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Abstract

Multimodal classification is increasingly common in biomedical informatics studies. Many such studies use
deep learning classifiers with raw data, which makes explainability difficult. As such, only a few studies
have applied explainability methods, and new methods are needed. In this study, we propose sleepstage
classification as a testbed for method development and train a convolutional neural network with
electroencephalogram (EEG), electrooculogram, and electromyogram data. We then present a global
approach that is uniquely adapted for electrophysiology analysis. We further present two local
approaches that can identify subject-level differences in explanations that would be obscured by global
methods and that can provide insight into the effects of clinical and demographic variables upon the
patterns learned by the classifier. We find that EEG is globally the most important modality for all sleep
stages, except non-rapid eye movement stage 1 and that local subject-level differences in importance
arise. We furthershow that sex, followedby medication and age had significant effects upon the pattems
learned by the classifier. Our novel methods enhance explainability for the growing field of multimodal
classification, provide avenues for the advancement of personalized medicine, and yield novel insights
into the effects of demographicand clinical variables upon classifiers.
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In recentyears, more biomedicalinformatics studies have begun to incorporate multimodal data into the
training of machine learningand deep learning classifiers (1-3). The use of complementary modalities can
enable the extraction of betterfeatures and improve classification performance (1)(4). While multimodal
data can improve classifier performance, it can also make explaining models more challenging. This is
especially true for state-of-the-art deep learning models that use automated feature extraction. As a
result, most studies have not used explainability (4—8)(9), which is concerning because transparency is
increasingly demanded for model development and physician decision making (10). As such, more
multimodal explainability methods need to be developed (2,3,11-14). In this study, we propose the use
of automated sleep stage classification as a testbed for the development of multimodal explainability
methods. We further present 3 novel approaches for use with multimodal electrophysiology data that
offer significant improvements over existing approaches. Specifically, we present a global ablation
approach that is uniquely adapted forelectrophysiology data. We further present two local methods that
can be used to identify personalized electrophysiology biomarkers that would be obscured by global
methods. Using the local methods, we then perform a novel analysis that illuminates the effects of
demographicand clinical variables upon the patternslearned by the classifier.

Automated Sleep Stage Classification as Testbed for Multimodal Explainability

Automated sleep stage classification offers a unique testbed for the development of novel multimodal
explainability methods. Automated sleep stage classification has multiple noteworthy characteristics. (1)
In practice, clinicians rely on multiple modalities instead of a single modality to manually score sleep
stages (15). (2) The features differentiating sleep stages and the importance of modalities are well-
characterized in a clinical setting (15). (3) Multiple large sleep stage datasets are publicly available (16—
18). (4) A number of studies involving unimodal and multimodal sleep stage classification have been
conducted (4)(19), which could enable data scientists to develop their explainability methods alongside
established architectures. Because these characteristics can help us validate our explainability methods
and because there is a clinical need for explainability in slee p stage classification, we chose sleep stage
classification as a use-case in this study. In the following paragraphs, we first discuss the different stages
of sleep. We then briefly review the domain of sleep stage classification and the explainability methods
that have been used within the domain, both for multimodal and unimodal classification studies.

Characteristic Features of Sleep Stages

Typical sleep stage classification approaches involve the classification of 5 stages: Awake, rapid eye
movement (REM), non-REM1 (NREM1), NREM2, and NREM3. Clinicians use the American Academy of
Sleep Medicine (AASM) manual (15) to identify the stages, and the stages are clearly described in other
sleep staging studies (20)(21). According to the AASM manual (15), Awake periods are characterized by a
band (8 — 13 Hz) electroencephalogram (EEG) activity in occipital brain regions when a participant’s eyes
are closed. When a participant’s eyes are open, Awake periods are characterized by eye blinks, rapid eye
movements, reading eye movements (i.e., slow movements followed by a burst of movement in the
opposite direction), and strong levels of electromyogram (EMG) activity. NREM1 periods are characterized
by slow eye movements, 6 band (4—7Hz) EEG activity, and vertex sharp waves (i.e., large V-shaped waves
with a duration of less than 0.5 seconds). They have EMG activity at lower levels than Awake periods.
NREM?2 is principally characterized by EEG activity. It has K-complexes (i.e., sharp negative decreases in
signal amplitude followed immediately by sharp increases in positive signal amplitude) and sleep spindles
(i.e., trains of waves between 11 — 16 Hz). NREM2 typically has no electrooculogram (EOG) activity. It
typically has less EMG than Awake periodsand can have levels as low as REM. NREM3 mainly consists of
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6 (0.5 — 2 Hz) EEG activity. NREM3 typically has little or no EOG activity. It has less EMG activity than
NREM?2 and can have EMG activity as low as REM. REM is characterized by rapid eye movementsin the
EOG, periods of little or no EMG activity followed by brief irregular bursts of activity, and sharp triangular
EEG activity. Each stage is characterized by distinct EEG, EOG, and EMG activity.

Unimodal Sleep Stage Classification and Explainability

Many sleep stage classification studies have used unimodal EEG. While some studies have used extracted
features for sleep stage classification (19,20,22,23), recent studies have begun to use deep learning
techniques involving automated feature extraction from raw data (21,22,24—-27). Multiple studies have
used explainability methods for unimodal classification. Some studies have used extracted spectral
features. In a couple of studies, authors trained convolutional neural networks (CNNs) to classify EEG
spectrograms and applied sensitivity or activation maximization (28) to identify the important features
(29)(30). In otherstudies, authors trained interpretable machine learning models or deep learning models
with layer-wise relevance propagation (LRP) (31) to classify power spectral density values and gain insight
into the features learned by the classifiers (32)(33). A few studies involving deep learning models with raw
data have also used explainability methods (25,34—36). These studies typically seekto identify the spectral
features (34—39) or waveforms (36,37) learned by neural networks. However, multimodal classification
poses unique challenges for explainability that do not exist for unimodal classification.

Multimodal Explainability in Sleep Stage Classification and Other Domains

As such, most multimodal classification studies, regardless of whetherthey used extracted features (5,8)
or deeplearning-basedautomatedfeature extraction (4,7), have not used explainability methods. Among
the few studies using explainability methods (40-42), some have used extracted features and forward
feature selection (FFS) (42). Others have used raw data and ablation for insight into modality importance
(41). Additionally, some have shown the importance of EEG spectra or performance increases after
retraining a model with additional modalities (40). Some multimodal explainability methods have also
been presentedin other domains (2)(3)(43). Similar to (42), one paper used FFSto find key features from
clinical scales and imaging features (3). One study used impurity and ablation (2). Another multimodal
study showed the importance of parts of inputs for one modality (43) with Grad-CAM (44).

Current Multimodal Explainability Methods

Multiple methods have been used for insight into modality importance in multimodal classifiers: FFS
(3)(42), impurity (2), and ablation (2)(41). FFS is applicable to most classifiers. However, it requires
repeated retraining, which is impractical for computationally intensive deep learning frameworks.
Impurity is only applicable to tree-based classifiers. Lastly, ablation is, like FFS, also applicable to nearly
any classifier and is easy to implement. In contrast, to FFS, ablation is not computationally intensive. As
such, of existing approaches, itis most usefulfor finding modality importance in deep learning classifiers.

Limitations of Ablation and Novel Alternative

Ablation does have a key weakness like all perturbation-based post-hoc explainability methods.
Specifically, perturbation methods can create out-of-distribution samples that lead to a poorassessment
of modality importance (45). Ablation also involves (1) the substitution of a feature or modality with values
that are theoretically neutral (i.e., that do not give evidence for a particular class) and (2) an examination
of how that ablation affects the classifier. As such, when translating ablation to a new domain, it is
important to consider how to seta modality or feature to a neutral state while minimizing the likelihood
of creating out-of-distribution samples or features. Existing studies using ablation for insight into
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multimodal classifiers have replaced each modality with zeros (2)(41). However, zeroing out modalities
creates samples that are highly irregular within the electrophysiology domain. The only instance in which
an electrode might return a value of zero is when the electrode is completely disconnected from the
device. In contrast, electrodes commonly return line-related noise or, in instances when an electrode is
not working properly, only return line-related noise. Line-related noise is found in electrophysiology data
at 50Hz or 60Hz due to the presence of lights, powerlines and other electronics near recording devices.
Because it is so oftenfoundin electrophysiology data, a classifier should learn to ignore it, and it should
be neutral to the classifier. As such, line-related noise could offer a more reliable, electrophysiology-
specific alternative to the genericzero-out ablation methods that have previously been applied.

While line noise-based ablation would be less likely to produce out-of-distribution samples or features
than a typical zero-out ablation approach, it would still be at risk of doing so. Gradient-based feature
attribution (GBFA) methods (46) offer an alternative to ablation that does not risk producing out-of-
distribution samples. GBFA methods include approaches like LRP (31), Grad-CAM (44), and sensitivity (28).

Limitations of Global Explanations and Proposal of Novel Local Explainability Approach

Global explainability methods identify the overallimportance of each feature or modality to the classifier.
In contrast, local methods provide higher resolution insight and indicate the importance of each feature
or modality to the classification of individual samples (45). Global methods have inherent limitations
relative to local methods, and existing multimodal explainability approaches have mainly been global.
Importantly, as shownin Figure 1, global explanations obscure feature importance forindividual samples
and can obscure the presence of subgroups. Local explanations for many samples can be combined for
higher level or global importance estimates (33) (34). Because of this, they can also be analyzed on a
subject-specificlevelthat paves the way for the identification of personalized biomarkers. Furthermore,
local explanations can be usedto examine the degree to which demographicand clinical variables affect
the patternslearned by a classifier for specific classes and features (13), which is a capacity that has not
previously been exploited in multimodal classification. Local methods have been applied in a couple
multimodal classification studies. In one study, authors ablated time points of an input sample and
examined the effect on the classification of the sample (41). In anotherstudy, authors used Grad-CAMto
examine segments of asingle modality (43). Neitherstudy identified the importance of each modality.

Importance

Atypical Subject Local Importance  Generic Subject 1 Local Importance  Generic Subject 2 Local Importance Global Importance Estimate

Figure 1. Example of Global versus Local Importance with Dummy Data. From left to right, are 4
importance metrics: the importance for an atypical sample, the importance for two genericsamples, and
the global importance estimate that is formed by averaging the importance values for the individual
samples. Note that modality twois very important for the atypical subject but not for the genericsubject,
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so the presence of the atypical sample is hidden in the global importance. When thousands of samples
from dozens of subjects are being analyzed, the presence of subgroups is easily obscured.

In the present study, we train a CNN for automated sleep stage classification using a popular publicly
available dataset. We introduce a novel global ablation approach that is uniquely adapted for the
electrophysiology domain (12). We then presentanovellocal ablation approach (13) and show how GBFA
methods can be used for local insight into multimodal classifiers (11). With our local methods, we identify
subject-level differences in modality importance that support the viability of the methods for the
identification of personalized biomarkers. We then use the local explanations to perform a novelanalysis
that provides insight into the patterns learned by the classifier related to the age, sex, and state of
medication of subjectsin our sleep dataset (13,14).

Results

Here, we describe our model performance, explainability, and statistical analysis results.

Model Performance Results

Table 1 showsthe mean and standard deviation of the precision, recall, and F1 score for each class. The

model had highest F1 scores for NREM2 and Awake. Possibly because of its smaller sample size, NREM1

had the lowest classification performance across all metrics. While performance for NREM3and REM was

not as high as for NREM2 and Awake for most metrics, the classifier still performed wellfor both classes.
Table 1. Classification Performance Results

Awake NREM1 NREM2 NREM3 REM
F1 71.25+05.15 | 39.86+07.19 | 73.28+04.76 | 64.15+15.25 | 65.92+06.28
Precision | 72.25+07.12 | 36.20+03.98 | 79.35+03.92 | 56.78+18.35 | 69.04+07.14
Recall 70.90+07.02 | 46.28+13.52 | 68.71+08.51 | 78.22+10.24 | 63.26+06.69

Table 2 shows a confusion matrix of the classifier performance on testsamples across all folds. A relatively
large number of Awake samples were assigned to the NREM1 class, and NREM1 samples were assigned
to all classes but NREM3. Many NREM2 samples were assigned to NREM3, and many NREM3 samples
were assigned to NREM2. Many REM samples were assigned to NREM1 and NREM2.

Table 2. Confusion Matrix for Test Samples Across All Folds

Predicted
Awake NREM1 | NREM2 | NREM3 REM Totals
Awake 4574 1083 293 151 240 6341
NREM1 806 2424 879 212 890 5211
Tg NREM2 602 1981 17965 3928 1902 26378
g NREM3 133 108 1315 6125 74 7755
REM 169 1157 2197 472 6929 10924
Totals 6284 6753 22649 10888 10035 | 56609

Global Ablation Results

Figure 2 and Supplementary Figure 1 show the results comparing our noise-related global ablation analysis
with the typical global ablation approach that zeroes outa modality for correct classification groups and
all classification groups, respectively. We computed the percent change in the number of samples
assigned to a classification group within the confusion matrix after perturbation. Figure 2 shows bar plots
of the median importance for each group, and Supplementary Figure 1 shows box plots for each group.
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Figure 2. Global Ablation Results for Correctly Classified Samples. The leftmost and rightmost plots show
the results for the zero-out ablation and our noise-related ablation, respectively. Importance for each
sleep stage and modality is aligned vertically. Horizontal dashed lines separate importance foreach sleep
stage. Blue and red bars indicate negative and positive percent change in samples, respectively. Asterisks
indicate significant differences (p < 0.05) between results forthe two methods. Across both methods, EEG
was mostimportant forall classes except NREM1.

In this paragraph we discuss correctly classified samples. EEG was the most important modality across
both methods for all classes except NREM1. For Awake samples, the model was most affected by EEG
ablation, though the effects of ablating EEG varied widely across folds. Interestingly, the twomethods had
significantly different effects on the change in the number of Awake samples following EOG ablation . For
EOG, our approach caused the number of Awake samples to increase, while the typical approach caused
the number of Awake samples to decrease. The two methods also significantly differed for EMG. Ablating
EMG with the typical approach decreased the number of Awake samples, while ablating EMG with our
approach did not really have an effect. For NREM1, EEG and EOG ablation had large effects for both
methods. EEG ablationincreased the number of NREM1samples, and EOG ablation decreased the number
of NREM1 samples for both standard and noise-related methods. NREM1 EMG results significantly
differed for the two methods. Ablation of EMG with our approach increased the number of NREM1
samples, and ablation with the typical approach slightly decreased the number of NREM1 samples. For
NREM2, ablation of EEG caused nearly all NREM2 samples to be misclassified across nearly all folds.
Ablation of EOG increased the number of NREM2 samples, and ablation of EMG had little effect. For
NREM3, ablation of EEG caused nearly all NREM3 samples to be misclassified. EOG ablation caused an
increase in misclassified NREM3 samples. EMG ablation had little effect, though our ablation approach
showed aslight increase in NREM3 samples in some instances. For REM, EEG and EOG ablation caused
large reductions in REM samples. In both instances, ablation with our approach produced a significantly
larger reduction than ablation with the typical approach. Also, EMG ablation with the standard approach
had negligible effects but a significant decrease in REM samples with our approach.
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Because we measured the percent change in samples assigned to each classification group, the effects of
perturbing modalities to different classification groups can be compared. Ablating NREM2 and NREM3
EEG prompted a much larger decrease in correctly classified samples than ablating EEG for other classes,
though the effect on REM was only slightly less. In contrast, ablating EEG significantly increased the
number of correctly classified NREM1 samples. EOG ablation had the strongest impact upon NREM1
followed by REM, where the number of correctly classified samples decreased. EMG seemed to have little
effect upon the classifier. However, EMG did impact Awake and REM classification to a small degree.

For samples misclassified as Awake, EEG ablation greatly increased the number of samples from other
classesthat were assigned to Awake. EMG and EOG ablation only affected the number of NREM1 samples
assigned to Awake (i.e., NREM1/Awake), though they affected the number of REM/Awake to a smaller
degree. For samples misclassified as NREM1, EEG ablation significantly increased the number of
misclassified samples. For samples misclassified as NREM2, EEG ablation prevented samples from most
classes being classified as NREM2, but EOG ablation increased the number of misclassified samples. EEG
and EOG ablation also reduced the number of samples misclassified as NREM3. Ablation had negligible
effects upon the number of NREM2/REM and NREM3/REM. Interestingly, the two ablation methods
seemed to have approximately opposite effects forthe number of Awake/REM and NREM1/REM.

Local Ablation Results

We performed several analyses with our local ablation approach. (1) We combined the results across
samples to form a global estimate of modality importance. (2) We showed how the local explanations
evolved overa 2-hour window of data. (3) We examined how the ablation results might give insight into
the patternslearned by the classifier related to demographicand clinical variables.

Mean Absolute Percent Change (%)
0 10 20 30 40 50 60 70

T — Hlkc

EOG
EMG
eec B T
EOG NREM1

EMG
EEG
EOG NREM2
EMG
EEG
EOG NREM3
EMG
EEG
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REM

Figure 3. Local Ablation Results Showing Estimation of Global Importance for Correct Classification
Groups. Within each fold, we calculated the mean absolute percent change in activation for the
perturbation of samples in each classification group. We then calculated the median value across folds.
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The bar plots show the results for the correct classification group. EEG, EOG, and EMG importance values
are shownin red, green, and blue, respectively. EEG was most important for all classes except NREM 1.

Comparison of Global Ablation with Local Ablation-based Global Estimation of Modality Importance

Figure 3 and Supplementary Figure 2 show how we applied ourlocal ablation approach across all samples
in each fold to estimate global modality importance for correct classification groups and all classification
groups, respectively. This enabled us to validate our local ablation approach by comparingit to our global
ablation approach. To find the effects across samples, we calculated the absolute percent change foreach
sample and then calculated the mean value across samples. Importantly, like in global ablation, our local
ablation approach found that EEG was the mostimportant modality forall classes except NREM1 in which
EOG was mostimportant. Overall, ourlocal and global ablation approaches seemed to assign similar levels
of relative importance. However, this was not true for many incorrect classification groups. For example,
the relative importance of each modality differed across methods for NREM3/NREM2 and REM/NREM?2.

Subject-Level Local Ablation Results Over Time
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Figure 4. Local Explanations over a 2-Hour Sleep Cycle from Subject 12. The top panel shows the actual
and predicted classes. The second panelshows electrophysiology activity. The third panel shows the local
ablation results, and the fourth panel shows the percent of LRP relevance (€= 100) for each modality. In
contrast to the global results, EOG is more important for Awake than EEG from 0to 20 minutes.

Figure 4 shows the localablation results overthe first two hours of a recording from Subject 12. Note that
the 2-hour period is roughly equivalent to a full sleep cycle, as the period starts while the subject is awake
and cycles through all sleep stages. Importantly, EOG was often more important during Awake periods
than EOG. Interestingly, an EMG spike occurred in the first five minutes of the recording that increased
the likelihood of samples being classified as Awake when ablated. In contrast, when EEG and EOG were
ablated, the likelihood of the samples being classified as Awake decreased. As Subject 12 proceeded into
NREM1 at around 20 minutes, EOG ablation significantly decreased the likelihood of the samples being
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classified correctly. EEG and EMG ablation decreased the likelihood of the samples being correctly
classified at the beginning and ending of the period and increased the likelihood of the samples being
correctly classified during the middle of the period. As Subject 12 went into deeper sleep stages, EEG
ablation tended to decrease the probability that a sample would be classified as NREM. Additionally, EOG
importance varied greatly throughout the remaining time course.

Statistical Analysis of Local Ablation Results with Demographic and Clinical Variables

Figure 5 and Supplementary Figure 3 show the results for the statistical analysis examining the effects of
medication, sex, and age upon the local ablation explanations for correct classification groups and all
groups, respectively. The importance assigned to many of the modalities and classification groups had
significant relationships with the demographic and clinical variables. Importantly, subject sex had
significant relationships with 13 of the 15 correct classification group modality pairs, while medication and
age only had relationships with 10 and 9 of the pairs, respectively.

More EOG groups had significant relationships with medication than EEG or EMG groups. For EEG, the
explanations forall correctly classified groups, except REM, had significant relationships with medication.
This is interestingwhen one notes that for REM/REM samples EOG and EMG importance had significant
relationships with medication. The strongest EEG relationships were for NREM1/NREM3 and
NREM1/REM. Interestingly, the importance of most samples assigned to NREM3 had significant
relationships with medication. For EOG, most NREM1 and NREM2 groups had significant relationships
with medication. The only instance in which importance increased from placebo to temazepam was for
the NREM2/REM. For EMG, NREM2 importance had relationships with medication for all groups except
Awake. Additionally, NREM3/NREM?2 and REM/NREM2 also had significant relationships with medication.

Medication Sex Age
Awake  NREM1 NREM2 NREM3 REM Awake NREM1 NREM2 NREM3 REM Awake NREM1 NREM2 NREM3 REM xlff

oo | [ [
« L el & [ -8 [ o
« 0 N e ] T e

Figure 5. Effects of Clinical and Demographic Variables upon Local Ablation Importance for Correct
Classification Groups. Panels a, b, and cshow results for medication, sex, and age, respectively. The x -axes
indicate the predicted class, and the y-axis indicates the modality. The heatmaps show the regression
coefficient values. Squares surrounded by a bolded box show significant effects (p < 0.05). A positive
medication coefficient indicates that temazepam samples had more importance than placebo samples.
For subject sex, a positive coefficient indicates that female samples had more importance than male
samples, and a positive age coefficient indicates that importance increased with age. Note that sex had
more significant relationships than the othervariables.

EEG

(=]

Subject sex was related to many classification groups across modalities. For EEG, all correct classification
groups had significant relationships with subject sex. Additionally, samples predicted to be NREM3 had
very strong positive relationships with sex. Samples belonging to female subjects had higherimportance
for samples misclassified as NREM3. Samples belonging to male subjects seemed to have higher EEG
importance for REM/Awake. Interestingly, EEG appeared to be more salient in samples belonging to
female subjects than male subjects while the opposite was true for EMG. EOG groups had both positive
and negative coefficient values. Samples belonging to female subjects that were misclassified as Awake
had less EOG importance than those belonging to male subjects. In contrast, samples belonging to female
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subjects that were misclassified as NREM2 had more importance than those belongingto male subjects.
The EOG coefficients with the largest magnitude were all associated with NREM3. The largest magnitude
EMG coefficients were for samples classified as REM, and particularly Awake/REM. Male subjects had
more EMG importance for Awake and NREM1 samples than female subjects.

For subject age, the classifier put more importance upon EEG in Awake as age increased. Also, except for
REM/Awake, the classifier placed less importance on EEG in REM as age increased. REM/Awake and
Awake/NREM3 had more EEG importance with increased age, and NREM3/Awake and REM/NREM3 had
less EEG importance with increased age. EOG importance for NREM2 samples was related to modest
increases in age. Interestingly, correctly classified Awake and NREM1/REM had significant decreases in
EOG importance with increased age. REM/NREM3 had significantly increased EOG importance in samples
with increased age. Most correct classification groups had a relationship between the EMG importance
and subject age. Exceptfor correctly classified Awake samples, EMG importance generally increased with
age. Misclassified Awake and REM samples also had strong relationships between EMG importance and
age. NREM3/Awake and REM/Awake had more EMG importance with age, though NREM2/Awake had
less EMG importance with age. NREM1/REM had less EMG importance with increased age.

LRP Results

We performed severalanalyses uponthe LRP relevance.(1) Foraglobal estimate of modality importance,
we computed the percentage of absolute relevance assigned to each modality across folds for each
classification group. (2) We showed the local results forthe same 2-hour window as the ablation analysis.
(3) We examined relationships between absolute LRP relevance and clinical and demographicvariables.
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Figure 6. LRP Global Estimate of Modality Importance for Correct Classification Groups. We calculated the
percent of absolute relevance for each modality across samples within each classification group. We then
calculated the median value across folds. Panels a, b, and c show results for the ap-rule, e-rule (¢ =100),
and e-rule (€=0.01), respectively. Red, green, and blue bars are for EEG, EOG, and EMG, respectively. EEG
was, with a few exceptions, mostimportant.

Global Estimation of Modality Importance with LRP

Figure 6 and Supplementary Figure 4 show the LRP results for correct classification groups and all groups,
respectively. EEG was more important or of comparable importance to EOG across most classes. For
correctly classified Awake, NREM1, and REM, EEG and EOG were of comparable importance forthe e-rule


https://doi.org/10.1101/2022.01.01.474276
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.01.474276; this version posted January 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(e = 100) and the ap-rule. However, EEG was more important than EOG for the g-rule (¢ = 0.01). For
NREM2/NREM2and NREM3/NREM3, EEG was more important than EOG and EMG. EMG importance was
greatest in Awake, followed by NREM2 and NREM1. Relative to correctly classified groups, many
incorrectly classified groups had greater variance in relevance across folds. Nevertheless, samples
incorrectly assigned to a class typically had similar relevance distributions to samples correctly assigned
to the class. NREM2, NREM3, and REM assigned to Awake were exceptions to this pattern. They
demonstrated high levels of variance across folds. NREM2 and NREM3 incorrectly classified as REM and
NREM?2 also demonstrated increased variance across folds relative to REM.

LRP Results Over Time

The bottom panel of Figure 3 shows the local LRP results for the e-rule (e = 100) over the same 2-hour
period for which the local ablation analysis was conducted. During the first 17 minutes, the model
correctly classified Awake by heavily relying upon EOG. EOG also demonstrated high levels of importance
for REM between 100to 120 minutes. For correctly classified NREM1 through NREM3, the model heavily
relied upon EEG. However, when NREM1 through NREM3 were misclassified, the model often placed
greaterimportance upon EMG and EOG (i.e., 70to 80 minutes). EMG overall had little relevance. However,
spikesin EMG relevance corresponded with spikes in EMG activity throughout the recording.

Statistical Analysis of Local LRP Results with Demographicand Clinical Variables

Figure 7 and Supplementary Figure 5 show the results of our analyses examining the relationship between
LRP relevance and medication, sex, and age for correct classification groups and all groups, respectively.
Significant relationships existed for many of the modalities and classification groups. Importantly, subject
sex had significant relationships with 14 of the 15 correct classification group modality pairs, while
medication and age only had relationships with 11 of the pairs.

For medication, EEG had more relevance across many groups fortemazepam relative to placebo samples,
while EOG had a decrease in relevance and EMG had mixed results. For EEG, the only group with
decreased relevance for temazepam relative to placebo was Awake/Awake, which corresponded with
increased relevance for temazepam relative to placebo in EOG. For EEG, all correct classification groups
except NREM1 had significant relationships with medication. For incorrect classification groups,
NREM1/NREM3 had the highest magnitude coefficient. This corresponded with a large decrease in EOG
relevance. For EOG, placebo samples assigned to NREM2and NREM3 had less relevance than temazepam
samples. NREM2/Awake also had a strong relationship with medication. For EMG, fewer classification
groups had significant relationships with medication than for EEG and EOG. However, correctly classified
NREM2, NREM3, and REM had significant relationships with medication. Awake/NREM3 had a large
coefficient, with temazepam samples having more EMG relevance than placebo samples.

Medication Sex Age
Awake  NREM1 NREM2 NREM3 REM Awake ~NREM1 NREM2 MNREM3 REM ‘ Awake NREM1 NREM2 NREM3 REM

0.04

-0 EOE OO e - ---IZI
e Mz RO
Figure 7. Effects of Clinical and DemographicVariables upon Local LRP Relevance for Correct Classification
Groups. Panels a, b, and c show results for medication, sex, and age, respectively. The x-axis of each panel
indicates the predicted class, and the y-axis indicates the modality. The heatmaps show the size of the
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regression coefficient. Squares surrounded by a bolded box show significant effects (p < 0.05). For
medication, a positive coefficientindicates that temazepam samples had more importance than placebo
samples. For subject sex, a positive coefficientindicates that female samples had more importance than
male samples, and for age, a positive coefficientindicates that importance increased with age. Note that
sex had more significant relationshipsthan the othervariables.

For subject sex, EEG had more importance in males than females across most classification groups. In
contrast, EOG and EMG had more relevance for females than males across most groups. For EEG and EOG,
all correct classification groups were related to subject sex. For EMG, all correct classification groups
exceptfor Awake had significant relationships with sex. For EEG, the highest magnitude coefficients were
REM/NREM2, REM/NREM3, NREM1/NREM3, and NREM3/REM. Male subjects had more EEG relevance
than female subjects for REM/NREM?2. Female subjects had more EEG relevance than male subjects for
NREM1/NREM3. Interestingly, NREM3/REM and REM/NREM3 had coefficients of a nearly opposite values.
ForEOG, Awake/NREM3, NREM3/NREM1, and REM/NREM3 had the largest magnitude relationships with
subject sex. Male subjects had much higher EOG relevance for Awake/NREM3 and for REM/NREM3
relative to female subjects, and female subjects had much higher EOG relevance for NREM3/NREM1.
Samples belonging to female subjects tended to have more EMG relevance for correct classification
groups than male subjects. The largest magnitude EMG coefficients were NREM1/NREMS3,
NREM3/NREM1, REM/NREM2, and REM/NREM3. For male subjects, NREM1/NREM3 and NREM3/NREM1
tended to have more relevance than for female subjects. For female subjects, REM/NREM2 and
REM/NREM3 had more and less EMG relevance relative to male subjects, respectively.

For age, EEG and EMG relevance tended to increase with age, while EOG relevance decreased with age.
For EEG, most classification groups, except for many Awake groups, had significant relationships with age.
The largest magnitude EEG coefficients were for NREM3/Awake and REM/NREM3 where relevance
decreased with age. For REM/NREM3, decreased EEG relevance with age corresponded to increased EMG
relevance. For EOG, only REM/REM increased in relevance with age. This increase corresponded with
decreased EEG relevance in REM/REM. For EMG, most groups with significant relationships with age had
increased relevance with age.However, all classes misclassified as Awake that had significant relationships
with age had a decrease in relevance with age. This corresponded to increased EEG relevance with age.

Comparison of Explainability Results from Different Methods

To better understand our explainability methods, we compared the similarities and differences of their
results. We compared the global importance estimates for global ablation, local ablation, and LRP. We
also compared the local results overtime and statistical analysesforlocal ablation and LRP.

Global Estimation

We compared the relative magnitude of the estimates across methods. Across methods, EEG was
generally most important. For Awake/Awake, all three methods found that EEG was most important.
However, LRP magnified the importance of EOG and EMG relative to EEG more than local ablation. For
NREM1/NREM1, two LRP rules, local ablation, and global ablation found that EOG was most important,
followed by EEG. Results for NREM2/NREM2 and NREM3/NREM3 were similar across explainability
methods. EEG was mostimportant, followed by EOG and EMG. For REM/REM, only the LRP e-rule (= 0.1)
agreed with localand global ablation regarding the relative modality importance. They identifiedthe order
of descending modality importance as EEG, EOG, and EMG. Many incorrect classification groups had
similar distributions of relative importance across methods. However, some groups had different
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importance distributions. NREM1/Awake generally had greater EOG than EEG relevance for LRP but not
for ablation. NREM2/NREM1 had less EOG than EEG relevance for LRP but not for ablation. Awake/REM
and NREM1/REM had more EEG than EOG importance for local ablation but not for LRP. Global ablation
found that EEG and EOG importance for Awake/REM varied according to the global ablation approach.
Additionally, global ablation found that EEG had greaterimportance than EOG for NREM1/REM.

Subject-level Local Results over Time

Ingeneral, both local ablation and LRP showed similar trends in modality importance over time. They both
showed lowerlevels of EEG and higher levels of EOG importance during Awake and NREM1 periods and
showed atransition to higher EEG and lower EOG importance for NREM2, NREM3, and REM. However, in
multiple instances, LRP seemed to more closely correspond with changesin electrophysiologyactivity. For
example, between 60 and 80 minutes into the recording, EMG activity spiked, and a misclassification
resulted. In this instance, LRP more clearly indicated that the change affected the classification than local
ablation did. Additionally, for NREM periods between 30to 100 minutes, EEG relevance often seemedto
have greatervariation relative to the relevance of other modalities than the local ablation results did.

Statistical Analysis of Effects of Clinical and Demographic Variables upon Local Explanations

Many effects were consistent between the two explainability methods. Importantly, across bothmethods,
subject sex had relationships with more correct classification group modality pairs than either medication
or age. The importance of EEG for Awake/Awake was less in temazepam than placebo samples and was
more in temazepam than placebo samples for NREM2/NREM2. Samples assigned to NREM3 also generally
had more EEG importance for temazepam than placebo samples. For EOG, most groups with significant
relationships with medication had more importance across both methods in placebo than in temazepam
samples. In REM/REM, EOG importance was higherin placebo than temazepam samples. NREM2/NREM1
and NREM3/NREM2 had more EMG importance in temazepam than placebo samples for both methods.
REM/NREM2 had less EMG importance in temazepam than placebo samples for both methods.

For the effects of subject sex on EEG importance, the two methods provided similar results in many
instances: (1) NREM1/NREM1, NREM1/NREM2, and NREM1/NREM3, (2) NREM2/NREM1, (3)
REM/NREM3, and (4) Awake/REM. However, there were opposite effects in other cases: (1) for
NREM2/NREM2, NREM2/NREM3, and NREM2/REM, (2) for NREM3/NREM3 and NREM3/NREM?2, and (3)
REM/REM and REM/NREM?2. For EOG, correctly classified Awake, NREM2, NREM3, and REM had similar
changes in importance from male to female samples. Additionally, the changes in importance for most
classification groups were similar across methods. For EMG and sex, this was not the case, thoughin a
few instances the differences in importance between male and female were similar (e.g., Awake/REM,
NREM1/NREM2, NREM1/NREM3, and REM/NREM3).

Across explainability methods, subject age significantly affected the importance assigned to modalities.
For EEG, there were similar effects of age: (1) for Awake/NREMS3, (2) for NREM1/Awake and
Awake/NREM?2, (3) for NREM2/NREM1 and NREM2/REM, (4) for NREM3/Awake, and (5) for REM/REM,
REM/Awake, and REM/NREM3. Many groups with different results across explainability methodshad low
levels of significance (i.e., p < 0.05). For EOG, there were differencesin which classification groups were
significant. However, NREM1/REM did have similar results across explainability methods. For EMG, there
were many similarities in the effect of age upon the explanations of the twomethods: (1) NREM1/NREM2,
(2) NREM/NREM2 and NREM2/Awake, (3) NREM3/NREM3, and (4) REM/NREM3.
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Discussion

In this section, we discuss the implications of our methods to other multimodal classification problems.
We then discuss the results that were uniform across explainability approaches within the context of
established sleep domain knowledge, and we discuss the limitations and next steps for this work.

Implications of Novel Explainability Methods Beyond Sleep Stage Classification

In this study, we present aseries of novel multimodal explainability methods. Ourglobal ablation method
offers a methodological improvement over existing methods and is uniquely adapted to multimodal
electrophysiology data. Existing multimodal electrophysiology studies have ablated each modality by
replacing them with zeros (2)(41). Because having a channel of zero values is atypical for electrophysiology
data in clinical settings, replacing modalities with zeros could increase the risk of creating out-of-
distribution samples or features, which could cause the explanations to be inaccurate. Our approach
adapts ablation for the domain of electrophysiology by replacing modalities with line -related noise that is
commonly found in data and that the classifier should learn to ignore. Additionally, it highlights the
usefulness of carefully considering the domain to which ablation is being adapted and using domain-
specific perturbations. Our local ablation approach is, to the best of our knowledge, the first local
multimodal explainability method that provides insight into the importance of each modality. By
examining the change in output activation following ablation, it also shows how ablation or perturbation
could be used to obtain local explanations across a variety of explainability problems beyond multimodal
explainability. We also show, forthe first time, how gradient-based methodscan be used to find modality
importance both locally and globally. Because they do not perturb data, GBFAmethods could offer a more
reliable approach than ablation. Our local methods offer a pathway towards identifying subject-specific
electrophysiology biomarkers that could be used in personalized medicine. Additionally, our analysis of
the relationship between the local explanations and demographic and clinical variables offers a novel
approach for gaining insight into the effects of variables that are not explicitly contained in the training
data. This approach has implications beyond multimodal explainability. Modeldevelopers could use it to
better understand how aspects of their data are affecting the patterns learned by their models.
Additionally, enhanced explainability of model decision-making could increase physicians’ and other
relevant decision-makers’ trust of deep learning-based systems and subsequently increase the likelihood
of the adoption of their recommendations. Scientists could also use the approach to help develop
hypotheses for novel biomarkers. For example, if age were related to the explanations for a class and
variable or the presence of an Alzheimer’s disease-related gene were related to the explanations for a
brain region, researchers could later examine that relationship with future studies.

Our global multimodal explainability approach is well suited to multimodal electrophysiology data, as its
key difference from standard ablation approaches s that it replaces modalities with noise like the artifact
commonly found in electrophysiology data. Like our global ablation approach, ourlocal ablation approach
would, in its current state, only be applicable to electrophysiology data. However, our examination of the
effect upon the output activation following ablation could easily be adapted to other domains. Our use of
a gradient-based approach is more methodologically sound than the use of ablation methods, so applying
it would likely be better than using ablation across many problems. Additionally, the ablation and
gradient-based methods would each be better suited to different models. Unlike gradient methods,
ablation is applicable to all deep learning classification frameworks. For example, our ablation methods
would likely be more effective for long short-term memory networks than our LRP approach, while our
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LRP-based approach would likely be more effective for many CNN or multilayer perceptron architectures
(33). While that is generally the case, implementing LRP or similar methods with some CNN architectures
would be difficult, while the implementation of ablation would be relatively straightforward.

Classification Performance

Our classifier performed well overall but somewhat below state-of-the-art classifiers (47). The classifier
performed worst on NREM1. This makes sense given that NREM1 is the smallest class and that it can be
similar to Awake and REM (15)(21). Additionally, NREM1 classification has normally been relatively poor
in previous studies (20,21,27,40), so some studies have specifically developed methods that improve
NREM1 classification (20). Although the Awake and NREM1 had similar numbers of samples, the classifier
performed markedly better on Awake. Given that Awake EEG and EOG have features that are very
differentfromthose of NREM and that Awake EMG is different from REM EMG (15), it makes sense that
the classifier would have an easier time learning to the classify Awake samples. Similar to previous studies
(47)(27), the precision and F1 score of the classifier, but not the recall, was highestfor NREM2.

Global Results

Across methods, EEG was most important for identifying Awake, NREM2, NREM3, and REM. In contrast,
EOG played a greaterrole in the correct classification of NREM1 samples. EMG was not very important to
the classification of any stage. This result is not atypical, as previous studies have shown that using both
EEG and EMG does not significantly improve classification performance for Awake, NREM2, and NREM3
relative to just using EEG (48). While global explanations for correct classification groups were similar
across methods, explanations forincorrect groups tended to differacross methods.

Subject-level Local Ablation and LRP Results over Time

The two local approaches had similar results for the 2-hour period of explanations that we output. In
contrast to the global explanations, EOG was particularly important during Awake periods. This suggests
that subject or subgroup-specific patterns of EOG activity exist within the Awake class that are obscured
by global methods. It also supports existing findings that showed how EEG alone did not discriminate
between Awake, NREM1, and REM as effectively as EEG with EOG and EMG (49). Additionally, previous
studies have found that EOG is particularly important for identifying Awake (50) and can yield comparable
classification performance to EEG (51). In contrast, EEG was important for discriminating NREM and REM
samples. The importance of EEG for NREM and REM makes sense given that EEG patternsfor NREM and
REM differ greatly (15). However, it is interesting that this subject had higher Awake EOG than EEG
importance. Globally, EEG tended to be more important for Awake than EOG. Moreover, visualizing the
results over time enabled us to obtain higher resolution insight into the classifier than visualizing them
globally. For example, they showed that EMG importance for the subject typically spiked when samples
were incorrectly classified, which suggests that EMG adversely affected model performance.

Statistical Analysis of Effects of Clinical and Demographic Variables upon Local Explanations

We assume that the relationships that are shared by both local explainability methods with demographic
and clinical variables are more likely to be significant relationships than those identified by only one
explainability method. As such, we only discuss the implications of those replicable patterns within the
context of established research. Interestingly, subject sex has relationships with more modality correct
classification group pairs than either medication orage, which could indicate that subject sex had stronger
effects on the patterns learned by the classifier than the other variables. Given that males and females
are highly effect could be attributed to the imbalance of male to female subjects presentinthe dataset.
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Subject sex seemingly affected the NREM1 EEG patterns learned by the classifier. This reflects well-
characterized aspects of sleep science. Namely, that adult women can have greater slow-wave EEG activity
in NREM sleep stagesthan men (52)(53) and that, in general, there are differencesin the EEG activity of
men and women (54)(55). While sex was associated with the correct classification of NREM1, sex may also
have adversely affected the EEG patterns learned by the classifier for several sleep stages, like Awake,
NREM1, NREM2, and REM. Whereas the effects of sex on EEG was more associated with the incorrect
classification of samples, both explainability methods indicated that sex likely affected the EOG patterns
learned by the classifier for the correct classification of Awake, NREM2, NREM3, and REM. This highlights
the possibility of EOG sex differencesacross most sleep stages. We have been unableto find many studies
on the effects of sex upon EOG in sleep, so our results could promptin-depth future studies on this topic.
Both methods indicated that sex seemed to affect the EMG patterns learned for incorrectly classified
samples. Medication seemed to affect the EEG of Awake, NREM2, and NREM3 samples similarly in both
explainability methods. Previousstudies have shown that benzodiazepineslike temazepam (56) and other
medications like duloxetine and desipramine (57) can have significant effects on EEG sleepstages and that
temazepam, in particular, can have significant effects upon REM (58). Other studies have shown similar
effectsin monkey EEG (59). Ourresults further showed that medication significantly affected the pattems
learned for REM EOG. Interestingly, medication may have been slightly related to the learning of EMG
patterns that contributed to incorrect NREM classification. That there were inconsistent effects of
medication upon EMG could fit with previous studies that purportedly analyzed EMG sleep data in
monkeys but did not report any effects of medication (59). The effects of age on sleep are well
characterized (52,53,60-62). In our study, age seemedto affect the EEG patterns learned for REM, similar
to (63). However, age was also related to the learning of EEG patterns for multiple incorrect classification
groups. This suggests that the model did not fully learn to address the underlying effects of age upon EEG
across sleep stages. Interestingly, age had inconsistent effects upon the EOG patterns learned by the
classifier. Age seemed to affect EMG patternsfor NREM2and NREM3.

Limitations and Next Steps

The dataset that we used contained many subjects. Future studies might perform analyses comparing
differences in importance across subjects, which could enable the identification of personalized sleep
stage biomarkers (43). In this study, we used a simple CNN classifier, which made the implementation of
LRP straightforward. However, using a simple CNN classifier also contributed to classification performance
that was high but below the state of the art. Future studies with advanced classifiers might use the
analyses that we employed to assist with the discovery of biomarkers and formulation of novel hypotheses
related to sleep and other domains. Our classifier was originally developed for EEG sleep stage
classification. As such, the architecture may not be optimized for extracting EOG and EMG features. This
does not, in any way, adversely affect the quality of our explainability results. However, it prevents
generalizable claims regarding the importance of one modality overanotherforthe identification of sleep
stages. Additionally, other GBFA methods could potentially replace LRP for multimodal explainability.
Quality metrics like those presented in (64) could help rate the quality of each method for explaining
classifiers trained on multimodal electrophysiology data. Additionally, previous studies have shown that
applying multiple relevance rules sequentially to different parts of a network can yield less noisy
explanations (65), and future studies might enhance explanation quality using that approach.

Concluding Thoughts
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In this study, we propose sleep stage classification as a testbed for developing novel multimodal
explainability methods. Further, after training a classifier for multimodal sleep stage classification, we
presenta series of novelexplainability methods for deep learning classifiers trained on multimodal time-
series data. Our global ablation method is more domain-friendly than previous approaches that have
replaced modalities with zeros. Ourlocal ablation approach s, to the best of our knowledge, the first local
multimodal ablation method to be developed, and our GBFA approach offers an alternative to ablation
that has not previously been used for understanding modality importance. We show how the methods
can be used to obtaininsight into the importance of modalities to both incorrectand correct classification
of samples. We find that EEG was most important to the identification of most sleep stages while EOG is
mostimportant of the identification of NREM1. We show how local methods can help identify differences
in subject-level explanations that differ from global explanations and that could potentially be used to
identify personalized biomarkersin future studies. Forexample, one subject showed higherlevels of EOG
importance in Awake samples than EEG importance. Importantly, we also developed a novel analysis
approach and found that subject sex had more significant relationships with patterns learned by the
classifier for each sleep stage relative to other clinical and demographic variables. More broadly, the
approach could help illuminate the effects of those variables upon different classes (e.g., sleep stages or
disease conditions). Our study greatly enhances the degree of insight that can be obtained from the
typically black-box models of the growing field of multimodal classification.

Methods

In this section, we describe our data, preprocessing, model architecture and training approach, and
explainability methods.

Description of Data

We utilized Sleep Telemetry data from the Sleep-EDF Expanded Database (16) on Physionet (66). The
database can be downloaded at (67) and has been used in previous sleep stage classification studies
(5,19,25,29). The dataset has 44 approximately 9-hour recordings from 22 subjects (15 female and 7 male)
with primary sleep onsetinsomnia (68). Subject age had a mean of 40.18 years and a standard deviation
of 18.09 years. Figure 8 shows subject demographics. Allsubjects had two recordings — one following the
administration of a placebo and one following temazepam administration. Temazepam belongsto aclass
of drugs called benzodiazepines which amplify the effects of the neurotransmitter y-aminobutyric acid
(GABA). GABA is the most common neurotransmitter in the central nervous system. It is inhibitory in
nature and produces a calming effect on the brain (69). It is commonly used to treatinsomnia and affects
electrophysiology activity. Each recording contained data from 2 EEG electrodes, 1 EOG electrode, and 1
EMG electrode. Datawas recorded at a 100 Hertz (Hz) sampling frequency. The two EEG electrodes were
FPz-Czand Pz-Oz, according to (70). However, like previous studies (5,20,25,29,71), we used only the Fpz-
Cz for our analysis. A 1-Hz marker was derived from the recording device that indicated the presence of
recording errors. Using the Rechtschaffen and Kales standard (72), expert technicians assigned 30-second
data epochsto one of seven categories: Movement, Awake, REM, NREM1, NREM2, NREM3, and NREMA4.
In our study, we merged NREM3 and NREM4 into a single NREM3 class (15). We removed all movement
samples and samples containing recording errors.
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Figure 8. Distribution of Samples and Subject Demographics. Panels A and B show the distributions of
temazepam and placebo samples, respectively, for each subject. Panel C shows the age and sex of each
subject, with the subjects arranged from youngest to oldest. Each panelshares the same x-axis.

Description of Data Preprocessing

Based on the data annotation, we segmented the data into 30-second samples. Within each recording,
we z-scored each electrode individually to improve the identification of patterns across subjects. After
segmentation and sample removal, our dataset had 42,218 samples. The dataset was highly imbalanced
with Awake, NREM1, NREM2, NREM3, and REM classes having 9.97%, 8.53%, 46.8%, 14.92%, and 19.78%
of the dataset, respectively. Figure 8 shows the distribution of samplesin each class foreach subject.

Description of 1D-CNN
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Model Architecture and Training
We adapted a CNN architecture initially developed for EEG classification (73). Details on the architecture
are shown in Figure 9. We implemented the architecture in Keras (74) with a TensorFlow (75) backend.
We used 10-fold cross-validation with 17, 2, and 3 subjects being randomly assigned to training, validation,
and test setsin each fold. We used categorical cross entropy loss and weighted each class to account for
class imbalances when training the classifier. We used a batch size of 100 with shuffling after each epoch.
We used the Adam optimizer (76) with an adaptive learning rate. Starting with an initial learning rate of
0.001, the optimizer decreased its step size by a factor of 10 after every 5 epochs in which validation
accuracy did notimprove. We used early stopping to end training after validation accuracy plateaued for
20 epochs with a maximum of 100 epochs and used model checkpoints to select the model from each fold
that obtained the highest validation accuracy. We used the selected models for testing and explainability.

EEG i) ii)

EOG
EMG

— (R
max ial k lobal
- it *| convld | - convld | .

pool dropout " maxpool | el

SE—— R R
‘ input I = convld | " convld | - - drupuur| -

asuag

x3

X2

Figure 9. CNN Architecture. Layers i) of the diagram repeat 3 times. In i) there are 6 1D-convolutional
(convi1d) layers in total. The first two convld layers (number of filters = 16, kernelsize = 5) are followed
by max pooling (pool size = 2) and spatial dropout (rate = 0.01). The second two conv1d layers (number
of filters = 32, kernel size = 3) are followed by max pooling (pool size = 2) and a spatial dropout (rate =
0.01). The third pair of convid layers (number of filters = 32, kernelsize = 3) are followed by max pooling
(poolsize = 2) and spatial dropout (rate = 0.01). In ii), the last two convld layers (number of filters = 256,
kernelsize = 3) are followed by global max pooling and dropout (rate = 0.01). The first two dense layers
(numberof nodes = 64) have dropout rates of 0.1and 0.05, respectively. The last dense layer has 5 nodes.
An “R” or an “S” indicates that a layeris followed by ReLU or Softmax activation functions, respectively.

Model Performance Evaluation

When evaluating model test performance, we sought to account for class imbalances. We generated a
confusion matrix and calculated precision (Equation 1), recall (Equation 2), and the F1 score (Equation 3)
for each class. We calculated the mean and standard deviation of the metrics across folds.

True Positive

Equation 1: Precision = — —
True Positive+False Positive

True Positive

Equation 2: Recall = — ,
True Positive+False Negative

. PrecisionxRecall
Equation3: F1 =2 x —

Precision+Recall

Description of Global Ablation Approaches

In this study, we applied two global ablation approaches for insight into the relative importance of each
modality to each class. We presented a novel approach for global ablation that is unique to the
electrophysiology domain and that we originally presentedin (12). We compared our novel approach to
an ablation approach that has been used in previous multimodal classification studies (2)(41).

Standard Global Ablation Approach
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The typical ablation approach that we applied followed several key steps. (1) We calculated a confusion
matrix within a single test fold. (2) We replaced all values for a modality with zeros. (3) We calculated a
confusion matrix for the classifier on the modified data. (4) We calculated the percent change in samples
assigned to each classification group (Equation 4). (5) We repeated steps 2 through 4 for each modality.
(6) We repeated steps 1 through 5 for each test fold.

Number of Modified Samples—Number of Unmodified Samples

Equation 4: Percent Change = 100 *

Number of Unmodified Samples

OurNovel Global Ablation Approach

In this study, we propose a novel ablation approach for multimodal electrophysiology analysis that
involves replacing modalities in a manner that mimics line-related noise. In Step 2 of the previously
detailed ablation process, we replace a modality with a combination of asinusoid and Gaussian noise. We
use a sinusoid with a frequency of 40 Hz because 60 Hz noise at a sampling rate of 100 Hz would alias and
appear at 40 Hz. The sinusoid had an amplitude of 0.1, and the Gaussian noise was generated from a
distribution with a mean of 0 and standard deviation of 0.1.

Statistical Comparison

To determine whether our novel line-related noise ablation yielded results significantly different from
standard ablation, we performed a series of two-tailed t-tests. Within each modality, we compared the
ablation importance values in each classification group for each method across folds.

Description of Novel Local Ablation Approach

We applied a novellocal ablation approach for insight into the modality importance to the classification
of each sample. We originally presented the approach in (13). Our novel ablation approach is similar to
the global approach described in the previous section. (1) We obtained the top-class probability for a
particular sample. (2) We modified the sample by ablating a modality. (3) We obtained the classification
probability of the modified sample for the previously identified top class. (4) We computed the percent
change in classification probability (Equation 5). (5) We repeated steps 2through 4 for each modality. (6)
We repeated steps 2through 5 for each sample in a fold. (7) We repeated steps 2 through 6 foreach fold.

Modified Sample Probability —Unmodified Sample Probability

Equation 5: Percent Change = 100 * — —
Unmodified Sample Probability

Because there were no preexisting local approachesfor comparison, we examine d how comparable our
local ablation results were to the previously described global methods. In addition to generating local
visualizations of our local ablation results, we formed a global estimate by calculating the mean absolute
percent change in classification probability for each fold, modality, and classification group.

Description of Layer-Wise Relevance Propagation Analysis

Layer-wise relevance propagation (LRP) (31) is a popular GBFA method (46) originally developed forimage
analysis. Since its initial development, LRP has been usedin raw electrophysiology analysis (77) and other
neuroscience domains (33,78,79). Other GBFA methods havealso been applied to multimodal time -series
classification (43), and we previously applied LRP to multimodal electrophysiology analysis (11). Local
ablation methods, like sensitivity analysis (28) and many GBFA methods, show what features or time
points make a sample more or less like the patterns learned by the classifier for a particular class. LRP
shows what features or time points are actually used by the classifier for its classification and indicates
their importance (80). We implemented LRP using the Innvestigate library (81).
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LRP is a local explainability method but has also been used for global importance estimates (11,33). LRP
involves the following steps. (1) Asampleis passed through a network and assigned a particular class. (2)
A total relevance of 1 is placed at the output node of the assigned class. (3) The total relevance is
propagated through the network using relevance rules until the relevance is distributed across the input
features. A key characteristic of LRP is that the total relevance value of 1 is conserved asit is propagated
through the network, sothe relevance assigned to the inputfeatures should sum to approximately 1.

There can be both negative and positive relevance depending upon the relevance rule that is used.
Negative relevance indicates the features of an input sample that support a sample being classified as a
class otherthan that which it was assigned. For example, if the value of feature x for a sample classified
as class 1 were more in alignment with class 2, that feature would receive negative relevance. Positive
relevance indicates the features of an input sample that supporta sample being classified as its assigned
class. Forinstance, if a sample belongs to class 1 and a particular patterninthat sample provides evidence
for class 1, that pattern would be assigned positive relevance. Equation 6 shows the basic LRP rule:

. a;wik
Equation 6. R; = ZkZO,jajok
where k indicates a node that is one of k nodesin a layer deeperin a networkand j indicates a node in
the layer to which relevance is being propagated. R, indicates the total relevance assignedtoa nodein a
deeperlayer, and R; indicates the total relevance that will be assigned to a node in a shallower layer. The
variables a; and wj; indicate the activation output of the layer j and the value of the weight connecting
the nodein layer j and nodein layer k. The numeratorindicates a portion of the effectthatthe nodein
layer j has uponthe nodein layer k, and the denominatorindicates the total effect of all nodesin layerj
upon the node in layer k. This combined with the summation Z, indicates that the relevance assigned to
the node in layer j is the sum of the fraction of the effect of the node in layer j upon all of the nodes in
layer k multiplied by theirrespective relevance.

The basic LRP rule allows for both positive and negative relevance to be propagated through the network
and often yields very noisy explanations. In our study, we used the e-rule and ap-rule. As shown in
Equation 7, the e-rule is identical to the basic rule exceptforthe added term «.

. a;wik
Equation 7. R; = ), —2—2“—R,,,

a J Zke+20,jajw]-k k
where € enables relevance to be filtered when propagated through the network. A larger € shrinks the
amount of relevance propagated backwards for nodes that would otherwise be assigned low relevance.

In effect, thisreduces the noisiness of the explanations. We used the e-rule with an € of 0.01 and 100.

We also usedthe aB-rule shown in Equation 8,

Sofawin) " Zojlawin)

. (awir)” (awiic)
Equation 8. R; = X | @ - B Ry,

where the relevance is split into positive and negative portions when propagated backwards. The variables
a and B control how much positive and negative relevance are propagated backwards, respectively. In our
study, we used the rule witha = 1and B = 0, to only propagate positive relevance.
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While conducting our LRP analysis, we generated a global estimation of importance by calculating the
percent of absolute relevance assigned to each modality. We computed this value for each classification
groupin eachfold. We also visualized how the percent of relevance varied overtime.

Description of Additional Statistical Analyses

We performed a series of statistical analyses with the local ablation and LRP (e-rule with € = 100)
explanations for insight into the effects of demographic and clinical variables upon the classifier. We
trained an ordinary least squares regression model with age, medication, and sex as the independent
variables and with the absolute importance (percent change in activation for local ablation and relevance
for LRP) for a modality and classification group as the dependentvariable. This enabled us to control for
interaction effects. For LRP, we used the percent of absolute relevance assigned to each modality for each
sample. Aftertraining the model, we obtained the resulting coefficients and p-valuesfor each class. The
sign of the coefficients identified the direction of the importance difference. After obtaining p-values, we
performed false discovery rate (FDR) correction (a = 0.05) with the 25 p-values (i.e., 5 classes x 5 classes)
associated with each clinical or demographicvariable to account for multiple comparisons.
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Supplementary Figure 1. Global Ablation Explainability Results for All Classification Groups. The above
boxplots show the percent changein samples assigned to each classification group following perturbation
for each fold. Blue, yellow, and red boxes indicate EEG, EOG, and EMG perturbation, respectively. The
leftmost box of each pair shows the results for our noise-related ablation method. The rightmost box is
for the typical zero-out ablation approach. Some pairs of boxes are labeled with *, **, or *** which
correspondto a significance value of p < 0.05, p < 0.01, and p < 0.001, respectively.
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Supplementary Figure 2. Local Ablation Results Showing Global Estimation of Modality Importance forAll
Classification Groups. The above boxplots show the percent change in activation following perturbation
for samplesin each classification group across folds. Blue, yellow, and red boxes indicate EEG, EOG, and
EMG perturbation, respectively.


https://doi.org/10.1101/2022.01.01.474276
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.01.474276; this version posted January 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Medication Effects on Modality Importance
EOG

EEG EMG

0.15
Awake | KK Awake i Awake *
0.10
NREM1 ** . *k NREM1 * . ok NREM1
0.05
2 nremz **k *% 2 nrem2 *k *k *k kk 2 nremz *k *% * 0.00
< 2 2
-0.05
NREM3 *ok *ok NREM3 *k NREM3 *%
-0.10
REM *% REM REM k% *k
-0.15
Awake NREM1 ~NREM2 NREM3  REM Awake NREM1 NREM2 NREM3  REM Awake NREM1 NREM2 NREM3  REM
Predicted Predicted Predicted
Sex Effects on Modality Importance
EEG EOG EMG
Awake * kk Awake { FkK Awake ” .
NREM1 * Aok o NREM1 ok NREM1 *% ok 01
g NREM2 *kx k% ok g NREM2 *k kK kk g NREM2 *k *k 0.0
< < <
e . . - - - - ** - - -
rev IR *ok - *% REM * *ok REM *ok *ok *ok -02
Awake NREM1 ~NREM2Z NREM3  REM Awake NREM1 NREM2 NREM3  REM Awake NREM1 NREM2 NREM3  REM
Predicted Predicted Predicted
Age Effects on Modality Importance
EEG EOG EMG
0.004
Awake Awake {  FkK Awake
0.003
. - -
NREM1 NREM1 NREM1
0.001
® ] E
2 NREM2 *k 2 NREM2 *k * *k 2 NREM2 { K% *k 0.000
< < <
-0.001
NREM3 NREM3 NREM3 *
-0.002
-0.003
REM *ok *ok REM REM *
-0.004

Awake NREM1  NREM2

Predicted

NREM3 REM Awake NREM1  NREM2

Predicted

NREM3 REM Awake NREM1  NREM2

Predicted

NREM3 REM

Supplementary Figure 3. Effects of Clinical and Demographic Variables upon Local Ablation Mod ality
Importance for All Classification Groups. The top, middle, and bottom rows of panelsindicate the effects
of medication, sex, and age, respectively, upon the explanations for each modality and classification
group. The x-axis of each panelindicates the predicted class, and the y-axis indicates the actual class. The
heatmaps indicate the size of the coefficient values resulting from the regression analysis. White squares
have insignificant p-values. Squares with color have significant p-values (p<0.05), and squares that have
one or two asterisks have p-values of p < 0.01 or p < 0.001, respectively. For medication, a positive
coefficient value indicates that temazepam samples had more importance than placebo samples. For
subject sex, a positive coefficient value indicates that female samples had more importance than male
samples, andfor age, a positive coefficientindicates that importance increased with age.
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Supplementary Figure 4. LRP-based Global Estimation of Modality Importance for All Classification
Groups. The boxplots show the LRP explainability results for each classification group across folds. Blue,
yellow, and red boxes show the importance of EEG, EOG, and EMG, respectively. From left to right, within
each group of three boxes are the relevance results for the LRP g-rule (0.01), -rule (100), and af-rule.
The number of samples in each classification group is included in the title of each panel. The panels on
the left-to-right diagonal show correct classification groups, and off-diagonal panels indicate incorrect

classification groups.
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Supplementary Figure 5. Effects of Clinical and Demographic Variables upon LRP Relevance for All
Classification Groups. The top, middle, and bottom rows of panels indicate the effects of medication, sex,
and age, respectively, upon the explanations for each modality and classification group. The x-axis of each
panel indicates the predicted class, and the y-axis indicates the actual class. The heatmaps indicate the
size of the coefficient values resulting from the regression analysis. White squares have insignificant p-
values. Squares with color have significant p-values (p<0.05), and squares that have one or two asterisks
have p-values of p <0.01 or p < 0.001, respectively. For medication, a positive coefficient value indicates
thattemazepam samples had more relevance than placebo samples. For subject sex, a positive coefficient
value indicates that female samples had more relevance than male samples, and for age, a positive
coefficientindicates that relevance increased with age.
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