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Abstract

Background: The Deleted-in-AZoospermia-Like (DAZL) gene has homologs required for germ cell

development in many organisms. Recently, we showed that there are several common

polymorphisms within the DAZL gene that are associated with age at ovarian failure/menopause and

sperm count.

Methods: Here we sought to identify rare mutations in DAZL and examine their phenotypes in

men and women. We sequenced the DAZL gene in 519 individuals; sequences spanned the entire

coding region of the gene.

Results: We report the identification of four putative missense mutations in DAZL. Three

individuals that were heterozygous for a DAZL mutation reported having children, while two

individuals that were homozygous reported no children. These mutations were found only in

infertile men and women.

Conclusion: Given the strong data associating DAZL polymorphisms and deletions with fertility in

humans and model organisms, we suggest that these mutations may be associated with age at

menopause and/or sperm count and warrant further biochemical and genetic investigation.

Background
Though infertility affects 10–15% of couples, only a small
number of genes have been shown to be associated with
infertility in women and men [1]. In women, family his-
tory is a significant predictor of early menopause (meno-

pause at age < 47 years); a woman with an immediate
family member who experienced an early menopause has
a 6-fold greater risk of early menopause herself [2,3]. In
addition, sibling studies have estimated the heritability of
age at onset of menopause to be high, 63% in one study
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and 85% in another [4,5]. In men, there are fewer studies
that have examined the genetics of sperm production;
most have focused on the role of the Y chromosome [6-8].
Indeed, the most common genetic lesion appears to be
deletions of the Y chromosome, including deletions of the
DAZ (Deleted-in-AZoospermia) gene, which are associated
with azoospermia (no sperm in the ejaculate) and oligo-
zoospermia (< 20 million sperm/mL of ejaculate) [6-8].

As many features of germ cell development are similar in
both sexes, we expect that some genes may function simi-
larly in men and women. In humans and other mammals,
male and female germ cells initially develop along the
same path, but take different courses after the mitotic
expansion of premeiotic germ cells [9]. Oocytes are lost
through atresia (apoptosis) and ovulation. With no oogo-
nial stem cell population, eventually the oocyte popula-
tion is depleted, triggering menopause [10]. Men, on the
other hand, have a reserve of spermatogonial stem cells
that remains throughout life, and can produce mature
gametes continually [9]. One likely candidate gene that
may be required for fertility in both men and women is
the DAZL (DAZ-Like) gene, an autosomal homolog of the
Y chromosome DAZ gene [8,11]. In all organisms studied
thus far, DAZL expression is specific to germ cells, and
mutations in DAZL homologs are limited to defects in
development of the germ cell lineage [11-27]. We thus
hypothesized that mutations in DAZL could impact meas-
ures of germ cell numbers in men and women, namely
sperm count and age at menopause, respectively.

In a previous study, we directly sequenced the human
DAZL gene in three study populations [28]. The first pop-
ulation was comprised of 93 women diagnosed with idio-
pathic spontaneous premature ovarian failure (premature
ovarian failure group). The second population was com-
prised of a case control group that contained 324 women
with reported ages of ovarian failure/menopause between
28 to 54 years (ovarian failure/menopause group) [2]. The
third population contained 102 infertile men with few or
no sperm (oligozoospermia, < 20 million sperm/ml),
and/or immotile sperm (asthenozoospermia, < 50%
motile sperm) (infertile male group). In these three
groups, we identified 95 sequence variants within the
eleven exons and flanking regions of DAZL [28]. A com-
parison of all the variants revealed twelve SNPs (single
nucleotide polymorphisms) or variants that were in
Hardy-Weinberg equilibrium and had frequencies, of the
least common allele, of greater than one percent. Of the
twelve common SNPs, one resulted in a non-synonymous
amino acid substitution, six altered nucleotides of the
3'UTR, and five mapped to introns [28]. Our work further
demonstrated a strong association between several SNPs
and age at menopause in women and sperm count in
men, across ethnicities, suggesting that DAZL, as in other

organisms, may have a function in human germ cell
development [28]. Notably, that study was focused on
identifying and characterizing common variants in men
and women. Here we examined variants that were of low
prevalence in the population and thus would constitute
mutations based on their frequency. Below, the identity of
these putative mutations, and their associated pheno-
types, are described in more detail.

Methods
Study populations

Study populations and DNA samples are as previously
described [28]. Briefly, DNA samples from the premature
ovarian failure group were collected from women with
premature ovarian failure (age range: 13–41 years). Age at
menopause was defined as amenorrhea for at least four
months, with two serum FSH (follicle stimulating hor-
mone) levels in the menopausal range one month apart
[29]. Causes of ovarian failure such as X chromosome
translocations and deletions were excluded. DNA samples
from the ovarian failure/menopause group were collected
from women with ovarian failure/early menopause prior
to or after the age of 46, as described [2]. One third of the
women in this population reported an early menopause
and a family history of early menopause (prior to age 46,
N = 108), one third reported an early menopause and no
family history (N = 108), and the remaining third
reported menopause after the age of 46 or were still men-
struating at age 46, and served as controls (N = 108). Sam-
ples were obtained only from the women surveyed and
not from their family members. DNA samples from the
infertile male group were collected from infertile men;
each man in this group had a complete history, physical
exam, karyotype, semen analysis performed according to
WHO criteria, and testicular biopsy when appropriate
[30]. In the case of multiple semen analyses with different
reported values, the semen sample with the highest sperm
count was included in statistical models.

DNA extraction and genotyping

DNA extraction and genotype were performed as
described [28]. The entire coding region of DAZL was
sequenced, including all exons and flanking regions.
Primers, primer concentrations, and PCR conditions were
as indicated [28]. PCR primers were designed using
Primer3, with or without the human repeat mispriming
library [31]. Sequencher v4.1.4 (Gene Codes, Ann Arbor,
MI), Seqman (DNAStar Inc., Madison, WI) and Mutation
Surveyor v2.1 (SoftGenetics, State College, PA) were used
to align sequences and to identify polymorphic bases.

Results and discussion
Single nucleotide polymorphisms (SNPs) are defined as
naturally-occurring variants with a frequency greater than
one percent in the human population; in contrast, muta-
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tions occur with frequencies less than one percent. Here,
we identified four putative missense mutations in the
DAZL gene, listed in Table 1 and depicted in Figure 1, that
were found only in one or two individuals in all three
populations that we studied. None of these mutations
were identified in the normal controls (from the ovarian
failure/menopause group). Three mutations mapped to
exon 2 and one mapped to exon 5 of the DAZL gene; all
were juxtaposed to, or within, the RNA-binding domain.

Pro6 → His6

This mutation changes a highly conserved proline to a his-
tidine in the N-terminus of the protein, just upstream of
the highly-conserved RNA Recognition Motif (RRM).
Although proline is usually considered a hydrophobic
amino acid whose unique cyclic structure causes it to
influence protein architecture, its secondary amino (NH2)
group predisposes this residue to being on the surface of
the protein exposed to water. Histidine is also a bulky
amino acid that can be either neutrally or positively
charged, depending on its environment. Overall, since
both amino acids are large and generally localized to the
surface of the protein, this amino acid change is most
likely to affect the structure of the protein surface. In this
study, we identified one woman who was heterozygous
for this mutation, with onset of menopause at age 45, and
no family history of early menopause. She was fertile, hav-
ing had three children prior to menopause.

Asn10 → Cys10

This amino acid change was identified in two patients: a
male homozygous for the mutation who presented with
azoospermia and a female heterozygous for the mutation
who reported an early menopause at age 44. Notably,
asparagine is a negatively charged hydrophilic residue,
while cysteine contains the hydrophobic and highly reac-
tive sulfhydryl group. This particular change lies in exon 2
just outside of the RNA-binding domain; the substitution
of this hydrophilic residue for a hydrophobic residue may
impact protein folding. Interestingly, in this case, the

mutation may act in a dose-dependent manner: the
woman with one copy of the mutation had a less severe
phenotype than the male with two copies of the mutation.

Ile37 → Ala37

This isoleucine is part of the RNA-binding domain (the
RRM or RNA Recognition Motif). It is five amino acids
upstream of the RNP2 sequence which is one of the most
highly conserved parts of the DAZL protein. Isoleucine
and alanine are both classified as hydrophobic amino
acids; however, alanine, with its shorter side chain, is not
as hydrophobic as isoleucine. The structure of the homol-
ogous RNA binding domain in another protein has been
deduced, and in that structure, the amino acid corre-
sponding to the isoleucine forms a hydrogen bond with
another amino acid in the structure [32]. The shorter side
chain of alanine would be expected to disrupt this hydro-
gen bond. This mutation was only identified in a woman
who experienced a spontaneous early age at onset of men-
opause at age 43. She was heterozygous for the mutation
and had one child.

Arg115 → Gly115

Arg115 is near the carboxy-terminal end of the RRM in a
region that interacts with several other proteins [33]. This
mutation results in the substitution of a basic, hydrophilic
amino acid for the simplest amino acid, glycine. By
sequence comparison to the RRM of another RNA-bind-
ing protein, the HuD protein which has been crystallized
bound to RNA, it appears that this amino acid may be key
to making side-chain and main-chain connections to the
RNA and the other RRM in this protein [34]. As DAZL is
also known to homodimerize, this amino acid may be
important for both RNA binding and protein-protein
interactions. Substitution of arginine by glycine should
severely disrupt normal interactions with this amino acid.
Accordingly, the one patient we identified with this muta-
tion was homozygous for this change, and experienced
premature ovarian failure at age 34, having borne no chil-
dren.

Table 1: Missense mutations identified in the human DAZL gene. The position of each putative mutation in the DAZL gene sequence is 

relative to the gene sequence as previously detailed [28].

Position Exon Change Occurrence

Sex (Population) Genotype Phenotype

8169 2 Pro6 → His6 Female (ovarian failure/menopause group) Heterozygous Spontaneous early menopause at age 45. 3 
children previously.

8182 2 Asn10 → Cys10 Male (infertile male group) Homozygous Azoospermia

Female (ovarian failure/menopause group) Heterozygous Familial early menopause at age 44. 4 
children previously.

8262 2 Ile37 → Ala37 Female (ovarian failure/menopause group) Heterozygous Spontaneous early menopause at age 43. 1 
child previously.

9740 5 Arg115 → Gly115 Female (premature ovarian failure group) Homozygous Spontaneous premature ovarian failure at 
age 34. 0 children previously.
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DAZL mutations and reproductive characteristics

Our screen of the DAZL gene for sequence variations that
are associated with male and female fertility produced not
only a number of interesting common SNPs or variants
[28], but also intriguing rare missense mutations, as

reported here. None of these mutations were found in the
108 control women that had a normal menopause or
were still menstruating at age 46, suggesting they may be
associated with impaired germ cell development and fer-
tility. Nonetheless, additional data is required; for exam-

Four putative missense mutations in the DAZL proteinFigure 1
Four putative missense mutations in the DAZL protein. (a) Pictoral representation of the DAZL gene, with exons 
depicted by red arrows and the coding region depicted by an orange arrow. Two protein motifs, the RNA Recognition Motif 
(RRM) and the DAZ repeat, are represented by green and pink arrows, respectively. Each mutation is labeled by its exon and 
its position in the gene, which is mapped to the sequence as previously reported [28]. (b) Sequence of the DAZL protein, with 
mutated residues in bold, and the resulting changed amino acid above in red. The highly conserved RRM, which is required for 
RNA binding, is underlined (LPE........to IRK) [36, 42]. Another highly conserved domain of the protein, the DAZ motif, is 
underlined with double arrows (AYP....... to NYQ).
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ple, it would be most useful to independently screen a
second group of male and female control chromosomes
to determine whether these mutations are found in indi-
viduals with "normal" fertility/reproductive characteris-
tics. This is especially merited given that these mutations
were clustered in exons that form part of the RRM. While
it is possible that this region of the protein is simply
highly variable, it is more likely that our population is
enriched for mutations in a functionally-important part of
the protein. In other RRM-containing proteins, many of
the residues surrounding the RRM motif are also involved
in RNA binding specificity and thus, even those mutations
that are adjacent to the RRM may alter proper protein
function [35].

Interestingly, we observed that possessing these putative
missense mutations, especially a heterozygous missense
mutation, was compatible with producing offspring. Each
patient that was heterozygous for a missense mutation
was able to produce at least one child. In contrast, the
patient that was homozygous for the Arg115Gly mutation
experienced 46,XX spontaneous premature ovarian failure
at the early age of 34 years and did not bear any children;
similarly, the male patient that was homozygous for the
Asn10Cys mutation produced no sperm. This is consistent
with data from the mouse, where mice heterozygous for a
Dazl knockout allele are fertile (though it is currently
debated whether they may be subfertile) and homozygous
mutant mice are infertile in both sexes [17].

Recently, a number of potential RNA targets for DAZL
have been identified, making it possible to test the effects
of mutations on RNA-binding in vitro, in the future [36-
39]. In addition, as this region is known to be involved in
DAZL homodimerization and binding to other proteins,
it would be of interest to determine whether these muta-
tions, like Arg115Gly for example, affect the ability of
DAZL to interact with other protein partners [33,40,41].

Conclusion
Intriguing mutations were observed in the DAZL gene in
both men and women. Two individuals possessed
homozygous mutations. Future work on how these puta-
tive mutations affect RNA and protein partner binding
could provide key insights into the requirement of DAZL

in human germ cell development, especially regarding key
residues required for DAZL protein function. In addition,
further studies may shed a light on the role of DAZL in
human infertility.
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