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Abstract

The study of microstructure and its relation to properties and performance is the

defining concept in the field of materials science and engineering. Despite the

paramount importance of microstructure to the field, a rigorous systematic framework

for the quantitative comparison of microstructures from different material classes has

yet to be adopted. In this paper, the authors develop and present a novel microstructure

quantification framework that facilitates the visualization of complex microstructure

relationships, both within a material class and across multiple material classes. This

framework, based on the stochastic process representation of microstructure, serves as

a natural environment for developing relational statistical analyses, for establishing

quantitative microstructure descriptors. In addition, it will be shown that this new

framework can be used to link microstructure visualizations with properties to develop

reduced-order microstructure-property linkages and performance models.

Keywords: Microstructure; Two-point correlations; Microstructure database;

Structure-property relationships; Reduced-order models

Background

It is well understood that advances in the development of materials with enhanced per-

formance characteristics have been critical in the successful development of advanced

technology, and are important drivers for continued economic prosperity. It is also widely

recognized that modern materials cannot be understood through their chemistry and

bulk processing alone, but that the key to continued material development lies in under-

standing and optimizing the myriad details of the hierarchical three-dimensional (3-D)

internal structure, or microstructure, which spans several disparate length scales (from

the electronic to the macroscale). While developing microstructure/processing/property

linkages is the central theme in materials science, as a field we are only beginning to

develop the tools necessary to truly explore and harness multi-scale microstructure sen-

sitive design and manufacturing. Given the complexity of microstructure in virtually all

engineering and natural materials, the traditional approaches to materials development,

relying on combinatoric experimentation guided by engineering principles and physical

intuition, have only categorized and exploited a small handful of the readily accessible

material microstructures.
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Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
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In recent years, impressive advances have been made in materials characterization as

well as the development of sophisticated physics-based multi-scale modeling and sim-

ulation tools. Through these advents, materials science is undergoing a transition from

a data-limited field to a data-driven but analysis-limited field. It is now possible to

automate acquisition of large experimental and simulation datasets, and our ability to

generate data is rapidly outstripping our ability to process it. Radically new approaches

are required to integrate the looming deluge of data from advanced simulation and

characterization techniques into useful materials knowledge. While this data crisis is

a significant technical challenge, it is also an opportunity to explore completely novel

inverse approaches to material design and deployment while at the same time reduc-

ing our dependency on slow combinatoric experimental approaches. This realization

has been highlighted via the Materials Genome Initiative for Global Competiveness [1],

the DOE Needs Reports on Computational Materials Science and Chemistry [2] and

the continued growth of Integrated Computational Materials Engineering (ICME) [3].

It is widely realized that the community must develop a Materials Innovation Infras-

tructure (MII) or Materials Innovation Ecosystem [1,2] to exploit fully advanced simu-

lation and coupled experiments, improve predictive capabilities, and provide the design,

certification and monitoring tools for rapid and holistic materials development and

deployment.

While the need for and end goals of a practical MII are well articulated, its requirements

and components are largely undefined. It is envisioned that a successful MII frame-

work will accelerate the development and deployment of materials by reducing/replacing

expensive and evolutionary empirical experimentation with revolutionary optimization

of structure and processing through simulations that are verified and validated with

key experiments. The absence of a general framework for categorizing and visualizing

the space spanned by collected microstructure data, understanding the statistical prop-

erties and variability inherent in materials, and efficiently integrating digital materials

data with the disparate components of multi-scale modeling frameworks is a significant

barrier to the development of a practical MII and to the overall goals of the Materials

Genome Initiative.

The creation and curation of large scale materials databases has been widely cited as

a critical required component for the acceleration of materials development and deploy-

ment [1,2] and has been a recognized need by the materials community since the 1970’s

[4]. Prior efforts at the creation and maintenance of large scale materials databases, such

as the efforts of ASTM Committee E-49 for the Computerization of Materials Property

Data [5] and the National Materials Property Data Network [6] (which was operated

commercially from the mid 1980’s until 1995), were largely focused on chemical compo-

sition, average properties and effective material response. A shortcoming of these efforts,

largely due to the limited computing power of the times, was that details of the materials

internal structure or microstructure was not considered and captured alongside the com-

position and properties. Understanding the relationship between structure, properties

and processing is the central theme in materials science and engineering, and it is criti-

cal that future materials databases effectively capture all three legs of the triangle if such

databases are to be successfully applied to materials design applications. While a signifi-

cant amount of development, across the entire materials community, is required to even

outline the structure and specific requirements of such a database, this paper focuses on



Niezgoda et al. IntegratingMaterials andManufacturing Innovation 2013, 2:3 Page 3 of 27

http://www.immijournal.com/content/2/1/3

one critical area; namely, the definition and description of a computational framework

and tools for the visualization, analysis, and quantitative comparison of microstructure

datasets (collected across several different “materials”) consisting of ensembles of 2D or

3D micrographs collected for each material.

The work addresses several aspects necessary for the development and deployment of

successful materials databases, or more exactly microstructure databases. In particular,

we seek to address the following questions: 1) What is the appropriate way to represent

the microstructure for inclusion into the database? 2) How do we describe the inherent

structural variability in a material, and how do we connect this variability to variabil-

ity in properties? 3) How do we quantitatively compare ensembles of material volumes

from different samples or material systems? 4) How do we visualize the relationship

between materials and the span of collected microstructure data? 5) How do we deter-

mine if additional characterization would add to our knowledge base or if it would be

redundant? In this work we demonstrate a reduced-order microstructure visualization

space, built upon a stochastic process representation of microstructure. It is envisioned

that this visualization space will serve as the interface between the large scale database of

microstructure data and the user, and will provide tools that will allow the user to interact

with microstructure data in new ways that go far beyond those accomplished traditionally

by visual inspection of micrographs or three-dimensional data sets.

Previous work from the authors and others laid the groundwork for reduced-order

representation and categorization of microstructure data, on which many of the ideas

presented in the manuscript build. Sundararaghavan and Zabaras proposed the construc-

tion of a material library from a reduced-order representation of digital micrographs, and

demonstrated the application of supervised learning techniques such as support vector

machines for material classification [7,8]. Ganapathysubramanian and Zabaras explored

more advanced non-linear dimensionality reduction schemes and used these represen-

tations to construct inputs to stochastic multi-scale models [9,10]. Niezgoda [11] and

Niezgoda, Yabansu and Kalidindi [12] formalized the description of microstructure via

statistical metrics into a stochastic process interpretation, and developed the basic the-

ory for the microstructure visualization space presented in this work. Additionally, they

developed relationships between the observed variance in microstructure for a mate-

rial ensemble and the corresponding ensemble variance in properties/performance and

proposed applications of the microstructure visualization space in materials design and

manufacturing quality control and process monitoring.

While the previous work largely focused on developing the microstructure space and

visualizations for ensembles of a single material or microstructure class, this work is

focused on the extension of the above concepts to the simultaneous categorization,

analysis and visualization of multiple materials, the development of descriptive and rela-

tional statistics that facilitate the exploration of microstructure relationships between

different materials, and the exploration of microstructure/property relationships in the

microstructure visualization space. The main purpose of this manuscript is to present the

philosophy of the visualization space and the mathematical formulation that underlies its

construction, followed by some simple examples of the type of microstructure analyses

and property explorations that can be performed in the space. The examples are chosen

to show the utility of the proposed space, rather than to suggest a specific analysis proce-

dure or regime. The main idea is that the proposed visualization space is a platform upon
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which a large suite of analysis tools can be built, and where the analysis can be tailored for

a specific material system and design problem.

The following key ideas and features behind the proposed microstructure visualiza-

tion space will be explored in detail throughout the remainder of this paper: 1) The

understanding that microstructure posses an inherent randomness suggests that that the

mathematics of stochastic processes is a natural description of the multi-scale variabil-

ity of materials. 2) While powerful, such an approach leads to significant abstraction of

the data and the resulting data-set lies on the surface of a complex high-dimensional

manifold which is not intuitive to many materials, design, or manufacturing practition-

ers. In order to simplify the presentation of the data a reduced-order representation of

the microstructure data is required. Here we apply principal component analysis to con-

struct the reduced order representation. 3) The reduced order representation forms the

basis for the visualization space. Each sample is represented by a single point in the space.

Points that are near each other correspond to samples with similar structures, disparate

points correspond to samples with drastically different structures. 4) The space spanned

by all the characterized samples from a material or material class gives an indication

of the microstructure variability within that material. This scatter in the visualization

space can be directly tied to the scatter in properties or response of the material. 5)

Comparison tools based on relational statistics can be easily developed for further anal-

ysis in the space. Additional tasks such as automated classification or clustering analysis

are naturally formulated in the visualization space. 6) Explicit mapping of properties or

performance characteristics into the visualization space can be performed to formulate

invertible structure/property linkages.

Methods

Microstructure data generation andmodeling methodology

For this study ensembles of 8 different material classes were generated by thresholding

random fields. The 8 material classes were all porous composites with varying degrees of

anisotropy in pore shape, connectivity, and spatial distribution. In order to prevent vari-

ations in porosity between classes from exerting an overwhelming influence on property

calculations and to highlight the higher-order effects of the spatial distribution of pores,

the volume fraction of pores was controlled to be nominally 25% and normally distributed

with a standard deviation of σ = 8.7% across all material classes. 64 × 64 × 64 arrays

were populated by sampling from a uniform distribution U(0, 1), the field was then locally

averaged by circular convolution with an anisotropic 3-D Gaussian filter with a diago-

nal covariance matrix, �. The resulting periodic random field was thresholded, with the

threshold value sampled from a normal distribution, N (μ = 0.25, σ 2 = 0.0075). Rep-

resentative realizations of the 8 material classes are shown in Figure 1. For each class

two ensembles of 50 volumes were generated. The first ensemble was used to create the

microstructure database and calibrate the classification and property models, while the

remainder were reserved for validation.

The mechanical response of each volume element was evaluated using an image

based fast Fourier transform (FFT) elastic-viscoplastic model, that directly uses the

three dimensional voxel material volumes as input. This type of model was first devel-

oped by Suquet and collaborators [13], for nonlinear composites, and further devel-

oped by Lebensohn and collaborators for polycrystals [14]. For this work we adopted
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(a) Class 1: = [ 10 10 10] (b) Class 2: = [ 15 15 15] (c) Class 3: = [ 20 10 10]

(d) Class 4: = [ 20 20 10] (e) Class 5: = [ 50 5 5] (f) Class 6: = [ 20 5 2.5]

(g) Class 7: = [ 25 20 5] (h) Class 8: = [ 30 10 5] (i) Coordinate Axes

Figure 1 Representative examples of the 8 classes of porous solids (material classes) used in this

study. The pores are shown in red, while the isotropic matrix is transparent. The diagonal components of the

covariance matrix � are given in subcaptions (a) through (h), and highlight the relative anisotropy of pore

shape and placement. As can be seen the representative volumes are all periodic. (i) shows the coordinate

axes used to describe the material directions and for the deformation simulations.

the elasto-viscoplastic formulation of Lebensohn and colleagues [15,16], to generalized

power-law composites. The FFT-based algorithm computes a compatible strain-rate

field that minimizes the average work rate under the constraints of the constitutive

relation and stress equilibrium. The FFT method is predicated on the observation

that the mechanical response of a heterogeneous non-linear medium can be calcu-

lated as a convolution between a linear reference material and a polarization field,

which describes the non-linearity and heterogeneity of the actual composite mate-

rial response. The FFT name comes from the fact that the resulting stress equilib-

rium equations take a computationally convenient form when cast in terms of Fourier

transforms.

The matrix material is considered as elastically and plastically isotropic with a Young’s

modulus of 40GPa and a Poisson’s ratio of 0.3. The matrix had an initial yield strength,
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σ0, of 45 MPa. A visco-plastic constitutive model was adapted to relate the stress to the

plastic strain rate as

ε̇
p
ij =

3

2
ε̇0

(
σef

σ0

)n σ ′
ij

σef
= C∗

(
σef

)n−1
σ ′
ij (1)

where ε̇
p
ij is the viscoplastic strain rate, σ ′

ij is the deviatoric stress tensor, ε̇0 = 1 is a refer-

ence strain rate, and σef is the scalar Von Mises effective stress. C∗ can be considered as

an effective plastic modulus given by C∗ = 3
2 ε̇0(σ0)

−n.

Stochastic process representation of microstructure

The mathematical formalism of stochastic processes has been demonstrated to be a pow-

erful tool for the quantification of microstructure variability and variance [12]. Here we

present a brief overview of the theory as required for the applications presented in this

manuscript; for a more complete overview of the theory of stochastic processes and the

application to microstructure modeling please see [11,12]. Consider a probability space

defined by the ordered triplet (�,F ,P). The first element � is termed the sample space

and is a non-empty set of experimental outcomes or observations, individually denoted

as ω. F is the set of all theoretically possible events and is formally defined as a Borel σ -

algebra [17], and P denotes the standard probability measure on F . A random variable

x is then defined as a function, with domain F , which maps to each experimental out-

come ω a number x(ω) such that the axioms of probability are satisfied. The probability

distribution function (pdf), f (x), associates each possible experimental outcome with a

probabilty such that P{x1 ≤ x < x2} =
∫ x2
x1

fx(x)dx.

A stochastic process, x(t), is by extension a set of rules which assign a function x(t,ω) to

every experimental outcome ω of experiment �. These rules take the form of associated

probability distributions. To completely determine the statistical properties of a stochastic

process the nth order distribution function f (x1, . . . , xn; t1, . . . , tn) must be known for all

ti, xi, and n. For virtually all processes (and microstructures) this is impossible. Instead,

attention is usually restricted to lower order statistical measures such as the mean and

autocorrelation [12,18].

The microstructure of virtually all materials exhibit rich details that span several length

scales. A microstructure constituent that can be assigned a distinct local structure can be

considered to posses a distinct local state. The local state is denoted h and can be con-

sidered an element of a local state space, H, that identifies the complete set of local states

that could theoretically be encountered. For example, the local state at point x in a poly-

crystalline metal sample may be defined by the thermodynamic phase ρ, the local lattice

orientation g, the state of dislocation α etc. In this way the local state may be considered

a random vector h(x) =[ ρ, g,α, . . . ], and assuming a stationary process the local state

distribution fh(h) gives the volume density of material points in a volume with local state

h. A common example of local state distribution is the well known orientation distribu-

tion function used to quantify preferred crystallographic orientations in polycrystalline

materials [19].

In terms of the probability space defined above, the set of all possible events F is the

set of all possible spatial arrangements of local states h ∈ H . The sample space � consists

of an an ensemble of microstructure realizations, where each microstructure realization

is considered an experimental outcome ω. The microstructure can then be interpreted as
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a stochastic processm(x, h), sometimes termed the microstructure function, that assigns

a local state distribution field m(x, h,ω) to every realization. It is important to note that

the stochastic process m(x, h) cannot be observed directly. The microstructure function

is best understood as a series of higher order probability distributions which describe

how the local states are placed in a material relative to each other. Instead, the local

state fields m(x, h,ω) can be observed for an ensemble, and can be used to estimate the

microstructure statistics.

Statistics of the microstructure

Consider a material system where the local state is defined by a combination of k features

of interest, thus the local state is described by the random vector h =[β1, . . . ,βk]. The

probability of finding local state h at material point x is in a region of local state spaceH

is given by

P{h(x) ∈ H} =

∫

H

f (h, x)dh

=

∫

H

f (β1,β2, . . . ,βk , x)dβ1dβ2 . . . dβk (2)

where the PDF f (h, x) is refered to as the first order density of the microstructure

function, and can be interpreted as the spatially resolved volume fraction of local state

h = h.

Estimation of 2nd order PDFs from characterized microstructure realizations, is often

impractical and estimation of higher order PDFs (n ≥ 2) is often impossible. Fortunately,

a framework of hierarchical spatial statistics of the microstructure is available in the liter-

ature in the form of n-point correlation functions [20-25]. Local state distributions, f (h),

are often termed one-point statistics, as they reflect the probability density of finding a

specific local state at a randomly selected point in the microstructure.

Expanding on this idea, the two-point correlation is the joint density of occurrence of

local state h1 and h2 at material points separated by the vector r

f2(h1, h2|r) = E{m(x, h1)m(x + r, h2)} (3)

The microstructure statistics must be estimated from an ensemble of characterized

realizations. Consider a ensemble of P volumetric realizations � = (ω1, . . . ,ωP), where

the pth realization has an associated local state fieldm(x, h,ωp). The two point correlation

for the microstructure can be estimated as

f2(h1, h2|r) ≈ f̂2(h1, h2|r) =
〈
f2(h1, h2|r,ωp)

〉
(4)

=
1

P

⎡
⎢⎣

P∑

p=1

1

vol(ωp|r)

∫

x∈ωp|r

m(x, h1,ωp)m(x + r, h2,ωp)dx

⎤
⎥⎦

where ωp|r = {x|x ∈ ωp ∩ x + r ∈ ωp}. f2(h1, h2|r,ωp) is the estimate of the two-point

correlation obtained from a single realization or volume. Equation (4) is readily identified

as a convolution integral which is readily computed via Fourier transform techniques [22,

25]. Three-point and higher order correlations are defined analogously, however, for the

remainder of this paper the discussion will be limited to 2-point correlations.
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Results and discussion

Themicrostructure space

Principal component representation

The set of physically meaningful n-point correlation functions lie in a very high dimen-

sional space that is not amenable for efficient computation, visualization, analysis, or

other design purposes [25]. For even the simple material systems considered here, where

the local state is either pore or solid, and restricting the statistical description to two-point

correlations, some form of reduced order representation of the microstructure statistics

is required. While there are numerous approaches to dimensionality reduction includ-

ing spectral methods, manifold learning approaches, metric multidimensional scaling,

among others [26], the requirements of the proposed microstructure space places strong

constraints on the type and complexity of the dimensionality reduction scheme. In order

to determine an appropriate low dimensional representation the following factors were

considered: 1) The approach must be computationally robust and insensitive to the type

or structure of the underlying data. 2) The representation must be able to be updated in

real time as new information or datasets are added to the system 3) The representation

must be invertible in real time, so that the microstructure space can be used to explore

newmicrostructures in both an interpolative or extrapolative manner. 4) In order to facil-

itate the computation of descriptive and relational statistics the representation should be

an orthogonal decomposition of the data so that each dimension in the reduced frame

can be considered as independent variables. Based on these requirements and considera-

tions of computational complexity, and the excellent performance in previous work [12],

dimensionality reduction via principal component analysis (PCA) was chosen for this

study.

PCA is a linear approach to dimensionality reduction which can be understood as a

coordinate transformation that maps a set of (possibly) correlated variables onto a new

set of orthogonal (independent) variables. This is most easily understood as projection

of a high dimensional dataset onto a new orthogonal coordinate frame where the axes

are defined by the directions of highest variance [27]. PCA as been likened to a shadow

of the data cast from its most informative projection. One key strength of PCA is that

it forms a natural basis for the exploration of microstructure variance as the principal

directions align with the directions of highest variance in the microstructure data [12].

A significant drawback to using PCA is that, as the microstructure data (2-point corre-

lations) is inherently non-linear (meaning the data naturally lies on an embedded curved

manifold in the high dimensional space rather than on a hyper-plane), the resulting repre-

sentation will not necessarily be the most compact or efficient. However it will be shown

that when the different materials are of the same “family”, such as the various classes of

porous composites explored here, a suitably compact representation can be developed

and useful visualizations and maps can be developed in just a few dimensions. If the

range of structures were to be expanded to include multiple material “families” then more

advanced dimensionality reduction approaches would be required. However, in practice,

for most materials design applications the materials system is fixed as a design constraint

and the goal is optimizing processing or chemistry to achieve a target microstructure or

properties. For these cases the PCA representation is expected to perform quite well.

Consider an ensemble of P realizations or volumes from a single material class (in mul-

tiple volumes cut from a single large sample or multiple samples with the same nominal
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processing history) denoted ω1,ω2, . . . ,ωP each with associated two-point correlation

estimate f2(h1, h2|ωp). The PCA representation of the correlations measured from the pth

member of the ensemble can be written as

f2(h1, h2|r,ωp) =

P−1∑

j=1

α
p
j φj + f̂2(h1, h2|r) (5)

where f̂2(h1, h2|r) is the ensemble average of the overall microstructure statistics (see

Equation (4)). φj are the orthogonal principal component vectors and α
p
j are the cor-

responding weights or the PCA representation of the pth member of the ensemble.

Mathematically the decomposition consists of a few basic steps

1. Mean center the data

�p = f2(h1, h2|r,ωp) − f̂2(h1, h2|r) (6)

2. Compute the covariance matrix of the mean centered data

C =
1

P

P∑

p=1

�p
(
�p

)T
(7)

3. Perform an eigenvalue decomposition

Cφj = bjφj (8)

4. Project �p onto the eigenvectors

α
p
j = (φj)

T�p (9)

In practice, it is not necessary to explicitly construct the covariance matrix C. Instead,

for large datasets, an algorithm called the method of snapshots is used to reduce the

computational burden [28]. Additionally, it is possible to incrementally build the basis

(realization by realization) by taking advantage of the understanding that any portion of

new data not in the span of the eigenvectors must be orthogonal to the current basis [29].

Building the basis in this manner has the advantage that addition of new realizations does

not require the re-computation from scratch. Assuming no linear dependencies, the rank

of C is P − 1, implying that the maximum number of parameters necessary to represent

the data is approximately the number of members in the ensemble. The eigenvalues of the

decomposition are an indication of the significance of that principal component (degree

of variance in the data). By taking only the components with the highest eigenvalues it is

often possible to approximate the data in a handful of parameters.

For this study, two PCA decompositions were performed to generate a two tiered rep-

resentation. First an intra-class decomposition was performed on the members of each

material class. The intra-class PCA representation will be used to explore microstructure

variance within a material system, and to identify interesting or representative mem-

bers of a specific class. Then an inter-class PCA decomposition was performed over all

the realization of all classes. The inter-class representation will be used to explore rela-

tionships between the individual classes and to develop property relationships across

multiple material systems. The inter-class representation was truncated to 50 principal

components, primarily for computational reasons. However, it will be shown that for this

example fewer than 20 components are sufficient for the classification and property mod-

eling examples presented here. 50 realizations from each materials class were used to
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build the inter-class representation, the additional 50 members were reserved to validate

the representation and microstructure classification scheme.

Visualizations in themicrostructure space

The inter-class PCA weights, α
p
j , are an explicit representation of the individual

microstructure realizations in an “optimal” orthogonal reference frame defined by the

eigenvectors of the data covariance matrix. This reference frame spans the space of the

collected microstructure datasets (up to the error introduced by truncation), and is a nat-

ural setting in which to visualize and explore the range of data collected, the relationships

between datasets and the variability within material classes. By projecting the microstruc-

ture data onto the first three eigenvectors, microstructure maps can be constructed.

Other operations such as descriptive and relational statistical analysis and the develop-

ment of homogenized property relationships can be performed in this microstructure

map space. As such, these maps and visualizations are a central result of this work. The

projection of the first eight microstructure classes onto the inter-class PCA basis is shown

in Figure 2. As a reminder, each data point in the figure corresponds to a single mate-

rial realization. Convex hulls bounding the realizations of each microstructure class are

plotted to help visualize the differences between the volume of space occupied by the

members of each class.

An advantage of the PCA representation is that the axes are naturally ordered by sig-

nificance in that the first principal component is the direction of highest variance and the

2nd is the direction of highest variance orthogonal to the first and so on. By choosing the

first three components or directions for visualizing the projected microstructure data we

are selecting our vantage point so that we are capturing the view which captures the most

variability in the collected microstructure data. This does not, however, guarantee that

the view is optimal for separating the different realizations by microstructure class. As

can be seen in Figure 2 the different microstructure classes are indeed heavily overlapped

in three dimensions, indicating that more terms are needed to delineate the different

microstructure classes. It will be shown for this particular example that 15 principal com-

ponents are sufficient to build a robust classificationmodel for these eight material classes

(see Section “Support vector machines for classification of microstructures”).

Figure 2 Projection of the members of the 8 microstruture classes into the inter-class PCA space. The

points corresponding to each class are enclosed in different colored convex hulls to help visualize the space

spanned by each material. Two different views are presented in (a) and (b) for clarity.
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Figure 2 is a key result of this work. At a glance it shows the relationships between

the different microstructure groups. Distances in this space (defined below) serve as an

indication of how similar or different structures are. Material classes whose bounding

hulls are close (or overlapping) share more common features than those classes whose

bounding hulls are well separated. This can be seen in Figure 2(b) which shows the hulls

bounding classes 5 and 6, which share a highly anisotropic elongated pore shape, are over-

lapping and are well offset from the classes 1 and 2 which have an isotropic pore shape.

The center of mass of the cloud of points for each class, serves as an estimate of the aver-

age or representative material volume for that class. The volume of the hull bounding a

microstructure class also serves as a qualitative measure of the inherent structural vari-

ability of the members of a material class relative to the other classes. Again, the figure

shows that the classes 5 and 6 exhibit less structural variability than the other material

classes. Microstructural clustering or the uneven dispersion of points within the hull, can

be also readily observed. While not the focus of this paper, the scatter in microstructure

realizations collected for a single class allows the ready identification of structural outliers

or realizations expected to exhibit performance or property values far from the mean.

Previous work from the authors focused on intra-class variance and the development of

tools for analysis of multiple ensembles of a single microstructure class [11,12].

Sundararaghavan and Zabaras also used PCA for reduced order representation for the

construction of microstructure libraries [7,8]. In that work they chose to perform the

decomposition on the characterized microstructures directly, rather than working with

statistical descriptors as we do here. While the motivations behind this work and theirs

are substantially different, it is worthwhile briefly discussing some of the advantages and

disadvantages of each approach. PCA is a linear transformation and thus effective dimen-

sionality reduction can only be accomplished if the data can be approximately fitted to an

embedded linear manifold (hyperplane) in the high dimensional space. Unfortunately, as

the ongoing work of Zabaras group has demonstrated, the underlying data in microstruc-

ture datasets often lies on an embedded highly non-linear surface and large numbers

of principal components must be kept for reasonable representations or non-linear data

mappings must be employed [10]. Some basic properties of the n-point correlations,

including having a natural origin at r = 0 and translation invariance, greatly reduce

this non-linearity and adequate representation can be produced with only a few princi-

pal components. For comparison, a PCA decomposition was done directly on the 3-D

microstructure datasets and the resulting projection into the PCA space is shown in

Figure 3. As can be seen in the figure, the hulls bounding the microstructure classes are

heavily overlapped and the relationships between the classes is not readily apparent from

a view of the first three dimensions of the space. The eigenvalues of the decomposition

give an indication of how significant each principal component is to the representa-

tion of the data-set, and the rate of decay of the eigenvalues gives an indication of how

many terms must be kept for accurate representation. Figure 4 shows the eigenvalues

for the first 50 principal components for the inter-class PCA, performed on the spatial

correlations (described earlier), and the PCA performed on the microstructure images.

For the inter-class representation constructed on 2-point correlations there is a sharp

drop in the eigenvalues within the first 10 principal components while there is no such

drop in the representation constructed from the images themselves. The slow decay is

highlighted by the ratio between eigenvalues, for the decomposition on the structures
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Figure 3 PCA representation of the microstructure images directly. Projection of the members of the 8

microstructure classes onto the space. The points corresponding to each class are enclosed in different

colored convex hulls to help visualize the space spanned by each material.

α1/α50 ≈ 3, while for the decomposition on the statistics α1/α50 ≈ 65. These results indi-

cate amuch stronger concentration of the representational power in the first few principal

components when the microstructure statistics are used to construct the reduced order

representation.

Working in the correlation space does, however, add a significant abstraction. When

working directly with the microstructure realizations, once the basis is defined, new real-

izations can be created for any point in the spanned space by simple linear combinations
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of the eigenvectors. When working with the correlations each point in the spanned space

represents a set of potential microstructure correlations, and newmicrostructure realiza-

tions must be reconstructed from the statistics. Reconstruction from statistics is an active

area of research, and significant advances have been made in recent years [30,31]. In the

opinion of the authors the benefits of a more compact linear (PCA) representation and a

cohesive framework based on the formalism of stochastic processes outweigh the added

abstraction.

Relational statistics in themicrostructure space

In order to effectively utilize the PCA space for microstructure quantification or compar-

ison of structures, a measure of distance in the space must be introduced. For intra-group

comparison between individual points (i.e. how similar two points are) the Euclidean dis-

tance is adequate. However in this work we are interested in comparisons between groups

of points and for the application of microstructure classification we are interested in the

question of how close are the clouds of points representing two material classes or how

close is a new realization from an unknown class to the cloud of points from a known

class. For this we apply the Mahalanobis distance, which gauges the similarity between an

unknown sample (or sample set) to a known or classified sample set [32]. Consider a mul-

tivariate vector x = (x1, . . . , xn)
T , the Mahalanobis distance between x and a distribution

of vectors f (y) with mean μy and covariance matrix Cy is defined as

DM

(
x, f (y)

)
=

√(
x − μy

)T
C−1
y

(
x − μy

)
(10)

The feature of theMahalanobis distance is that it takes the shape of the known probabil-

ity distribution into account, in that all points that lie on the same iso-probability surface

of the known distrubtion will have the same Mahalanobis distance to that distribution

regardless of the shape of the distributiona. The Mahalanobis distance can be generalized

to a similarity measure between two multivariate vectors x and y, where y comes from a

distribution f (y) with covariance Cy as

d(x, y) =

√
(x − y)T C−1

y (x − y) (11)

When computing distances in the PCA space the individual components of x and y,

xi and yi are independent (orthogonal) variables and the covariance matrix is by defini-

tion diagonal. In this case d(x, y) becomes the normalized Euclidean distance, d(x, y) =√∑
i(xi − yi)2/σ

2
i , where σi is the standard deviation of f (yi). In the limit that the covari-

ance matrix is the identity matrix (e.g. for the standard multivariate normal distribution)

the Mahalanobis distance reduces to the standard Euclidean distance.

When working with ensembles of characterized material volumes in the design space,

the first natural question to ask is whether two samples (material volume ensembles) truly

posses different microstructures or have the same microstructure but different structural

variance. In other words, how likely is it that the two ensembles share the same mean or

that same realization can serve as a representative volume for both ensembles. For quality

control and process monitoring applications it is important to have a quantitative mea-

sure of drift in the manufacturing process or be able to compare material from different

processing lines. It is a natural question to ask if process paths 1 and 2 are indeed produc-

ing material with the same microstructure, and if not how different are they? If they are
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confirmed to posses the same microstructure, then analysis and comparison of the vari-

ability of the ensembles may be carried out to determine the likely effects on properties

or performance (see [12]).

The standard tool for hypothesis testing on the means of multivariate data is the 1-

way multivariate analysis of variance (1-way MANOVA). The 1-way MANOVA tests the

null-hypothesis that the means of each group lie in the same d-dimensional subspace.

Choosing d = 0 tests that the means are the the same or that the ensembles posses the

same microstructure. By extension, choosing d = 1 tests that the means lie on the same

line through the PCA space, etc. For a full discussion of the 1-wayMANOVA see standard

multivariate statistical texts such as [32]. The major assumptions made in performing an

MANOVA analysis is that the different classes have the same covariance matrix, which

is clearly not the case in our data. However, MANOVA analysis has been shown to be

robust to a violation of this assumption provided the groups are all well behaved unimodal

distributions [32]. The basic notion of the MANOVA analysis is to transform the orig-

inal n-dimensional dataset into a new variable on a d-dimension subspace, termed the

canonical variable, that maximizes the separation between the classes, then to perform

a statistical test on the ratio of within group scatter of the canonical variable to the total

scatter across all groups.

If we consider a dataset of K material volume ensembles where �k = {ωk
1 , . . . ,ω

k
P}

denotes the Pk members of the kth ensemble. By projecting onto the PCA space each ωk
p

is represented by the J weights kα
p
j . For compactness, let Apk denote the J dimensional

column vector of PCA weights for the pth member of the kth ensemble. Further let Āk

indicate the mean vector of PCA weights over all Pk members of ensemble k. The within

group scatter is characterized by the intra-class sum of squares and cross product (SSCP)

matrix,W, defined as

W =

K∑

k=1

P∑

p=1

(Apk − Āk)(Apk − Āk)
T (12)

The between group scatter is characterized by the inter-class SSCP matrix defined as

B =

K∑

k=1

Pk(Āk − Ā)(Āk − Ā)T =

K∑

k=1

PkĀkĀ
T
k (13)

where Ā is themean vector of PCAweights across allK ensembles which is by definition

the zero vector. The total scatter is simply T = W + B. The test statistic for the 1-way

MANOVA can be chosen as Wilk’s lambda � =
|W |
|T |

or Pillai’s trace Tr
(
WT−1

)
. Wilk’s

lambda is a multivariate extension of the F test, while Pillai’s trace (also F distributed) is

more robust to violations of the assumptions (such as our case).

The representation of the data in terms of the canonical variables can be found by per-

forming an eigenvalue decomposition of W−1B then projecting the PCA representation

onto the eigenvectors. Let L = eigenvectors
(
W−1B

)
, then the canonical representation

can then be found as cpk = LAT
pk .

The canonical representation is useful for visualizing clustering between the groups.

Figure 5 shows that microstructure classes can be easily separated by projection onto the

first two canonical variables. In other words there exists a plane in the 50 dimensional

PCA space, that when the microstructure data is projected onto it there is virtually no
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Figure 5 Projection of the microstructure data onto the first two canonical variables c1 and c2. This is

the two-dimensional view that offers the best linear separation of the dataset into microstructure classes.

There is a slight overlap between microstructure classes 2 and 4. Projection onto the top three canonical

variables yield a perfect separation.

overlap between the classes. Projection onto the first three canonical variables yields a

perfect separation, for this dataset.

That a perfect separation can be achieved by only three canonical variables does not

imply that the data lies on a hyperplane in the 50 dimensional PCA space. The results from

the 1-way MANOVA indicate that at 5% significance we can reject the null hypothesis

that the means of the 8 microstructure classes lie in a 6 or lower dimensional subspace

(p = 0.048 for d = 7), but that they may lie in a 7 dimensional space. Performing the test

pairwise between the groups indicates that we can state with statistical certainty that the

means of the 8 classes are all different or that the microstructures of the 8 ensembles are

all distinct (p ≈ 0 for d = 0 for all pairwise tests).

This notion of Mahalanobis distance can be used to further explore the relationships

between the various groups. A key question to ask is what is the expected distance

between a randomly selected member of class a to class b. By computing this expectation

for all combinations of classes the entire dataset (8 material classes) can be broken up into

groups and subgroups of classes that share similar features by a hierarchical cluster anal-

ysis. Hierarchical cluster analysis is a technique to build a multi-level hierarchy of groups

and subgroups that are easily represented by a tree-like graph. The analysis is performed

by first computing the distance between the different groups, in the case the distancemea-

sure is the expected Mahalanobis distance between a randomly selected member of class

a and the cloud of points corresponding to class b, DM(a, b) = E{DM

(
x ∈ a, f (y ∈ b)

)
}.

Then the two closest groups are combined into a larger group. The procedure is then

repeated until all the smaller groups have been combined into a single large class.

The results of the hierarchical cluster analysis are shown in Figure 6 as a cluster tree.

The cluster tree is interpreted by moving up on the y-axis, which shows the expected

Mahalanobis distance, the height of the inverted U connecting two groups is the expected

distance between those groups. Note that DM(a, b) 	= DM(b, a) due to the differences

in covariance between the groups, for plotting the cluster tree the minimum of the two

expectations is taken. Groups that are linked lower down are more similar, than groups

that are linked higher up. For example classes 5 and 6 are more similar than 7 and 8, and

the expected distance between a group formed from classes 1–4 and the group consisting
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Figure 6 Cluster tree graph showing the relationship between the different microstructure classes.

The height of the inverted U joining two groups gives the expected distance between groups.

of classes 7 and 8 is approximately 135. While the cluster tree graph is a useful visual-

ization of the relationships between the microstructure classes, it is up to the end user

to decide on the number of clusters or groups in the dataset or where to cut the tree to

define clusters. For this example a likely pruning scheme is to break the data into three

groups: the first consisting of classes 5 and 6, the second containing classes 1–4, and the

third classes 7 and 8. It is interesting to note that this grouping naturally follows the degree

of anisotropy in the pore shape as seen in Figure 1. Classes 1–4 all have a low degree of

anisotropy with a covariance ratio of 2 or less between the highest and lowest direction,

while the other two groups are more highly anisotropic with 5 and 6 having highly elon-

gated pores along 1 primary axis, while classes 7 and 8 have pores elongated along two

directions.

The PCA or visualization space serves as a natural setting for a wide range of different

statistical analyses on the microstructure data. As mentioned above the center of mass

for each class can be thought of as the average or representative realization for that class.

A natural question to ask is “How well is the mean known given the amount of charac-

terization for this class?” or equivalently “If the experiment were repeated and a different

ensemble collected how different would our estimate of the average structure be?” Given

the orthogonality of the principal component vectors, common tools of statistical infer-

ence can be applied treating each principal component as independent. This allows us to

use readily available univariate statistical tools and descriptors without concerning our-

selves with correlations between the different directions. For example the questions asked

above can be readily answered by computing confidence regions about the mean of each

microstructure class. 95% Confidence regions are shown in Figure 7(a). This gives us a

formal probabilistic approach to selecting realizations to serve as representative volumes

elements (RVE) for the ensemble. The confidence region is interpreted not as a proba-

bility on the true microstructure mean (which is unknowable) but rather on the process

by which we are estimating the average structure. If we were to validate the confidence

regions by collecting a very large number of ensembles and estimating the ensemble

mean, 95% of the time the calculated mean would lie within this box. Under this inter-

pretation any material volume lying in our confidence region is a potential RVE for that
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(a) 95% Confidence region on the Mean (b) 95% Prediction Regions

Figure 7 Examples of descriptive statistics in the microstructure space. (a): 95% confidence regions on

the mean or average structure for each microstructure class. Any volume element contained in the region is

a likely representative realization of RVE for that material class. (b): 95% prediction regions for each of the 8

microstructure classes. Each box bounds the region of space where 95% of the likely samples for that

material class are to be found. Note that the axes on (a) are rotated 90◦ with respect to (b).

microstructure class. The RVEs shown in Figure 1 were chosen as the material realization

closest to the center of the confidence region.

In a similar manner, we may wish to have an estimate on the range of each microstruc-

ture class or given the variability observed in a class how likely are additional samples to

fall within some region. Prediction bounds and related measures can also be readily cal-

culated in the PCA space. Examples of 95% prediction regions are shown in Figure 7(b).

Simple analysis such as this give a way of sampling representative volumes from a fuller

range of likely structures for modeling and simulation [33] or more advanced intra-class

statistical analysis.

Support vector machines for classification of microstructures

Projection onto the canonical variables showed that themicrostructure classes can be well

separated in a low dimensional subspace, therefore it should also be possible to develop a

robust classification scheme to sort new microstructure realizations into their appropri-

ate classes. For the example classes presented here where there are clear microstructural

differences between the classes, classification could be accomplished by simply assigning

a new realization to the nearest class, the class which minimizes the Mahalanobis dis-

tance. While this simple approach will work for the “toy” examples given in the paper, we

wish to apply a more formal probabilistic approach to classification that is able to handle

the general case when the data may not be linearly separable. Following Sundararaghavan

and Zabaras, we adopt a kernel support vectormachine (SVM) classification scheme [7,8].

Unfortunately, a mathematical treatment of SVM classification, particularly for the multi-

class examples of interest here are beyond the scope of this manuscript. For the interested

reader a full treatment of SVM classification and regression can be found in standard ref-

erences such as [34], here we will provide a descriptive overview of the technique and a

classification example.

If we consider the projection of the microstructure classes onto the canonical vari-

ables (see Figure 5), and we wish to develop a linear categorization rule that assigns a
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new point to either microstructure class 1 or 2 it is obvious that there are numerous

possible lines that could be drawn which would partition the space between these two

classes. The intuitive approach to finding an “optimal” partition would be to imagine

a line connecting the centers of mass of each class and draw the partition normal to

this line at the midpoint. In performing this operation we would be finding a partition

that approximately maximizes the distance from each class to the partition. SVMs are

supervised machine learning models for binary linear classification, that implement, in

a more theoretically rigorous manner, the basic approach just described. They attempt

to find the separating hyperplane through the data such that the distance from it to

the nearest data points on each side (the support vectors) is maximized. Such a plane,

provided it exists, is called the maximum-margin hyperplane. There are however many

cases where such a plane does not exists, such as when the data is non-linearly sepa-

rable or when where is noise in the data and the outliers from each class overlap. In

the case of outliers where the data is nearly linearly separable, a penalty is introduced

on points on the wrong side of the margin boundary that increases with the distance

from it. This is known as a soft margin SVM and was introduced in 1995 by Cortes

and Vapnik, and revolutionized the machine learning field [35]. Previous to soft margin

approaches the options for nearly linear or fuzzy classification were limited to neu-

ral networks or other unsupervised techniques that have a strong tendency to overfit

the data. The soft margin concept allowed for an optimal classification without over-

fitting, in the sense that the margin is maximized, even when a clean linear separating

hyperplane did not exist. In instances where the data is not linearly separable, such as

a quadratic separating surface, an approach termed kernel SVM introduced by 1992 by

Boser, Guyon and Vapnik, is used to map the data points to a higher dimensional space

where they are linearly separable [36]. The approach relies on the so called kernel trick,

where it was realized that if the optimization was formulated properly the mapping to the

higher dimensional space only appears as a dot product, implying that the mapping never

needs to be explicitly performed thus keeping the dimensionality of the optimization

equation low. For multi-class problems such as our example, the problem is reduced to

multiple binary classification problems by developing pairwise classification for all com-

binations (1-against-1) or by considering one class against the remainder of the data set

(1-against-rest) [37].

The open-source software library LIBSVM was used to create a classification on the

data in the PCA space [38]. Performing the classification in terms of the canonical vari-

ables would have been more efficient as the data is 100% linearly separable in three

dimensions. However for this example we are interested in exploring how many principal

components are really necessary to capture the range of microstructures in the dataset.

The 50 realizations from each of the 8 classes that were used to construct the PCA rep-

resentation were once again used as the training dataset. As we know a priori that the

data is linearly separable the applied kernel is simply the identity matrix. The 1-against-

1 approach was found to perform better as the individual classifications remained linear

rather than needing to apply a non-linear kernel for 1-against-rest. Validation was per-

formed by projecting the 50 members of each set held in reserve into the PCA space (the

PCA basis was not updated, the weights of the new data given the current basis were

computed) and exercising the classification model assuming no prior knowledge of cor-

rect class membership. Classification models were constructed for increasing numbers of
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principal components. The accuracy of the classification model for both the training and

validation sets is shown in Figure 8.

As can be seen in the figure, the accuracy of the classification rapidly increases with

additional principal components, by 15 components the accuracy of the training set is

100% at the accuracy of the validation set saturates around 92%. That the classifica-

tion accuracy of the validation dataset does not approach 100% implies that 1) there are

outliers in the validation dataset that are beingmisclassified and 2) the additional material

realizations contain some useful microstructure information that is absent in the original

dataset and is not captured in the original PCA decomposition. By examining the PCA

representation of the training data and the projection into this space of the validation

set, it can be seen that the hulls bounding the points do not entirely overlap and indeed

there are outliers which skew the shape of the bounding convex hull. An example of this

projection for microstructure class 1 is shown in Figure 9.

A key advantage of using SVMs for classification is that when new points are classified

they are assigned a probability of membership for each existing class. This probability can

be used to construct visualizations and maps in the design space on class membership.

Such a map giving the probability of class membership over a region in the PCA space

is shown in Figure 10. The probability of class assignment gives additional information

concerning the state of the classification model and the sufficiency of the microstruc-

ture data collected. Virtually all of the misclassified points in the validation dataset were

assigned a significant probability of belonging to two or more microstructure classes.

When adding a new ensemble to the system the classification probabilities are a power-

ful tool in determining if the ensemble belongs to a currently defined class or a new class.

While not discussed in detail here, the probabilities can also be used as weights when

assigning average properties or other metrics to the various classes. In effect this is one

method of handling the outliers of a microstructure class or of estimating the tails of the

performance distribution, given the current state of the microstructure knowledge.
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Figure 8 Accuracy of SVM classification model for both the training and validation datasets as a

function of number of principal components used to generate the model.
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Figure 9 Blue: Bounding hull in the PCA space of the training set for microstructure class 1. Red:

Bounding hull for the projection into PCA space of the validation dataset for microstructure class 1. While the

bounding hulls mostly overlap there are outliers that are misclassified.

Connection with properties and performance

The above discussion was focused solely on the exploration and visualization of

the microstructural relationships between multiple materials classes in an interactive

materials design space. In this section we link the materials design space with proper-

ties. Being able to connect the interactive materials data with properties and response

data is a critical task if the materials design space concept is to be applied in a practi-

cal manner. The idea of generating invertible mappings between a microstructure space

and a property space is not new. The Microstructure Sensitive Design framework [22,39],

(a) Hull for microstructure class 1 (b) Probability cloud of assignment to class 1

Figure 10 Example of using SVM classification to obtain probabilities of membership in each

microstructure class. (a) Bounding hull in the PCA space for microstructure class 1. (b) Probability map

which gives the probability of a new microstructure realization being assigned to class 1.
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for example, was predicated on delineating a microstructure design space termed the

microstructure hull that bounded the complete set of theoretically feasible microstruc-

tures of a given class and then projecting microstructures from the design space to

a property space, typically in the form of homogenization relationships for the delin-

eation of property closures. The main difficulty of such an approach is the construction

of the microstructure hull, typically only first order microstructure descriptors such

as volume fraction or crystallographic texture could be used. As was described above

the space of two point correlations for even the simple porous composite material sys-

tem here, renders the problem intractable for higher order microstructure descriptors

[25]. Here we are restricting the problem from the complete set of theoretically possi-

ble structures to the space of microstructures available through either characterization or

digital simulation. Instead of delineating property closures, or strict bounds on theoret-

ical property values, we are exploring and mapping the property space that is currently

achievable.

The successful production of property models directly in terms of distributions of the

microstructure process or microstructure function is important if such structural models

are to be incorporated by industry and the larger ICME or materials design community.

In the long term, it is hoped that the microstructure design space described here will

find applications in quality control and design certification, where current decisions are

made on measured property or experimental response values rather on the microstruc-

ture details. Moving toward microstructure based acceptance criteria will require the

widespread construction and validation of the types of linkages presented here.

As described in Section “Microstructure data generation and modeling methodol-

ogy”, the mechanical response of each realization for the 8 microstructure classes was

simulated using elastic visco-plastic FFT modeling. The resulting distributions in yield

stress and effective elastic modulus are shown in Figure 11. In previous work Niezgoda et

al. observed a nearly perfect linear relationship between ameasure of microstructure vari-

ance and the observed variance in properties for multiple ensembles of the same material

class [11,12,40]. In that work the material system was a low to moderate contrast two

phase composite, and while the ensembles all had large differences in structural variance,

(a) Distribution of Modulus C11 (b) Distribution of Yield Stress

Figure 11 Box and whisker plots showing the distribution of (a) elastic modulus C11 and (b) yield

stress. The red line shows the median value for each microstructure class. The blue box bounds the 25th and

75th percentiles (middle 50%) while the black bars indicate the maximum and minimum observed values.
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the multiple ensembles all had the same mean or average structure. Here we extend that

observation to effectively infinite contrast porous solids and show that the relationship

between structural variance and property variance shows the expected linear trend across

multiple material classes.

The descriptor of microstructural variance found to be most useful was the total

variation defined as

VAR
p
tot = b

p
1 + b

p
2 + · · · + b

p
J (14)

where b
p
j are the eigenvalues of the intra-class PCA decomposition for the pth microstruc-

ture class. The total variation can also be approximated for a given class from the

inter-class PCA representation by VARtot ≈
∑J

j=1 var(α
p
j ) where the variance is calcu-

lated over the members of the pth specific class. For each class the total variation was

computed from the intra-class PCA representation, and the relationship with property

variance is shown in Figure 12. As can be seen in the figure there is a strong corre-

lation between microstructure variance and property variance. The observed effect is

not as strong as seen in previous cases, however this example was deliberately set up

as a worst case in that the contrast between matrix and pore was effectively infinite

and that the microstructures spanned a wide range of anisotropy in pore shape and

distribution.

Ashby charts or maps are a well known design tool for visualizing relationships between

properties, performance and design constraints such as cost. Such maps have proved

invaluable in guiding material selection based on macroscale properties or performance

criteria. An ongoing goal of the authors is to link microstructure and microstructure vari-

ance into similar type maps to extend the utility to the realm of microstructure sensitive

design and design of materials/microstructures. In order to develop such tools, properties

and performance must be described as a function of the microstructure, or in our case the

PCA representation of microstructure. Here we we perform a proof of concept example,

by developing linear homogenization relationships in the microstructure design space. A

linear model was fit between effective modulus and yield strenth and the PCA weights

of each realization using a weighted least squares approach. The eigenvalues from the

inter-class PCA representation were chosen as the least squares weights. Weighting the

least squares regression in this manner enforced the assumption that the significance of
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Figure 12 Demonstration of the correlation of variance in the properties (a) elastic modulus and (b)

yield strength with the total variation in the microstructure two-point correlations.
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each successive principal component on properties will decrease, and add a physical basis

for the simple linear model. In effect we are assuming the directions of greatest variabil-

ity in the microstructure will have the largest influence on the change in properties. The

results of the fit are shown in Figure 13, which shows that the simple linear model does

an excellent job of capturing properties across the complete range of material classes.

Once an appropriate homogenization scheme is developed, property maps can be con-

structed by projecting the property values into the PCA space or onto the canonical

representation. The projection of properties into the canonical microstructure represen-

tation is shown in Figure 14. The canonical representation was chosen as the cloud of

realizations for each microstructure class are significantly overlapped in the PCA space

but are well separated in the canonical representation. In contrast to Ashby charts and

similar maps, constructing property maps in the microstructure space allows for the visu-

alization of the range of average properties for a microstructure class but also to see the

expected range of properties for individual microstructure realizations within a given

class. Suchmaps offer a quick but powerful visualization of the effect of structure on prop-

erties and gives the user a means of rapid identification of microstructure realizations of

interest.

Conclusions

This work was largely driven by the need, within the materials community, for effective

and efficient microstructure databases andmicrostructure based design and development

tools. In this paper, we presented a novel framework for the visualization and analysis

of microstructure data which fills several of the critical technological gaps limiting the

development of large scale microstructure design libraries. This work directly targets the

following key technological questions:

1. What measures of the material microstructure best capture its salient features?

2. How do we describe the inherent variability in a material and how do we link this

variability with scatter in properties or performance?
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Figure 13 Linear homogenization model validation for (a) effective modulus and (b) yield stress. The

model is fit to the 50 realizations of each microstructure class. The individual data points are colored by

microstructure class. The ideal fit is shown by a y = x linear tendline.
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Figure 14 Projection of predicted yield stress values onto the top three canonical variables showing

1) the how yield stress varies in the microstructure space 2) average property values for each

microstructure class and 3) the expected range of properties within a class. The class identification for

each region can be cross referenced with Figure 5.

3. How do we quantitatively compare materials from different classes or material

systems?

4. How do we place metrics on the quality or sufficiency of the microstructure data

collected, or how do we place measures on how well we have characterized a

particular material?

5. What objective data-driven reduced-order measures of the material microstructure

are best suited for establishing the invertible structure-property relationships

needed for materials design?

While a concerted effort from the larger materials community is required if such

databases are to ever come to fruition, the authors believe this work represents a critical

first step in their development.

In this work we developed several proof-of-concept tools and visualizations for the anal-

ysis of microstructure data. While the case studies presented were largely “toy-problems”

or highly simplified examples they demonstrate the main features of the microstructure

space and the range of tools that can be developed and the breadth of analyses that can

be performed. While it is still in its infancy, we believe that this work represents a com-

pletely new approach to handle the analysis and visualization of microstructure data. In

particular this work offers for the first time, an objective framework for the quantitative

comparison of microstructure between differing material classes. These simple results

potentially open completely new avenues for the exploration of structure-processing-

property relationships. A key difficulty in incorporating microstructure evolution into

design frameworks such as Microstructure Sensitive Design has been the lack of a suit-

ably defined microstructure space for higher order statistical microstructure descriptors.

In future work, the authors hope to explicitly incorporate microstructure evolution maps

as processing path-lines or flow vectors through the microstructure space. Such maps
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could find great utility in process monitoring and material quality control applications,

in addition to providing novel structure-processing-property visualizations to the design

community.

The work presented here also has immediate relevance to the ongoing efforts in multi-

scale modeling and characterization. If useful multi-scale structure/property/processing

knowledge are to be developed, an automated analysis built on a rigorous mathematical

formalism is necessary. Such formalism should handle a wide variety of data types across

multiple length-scales. Such an approach will enable scientists and engineers to model

the intrinsic randomness of microstructures, relate it to property variance, and treat it

as a materials design parameter for verification and validation. Given the vast separa-

tion between the macro-, meso-, and atomic length scales of interest in most materials

design problems, it should be clear that microstructure datasets collected at differing

length scales are best integrated in a stochastic manner. Using this formalism a natural

multi-scale representation of microstructure emerges where the structure at lower length

scales is described in terms of conditional probability densities given the structure at

higher length scales. Such a method aligns naturally with emerging multi-scale model-

ing techniques based around stochastic partial differential equations [41-43] and provides

an elegant framework for the inclusion of materials uncertainty into material model

uncertainty quantification and into component level design validation and verification.

The need to move beyond design based on average or effective properties is driving

the integration of simulation and experiment within frameworks such as ICME and is

a central theme of the Materials Genome Initiative. As time goes on this need is likely

to become more acute. In the opinion of the authors, the integration of the disparate

techniques and data paths required for ICME and the MGI necessitates a corresponding

evolution of the way we think about microstructure data. It is the hope of the authors

that this work will help jump-start discussions within the field of materials science and

engineering, and pave the way for future developments.

Availability of supporting data

Computer code to create the simulated digital micrographs and to reproduce all of the

case studies presented in this manuscript are available directly from SRN (Niezgoda.

s@gmail.com).

Endnote
aThis is only strictly true for Gaussian or near-Gaussian“well behaved” unimodal distri-

butions. However, this will be the case for all microstructure classes examined here, and

is expected to hold for virtually all real material systems.
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