.5, 15, 20, 25 mm) (Fig. S2). A printed template was placed under the agar plate 470 

to help center the holes. All plates were kept for a minimum of 48 h at room temperature before 471 

use on the PSM to test for contamination.    472 

 473 

Proof of concept with motile and non-motile pure cultures.  474 
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We tested the ability of the method for distinguishing the dispersal patterns of P. Putida KT2440 475 

GFP and P. putida K2440 dsRed fliM-
. The bacteria, cultivated on R2A plates, were suspended in 476 

0.9% NaCl solution and adjusted by optical density measurements at 600 nm to obtain a cell 477 

density of ca. 2000 cells µl-1, as confirmed by plate counts. Before inoculation the PSMs were 478 

elevated to -4.2 kPa (the length of the hanging water column is 40 cm and equals a suction of -4.2 479 

kPa) for 20 minutes to drain excess fluid from the ceramic surface.  The two bacterial suspensions 480 

were mixed in equal ratio and 0.5 µl was inoculated in the center of the ceramic disc, where it was 481 

rapidly absorbed. The discs were then brought to matric potentials (suction) of -0.5, -1.2 or -3.1 482 

kPa (-5, -12 and -30 cm of water suction) and incubated at room temperature for 14, 24 or 40 483 

hours before sampling by pressing the suite of agar plates onto the surface. Plates were incubated 484 

at 25°C for a 48 h growth period before being stored in the fridge at 4°C until observation by 485 

microscopy.  486 

 487 

To test the applicability of the method for other types of motility, we tested the gliding bacterium 488 

Flavobacterium johnsoniae strain CJ1827 (37), and a non-motile mutant F. johnsoniae 2122 ∆gldK 489 

(38) on separate PSMs. Bacteria were streaked from CYE agar and grown in overnight cultures at 490 

25°C in motility medium (MM) (63) and adjusted by optical density measurements at 600 nm to 491 

obtain a cell density of ca. 63000 cells µl-1, as confirmed by plate counts, before inoculation of 1 µl  492 

in the center of the ceramic disc. The PSMs were kept at -0.5 kPa for 48h of incubation at room 493 

temperature, using 25% R2B medium in the PSM reservoirs.  The 25% R2A pressed plates were 494 

kept at 25°C for a 48 h period before growth was recorded. 495 

 496 

Microscopy and imaging. 497 

 o
n
 J

a
n
u
a
ry

 3
0
, 2

0
1
8
 b

y
 T

E
C

H
 K

N
O

W
L

E
D

G
E

 C
T

R
 O

F
 D

E
N

M
A

R
K

h
ttp

://a
e

m
.a

s
m

.o
rg

/
D

o
w

n
lo

a
d

e
d

 fro
m

 

http://aem.asm.org/


23 
 

P. putida KT2440 GFP and P. putida KT2440 dsRed fliM- spatial patterns on the PSM and on agar 498 

plates were determined with a Leica MZ16 FA epifluorescence stereomicroscope equipped for GFP 499 

and DsRed detection and fitted with a charge-coupled device (CCD) camera. Each plate was scored 500 

for the presence or absence of each strain. For documentation purpose, the entire surface of 501 

selected plates was imaged by sequentially capturing several fields of view, using a motorized 502 

stage piloted by Image Pro Plus (version 7.1; Media Cybernetics, Silver Spring, MD, USA) and then 503 

assembling a tiled image using the same software. The GFP and DsRed images of each plate were 504 

captured separately and then combined into one image.       505 

 506 

To document the presence of colonies on the plates independently of fluorescence, the plates 507 

were subsequently imaged using the camera of a GelDocXR (Bio-Rad), operated in ‘epiwhite’ 508 

mode.  509 

 510 

Dispersal potential of environmental communities. 511 

A soil sample was collected from the plow layer (5-15 cm depth) of a Danish agricultural field, 512 

included in the Danish Pesticide Risk Assessment Program (PLAP) (64) in March 2016 (Fårdrup, 513 

Sjælland).  The soil is characterized by clay till and further details can be found at 514 

http://pesticidvarsling.dk/. The soil was stored at 4°C. For each experiment 25 g sieved (2 mm) soil 515 

was taken by composite sampling, i.e. as small subsamples taken from the original soil sample and 516 

then mixed. The soil bacteria were extracted using Nycodenz density gradient centrifugation as in 517 

(65), except for the final cell density determination, which was performed directly using a Thoma 518 

counting chamber. Cell density was adjusted to 0.5 – 1 × 106 cells µl-1 in 0.9% NaCl solution and 10 519 

µl inoculated as 1 µl drops in the center of the ceramic discs. This inoculum corresponded to ca. 520 
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2000 to 8000 CFUs on R2A plates. All plates used for the environmental communities were 521 

amended with 100 mg l-1 Delvocid to inhibit fungal growth (Natamycin, DSM food specialties, 522 

Delft, The Netherlands).  523 

Lake water was sampled from the urban lake Sortedamssøen (Copenhagen), in September 2016. 524 

Four litre were collected from the surface water approximately 1.5 m from the shore. The water 525 

sample was filtrated first through a 2 µm glass fiber prefilter (Merck Millipore; Tullagreen, Ireland) 526 

and then through 0.2 µm polycarbonate filters (GVS Filter Technology; Morecambe, United 527 

Kingdom) on a filtration manifold (DHI Lab Products; Hørsholm, Denmark). The filters were 528 

transferred into a 15 ml falcon tube with 2.5 ml 0.9% NaCl solution and vortexed for 45 seconds. 529 

The filters were removed, and the cell density was adjusted by Thoma count to 2 × 106 cells µl-1. 20 530 

µl of the suspension was inoculated as 1 µl drops, yielding 34125 CFUs per inoculum based on 531 

drop plate counts on R2A plates. Both the lake and soil inoculum were kept at 4°C overnight 532 

before inoculation on the ceramic discs. After inoculation, the discs were brought to matric 533 

potentials of -0.5 and -3.1 kPa and incubated at room temperature for 24 to 48 hours before 534 

sampling. 535 

 536 

After sampling by pressing of the agar plate series on the PSMs at appropriate times, plates were 537 

incubated for 72 hours at 25°C. In addition to the presence / absence score, used in the pure 538 

culture studies, the coverage of bacterial growth on the individual agar plates were roughly 539 

estimated by eye using 4 categories; 1-25, 26-50, 51-75 and 76-100% coverage.  540 

 541 

After scoring, for each pressed plate series, the plate with the fastest colonizers (bacteria present 542 

the furthest from center) and the Full Plate with the total cultivable community were chosen for 543 
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amplicon sequencing. In addition to these, for each separate experiment a “Reference Plate” was 544 

made, by drop plating 10 µl of the inoculum onto the center of a small 25% R2A plate with 20 g 545 

agar l-1. This was meant as a motility-restricted control for the bacteria cultivable on the medium.  546 

 547 

The bacteria were then washed from the agar plates by transferring the agar from the small petri 548 

dish into a standard size petri dish with a flamed spatula, adding 2 ml 0.9% NaCl solution for 10 549 

minutes and then gently rubbing the surface of the agar with a sterile inoculation loop and 550 

collecting the bacterial suspension by pipetting into an Eppendorf tube. The procedure was 551 

repeated twice with 1.5 ml 0.9% NaCl and the suspensions collected. The Eppendorf tubes were 552 

centrifuged for 5 minutes at 7500 x g before pooling into a single 1 ml sample suspension. The cell 553 

suspensions (plate wash) from the pressed plates, the Reference Plates, Nycodenz extracts, lake 554 

filtrate and leftover inoculums were all transferred to cryotubes and stored at -80°C. 555 

  556 

DNA extraction and sequencing. 557 

DNA was extracted using the Powerlyzer Powersoil kit (MoBio; Carlsbad, USA) following the 558 

manufacturer’s protocol with a few changes. 500 µl of the thawed plate wash was centrifuged for 559 

5 minutes at 10.000 x g. the supernatant was removed and the pellet dissolved by adding 750 µl 560 

bead solution and vortexing. The suspensions were transferred to Glass Bead Tubes, 60 µl C1 561 

solution was added and samples were placed in a Bead Beater for 5 minutes at 2000 RPM. 562 

Hereafter the manufacturer’s protocol was followed.  DNA concentrations were measured on 563 

Qubit 2.0 (Life Technologies, Invitrogen; Carlsbad, USA) and stored at -80°C until sequencing. 564 

 565 
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The extracted DNA was PCR-amplified using the universal primer set PRK341F (5'- 566 

CCTAYGGGRBGCASCAG-3') and PRK806R (5'-GGACTACNNGGGTATCTAAT-3') that amplify the V3-567 

V4 hypervariable regions of the 16S rRNA genes (66). 2 x 300 bp Purified PCR products were 568 

sequenced on the Illumina MiSeq platform at the DTU Multi Assay Core Center (Lyngby, DK). All 569 

raw 16S rRNA gene amplicons were processed with the DADA2 pipeline (67) with default 570 

parameters. The sequences were classified based on the SILVA prokaryotic reference database 571 

version 123 (68). A total of 3.8 million sequences passed the filtering steps, representing an 572 

average of 5.3*104 sequences per sample.  573 

 574 

Shannon indices were computed in R software (version 3.3.1; R Core Team (2016)) using the 575 

“plot_richness” function in the “phyloseq” package (69). Samples were rarefied to even depth 576 

(average of 10 iterations) with the “rarefy_even_depth” function in the “phyloseq” package before 577 

calculating Faith’s Diversity with the “pd.query” function of the “PhyloMeasures” package (70). 578 

Heatmaps were plotted using the “amp_heatmap” function of the “ampvis” package (71), while 579 

“ggplot2” (72) and “ggtree” (73) were used for plots and phylogenetic trees, respectively. 580 

Type strains were identified using EZBioCloud (www.ezbiocloud.net) (74), and the closest match 581 

along with sequences for common Pseudomonads and Aeromonads were added to the trees for 582 

reference. For construction of phylogenetic trees with type strains, sequences were aligned with 583 

ClustalW in MEGA7 with the following parameters: Pairwise Alignment: Gap open: 1, extension: 584 

6.66, Multiple Alignment: Gap open: 15, extension: 6.66. Sequences were trimmed to even length. 585 

Tree was constructed with the “UPGMA” function in package "phangorn" (75).   586 

 587 
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All sequencing data have been deposited as a NCBI BioProject under accession number 588 

PRJNA400555.  589 

 590 

Statistical analysis. 591 

Mann-Whitney Rank Sum Test in Sigmaplot 13 (Systat Software Inc., San Jose, CA, USA) was used 592 

for the dispersal profile data. One-way ANOVA based on comparison of the differences between 593 

Full Plates and dispersed communities was used for 24 h Shannon Diversity Indices. Kruskal-Wallis 594 

Analysis of Variance on ranks (data was ranked due to unequal variance) and a paired t-test was 595 

used for 48 h Shannon Diversity Indices. P values < 0.05 were considered significant. 596 
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 799 
 800 

FIG 1 Proof of concept using pure cultures. 801 

A) Separation of the motile strain P. putida KT2440 GFP (green) and the non-motile P. putida 802 

KT2440 dsRed fliM-(red) on agar plates pressed onto the ceramic disc as pictured with multiple 803 

fields of epifluorescence microscopy. The non-motile strain was only detected on the Full Plate 804 

press (red arrow), while the motile strain was detected on all of the pressed plates, including the 805 

one that captures the zone most distant from the inoculation point (green arrow). B) Dispersal 806 

assessed with a camera without fluorescence detection, which is the method used for 807 

environmental communities. Contrast has been digitally enhanced. The plates have been pressed 808 

after 40 h dispersal at -0.5 kPa. 809 
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 819 
 820 
 821 

FIG 2 Dispersal dynamics of motile and non-motile strains as affected by the matric potential. 822 

The progressive dispersal of the motile strain P. putida KT2440 GFP was captured by our method, 823 

as well as the inability of the non-motile P. putida KT2440 fliM- DsRed to disperse away from 824 

center of the ceramic disc. Both motile (green) and non-motile (red) strains were tested at three 825 

matric potentials (kPa). For the non-motile, only -0.5 kPa is depicted as the other values were 826 

similar, with bacteria solely present at the center. The distances shown are ranges, e.g. colonies 827 

have been observed on the agar ring at a distance between 11.5 to 15 mm from center. Numbers 828 

of replicate dispersal experiments vary from 2 to 5.  829 
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 837 

  838 
 839 

FIG 3 Dispersal of a soil and a lake community over time at different matric potentials. Symbol 840 

shading depicts bacterial coverage of the pressed agar plate, giving an indication of the extent of 841 

colonization. The lake community was tested at two matric potentials vs four for the soil one; the 842 

number of replication varied from two to five. 843 
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 852 
FIG 4. Heatmap of the relative abundance of the 20 most dominant genera across communities 853 

derived from a soil extract  and differing in their dispersal after being incubated at prescribed 854 

matric potential for 24h or 48h. For 24 h, two additional matric potentials of 0.0 kPa and -4.2 kPa 855 

(only one sample recovered at 20 mm) were added. Columns present the average of triplicate 856 

communities, except for the motility restricted control (Reference Plate; n=4), the total 857 

community on the Full Plate at -4.2 kPa (n= 1) and the fastest dispersed community at -1.2 for 24 h 858 

(n=2) and at -3.1 kPa (n=2), and -4.2 kPa (n=1) for 48 h.  859 
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 860 

FIG 5 Heatmap of the relative abundance of the 20 most dominant genera across communities 861 

derived from a lake filtrate and differing in their dispersal after being incubated at prescribed 862 

matric potential for 24 h or 48 h. Columns present the average of duplicate communities, except 863 

for the motility restricted control (Reference Plate, n=1), the total community on the Full Plate at -864 

3.1 kPa (n= 3) for 48 h and the fastest dispersed community at -3.1 kPa for 24 h (n=1).   865 
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 868 

FIG 6 Estimates of alpha-diversity (Shannon Diversity Index and Faith´s Phylogenetic Diversity 869 

index) for communities derived from soil or from a lake, after 48 hours incubation at prescribed 870 

matric potentials. For each matric potential, the total community recovered from the full agar 871 

plate (Full Plate) and the fastest dispersed community is presented. A motility restricted control 872 

(Reference Plate) is also included. Replicates are depicted as separate dots. The Faith´s 873 

Phylogenetic Diversity indices reported are the average of values obtained for 10 random 874 

rarefactions. 875 
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