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for malaria elimination: a review of options 
from the point of view of high-throughput 
and applicability in resource limited settings
Sumudu Britton1,2*, Qin Cheng3 and James S. McCarthy1,2

Abstract 

As malaria transmission continues to decrease, an increasing number of countries will enter pre-elimination and 
elimination. To interrupt transmission, changes in control strategies are likely to require more accurate identification of 
all carriers of Plasmodium parasites, both symptomatic and asymptomatic, using diagnostic tools that are highly sensi-
tive, high throughput and with fast turnaround times preferably performed in local health service settings. Currently 
available immunochromatographic lateral flow rapid diagnostic tests and field microscopy are unlikely to consistently 
detect infections at parasite densities less than 100 parasites/µL making them insufficiently sensitive for detecting all 
carriers. Molecular diagnostic platforms, such as PCR and LAMP, are currently available in reference laboratories, but 
at a cost both financially and in turnaround time. This review describes the recent progress in developing molecular 
diagnostic tools in terms of their capacity for high throughput and potential for performance in non-reference labora-
tories for malaria elimination.
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Background
Malaria continues to be a significant public health issue, 

with 198 million cases of infection occurring in 2013 [1]. 

However, it is estimated that 55 of the 106 countries that 

reported ongoing transmission in the year 2000 will, by 

2015, meet the target of reducing malaria case incidence 

rates by 75 %. In this context, in 2007, the World Health 

Organization (WHO) endorsed the ambitious goal of 

achieving worldwide malaria elimination and eradication. 

�e definitions and associated challenges of elimination 

have been previously discussed [2, 3].

Inherent to a change in focus from control to elimina-

tion is the need to interrupt transmission, which requires 

identification and treatment of all parasite carriers, both 

symptomatic and asymptomatic. To this end, there is 

increasing appreciation of the extent of the asymptomatic 

reservoir of malaria parasites, their potential to maintain 

transmission and the role that sensitive diagnostic tests 

will need to play in providing accurate epidemiological 

information to guide programmatic changes. A review 

by Okell et  al. found that for Plasmodium falciparum, 

microscopy underestimated prevalence by 50.8  % com-

pared with PCR, and that this gap became even more sig-

nificant in low transmission settings [4]. Similarly, Cheng 

et al. described submicroscopic Plasmodium vivax infec-

tion being highly prevalent particularly in areas of low 

transmission, with on average 69.5 % of infections being 

detected only by PCR [5].

�e diagnostic tools currently available for the identi-

fication of Plasmodium spp. include light microscopy, 

immunochromatographic lateral flow assays (known 

as rapid diagnostic tests, RDTs), serology, fluorescence 

microscopy and nucleic acid amplification techniques 

(NATs), such as PCR and isothermal amplification. 

Light microscopy has poor sensitivity in low transmis-

sion setting and in asymptomatic patients, resulting in 
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underestimation of disease prevalence compared with 

the gold standard molecular diagnostic tool, PCR [4–6]. 

Even the most sensitive RDTs share similar limitations 

with microscopy [7], and have been shown to be insuf-

ficiently sensitive for community screening of asympto-

matic carriers of P. falciparum [8, 9]. Furthermore, mass 

screening of populations in five malaria ‘hot spots’ in 

Zanzibar and treatment of RDT positive individuals did 

not reduce malaria incidence [9], likely due to the nearly 

tenfold higher undetected and untreated infection reser-

voirs missed by RDTs (compared with PCR). �erefore, 

diagnostic tools with better analytical sensitivity are 

likely to be required to detect the low level parasitaemia 

associated with asymptomatic carriage of Plasmodium 

spp. pertaining to the goal of malaria elimination.

�e Malaria Eradication consortium has outlined 

features required of diagnostic tools for the purpose 

of malaria elimination [10]. �ese were further modi-

fied by the WHO in 2014 [11] to include a lower limit 

of two parasites/µL detected in order to be ‘a significant 

improvement on expert microscopy’. However, the mini-

mum number of parasites per microlitre that perpetu-

ates transmission in low transmission settings remains 

uncertain.

For malaria elimination, the strategies for interrupt-

ing the cycle of transmission rely on enhanced popu-

lation surveillance to inform additional intervention. 

Surveillance for elimination includes reactive and pro-

active active case detection, mass screening/testing and 

treatment (MSAT/MTAT), focused screening and treat-

ment (FSAT) [12] and mass drug administration (MDA) 

[13, 14]. However, the most effective of these strategies 

remains to be determined. While the success of each of 

these strategies will depend on a number of different fac-

tors, the feature common to each of them, except MDA, 

may be the availability of point-of-care, sensitive diagnos-

tic tools that are able to process large numbers of samples 

with a fast turnaround time.

NATs are currently the most sensitive diagnostic 

modality available, and many different assays have been 

developed for the identification of Plasmodium para-

sites. �e performance of these assays, in terms of their 

accuracy, has been comprehensively reviewed recently 

[15]. However, while readily available in reference labo-

ratories, NATs such as PCR remains inaccessible in 

resource limited settings due to the expensive infrastruc-

ture, reagents and technical expertise required. Efforts to 

improve the field applicability of NATs have resulted in 

the development of assays such as PCR-enzyme linked 

immunosorbent assays (PCR-ELISA) [16], nucleic acid 

lateral flow immunoassay (NALFIA) [17, 18], nested 

PCR-high resolution melting analysis (nPCR-HRM) [19], 

PCR-ligase detection reaction assays (PCR-LDR) [20] and 

modifications of PCR-LDR into LDR- fluorescent micro-

sphere assay (LDR-FMA) [21]. �ese assays, which have 

been recently reviewed [22], have good analytical sensi-

tivity but are limited in their field applicability by virtue 

of their requirement for a PCR amplification step.

Isothermal molecular diagnostic modalities, such as 

loop mediated isothermal amplification (LAMP), nucleic 

acid sequence based amplification (NASBA), thermo-

philic helicase dependent amplification (tHDA) and 

recombinase polymerase amplification (RPA), which 

have also been detailed elsewhere [23], are of much cur-

rent interest given their potential to combine good ana-

lytical sensitivity with technical requirements that may 

facilitate application in resource limited settings.

Several NATs, including quantitative PCR (qPCR) 

combined with microfluidics [24], and those linked to 

enzyme-linked immunosorbent assays [25–27] as well as 

non-nucleic acid techniques [28–30] are in development 

for the purposes of malaria diagnosis but are not dis-

cussed further here. However, for even the most promis-

ing molecular technologies to be useful as point of care 

(POC) tests, significant challenges of portability, sample 

preparation, power supply and high throughput [31] have 

yet to be overcome.

�is review describes the currently available novel 

molecular diagnostic platforms for the detection of low 

parasitaemia from the point of view of their potential for 

high-throughput and applicability in resource limited 

settings for the purpose of malaria elimination.

Nucleic acid ampli�cation techniques (NATs)
PCR is a very sensitive molecular diagnostic modality 

capable of identifying asymptomatic, submicroscopic 

infection. �e sensitivity of PCR for identifying low level 

parasitaemia has been shown to be improved by perform-

ing qPCR using DNA from high blood volumes (up to 

1 ml). �e latter platform, as described by Imwong et al., 

has a limit of detection (LOD) of 0.022 parasites/µL [32]. 

�is has been achieved using a modified Qiagen© extrac-

tion protocol with extraction of DNA from 1 ml of blood, 

then concentrated to a volume of 10 µL of DNA with 2 µL 

of template per reaction (therefore equivalent to 200 µL 

of blood) in combination with primers to a P. falciparum 
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18S rRNA gene target [32]. �e process is amenable to 

up-scaling through automation to test up to 700 sam-

ples per week, confirming its status as a high-throughput 

diagnostic modality. While this technique, when offered 

in a reference laboratory, could make a significant con-

tribution to the detection of low-level parasitaemia, its 

significant drawback is the need for venipuncture, which 

is impractical for population surveillance purposes. In 

addition, the equipment, reagents and technical expertise 

required are likely to preclude its use as a field deploy-

able test. Nevertheless, it highlights the significant diag-

nostic advantages associated with sample concentration 

for identification of low level parasitaemia. �e assay has 

been shown capable of identifying most infected individ-

uals in malaria-endemic areas based on the distribution 

of parasite densities in asymptomatic malaria determined 

by this assay [33].

Efforts to simplify PCR for the purpose of field appli-

cation have seen PCR performed directly on blood and 

combined with NALFIA [18] and multiplex malaria sam-

ple ready (MMSR) assays [34]. �e MMSR assay relies 

on the lyophilization of all multiplex qPCR reagents in 

either 8-tube strips or 96 well plates which requires only 

the addition of sample DNA and water for the identifica-

tion of Plasmodium genus and P. falciparum at an LOD 

of 0.244 parasites/µL from whole blood. �e assay can 

also identify P. vivax. Although MMSR still requires a 

thermocycler, DNA extraction and is expensive (> US$10 

per reaction), it overcomes some significant issues asso-

ciated with performing PCR in resource limited settings, 

thereby providing proof-of-concept for the potential PCR 

has to become deployable in non-reference laboratory 

settings.

To overcome the issue of equipment in field settings, 

Canier et al. created a mobile molecular laboratory [35]. 

At a cost of US$200,000 for the fully equipped truck, this 

laboratory is able to process 240 samples per day, with a 

turnaround time of 24  h and a cost of US$2.75/sample. 

�e real time assay was performed in a 96-well plate 

using DNA extracted from filter paper using a commer-

cial kit (Instagene Matrix resin, BioRad). Samples were 

screened for Plasmodium spp. using a mitochondrial 

cytochrome-b target [36] and then a species-specific 

nested real time PCR performed to arrive at an LOD of 

two parasites/µL from a 5 µL dried blood spot (DBS) [35]. 

While this innovative approach provides the opportunity 

for performing field-based PCR with its associated high 

throughput and fast turnaround time, the cost outlay of 

the mobile laboratory and cost per sample may be pro-

hibitive in many developing countries embarking on 

malaria elimination programmes.

A significant advantage of real-time PCR is the lack of 

post-PCR handling through the use of fluorophores. To 

overcome issues of expense, Lucchi et al. [37] developed 

a novel, low cost technique for labelling real-time PCR 

primers with self-quenching ability via photo-induced 

electron transfer (PET). �e PET-PCR assay was per-

formed on Qiagen©-extracted DNA using a duplex of 

Plasmodium genus and P. falciparum primers, and was 

found to have an LOD of 3.2 parasites/µL [37]. Validation 

of the assay on nearly 3000 surveillance samples from 

Haiti, took over 5  months to process [38]. �erefore, 

while PET-PCR would appear to offer a sensitive platform 

for performing real time PCR, it is unclear whether the 

overall cost of the technology coupled with turnaround 

time would render it amenable for field deployment for 

malaria elimination.

Portable, self-contained molecular technology is the 

ultimate prize in the development of field applicable 

diagnostic tools. �e first of these is based on a plastic 

hydrogel chip and a customized portable real time PCR 

machine (Gelcycler) [39]. �e assay can process 12 sam-

ples at a time, directly from whole blood, with no prior 

DNA extraction. �e assay uses an 18S rRNA gene tar-

get that detects all species of Plasmodium with an LOD 

of two parasites/µL and differentiated between P. falci-

parum and P. vivax [39]. �e assay had a 2 h turnaround 

time using a 12 volt battery and costs US$1 per test and 

US$2000 for the gelcycler [39]. Although able to process 

only 12 samples at a time, the low cost, self contained 

nature of this chip and ability to test blood directly with 

a fast turnaround time make it an enticing prospect for 

field applicable diagnostics. �e second platform is a 

multiplex microarray assay, targeting 26 tropical patho-

gen species including P. falciparum and P. vivax, with a 

turnaround time of 4  h [40]. However, its cost and loss 

of sensitivity at less than 100 parasites/µL for P. falcipa-

rum suggest a limited role for the assay for the purpose of 

malaria elimination.

Another approach to increasing sample throughput 

is pooling of samples [41]. In this study by Hsiang et al., 

filter paper samples were pooled into groups of 10, 50 

and 100 and tested by real time PCR and species differ-

entiated using a restriction enzyme analysis. �e study 

found that at 10 parasites/µL, a pool of ten had a sensi-

tivity of 93 % for P. falciparum [41] but turnaround time, 
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throughput and cost of this approach are unclear. How-

ever, pooling strategies are only likely to be cost effective 

in areas with very low level transmissions, and where 

parasitaemic subjects have a moderate parasitaemia, 

which may permit pooling of DNA samples, thereby lim-

iting its potential role in elimination settings.

Finally, RNA assays are generally considered too tech-

nically challenging for application in resource limited set-

tings. Nevertheless, Cheng et al. have developed a capture 

and ligation probe PCR (CLIP-PCR) where sample lysate 

are directly incubated with a target plate overnight, obvi-

ating need for RNA purification and reverse transcrip-

tion. qPCR can then be performed and results analysed 

by melting curve analysis and cycle threshold values. It 

is high throughput by virtue of its 96-well plate format 

and sample pooling, and can be performed directly from 

whole blood with an LOD of 0.05 parasites/µL or from 

pooled DBS with an LOD of 0.3 parasites/µL [42]. More 

than 3000 DBS were processed in the study but through-

put per day is unclear. Limitations are an overnight incu-

bation step which extends turnaround time, ability to 

identify only Plasmodium genus and requirement for 

PCR. Nevertheless, the potential for high throughput and 

direct processing from blood opens the possibilities for 

RNA assays to enter the foray of diagnostics for malaria 

elimination.

Loop mediated isothermal ampli�cation (LAMP)
Since its first description in 2001 by Mori et  al. [43], 

LAMP has become a forerunner in isothermal diagnostic 

technology for the identification of Plasmodium species 

[23]. LAMP has been used to identify all human Plasmo-

dium species [44] including Plasmodium knowlesi [45, 

46], and LAMP primers have been optimized to improve 

the sensitivity with which P. falciparum [47, 48] and P. 

vivax [49, 50] can be detected. A commercially available 

Loopamp kit (Eiken Chemical co) has been validated for 

the detection of P. falciparum [51] and enables the indi-

rect detection of P. vivax using a combination of pan-

genus and P. falciparum specific LAMP primers [52]. 

Given that the commercial LAMP turbidimeter has lim-

ited capacity, Loopamp kits have been successfully com-

bined with 46-well heat blocks and UV lamps to increase 

throughput [53, 54]. Nevertheless, further optimization 

of LAMP platforms will be needed in order to viably pro-

cess large numbers of samples as might be required to 

broaden its applicability for malaria elimination [31, 55].

Goto et al. [56] described a simple LAMP platform to 

improve its throughput using a 96-well microtitre plate 

format and a metal ion detector, hydroxynaphthol blue 

(HNB), for rapid visual interpretation of positive and 

negative results. �is platform has been adapted for the 

identification of Plasmodium genus and P. falciparum as 

a high-throughput LAMP (HtLAMP) assay that can be 

combined with a portable photospectrometer for objec-

tive confirmation of visually detectable HNB colour 

change results [57]. Its LOD for the identification of Plas-

modium genus (HtLAMP-Pg) is 2.5 parasites/µL from 

whole blood and 25 parasites/µL from DBS. �e cost of 

HtLAMP-Pg is US$1 per sample which includes whole 

blood DNA extraction using a modified chelex-saponin 

protocol. Although HtLAMP requires DNA extraction 

and is yet to be validated on asymptomatic patient sam-

ples to confirm throughput capacity, it has been per-

formed in a resource limited setting and offers a cost 

effective molecular diagnostic platform.

Notwithstanding the issue of high-throughput, one of 

the exciting aspects of LAMP has been its potential for 

field deployment by virtue of its isothermal nature, and 

as such efforts have been invested in improving its field 

readiness. Lucchi et al. described the RealAmp platform 

in which LAMP was housed in a portable tube scanner 

with a built-in fluorescent detection unit able to moni-

tor the generation of fluorophores by SYBR green in 

real time rather than reliance on visual colour change 

[58]. �e device is a compact, 8 tube well, closed-system 

with an LOD of 0.4–40 parasites/µL for Plasmodium 

genus detection depending on method of DNA extrac-

tion. Costs are quoted at US$6344 start-up and US$2.66 

per sample at minimum. RealAmp has also been used to 

detect P. vivax [49], and has been validated in field testing 

[59].�erefore, while this platform itself appears portable 

and relatively sensitive, its potential role in malaria elimi-

nation may be limited by its throughput and cost.

�e concept of lateral flow based immunodiagnostics is 

familiar to the field of malaria. LAMP has been combined 

with a lateral flow device (LFD) thus adapting a molecular 

assay into a rapid diagnostic device [60]. �is LAMP-LFD 
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assay, performed on extracted DNA or directly on blood, 

targets the dihydrofolate reductase thymidylate synthase 

(dhfr-ts) genes of P. falciparum and P. vivax using bioty-

nylated LAMP primers whose products then hybridized 

with FITC labelled single strand DNA. A strepavidin-bio-

tin reaction between hybridized LAMP amplicons and 

gold-labelled anti-FITC antibodies on the LFD strip allow 

visualization of the result [60]. However, this LAMP-LFD 

platform has limited sensitivity at low-level parasitaemia, 

and has not been validated on clinical samples. Impor-

tantly, it is a multistep process, requiring the addition of 

the probe at the end of the LAMP reaction, making this 

open system vulnerable to contamination, particularly 

where high throughput sample processing is necessary. 

Nevertheless, the potential for simple visualization of 

results offered by LFD, combined with either LAMP [60], 

recombinase polymerase amplification (RPA) [61] or 

PCR [18], is promising.

Field applicability of diagnostics devices centre around 

simplicity of the assay and ability to be performed with 

minimal instrumentation but generally still depend on 

a reliable electricity supply. Non-instrumented nucleic 

acid amplification (NINA) [62] has been applied to the 

detection of Plasmodium species as a LAMP-NINA assay 

[63]. �is assay uses an exothermic chemical reaction 

between saline and a magnesium iron alloy to generate a 

heat source for performing LAMP on a maximum of five 

samples within an insulated thermos flask-like device, 

and was validated in Ethiopia using Loopamp malaria 

pan genus/Pf kits (Eiken chemical co, Japan) in the NINA 

heating device [63]. Its limitations are its lack of capacity 

for high throughput, risk of contamination and validation 

only in samples with relatively high parasitaemia. How-

ever, the self-contained electricity free heating device, 

lack of post processing handling and fast turnaround 

time make it an attractive prospect as a field applicable 

point of care diagnostic device.

Conclusion
�e extent of the submicroscopic parasite reservoir is 

becoming more evident with the utilization of sensitive, 

reference laboratory-based PCR testing. Microscopy and 

RDTs have been shown to underestimate the Plasmodium 

parasite prevalence in low incidence settings when com-

pared with PCR, which has important implications for 

malaria elimination [9, 64]. �e availability of sensitive 

diagnostic tests would also facilitate improved diagnosis 

of causes of febrile illness as malaria incidence declines 

and allow for more appropriate administration of arte-

misinin combination therapy (ACT) [19]. Although many 

diagnostic platforms may be capable of fulfilling this role, 

given the sensitivity of NATs, there is an increasing prior-

ity for the development of molecular diagnostic tools that 

have the capacity for detection of low level parasitaemia, 

that are able to process large numbers of samples and that 

can be performed in regional, non reference laboratory 

settings in order to support efforts of malaria elimination.

�e various novel PCR and LAMP platforms currently 

available (Table  1) have demonstrated variable analyti-

cal sensitivity; many of these have yet to be validated 

among asymptomatic patients for the specific pur-

pose of identifying low-level parasitaemia and have yet 

to be evaluated in resource limited settings. �e main 

dichotomy between the two types of molecular assays 

remains that PCR-based assays have the sensitivity of 

parasite detection and the infrastructure support to 

increase throughput of sample processing, but have lim-

ited capacity to be deployable to more resource-limited 

laboratory settings. Isothermal assays, such as LAMP 

on the other hand, appear to have adequate analytical 

sensitivity to detect low-level parasitaemia and strong 

potential for deployment in non-reference laboratory 

settings but have limited, often implied rather than 

proven, capacity for high throughput processing of 

samples. Furthermore, many of these platforms are yet 

to overcome the common hurdle of simplifying nucleic 

acid extraction, an essential requirement for such assay 

platforms in resource limited settings. Both PCR and 

LAMP based assays are currently more expensive than 

RDT. Nevertheless, engineering challenges may be sur-

mountable and strong foundations have been laid for 

achieving the goal of developing sensitive molecular 

diagnostic tools with the capacity for both field deploy-

ment and high throughput sample processing for the 

purpose of detecting low-level parasitaemias in malaria 

elimination settings.
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