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Abstract 

Multimodal classification is increasingly common in biomedical informatics studies. Many such studies use 

deep learning classifiers with raw data, which makes explainability difficult. As such, only a few studies 

have applied explainability methods, and new methods are needed. In this study, we propose sleep stage 

classification as a testbed for method development and train a convolutional neural network with 

electroencephalogram (EEG), electrooculogram, and electromyogram data. We then present a global 

approach that is uniquely adapted for electrophysiology analysis. We further present two local 

approaches that can identify subject-level differences in explanations that would be obscured by global 

methods and that can provide insight into the effects of clinical and demographic variables upon the 

patterns learned by the classifier. We find that EEG is globally the most important modality for all sleep 

stages, except non-rapid eye movement stage 1 and that local subject-level differences in importance 

arise. We further show that sex, followed by medication and age had significant effects upon the patterns 

learned by the classifier. Our novel methods enhance explainability for the growing field of multimodal 

classification, provide avenues for the advancement of personalized medicine, and yield novel insights 

into the effects of demographic and clinical variables upon classifiers. 

Introduction 
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In recent years, more biomedical informatics studies have begun to incorporate multimodal data into the 

training of machine learning and deep learning classifiers (1–3). The use of complementary modalities can 

enable the extraction of better features and improve classification performance (1)(4). While multimodal 

data can improve classifier performance, it can also make explaining models more challenging. This is 

especially true for state-of-the-art deep learning models that use automated feature extraction. As a 

result, most studies have not used explainability (4–8)(9), which is concerning because transparency is 

increasingly demanded for model development and physician decision making (10). As such, more 

multimodal explainability methods need to be developed (2,3,11–14). In this study, we propose the use 

of automated sleep stage classification as a testbed for the development of multimodal explainability 

methods. We further present 3 novel approaches for use with multimodal electrophysiology data that 

offer significant improvements over existing approaches. Specifically, we present a global ablation 

approach that is uniquely adapted for electrophysiology data. We further present two local methods that 

can be used to identify personalized electrophysiology biomarkers that would be obscured by global 

methods. Using the local methods, we then perform a novel analysis that illuminates the effects of 

demographic and clinical variables upon the patterns learned by the classifier.  

Automated Sleep Stage Classification as Testbed for Multimodal Explainability 

Automated sleep stage classification offers a unique testbed for the development of novel multimodal 

explainability methods. Automated sleep stage classification has multiple noteworthy characteristics. (1) 

In practice, clinicians rely on multiple modalities instead of a single modality to manually score sleep 

stages (15). (2) The features differentiating sleep stages and the importance of modalities are well-

characterized in a clinical setting (15). (3) Multiple large sleep stage datasets are publicly available (16–

18). (4) A number of studies involving unimodal and multimodal sleep stage classification have been 

conducted (4)(19), which could enable data scientists to develop their explainability methods alongside 

established architectures. Because these characteristics can help us validate our explainability methods 

and because there is a clinical need for explainability in sleep stage classification, we chose sleep stage 

classification as a use-case in this study. In the following paragraphs, we first discuss the different stages 

of sleep. We then briefly review the domain of sleep stage classification and the explainability methods 

that have been used within the domain, both for multimodal and unimodal classification studies.  

Characteristic Features of Sleep Stages 

Typical sleep stage classification approaches involve the classification of 5 stages: Awake, rapid eye 

movement (REM), non-REM1 (NREM1), NREM2, and NREM3. Clinicians use the American Academy of 

Sleep Medicine (AASM) manual (15) to identify the stages, and the stages are clearly described in other 

sleep staging studies (20)(21). According to the AASM manual (15), Awake periods are characterized by α 

band (8 – 13 Hz) electroencephalogram (EEG) activity in occipital brain regions when a participant’s eyes 

are closed. When a participant’s eyes are open, Awake periods are characterized by eye blinks, rapid eye 

movements, reading eye movements (i.e., slow movements followed by a burst of movement in the 

opposite direction), and strong levels of electromyogram (EMG) activity. NREM1 periods are characterized 

by slow eye movements, θ band (4 – 7 Hz) EEG activity, and vertex sharp waves (i.e., large V-shaped waves 

with a duration of less than 0.5 seconds). They have EMG activity at lower levels than Awake periods. 

NREM2 is principally characterized by EEG activity. It has K-complexes (i.e., sharp negative decreases in 

signal amplitude followed immediately by sharp increases in positive signal amplitude) and sleep spindles 

(i.e., trains of waves between 11 – 16 Hz). NREM2 typically has no electrooculogram (EOG) activity. It 

typically has less EMG than Awake periods and can have levels as low as REM. NREM3 mainly consists of 
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δ (0.5 – 2 Hz) EEG activity. NREM3 typically has little or no EOG activity. It has less EMG activity than 

NREM2 and can have EMG activity as low as REM. REM is characterized by rapid eye movements in the 

EOG, periods of little or no EMG activity followed by brief irregular bursts of activity, and sharp triangular 

EEG activity. Each stage is characterized by distinct EEG, EOG, and EMG activity. 

Unimodal Sleep Stage Classification and Explainability 

Many sleep stage classification studies have used unimodal EEG. While some studies have used extracted 

features for sleep stage classification (19,20,22,23), recent studies have begun to use deep learning 

techniques involving automated feature extraction from raw data (21,22,24–27). Multiple studies have 

used explainability methods for unimodal classification. Some studies have used extracted spectral 

features. In a couple of studies, authors trained convolutional neural networks (CNNs) to classify EEG 

spectrograms and applied sensitivity or activation maximization (28) to identify the important features 

(29)(30). In other studies, authors trained interpretable machine learning models or deep learning models 

with layer-wise relevance propagation (LRP) (31) to classify power spectral density values and gain insight 

into the features learned by the classifiers (32)(33). A few studies involving deep learning models with raw 

data have also used explainability methods (25,34–36). These studies typically seek to identify the spectral 

features (34–39) or waveforms (36,37) learned by neural networks. However, multimodal classification 

poses unique challenges for explainability that do not exist for unimodal classification. 

Multimodal Explainability in Sleep Stage Classification and Other Domains 

As such, most multimodal classification studies, regardless of whether they used extracted features (5,8) 

or deep learning-based automated feature extraction (4,7), have not used explainability methods. Among 

the few studies using explainability methods (40–42), some have used extracted features and forward 

feature selection (FFS) (42). Others have used raw data and ablation for insight into modality importance 

(41). Additionally, some have shown the importance of EEG spectra or performance increases after 

retraining a model with additional modalities (40). Some multimodal explainability methods have also 

been presented in other domains (2)(3)(43). Similar to (42), one paper used FFS to find key features from 

clinical scales and imaging features (3). One study used impurity and ablation (2). Another multimodal 

study showed the importance of parts of inputs for one modality (43) with Grad-CAM (44). 

Current Multimodal Explainability Methods 

Multiple methods have been used for insight into modality importance in multimodal classifiers: FFS 

(3)(42), impurity (2), and ablation (2)(41). FFS is applicable to most classifiers. However, it requires 

repeated retraining, which is impractical for computationally intensive deep learning frameworks. 

Impurity is only applicable to tree-based classifiers. Lastly, ablation is, like FFS, also applicable to nearly 

any classifier and is easy to implement. In contrast, to FFS, ablation is not computationally intensive. As 

such, of existing approaches, it is most useful for finding modality importance in deep learning classifiers. 

Limitations of Ablation and Novel Alternative 

Ablation does have a key weakness like all perturbation-based post-hoc explainability methods. 

Specifically, perturbation methods can create out-of-distribution samples that lead to a poor assessment 

of modality importance (45). Ablation also involves (1) the substitution of a feature or modality with values 

that are theoretically neutral (i.e., that do not give evidence for a particular class)  and (2) an examination 

of how that ablation affects the classifier. As such, when translating ablation to a new domain, it is 

important to consider how to set a modality or feature to a neutral state while minimizing the likelihood 

of creating out-of-distribution samples or features. Existing studies using ablation for insight into 
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multimodal classifiers have replaced each modality with zeros (2)(41). However, zeroing out modalities 

creates samples that are highly irregular within the electrophysiology domain. The only instance in which 

an electrode might return a value of zero is when the electrode is completely disconnected from the 

device. In contrast, electrodes commonly return line-related noise or, in instances when an electrode is 

not working properly, only return line-related noise. Line-related noise is found in electrophysiology data 

at 50Hz or 60Hz due to the presence of lights, power lines and other electronics near recording devices. 

Because it is so often found in electrophysiology data, a classifier should learn to ignore it, and it should 

be neutral to the classifier. As such, line-related noise could offer a more reliable, electrophysiology-

specific alternative to the generic zero-out ablation methods that have previously been applied. 

While line noise-based ablation would be less likely to produce out-of-distribution samples or features 

than a typical zero-out ablation approach, it would still be at risk of doing so. Gradient-based feature 

attribution (GBFA) methods (46) offer an alternative to ablation that does not risk producing out-of-

distribution samples. GBFA methods include approaches like LRP (31), Grad-CAM (44), and sensitivity (28). 

Limitations of Global Explanations and Proposal of Novel Local Explainability Approach 

Global explainability methods identify the overall importance of each feature or modality to the classifier. 

In contrast, local methods provide higher resolution insight and indicate the importance of each feature 

or modality to the classification of individual samples (45). Global methods have inherent limitations 

relative to local methods, and existing multimodal explainability approaches have mainly been global. 

Importantly, as shown in Figure 1, global explanations obscure feature importance for individual samples 

and can obscure the presence of subgroups. Local explanations for many samples can be combined for 

higher level or global importance estimates (33) (34). Because of this, they can also be analyzed on a 

subject-specific level that paves the way for the identification of personalized biomarkers. Furthermore, 

local explanations can be used to examine the degree to which demographic and clinical variables affect 

the patterns learned by a classifier for specific classes and features (13), which is a capacity that has not 

previously been exploited in multimodal classification. Local methods have been applied in a couple 

multimodal classification studies. In one study, authors ablated time points of an input sample and 

examined the effect on the classification of the sample (41). In another study, authors used Grad-CAM to 

examine segments of a single modality (43). Neither study identified the importance of each modality. 

 

Figure 1. Example of Global versus Local Importance with Dummy Data. From left to right, are 4 

importance metrics: the importance for an atypical sample, the importance for two generic samples, and 

the global importance estimate that is formed by averaging the importance values for the individual 

samples. Note that modality two is very important for the atypical subject but not for the generic subject, 
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so the presence of the atypical sample is hidden in the global importance. When thousands of samples 

from dozens of subjects are being analyzed, the presence of subgroups is easily obscured.  

In the present study, we train a CNN for automated sleep stage classification using a popular publicly 

available dataset. We introduce a novel global ablation approach that is uniquely adapted for the 

electrophysiology domain (12). We then present a novel local ablation approach (13) and show how GBFA 

methods can be used for local insight into multimodal classifiers (11). With our local methods, we identify 

subject-level differences in modality importance that support the viability of the methods for the 

identification of personalized biomarkers. We then use the local explanations to perform a novel analysis 

that provides insight into the patterns learned by the classifier related to the age, sex, and state of 

medication of subjects in our sleep dataset (13,14). 

Results 

Here, we describe our model performance, explainability, and statistical analysis results.  

Model Performance Results 

Table 1 shows the mean and standard deviation of the precision, recall, and F1 score for each class. The 

model had highest F1 scores for NREM2 and Awake. Possibly because of its smaller sample size, NREM1 

had the lowest classification performance across all metrics. While performance for NREM3 and REM was 

not as high as for NREM2 and Awake for most metrics, the classifier still performed well for both classes.  

Table 1. Classification Performance Results 

 Awake NREM1 NREM2 NREM3 REM 

F1 71.25±05.15 39.86±07.19 73.28±04.76 64.15±15.25 65.92±06.28 

Precision 72.25±07.12 36.20±03.98 79.35±03.92 56.78±18.35 69.04±07.14 
Recall 70.90±07.02 46.28±13.52 68.71±08.51 78.22±10.24 63.26±06.69 

Table 2 shows a confusion matrix of the classifier performance on test samples across all folds. A relatively 

large number of Awake samples were assigned to the NREM1 class, and NREM1 samples were assigned 

to all classes but NREM3. Many NREM2 samples were assigned to NREM3, and many NREM3 samples 

were assigned to NREM2. Many REM samples were assigned to NREM1 and NREM2.  

Table 2. Confusion Matrix for Test Samples Across All Folds 
 Predicted 

Awake NREM1 NREM2 NREM3 REM Totals 

A
ct

u
al

 

Awake 4574 1083 293 151 240 6341 

NREM1 806 2424 879 212 890 5211 
NREM2 602 1981 17965 3928 1902 26378 

NREM3 133 108 1315 6125 74 7755 

REM 169 1157 2197 472 6929 10924 

Totals 6284 6753 22649 10888 10035 56609 

Global Ablation Results 

Figure 2 and Supplementary Figure 1 show the results comparing our noise-related global ablation analysis 

with the typical global ablation approach that zeroes out a modality for correct classification groups and 

all classification groups, respectively. We computed the percent change in the number of samples 

assigned to a classification group within the confusion matrix after perturbation. Figure 2 shows bar plots 

of the median importance for each group, and Supplementary Figure 1 shows box plots for each group.  
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Figure 2. Global Ablation Results for Correctly Classified Samples. The leftmost and rightmost plots show 

the results for the zero-out ablation and our noise-related ablation, respectively. Importance for each 

sleep stage and modality is aligned vertically. Horizontal dashed lines separate importance for each sleep 

stage. Blue and red bars indicate negative and positive percent change in samples, respectively. Asterisks 

indicate significant differences (p < 0.05) between results for the two methods. Across both methods, EEG 

was most important for all classes except NREM1. 

In this paragraph we discuss correctly classified samples. EEG was the most important modality across 

both methods for all classes except NREM1. For Awake samples, the model was most affected by EEG 

ablation, though the effects of ablating EEG varied widely across folds. Interestingly, the two methods had 

significantly different effects on the change in the number of Awake samples following EOG ablation . For 

EOG, our approach caused the number of Awake samples to increase, while the typical approach caused 

the number of Awake samples to decrease. The two methods also significantly differed for EMG. Ablating 

EMG with the typical approach decreased the number of Awake samples, while ablating EMG with our 

approach did not really have an effect. For NREM1, EEG and EOG ablation had large effects for both 

methods. EEG ablation increased the number of NREM1 samples, and EOG ablation decreased the number 

of NREM1 samples for both standard and noise-related methods. NREM1 EMG results significantly 

differed for the two methods. Ablation of EMG with our approach increased the number of NREM1 

samples, and ablation with the typical approach slightly decreased the number of NREM1 samples. For 

NREM2, ablation of EEG caused nearly all NREM2 samples to be misclassified across nearly all folds. 

Ablation of EOG increased the number of NREM2 samples, and ablation of EMG had little effect. For 

NREM3, ablation of EEG caused nearly all NREM3 samples to be misclassified. EOG ablation caused an 

increase in misclassified NREM3 samples. EMG ablation had little effect, though our ablation approach 

showed a slight increase in NREM3 samples in some instances. For REM, EEG and EOG ablation caused 

large reductions in REM samples. In both instances, ablation with our approach produced a significantly 

larger reduction than ablation with the typical approach. Also, EMG ablation with the standard approach 

had negligible effects but a significant decrease in REM samples with our approach. 
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Because we measured the percent change in samples assigned to each classification group, the effects of 

perturbing modalities to different classification groups can be compared. Ablating NREM2 and NREM3 

EEG prompted a much larger decrease in correctly classified samples than ablating EEG for other classes, 

though the effect on REM was only slightly less. In contrast, ablating EEG significantly increased the 

number of correctly classified NREM1 samples. EOG ablation had the strongest impact upon NREM1 

followed by REM, where the number of correctly classified samples decreased. EMG seemed to have little 

effect upon the classifier. However, EMG did impact Awake and REM classification to a small degree. 

For samples misclassified as Awake, EEG ablation greatly increased the number of samples from other 

classes that were assigned to Awake. EMG and EOG ablation only affected the number of NREM1 samples 

assigned to Awake (i.e., NREM1/Awake), though they affected the number of REM/Awake to a smaller 

degree. For samples misclassified as NREM1, EEG ablation significantly increased the number of 

misclassified samples. For samples misclassified as NREM2, EEG ablation prevented samples from most 

classes being classified as NREM2, but EOG ablation increased the number of misclassified samples. EEG 

and EOG ablation also reduced the number of samples misclassified as NREM3. Ablation had negligible 

effects upon the number of NREM2/REM and NREM3/REM. Interestingly, the two ablation methods 

seemed to have approximately opposite effects for the number of Awake/REM and NREM1/REM. 

Local Ablation Results 

We performed several analyses with our local ablation approach. (1) We combined the results across 

samples to form a global estimate of modality importance. (2) We showed how the local explanations 

evolved over a 2-hour window of data. (3) We examined how the ablation results might give insight into 

the patterns learned by the classifier related to demographic and clinical variables.  

 

Figure 3. Local Ablation Results Showing Estimation of Global Importance for Correct Classification 

Groups. Within each fold, we calculated the mean absolute percent change in activation for the 

perturbation of samples in each classification group. We then calculated the median value across folds. 
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The bar plots show the results for the correct classification group. EEG, EOG, and EMG importance values 

are shown in red, green, and blue, respectively. EEG was most important for all classes except NREM 1. 

Comparison of Global Ablation with Local Ablation-based Global Estimation of Modality Importance 

Figure 3 and Supplementary Figure 2 show how we applied our local ablation approach across all samples 

in each fold to estimate global modality importance for correct classification groups and all classification 

groups, respectively. This enabled us to validate our local ablation approach by comparing it to our global 

ablation approach. To find the effects across samples, we calculated the absolute percent change for each 

sample and then calculated the mean value across samples. Importantly, like in global ablation, our local 

ablation approach found that EEG was the most important modality for all classes except NREM1 in which 

EOG was most important. Overall, our local and global ablation approaches seemed to assign similar levels 

of relative importance. However, this was not true for many incorrect classification groups. For example, 

the relative importance of each modality differed across methods for NREM3/NREM2 and REM/NREM2. 

Subject-Level Local Ablation Results Over Time 

 

Figure 4. Local Explanations over a 2-Hour Sleep Cycle from Subject 12. The top panel shows the actual 

and predicted classes. The second panel shows electrophysiology activity. The third panel shows the local 

ablation results, and the fourth panel shows the percent of LRP relevance ( ε = 100) for each modality. In 

contrast to the global results, EOG is more important for Awake than EEG from 0 to 20 minutes. 

Figure 4 shows the local ablation results over the first two hours of a recording from Subject 12. Note that 

the 2-hour period is roughly equivalent to a full sleep cycle, as the period starts while the subject is awake 

and cycles through all sleep stages. Importantly, EOG was often more important during Awake periods 

than EOG. Interestingly, an EMG spike occurred in the first five minutes of the recording that increased 

the likelihood of samples being classified as Awake when ablated. In contrast, when EEG and EOG were 

ablated, the likelihood of the samples being classified as Awake decreased. As Subject 12 proceeded into 

NREM1 at around 20 minutes, EOG ablation significantly decreased the likelihood of the samples being 
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classified correctly. EEG and EMG ablation decreased the likelihood of the samples being correctly 

classified at the beginning and ending of the period and increased the likelihood of the samples being 

correctly classified during the middle of the period. As Subject 12 went into deeper sleep stages, EEG 

ablation tended to decrease the probability that a sample would be classified as NREM. Additionally, EOG 

importance varied greatly throughout the remaining time course. 

Statistical Analysis of Local Ablation Results with Demographic and Clinical Variables  

Figure 5 and Supplementary Figure 3 show the results for the statistical analysis examining the effects of 

medication, sex, and age upon the local ablation explanations for correct classification groups and all 

groups, respectively. The importance assigned to many of the modalities and classification groups had 

significant relationships with the demographic and clinical variables.  Importantly, subject sex had 

significant relationships with 13 of the 15 correct classification group modality pairs, while medication and 

age only had relationships with 10 and 9 of the pairs, respectively.  

More EOG groups had significant relationships with medication than EEG or EMG groups. For EEG, the 

explanations for all correctly classified groups, except REM, had significant relationships with medication. 

This is interesting when one notes that for REM/REM samples EOG and EMG importance had significant 

relationships with medication. The strongest EEG relationships were for NREM1/NREM3 and 

NREM1/REM. Interestingly, the importance of most samples assigned to NREM3 had significant 

relationships with medication. For EOG, most NREM1 and NREM2 groups had significant relationships 

with medication. The only instance in which importance increased from placebo to temazepam was for 

the NREM2/REM. For EMG, NREM2 importance had relationships with medication for all groups except 

Awake. Additionally, NREM3/NREM2 and REM/NREM2 also had significant relationships with medication. 

 

Figure 5. Effects of Clinical and Demographic Variables upon Local Ablation Importance for Correct 

Classification Groups. Panels a, b, and c show results for medication, sex, and age, respectively. The x -axes 

indicate the predicted class, and the y-axis indicates the modality. The heatmaps show the regression 

coefficient values. Squares surrounded by a bolded box show significant effects (p < 0.05). A positive 

medication coefficient indicates that temazepam samples had more importance than placebo samples. 

For subject sex, a positive coefficient indicates that female samples had more importance than male 

samples, and a positive age coefficient indicates that importance increased with age. Note that sex had 

more significant relationships than the other variables. 

Subject sex was related to many classification groups across modalities. For EEG, all correct classification 

groups had significant relationships with subject sex. Additionally, samples predicted to be NREM3 had 

very strong positive relationships with sex. Samples belonging to female subjects had higher importance 

for samples misclassified as NREM3. Samples belonging to male subjects seemed to have higher EEG 

importance for REM/Awake. Interestingly, EEG appeared to be more salient in samples belonging to 

female subjects than male subjects while the opposite was true for EMG. EOG groups had both positive 

and negative coefficient values. Samples belonging to female subjects that were misclassified as Awake 

had less EOG importance than those belonging to male subjects. In contrast, samples belonging to female 
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subjects that were misclassified as NREM2 had more importance than those belonging to male subjects.  

The EOG coefficients with the largest magnitude were all associated with NREM3. The largest magnitude 

EMG coefficients were for samples classified as REM, and particularly Awake/REM. Male subjects had 

more EMG importance for Awake and NREM1 samples than female subjects.  

For subject age, the classifier put more importance upon EEG in Awake as age increased. Also, except for 

REM/Awake, the classifier placed less importance on EEG in REM as age increased. REM/Awake and 

Awake/NREM3 had more EEG importance with increased age, and NREM3/Awake and REM/NREM3 had 

less EEG importance with increased age. EOG importance for NREM2 samples was related to modest 

increases in age. Interestingly, correctly classified Awake and NREM1/REM had significant decreases in 

EOG importance with increased age. REM/NREM3 had significantly increased EOG importance in samples 

with increased age. Most correct classification groups had a relationship between the EMG importance 

and subject age. Except for correctly classified Awake samples, EMG importance generally increased with 

age. Misclassified Awake and REM samples also had strong relationships between EMG importance and 

age. NREM3/Awake and REM/Awake had more EMG importance with age, though NREM2/Awake had 

less EMG importance with age. NREM1/REM had less EMG importance with increased age. 

LRP Results 

We performed several analyses upon the LRP relevance. (1) For a global estimate of modality importance, 

we computed the percentage of absolute relevance assigned to each modality across folds for each 

classification group. (2) We showed the local results for the same 2-hour window as the ablation analysis. 

(3) We examined relationships between absolute LRP relevance and clinical and demographic variables.  

 

Figure 6. LRP Global Estimate of Modality Importance for Correct Classification Groups. We calculated the 

percent of absolute relevance for each modality across samples within each classification group. We then 

calculated the median value across folds. Panels a, b, and c show results for the αβ-rule, ε-rule (ε =100), 

and ε-rule (ε=0.01), respectively. Red, green, and blue bars are for EEG, EOG, and EMG, respectively. EEG 

was, with a few exceptions, most important. 

Global Estimation of Modality Importance with LRP 

Figure 6 and Supplementary Figure 4 show the LRP results for correct classification groups and all groups, 

respectively. EEG was more important or of comparable importance to EOG across most classes. For 

correctly classified Awake, NREM1, and REM, EEG and EOG were of comparable importance for the ε-rule 
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(ε = 100) and the αβ-rule. However, EEG was more important than EOG for the ε-rule (ε = 0.01). For 

NREM2/NREM2 and NREM3/NREM3, EEG was more important than EOG and EMG. EMG importance was 

greatest in Awake, followed by NREM2 and NREM1. Relative to correctly classified groups, many 

incorrectly classified groups had greater variance in relevance across folds. Nevertheless, samples 

incorrectly assigned to a class typically had similar relevance distributions to samples correctly assigned 

to the class. NREM2, NREM3, and REM assigned to Awake were exceptions to this pattern.  They 

demonstrated high levels of variance across folds. NREM2 and NREM3 incorrectly classified as REM and 

NREM2 also demonstrated increased variance across folds relative to REM. 

LRP Results Over Time 

The bottom panel of Figure 3 shows the local LRP results for the ε-rule (ε = 100) over the same 2-hour 

period for which the local ablation analysis was conducted. During the first 17 minutes, the model 

correctly classified Awake by heavily relying upon EOG. EOG also demonstrated high levels of importance 

for REM between 100 to 120 minutes. For correctly classified NREM1 through NREM3, the model heavily 

relied upon EEG. However, when NREM1 through NREM3 were misclassified, the model often placed 

greater importance upon EMG and EOG (i.e., 70 to 80 minutes). EMG overall had little relevance. However, 

spikes in EMG relevance corresponded with spikes in EMG activity throughout the recording.  

Statistical Analysis of Local LRP Results with Demographic and Clinical Variables 

Figure 7 and Supplementary Figure 5 show the results of our analyses examining the relationship between 

LRP relevance and medication, sex, and age for correct classification groups and all groups, respectively. 

Significant relationships existed for many of the modalities and classification groups. Importantly, subject 

sex had significant relationships with 14 of the 15 correct classification group modality pairs, while 

medication and age only had relationships with 11 of the pairs. 

For medication, EEG had more relevance across many groups for temazepam relative to placebo samples, 

while EOG had a decrease in relevance and EMG had mixed results. For EEG, the only group with 

decreased relevance for temazepam relative to placebo was Awake/Awake, which corresponded with 

increased relevance for temazepam relative to placebo in EOG. For EEG, all correct classification groups 

except NREM1 had significant relationships with medication. For incorrect classification groups, 

NREM1/NREM3 had the highest magnitude coefficient. This corresponded with a large decrease in EOG 

relevance. For EOG, placebo samples assigned to NREM2 and NREM3 had less relevance than temazepam 

samples. NREM2/Awake also had a strong relationship with medication. For EMG, fewer classification 

groups had significant relationships with medication than for EEG and EOG. However, correctly classified 

NREM2, NREM3, and REM had significant relationships with medication. Awake/NREM3 had a large 

coefficient, with temazepam samples having more EMG relevance than placebo samples. 

 

Figure 7. Effects of Clinical and Demographic Variables upon Local LRP Relevance for Correct Classification 

Groups. Panels a, b, and c show results for medication, sex, and age, respectively. The x-axis of each panel 

indicates the predicted class, and the y-axis indicates the modality. The heatmaps show the size of the 
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regression coefficient. Squares surrounded by a bolded box show significant effects (p < 0.05). For 

medication, a positive coefficient indicates that temazepam samples had more importance than placebo 

samples. For subject sex, a positive coefficient indicates that female samples had more importance than 

male samples, and for age, a positive coefficient indicates that importance increased with age. Note that 

sex had more significant relationships than the other variables. 

For subject sex, EEG had more importance in males than females across most classification groups. In 

contrast, EOG and EMG had more relevance for females than males across most groups. For EEG and EOG, 

all correct classification groups were related to subject sex. For EMG, all correct classification groups 

except for Awake had significant relationships with sex. For EEG, the highest magnitude coefficients were 

REM/NREM2, REM/NREM3, NREM1/NREM3, and NREM3/REM. Male subjects had more EEG relevance 

than female subjects for REM/NREM2. Female subjects had more EEG relevance than male subjects for 

NREM1/NREM3. Interestingly, NREM3/REM and REM/NREM3 had coefficients of a nearly opposite values. 

For EOG, Awake/NREM3, NREM3/NREM1, and REM/NREM3 had the largest magnitude relationships with 

subject sex. Male subjects had much higher EOG relevance for Awake/NREM3 and for REM/NREM3 

relative to female subjects, and female subjects had much higher EOG relevance for NREM3/NREM1. 

Samples belonging to female subjects tended to have more EMG relevance for correct classification 

groups than male subjects. The largest magnitude EMG coefficients were NREM1/NREM3, 

NREM3/NREM1, REM/NREM2, and REM/NREM3. For male subjects, NREM1/NREM3 and NREM3/NREM1 

tended to have more relevance than for female subjects. For female subjects, REM/NREM2 and 

REM/NREM3 had more and less EMG relevance relative to male subjects, respectively. 

For age, EEG and EMG relevance tended to increase with age, while EOG relevance decreased with age.  

For EEG, most classification groups, except for many Awake groups, had significant relationships with age. 

The largest magnitude EEG coefficients were for NREM3/Awake and REM/NREM3 where relevance 

decreased with age. For REM/NREM3, decreased EEG relevance with age corresponded to increased EMG 

relevance. For EOG, only REM/REM increased in relevance with age. This increase corresponded with 

decreased EEG relevance in REM/REM. For EMG, most groups with significant relationships with age had 

increased relevance with age. However, all classes misclassified as Awake that had significant relationships 

with age had a decrease in relevance with age. This corresponded to increased EEG relevance with age. 

Comparison of Explainability Results from Different Methods 

To better understand our explainability methods, we compared the similarities and differences of their 

results. We compared the global importance estimates for global ablation, local ablation, and LRP. We 

also compared the local results over time and statistical analyses for local ablation and LRP. 

Global Estimation 

We compared the relative magnitude of the estimates across methods. Across methods, EEG was 

generally most important. For Awake/Awake, all three methods found that EEG was most important. 

However, LRP magnified the importance of EOG and EMG relative to EEG more than local ablation. For 

NREM1/NREM1, two LRP rules, local ablation, and global ablation found that EOG was most important, 

followed by EEG. Results for NREM2/NREM2 and NREM3/NREM3 were similar across explainability 

methods. EEG was most important, followed by EOG and EMG. For REM/REM, only the LRP ε-rule (ε = 0.1) 

agreed with local and global ablation regarding the relative modality importance. They identified the order 

of descending modality importance as EEG, EOG, and EMG. Many incorrect classification groups had 

similar distributions of relative importance across methods. However, some groups had different 
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importance distributions. NREM1/Awake generally had greater EOG than EEG relevance for LRP but not 

for ablation. NREM2/NREM1 had less EOG than EEG relevance for LRP but not for ablation. Awake/REM 

and NREM1/REM had more EEG than EOG importance for local ablation but not for LRP. Global ablation 

found that EEG and EOG importance for Awake/REM varied according to the global ablation approach. 

Additionally, global ablation found that EEG had greater importance than EOG for NREM1/REM. 

Subject-level Local Results over Time 

In general, both local ablation and LRP showed similar trends in modality importance over time. They both 

showed lower levels of EEG and higher levels of EOG importance during Awake and NREM1 periods and 

showed a transition to higher EEG and lower EOG importance for NREM2, NREM3, and REM. However, in 

multiple instances, LRP seemed to more closely correspond with changes in electrophysiology activity. For 

example, between 60 and 80 minutes into the recording, EMG activity spiked, and a misclassification 

resulted. In this instance, LRP more clearly indicated that the change affected the classification than local 

ablation did. Additionally, for NREM periods between 30 to 100 minutes, EEG relevance often seemed to 

have greater variation relative to the relevance of other modalities than the local ablation results did.  

Statistical Analysis of Effects of Clinical and Demographic Variables upon Local Explanations 

Many effects were consistent between the two explainability methods. Importantly, across both methods, 

subject sex had relationships with more correct classification group modality pairs than either medication 

or age. The importance of EEG for Awake/Awake was less in temazepam than placebo samples and was 

more in temazepam than placebo samples for NREM2/NREM2. Samples assigned to NREM3 also generally 

had more EEG importance for temazepam than placebo samples. For EOG, most groups with significant 

relationships with medication had more importance across both methods in placebo than in temazepam 

samples. In REM/REM, EOG importance was higher in placebo than temazepam samples. NREM2/NREM1 

and NREM3/NREM2 had more EMG importance in temazepam than placebo samples for both methods. 

REM/NREM2 had less EMG importance in temazepam than placebo samples for both methods. 

For the effects of subject sex on EEG importance, the two methods provided similar results in many 

instances: (1) NREM1/NREM1, NREM1/NREM2, and NREM1/NREM3, (2) NREM2/NREM1, (3) 

REM/NREM3, and (4) Awake/REM. However, there were opposite effects in other cases: (1) for 

NREM2/NREM2, NREM2/NREM3, and NREM2/REM, (2) for NREM3/NREM3 and NREM3/NREM2, and (3) 

REM/REM and REM/NREM2. For EOG, correctly classified Awake, NREM2, NREM3, and REM had similar 

changes in importance from male to female samples. Additionally, the changes in importance for most 

classification groups were similar across methods. For EMG and sex, this was not the case, though in a 

few instances the differences in importance between male and female were similar (e.g., Awake/REM, 

NREM1/NREM2, NREM1/NREM3, and REM/NREM3).  

Across explainability methods, subject age significantly affected the importance assigned to modalities. 

For EEG, there were similar effects of age: (1) for Awake/NREM3, (2) for NREM1/Awake and 

Awake/NREM2, (3) for NREM2/NREM1 and NREM2/REM, (4) for NREM3/Awake, and (5) for REM/REM, 

REM/Awake, and REM/NREM3. Many groups with different results across explainability methods had low 

levels of significance (i.e., p < 0.05). For EOG, there were differences in which classification groups were 

significant. However, NREM1/REM did have similar results across explainability methods. For EMG, there 

were many similarities in the effect of age upon the explanations of the two methods: (1) NREM1/NREM2, 

(2) NREM/NREM2 and NREM2/Awake, (3) NREM3/NREM3, and (4) REM/NREM3. 
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Discussion 

In this section, we discuss the implications of our methods to other multimodal classification problems. 

We then discuss the results that were uniform across explainability approaches within the context of 

established sleep domain knowledge, and we discuss the limitations and next steps for this work. 

Implications of Novel Explainability Methods Beyond Sleep Stage Classification 

In this study, we present a series of novel multimodal explainability methods. Our global ablation method 

offers a methodological improvement over existing methods and is uniquely adapted to multimodal 

electrophysiology data. Existing multimodal electrophysiology studies have ablated each modality by 

replacing them with zeros (2)(41). Because having a channel of zero values is atypical for electrophysiology 

data in clinical settings, replacing modalities with zeros could increase the risk of creating out-of-

distribution samples or features, which could cause the explanations to be inaccurate. Our approach 

adapts ablation for the domain of electrophysiology by replacing modalities with line -related noise that is 

commonly found in data and that the classifier should learn to ignore. Additionally, it highlights the 

usefulness of carefully considering the domain to which ablation is being adapted and using domain-

specific perturbations. Our local ablation approach is, to the best of our knowledge, the first local 

multimodal explainability method that provides insight into the importance of each modality. By 

examining the change in output activation following ablation, it also shows how ablation or perturbation 

could be used to obtain local explanations across a variety of explainability problems beyond multimodal 

explainability. We also show, for the first time, how gradient-based methods can be used to find modality 

importance both locally and globally. Because they do not perturb data, GBFA methods could offer a more 

reliable approach than ablation. Our local methods offer a pathway towards identifying subject-specific 

electrophysiology biomarkers that could be used in personalized medicine. Additionally, our analysis of 

the relationship between the local explanations and demographic and clinical variables offers a novel 

approach for gaining insight into the effects of variables that are not explicitly contained in the training 

data. This approach has implications beyond multimodal explainability. Model developers could use it to 

better understand how aspects of their data are affecting the patterns learned by their models. 

Additionally, enhanced explainability of model decision-making could increase physicians’ and other 

relevant decision-makers’ trust of deep learning-based systems and subsequently increase the likelihood 

of the adoption of their recommendations. Scientists could also use the approach to help develop 

hypotheses for novel biomarkers. For example, if age were related to the explanations for a class and 

variable or the presence of an Alzheimer’s disease-related gene were related to the explanations for a 

brain region, researchers could later examine that relationship with future studies. 

Our global multimodal explainability approach is well suited to multimodal electrophysiology data, as its 

key difference from standard ablation approaches is that it replaces modalities with noise like the artifact 

commonly found in electrophysiology data. Like our global ablation approach, our local ablation approach 

would, in its current state, only be applicable to electrophysiology data. However, our examination of the 

effect upon the output activation following ablation could easily be adapted to other domains. Our use of 

a gradient-based approach is more methodologically sound than the use of ablation methods, so applying 

it would likely be better than using ablation across many problems. Additionally, the ablation and 

gradient-based methods would each be better suited to different models. Unlike gradient methods, 

ablation is applicable to all deep learning classification frameworks. For example, our ablation methods 

would likely be more effective for long short-term memory networks than our LRP approach, while our 
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LRP-based approach would likely be more effective for many CNN or multilayer perceptron architectures 

(33). While that is generally the case, implementing LRP or similar methods with some CNN architectures 

would be difficult, while the implementation of ablation would be relatively straightforward.  

Classification Performance 

Our classifier performed well overall but somewhat below state-of-the-art classifiers (47). The classifier 

performed worst on NREM1. This makes sense given that NREM1 is the smallest class and that it can be 

similar to Awake and REM (15)(21). Additionally, NREM1 classification has normally been relatively poor 

in previous studies (20,21,27,40), so some studies have specifically developed methods that improve 

NREM1 classification (20). Although the Awake and NREM1 had similar numbers of samples, the classifier 

performed markedly better on Awake. Given that Awake EEG and EOG have features that are very 

different from those of NREM and that Awake EMG is different from REM EMG (15), it makes sense that 

the classifier would have an easier time learning to the classify Awake samples. Similar to previous studies 

(47)(27), the precision and F1 score of the classifier, but not the recall, was highest for NREM2. 

Global Results 

Across methods, EEG was most important for identifying Awake, NREM2, NREM3, and REM. In contrast, 

EOG played a greater role in the correct classification of NREM1 samples. EMG was not very important to 

the classification of any stage. This result is not atypical, as previous studies have shown that using both 

EEG and EMG does not significantly improve classification performance for Awake, NREM2, and NREM3 

relative to just using EEG (48). While global explanations for correct classification groups were similar 

across methods, explanations for incorrect groups tended to differ across methods.  

Subject-level Local Ablation and LRP Results over Time 

The two local approaches had similar results for the 2-hour period of explanations that we output. In 

contrast to the global explanations, EOG was particularly important during Awake periods. This suggests 

that subject or subgroup-specific patterns of EOG activity exist within the Awake class that are obscured 

by global methods. It also supports existing findings that showed how EEG alone did not discriminate 

between Awake, NREM1, and REM as effectively as EEG with EOG and EMG (49). Additionally, previous 

studies have found that EOG is particularly important for identifying Awake (50) and can yield comparable 

classification performance to EEG (51). In contrast, EEG was important for discriminating NREM and REM 

samples. The importance of EEG for NREM and REM makes sense given that EEG patterns for NREM and 

REM differ greatly (15). However, it is interesting that this subject had higher Awake EOG than EEG 

importance. Globally, EEG tended to be more important for Awake than EOG. Moreover, visualizing the 

results over time enabled us to obtain higher resolution insight into the classifier than visualizing them 

globally. For example, they showed that EMG importance for the subject typically spiked when samples 

were incorrectly classified, which suggests that EMG adversely affected model performance. 

Statistical Analysis of Effects of Clinical and Demographic Variables upon Local Explanations 

We assume that the relationships that are shared by both local explainability methods with demographic 

and clinical variables are more likely to be significant relationships than those identified by only one 

explainability method. As such, we only discuss the implications of those replicable patterns within the 

context of established research. Interestingly, subject sex has relationships with more modality correct 

classification group pairs than either medication or age, which could indicate that subject sex had stronger 

effects on the patterns learned by the classifier than the other variables.  Given that males and females 

are highly effect could be attributed to the imbalance of male to female subjects present in the dataset. 
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Subject sex seemingly affected the NREM1 EEG patterns learned by the classifier. This reflects well-

characterized aspects of sleep science. Namely, that adult women can have greater slow-wave EEG activity 

in NREM sleep stages than men (52)(53) and that, in general, there are differences in the EEG activity of 

men and women (54)(55). While sex was associated with the correct classification of NREM1, sex may also 

have adversely affected the EEG patterns learned by the classifier for several sleep stages, like Awake, 

NREM1, NREM2, and REM. Whereas the effects of sex on EEG was more associated with the incorrect 

classification of samples, both explainability methods indicated that sex likely affected the EOG patterns 

learned by the classifier for the correct classification of Awake, NREM2, NREM3, and REM. This highlights 

the possibility of EOG sex differences across most sleep stages. We have been unable to find many studies 

on the effects of sex upon EOG in sleep, so our results could prompt in-depth future studies on this topic. 

Both methods indicated that sex seemed to affect the EMG patterns learned for incorrectly classified 

samples. Medication seemed to affect the EEG of Awake, NREM2, and NREM3 samples similarly in both 

explainability methods. Previous studies have shown that benzodiazepines like temazepam (56) and other 

medications like duloxetine and desipramine (57) can have significant effects on EEG sleep stages and that 

temazepam, in particular, can have significant effects upon REM (58). Other studies have shown similar 

effects in monkey EEG (59). Our results further showed that medication significantly affected the patterns 

learned for REM EOG. Interestingly, medication may have been slightly related to the learning of EMG 

patterns that contributed to incorrect NREM classification. That there were inconsistent effects of 

medication upon EMG could fit with previous studies that purportedly analyzed EMG sleep data in 

monkeys but did not report any effects of medication (59). The effects of age on sleep are well 

characterized (52,53,60–62). In our study, age seemed to affect the EEG patterns learned for REM, similar 

to (63). However, age was also related to the learning of EEG patterns for multiple incorrect classification 

groups. This suggests that the model did not fully learn to address the underlying effects of age upon EEG  

across sleep stages. Interestingly, age had inconsistent effects upon the EOG patterns learned by the 

classifier. Age seemed to affect EMG patterns for NREM2 and NREM3. 

Limitations and Next Steps 

The dataset that we used contained many subjects. Future studies might perform analyses comparing 

differences in importance across subjects, which could enable the identification of personalized sleep 

stage biomarkers (43). In this study, we used a simple CNN classifier, which made the implementation of 

LRP straightforward. However, using a simple CNN classifier also contributed to classification performance 

that was high but below the state of the art. Future studies with advanced classifiers might use the 

analyses that we employed to assist with the discovery of biomarkers and formulation of novel hypotheses 

related to sleep and other domains. Our classifier was originally developed for EEG sleep stage 

classification. As such, the architecture may not be optimized for extracting EOG and EMG features. This 

does not, in any way, adversely affect the quality of our explainability results. However, it prevents 

generalizable claims regarding the importance of one modality over another for the identification of sleep 

stages. Additionally, other GBFA methods could potentially replace LRP for multimodal explainability. 

Quality metrics like those presented in (64) could help rate the quality of each method for explaining 

classifiers trained on multimodal electrophysiology data. Additionally, previous studies have shown that 

applying multiple relevance rules sequentially to different parts of a network can yield less noisy 

explanations (65), and future studies might enhance explanation quality using that approach.  

Concluding Thoughts 
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In this study, we propose sleep stage classification as a testbed for developing novel multimodal 

explainability methods. Further, after training a classifier for multimodal sleep stage classification, we 

present a series of novel explainability methods for deep learning classifiers trained on multimodal time-

series data. Our global ablation method is more domain-friendly than previous approaches that have 

replaced modalities with zeros. Our local ablation approach is, to the best of our knowledge, the first local 

multimodal ablation method to be developed, and our GBFA approach offers an alternative to ablation 

that has not previously been used for understanding modality importance.  We show how the methods 

can be used to obtain insight into the importance of modalities to both incorrect and correct classification 

of samples. We find that EEG was most important to the identification of most sleep stages while EOG is 

most important of the identification of NREM1. We show how local methods can help identify differences 

in subject-level explanations that differ from global explanations and that could potentially be used to 

identify personalized biomarkers in future studies. For example, one subject showed higher levels of EOG 

importance in Awake samples than EEG importance. Importantly, we also developed a novel analysis 

approach and found that subject sex had more significant relationships with patterns learned by the 

classifier for each sleep stage relative to other clinical and demographic variables. More broadly, the 

approach could help illuminate the effects of those variables upon different classes (e.g., sleep stages or 

disease conditions). Our study greatly enhances the degree of insight that can be obtained from the 

typically black-box models of the growing field of multimodal classification. 

Methods 

In this section, we describe our data, preprocessing, model architecture and training approach, and 

explainability methods. 

Description of Data 

We utilized Sleep Telemetry data from the Sleep-EDF Expanded Database (16) on Physionet (66). The 

database can be downloaded at (67) and has been used in previous sleep stage classification studies 

(5,19,25,29). The dataset has 44 approximately 9-hour recordings from 22 subjects (15 female and 7 male) 

with primary sleep onset insomnia (68). Subject age had a mean of 40.18 years and a standard deviation 

of 18.09 years. Figure 8 shows subject demographics. All subjects had two recordings – one following the 

administration of a placebo and one following temazepam administration. Temazepam belongs to a class 

of drugs called benzodiazepines which amplify the effects of the neurotransmitter y-aminobutyric acid 

(GABA). GABA is the most common neurotransmitter in the central nervous system. It is inhibitory in 

nature and produces a calming effect on the brain (69). It is commonly used to treat insomnia and affects 

electrophysiology activity. Each recording contained data from 2 EEG electrodes, 1 EOG electrode, and 1 

EMG electrode. Data was recorded at a 100 Hertz (Hz) sampling frequency. The two EEG electrodes were 

FPz-Cz and Pz-Oz, according to (70). However, like previous studies (5,20,25,29,71), we used only the Fpz-

Cz for our analysis. A 1-Hz marker was derived from the recording device that indicated the presence of 

recording errors. Using the Rechtschaffen and Kales standard (72), expert technicians assigned 30-second 

data epochs to one of seven categories: Movement, Awake, REM, NREM1, NREM2, NREM3, and NREM4. 

In our study, we merged NREM3 and NREM4 into a single NREM3 class (15). We removed all movement 

samples and samples containing recording errors. 
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Figure 8. Distribution of Samples and Subject Demographics. Panels A and B show the distributions of 

temazepam and placebo samples, respectively, for each subject. Panel C shows the age and sex of each 

subject, with the subjects arranged from youngest to oldest. Each panel shares the same x-axis. 

Description of Data Preprocessing 

Based on the data annotation, we segmented the data into 30-second samples. Within each recording, 

we z-scored each electrode individually to improve the identification of patterns across subjects. After 

segmentation and sample removal, our dataset had 42,218 samples. The dataset was highly imbalanced 

with Awake, NREM1, NREM2, NREM3, and REM classes having 9.97%, 8.53%, 46.8%, 14.92%, and 19.78% 

of the dataset, respectively. Figure 8 shows the distribution of samples in each class for each subject.  

Description of 1D-CNN 
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Model Architecture and Training 

We adapted a CNN architecture initially developed for EEG classification (73). Details on the architecture 

are shown in Figure 9. We implemented the architecture in Keras (74) with a TensorFlow (75) backend. 

We used 10-fold cross-validation with 17, 2, and 3 subjects being randomly assigned to training, validation, 

and test sets in each fold. We used categorical cross entropy loss and weighted each class to account for 

class imbalances when training the classifier. We used a batch size of 100 with shuffling after each epoch. 

We used the Adam optimizer (76) with an adaptive learning rate. Starting with an initial learning rate of 

0.001, the optimizer decreased its step size by a factor of 10 after every 5 epochs in which validation 

accuracy did not improve. We used early stopping to end training after validation accuracy plateaued for 

20 epochs with a maximum of 100 epochs and used model checkpoints to select the model from each fold 

that obtained the highest validation accuracy. We used the selected models for testing and explainability.  

 

Figure 9. CNN Architecture. Layers i) of the diagram repeat 3 times. In i) there are 6 1D-convolutional 

(conv1d) layers in total. The first two conv1d layers (number of filters = 16, kernel size = 5) are followed 

by max pooling (pool size = 2) and spatial dropout (rate = 0.01). The second two conv1d layers (number 

of filters = 32, kernel size = 3) are followed by max pooling (pool size = 2) and a spatial dropout (rate = 

0.01). The third pair of conv1d layers (number of filters = 32, kernel size = 3) are followed by max pooling 

(pool size = 2) and spatial dropout (rate = 0.01). In ii), the last two conv1d layers (number of filters = 256, 

kernel size = 3) are followed by global max pooling and dropout (rate = 0.01). The first two dense layers 

(number of nodes = 64) have dropout rates of 0.1 and 0.05, respectively. The last dense layer has 5 nodes. 

An “R” or an “S” indicates that a layer is followed by ReLU or Softmax activation functions, respectively. 

Model Performance Evaluation 

When evaluating model test performance, we sought to account for class imbalances. We generated a 

confusion matrix and calculated precision (Equation 1), recall (Equation 2), and the F1 score (Equation 3) 

for each class. We calculated the mean and standard deviation of the metrics across folds. 

Equation 1: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Equation 2: 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Equation 3: 𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

Description of Global Ablation Approaches 

In this study, we applied two global ablation approaches for insight into the relative importance of each 

modality to each class. We presented a novel approach for global ablation that is unique to the 

electrophysiology domain and that we originally presented in (12). We compared our novel approach to 

an ablation approach that has been used in previous multimodal classification studies (2)(41). 

Standard Global Ablation Approach 
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The typical ablation approach that we applied followed several key steps. (1) We calculated a confusion 

matrix within a single test fold. (2) We replaced all values for a modality with zeros. (3) We calculated a 

confusion matrix for the classifier on the modified data. (4) We calculated the percent change in samples 

assigned to each classification group (Equation 4). (5) We repeated steps 2 through 4 for each modality. 

(6) We repeated steps 1 through 5 for each test fold. 

Equation 4: 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐶ℎ𝑎𝑛𝑔𝑒 =  100 ∗
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠−𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑈𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑈𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 

Our Novel Global Ablation Approach 

In this study, we propose a novel ablation approach for multimodal electrophysiology analysis that 

involves replacing modalities in a manner that mimics line-related noise. In Step 2 of the previously 

detailed ablation process, we replace a modality with a combination of a sinusoid and Gaussian noise. We 

use a sinusoid with a frequency of 40 Hz because 60 Hz noise at a sampling rate of 100 Hz would alias and 

appear at 40 Hz. The sinusoid had an amplitude of 0.1, and the Gaussian noise was generated from a 

distribution with a mean of 0 and standard deviation of 0.1. 

Statistical Comparison 

To determine whether our novel line-related noise ablation yielded results significantly different from 

standard ablation, we performed a series of two-tailed t-tests. Within each modality, we compared the 

ablation importance values in each classification group for each method across folds. 

Description of Novel Local Ablation Approach 

We applied a novel local ablation approach for insight into the modality importance to the classification 

of each sample. We originally presented the approach in (13). Our novel ablation approach is similar to 

the global approach described in the previous section. (1) We obtaine d the top-class probability for a 

particular sample. (2) We modified the sample by ablating a modality. (3) We obtained the classification 

probability of the modified sample for the previously identified top class. (4) We computed the percent 

change in classification probability (Equation 5). (5) We repeated steps 2 through 4 for each modality. (6) 

We repeated steps 2 through 5 for each sample in a fold. (7) We repeated steps 2 through 6 for each fold.  

Equation 5: 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐶ℎ𝑎𝑛𝑔𝑒 =  100 ∗
𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 −𝑈𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑈𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
 

Because there were no preexisting local approaches for comparison, we examine d how comparable our 

local ablation results were to the previously described global methods. In addition to generating local 

visualizations of our local ablation results, we formed a global estimate by calculating the mean absolute 

percent change in classification probability for each fold, modality, and classification group.  

Description of Layer-Wise Relevance Propagation Analysis 

Layer-wise relevance propagation (LRP) (31) is a popular GBFA method (46) originally developed for image 

analysis. Since its initial development, LRP has been used in raw electrophysiology analysis (77) and other 

neuroscience domains (33,78,79). Other GBFA methods have also been applied to multimodal time-series 

classification (43), and we previously applied LRP to multimodal electrophysiology analysis (11). Local 

ablation methods, like sensitivity analysis (28) and many GBFA methods, show what features or time 

points make a sample more or less like the patterns learned by the classifier for a particular class. LRP 

shows what features or time points are actually used by the classifier for its classification and indicates 

their importance (80). We implemented LRP using the Innvestigate library (81). 
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LRP is a local explainability method but has also been used for global importance estimates (11,33). LRP 

involves the following steps. (1) A sample is passed through a network and assigned a particular class. (2) 

A total relevance of 1 is placed at the output node of the assigned class. (3) The total relevance is 

propagated through the network using relevance rules until the relevance is distributed across the input 

features. A key characteristic of LRP is that the total relevance value of 1 is conserved as it is propagated 

through the network, so the relevance assigned to the input features should sum to approximately 1.  

There can be both negative and positive relevance depending upon the relevance rule that is used. 

Negative relevance indicates the features of an input sample that support a sample being classified as a 

class other than that which it was assigned. For example, if the value of feature x for a sample classified 

as class 1 were more in alignment with class 2, that feature would receive negative relevance. Positive 

relevance indicates the features of an input sample that support a sample being classified as its assigned 

class. For instance, if a sample belongs to class 1 and a particular pattern in that sample provides evidence 

for class 1, that pattern would be assigned positive relevance. Equation 6 shows the basic LRP rule: 

Equation 6. 𝑅𝑗 = ∑
𝑎𝑗𝑤𝑗𝑘

∑ 𝑎𝑗𝑤𝑗𝑘0,𝑗
𝑘 𝑅𝑘, 

where 𝑘 indicates a node that is one of 𝑘 nodes in a layer deeper in a network and 𝑗 indicates a node in 

the layer to which relevance is being propagated. 𝑅𝑘 indicates the total relevance assigned to a node in a 

deeper layer, and 𝑅𝑗 indicates the total relevance that will be assigned to a node in a shallower layer. The 

variables 𝑎𝑗 and 𝑤𝑗𝑘 indicate the activation output of the layer j and the value of the weight connecting 

the node in layer 𝑗 and node in layer 𝑘. The numerator indicates a portion of the effect that the node in 

layer 𝑗 has upon the node in layer 𝑘, and the denominator indicates the total effect of all nodes in layer 𝑗 

upon the node in layer 𝑘. This combined with the summation Σk indicates that the relevance assigned to 

the node in layer 𝑗 is the sum of the fraction of the effect of the node in layer 𝑗 upon all of the nodes in 

layer 𝑘 multiplied by their respective relevance.  

The basic LRP rule allows for both positive and negative relevance to be propagated through the network 

and often yields very noisy explanations. In our study, we used the ε-rule and αβ-rule. As shown in 

Equation 7, the ε-rule is identical to the basic rule except for the added term ε.  

Equation 7. 𝑅𝑗 = ∑
𝑎𝑗𝑤𝑗𝑘

𝜀+∑ 𝑎𝑗𝑤𝑗𝑘0,𝑗
𝑘 𝑅𝑘, 

where ε enables relevance to be filtered when propagated through the network. A larger ε shrinks the 

amount of relevance propagated backwards for nodes that would otherwise be assigned low relevance. 

In effect, this reduces the noisiness of the explanations. We used the ε-rule with an ε of 0.01 and 100. 

We also used the αβ-rule shown in Equation 8, 

Equation 8. 𝑅𝑗 = ∑ (𝛼
(𝑎𝑗𝑤𝑗𝑘)

+

∑ (𝑎𝑗𝑤𝑗𝑘)
+

0,𝑗
− 𝛽

(𝑎𝑗𝑤𝑗𝑘)
−

∑ (𝑎𝑗𝑤𝑗𝑘)
−

0,𝑗
)𝑘 𝑅𝑘 

where the relevance is split into positive and negative portions when propagated backwards. The variables 

α and β control how much positive and negative relevance are propagated backwards, respectively. In our 

study, we used the rule with α = 1 and β = 0, to only propagate positive relevance. 
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While conducting our LRP analysis, we generated a global estimation of importance by calculating the 

percent of absolute relevance assigned to each modality. We computed this value for each classification 

group in each fold. We also visualized how the percent of re levance varied over time. 

Description of Additional Statistical Analyses 

We performed a series of statistical analyses with the local ablation and LRP (ε-rule with ε = 100) 

explanations for insight into the effects of demographic and clinical variables upon the classifier. We 

trained an ordinary least squares regression model with age, medication, and sex as the independent 

variables and with the absolute importance (percent change in activation for local ablation and relevance 

for LRP) for a modality and classification group as the dependent variable. This enabled us to control for 

interaction effects. For LRP, we used the percent of absolute relevance assigned to each modality for each 

sample. After training the model, we obtained the resulting coefficients and p-values for each class. The 

sign of the coefficients identified the direction of the importance difference. After obtaining p-values, we 

performed false discovery rate (FDR) correction (α = 0.05) with the 25 p-values (i.e., 5 classes x 5 classes) 

associated with each clinical or demographic variable to account for multiple comparisons. 
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Supplementary Material 

 

Supplementary Figure 1. Global Ablation Explainability Results for All Classification Groups. The above 

boxplots show the percent change in samples assigned to each classification group following perturbation 

for each fold. Blue, yellow, and red boxes indicate EEG, EOG, and EMG perturbation, respectively. The 

leftmost box of each pair shows the results for our noise-related ablation method. The rightmost box is 

for the typical zero-out ablation approach. Some pairs of boxes are labeled with *, **, or ***, which 

correspond to a significance value of p < 0.05, p < 0.01, and p < 0.001, respectively.  
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Supplementary Figure 2. Local Ablation Results Showing Global Estimation of Modality Importance  for All 

Classification Groups. The above boxplots show the percent change in activation following perturbation 

for samples in each classification group across folds. Blue, yellow, and red boxes indicate EEG, EOG, and 

EMG perturbation, respectively. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2022. ; https://doi.org/10.1101/2022.01.01.474276doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.01.474276
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Supplementary Figure 3. Effects of Clinical and Demographic Variables upon Local Ablation Mod ality 

Importance for All Classification Groups. The top, middle, and bottom rows of panels indicate the effects 

of medication, sex, and age, respectively, upon the explanations for each modality and classification 

group. The x-axis of each panel indicates the predicted class, and the y-axis indicates the actual class. The 

heatmaps indicate the size of the coefficient values resulting from the regression analysis. White squares 

have insignificant p-values. Squares with color have significant p-values (p<0.05), and squares that have 

one or two asterisks have p-values of p < 0.01 or p < 0.001, respectively. For medication, a positive 

coefficient value indicates that temazepam samples had more importance than placebo samples. For 

subject sex, a positive coefficient value indicates that female samples had more importance than male 

samples, and for age, a positive coefficient indicates that importance increased with age.  
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Supplementary Figure 4. LRP-based Global Estimation of Modality Importance for All Classification 

Groups. The boxplots show the LRP explainability results for each classification group across folds. Blue, 

yellow, and red boxes show the importance of EEG, EOG, and EMG, respectively. From left to right, within 

each group of three boxes are the relevance results for the LRP ε-rule (0.01), ε-rule (100), and αβ-rule. 

The number of samples in each classification group is included in the title of each panel. The panels on 

the left-to-right diagonal show correct classification groups, and off-diagonal panels indicate incorrect 

classification groups. 
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Supplementary Figure 5. Effects of Clinical and Demographic Variables upon LRP Relevance  for All 

Classification Groups. The top, middle, and bottom rows of panels indicate the effects of medication, sex, 

and age, respectively, upon the explanations for each modality and classification group. The x -axis of each 

panel indicates the predicted class, and the y-axis indicates the actual class. The heatmaps indicate the 

size of the coefficient values resulting from the regression analysis. White squares have  insignificant p-

values. Squares with color have significant p-values (p<0.05), and squares that have one or two asterisks 

have p-values of p < 0.01 or p < 0.001, respectively. For medication, a positive coefficient value indicates 

that temazepam samples had more relevance than placebo samples. For subject sex, a positive coefficient 

value indicates that female samples had more relevance than male samples, and for age, a positive 

coefficient indicates that relevance increased with age. 
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