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Abstract

Background: Polycomb group (PcG) proteins maintain expression pattern of genes set early during

development. Although originally isolated as regulators of homeotic genes, PcG members play a

key role in epigenetic mechanism that maintains the expression state of a large number of genes.

Polycomb (PC) is conserved during evolution and while invertebrates have one PC gene, vertebrates

have five or more homologues. It remains unclear if different vertebrate PC homologues have

distinct or overlapping functions. We have identified and compared the sequence of PC

homologues in various organisms to analyze similarities and differences that shaped the

evolutionary history of this key regulatory protein.

Results: All PC homologues have an N-terminal chromodomain and a C-terminal Polycomb

Repressor box. We searched the protein and genome sequence database of various organisms for

these signatures and identified ~100 PC homologues. Comparative analysis of these sequences led

to the identification of a novel insect specific motif and several novel and signature motifs in the

vertebrate homologue: two in CBX2 (Cx2.1 and Cx2.2), four in CBX4 (Cx4.1, Cx4.2, Cx4.3 and

Cx4.4), three in CBX6 (Cx6.1, Cx6.2 and Cx6.3) and one in CBX8 (Cx8.1). Additionally, adjacent

to the chromodomain, all the vertebrate homologues have a DNA binding motif - AT-Hook in case

of CBX2, which was known earlier, and 'AT-Hook Like' motif, from this study, in other PC

homologues.

Conclusion: Our analysis shows that PC is an ancient gene dating back to pre bilaterian origin that

has not only been conserved but has also expanded during the evolution of complexity. Unique

motifs acquired by each homologue have been maintained for more than 500 millions years

indicating their functional relevance in boosting the epigenetic 'tool kit'. We report the presence

of a DNA interaction motif adjacent to chromodomain in all vertebrate PC homologues and

suggest a three-way 'PC-histoneH3-DNA' interaction that can restrict nucleosome dynamics. The

signature motifs of PC homologues and insect specific motif identified in this study pave the way to

understand the molecular basis of epigenetic mechanisms.
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Background
Cell type specific expression pattern of genes is set during
development. This complex process is accompanied by
differential packaging of the genome in a cell and tissue
specific manner that involves post-translational modifica-
tions, like methylation and acetylation of histones, and
subsequent interaction of other regulatory proteins. The
differential organization of chromatin, once set early dur-
ing development, is maintained by Polycomb group (PcG)
and trithorax group (trxG) proteins. Maintenance of chro-
matin structure, and thereby the expression state, is
referred to as epigenetic cellular memory that provides
continuity of specific pattern of expression states in
daughter cells when a differentiated cell divides and also
throughout the life span of organisms. PcG proteins main-
tain the repressed state, while trxG proteins maintain
genes in the active state. Both PcG and trxG proteins func-
tion as multi-protein complexes. In Drosophila, PcG pro-
teins form two major complexes. PC, Ph, Psc and dRing
form Polycomb Repressive Complex1 (PRC1) [1], while
PRC2 consists of Esc, E(z), Su(z)12 and P55 [2,3]. It has
been observed that PCL also interact with a subset of
PRC2, making a highly active and distinct complex [4,5].
A third complex consists of a DNA binding protein Pleio-
homeotic (PHO) that interacts with PC and directs its
binding to the specific sites of recruitment [6]. Similarly,
trxG proteins form specific complexes [7]. The DNA
sequences that function as sites for the recruitment of the
PcG/trxG proteins are called the cellular memory ele-
ments or Polycomb response elements (PREs) [8]. Often
common elements function to recruit both PcG and trxG
proteins. It is generally believed that a balance between
the two opposing functions on PREs maintains the precise
level of expression state of a particular genomic region.
Expression state of the locus is interpreted and main-
tained by distinct set of PcG and trxG complexes that bind
to PREs and establish a chromatin state marked by specific
histone modifications [9-14].

PC, the core member of PRC1, was first identified in Dro-
sophila. The PC mutation causes a dominant phenotype of
extra sex comb and is an essential gene. Many members of
this group show similar phenotype due to the defect in the
expression pattern of homeotic genes [15]. In Drosophila,
the initial expression of homeotic genes is determined by
segmentation genes [16] and subsequently this expression
pattern is maintained by PcG and trxG proteins [17].
Changes in the expression pattern leads to homeotic
transformation and/or lethality [18]. Insects have one PC
gene, where as mammals have five homologues. Verte-
brate homologues of PC contain Chromatin organizer
modifier domain, chromodomain, and are referred to as
chromobox, CBX, proteins. These include CBX2, CBX4,
CBX6, CBX7 and CBX8. The other CBX proteins CBX1,
CBX3 and CBX5 are the homologues of heterochromatin

protein (HP1). Here we refer PC proteins of vertebrates as
CBX proteins.

Several lines of evidence suggest that homeotic genes are
not the only targets of PcG genes [19,20]. More recently,
genome wide ChIP on Chip analysis of PcG proteins and
its associated histone methylation marks in fly, human
and mouse cells have identified large number of targets of
these proteins [21-23]. PcG members are essential for
maintenance and normal proliferation of cells and have
been implicated in the maintenance of stem cells [24].
Genome wide mapping of H3K27Me3 in various prostate
cancer tissues shows the PcG mediated repression of sev-
eral genes which are down regulated in cancer [25]. The
abnormal expression of PcG genes cause misregulation on
its target loci and subsequently to abnormal proliferation
of cells and cancer [24,26]. CBX7 and CBX8 are involved
in maintaining the repressive state of INK4A-ARF locus
which is involved in the regulation of cellular prolifera-
tion and senescence [27,28]. CBX7 knockdown increases
the ARF and INK4A expression which causes impairment
in cell growth [29]. CBX4 is the repressor of C-MYC and
mutation in its C-terminal region leads to enhanced
expression of this proto oncogene and cellular transfor-
mation [30]. Genome wide mapping of CBX8 target
shows that this PcG protein is predominantly associated
with genes that are involved in developmental and differ-
entiation processes [31]. CBX2 and CBX7 have also been
implicated in maintenance of the inactive X-chromosome
in mouse [32,33].

The N-terminal end of PC has chromodomain, which
binds to the histone methylation marks created by PRC2
on PREs [34]. Chromodomain is a three beta strands and
a helix containing domain present in proteins that are
involved in chromatin organization, viz., HP1, SU(var)3-
9, Swi6, CHD1, MSL-3, MOF, etc. Chromodomain is
involved in targeting the protein to specific regions of
chromatin. The chromodomain of Drosophila PC exhibits
preferential binding to tri-methylated histone H3 at lysine
27 (H3K27Me3) [35] whereas chromodomain of HP1
recognizes H3K9Me3 mark. Mutation in the chromodo-
main of PC results in the disintegration of PRC1 and sub-
sequently loss of its silencing activity [36]. In Drosophila, a
chimeric protein generated by replacing chromodomain
of HP1 with PC chromodomain localizes HP1 to euchro-
matic PC binding sites indicating that chromodomain is
essential for recognizing specific histone methyl marks
[37,38]. This suggests that subtle differences in the
sequence/structure of chromodomains may confer differ-
ential affinity to different histone methylation patterns,
for example, H3K9Me3 and H3K27Me3. Unlike the fly PC
that recognizes only H3K27Me3, mammalian PC homo-
logues show differential binding to methylated histone.
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CBX2 and CBX7 bind to both H3K9Me3 and H3K27Me3
whereas CBX4 shows strong affinity for H3K9Me3 [33].

Significance in PcG system is apparent from the observa-
tion that these genes are not only conserved from plants
to animals, but also highly evolved animals have more
homologues of PcG genes. For example, while insects
have only one copy of PC, vertebrates have at least five
homologues. The importance of having more PC homo-
logues in an organism remains elusive. Identification of
uniquely conserved regions in each CBX protein will help
us understand the function of homologues. In this study,
we carried out extensive mining and analysis of PC homo-
logues to understand their evolution and sequence-struc-
ture-function relationship in the context of motif
organization.

Results
Search for PC homologues and comparative sequence 

analysis

All PC homologues have N-terminal chromodomain and
a conserved Polycomb repressor box, PcR box, at the C ter-
minus. We used these features to mine PC homologues in
the protein sequence database and genome sequence of
different organisms and identified 100 PC homologues
(Figure 1, see Additional file 1). Barring the two known
domains, PC homologues have not been shown to con-
tain any other distinguishable molecular or structural fea-
tures. We carried out secondary structure analysis of these
proteins and found that the region between chromodo-
main and PcR box is predominantly predicted as coils (see
Additional file 2). Such secondary structures are known to
be involved in protein-protein interactions and acquire
specific structural features as a consequence of such inter-
actions. Since PC homologues show poor sequence
homology in this region, we used motif prediction and
motif alignment tools to find additional conserved
regions that might be present in various PC homologues
(see Additional files 3 and 4). This approach led to the
identification of a number of highly conserved motifs that
are conserved across vertebrates (Figures 2 &3, see Addi-
tional file 5). Most of the motifs identified in this study
are novel. Regions that are conserved in all PC homo-
logues and uniquely conserved in each CBX protein are
shown in Figure 2. Partial sequences of potential PC
homologues present in unfinished databases have been
excluded from the analysis.

Chromodomain in PC homologues

Even though highly conserved, chromodomains of differ-
ent kinds of chromatin proteins contain subtle variations
that specify recognition of distinct methylation patterns of
histones. We analysed the chromodomain of different PC
homologues to understand the sequence determinants of
their possible functional differences (Figures 4 &5). We

find that all PC homologues have Polycomb type chromo-
domain, and not like the one of HP1, with key amino
acids being conserved and that chromodomains of differ-
ent PC homologues have characteristic sequence features
that are highly conserved. For example, CBX2 chromodo-
main among the vertebrates shows more similarity and is
relatively distant from that of CBX4, 6, 7 or 8. Using chro-
modomain of Polycomb homologues collected in this
study, we constructed a phylogenetic tree. The chromodo-
main of CBX2, 4, 6, 7 and 8 from different vertebrates fall
in distinct clusters and so do the chromodomains of
invertebrate PC albeit in yet another cluster (Figure 6).
This clearly shows that chromodomains of different PC
paralogue groups have distinct features. The amino acids
that define such distinct features may be essential for
directing the paralogues to different targets or functions. It

Schema for mining the homologues sequencesFigure 1
Schema for mining the homologues sequences. The 
schema represents the approach followed for mining PC 
homologues. The seed sequence, PC of Drosophila was 
searched in the NCBI protein sequence database and the 
genome sequences of the model organisms. The TBLASTN 
hits of genome sequences were extended 5 kb upstream and 
5 kb downstream and merged. The extended hits were sub-
jected to gene prediction and the sequences showing >98% 
similarity were considered as redundant records and the non 
redundant records were considered as putative homologues 
and subjected to motif predictions. Sequences were grouped 
based on the motif conservation.
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also suggests that different homologues in the common
ancestor of vertebrates had acquired unique features that
have been in similar selection pressure. We also noticed
that the chromodomain of CBX proteins is distributed in
3 exons in all vertebrates indicating that one domain can
be distributed in more than one exon.

The crystal structure of fly PC chromodomain indicates
that W(36) and Y(40) residues are essential for its interac-
tion with H3K27Me3 [39]. W is involved in H3K27Me3
recognition and Y is involved in stabilization of the inter-
action. W is conserved in all the PC homologues whereas
Y is not conserved as some homologues have His residue
at this position (Figures 4 &5). The Drosophila PC chromo-
domain also forms hydrophobic pocket, involving V(11),
Y(12) and A(13), that is essential for its interaction with
H3. CBX6 has V or I at residue 11 whereas the other
homologues have highly conserved V at this position.
Similarly, A(13) is replaced by other residues only in
CBX2. Y(12) is conserved across insects whereas verte-
brate homologues have F at this position. D(51) and
R(53), also involved in PC and H3 interaction, are con-
served across the species. PC chromodomain functions as
dimer [35,39]. Of the two key residues shown to be essen-
tial for PC dimerization, L(50) is conserved while R(52) is
not. These important differences between insect PC chro-
modomain and among that of vertebrates, point to differ-
ent preferences for histone modifications by the
vertebrate PC homologues. The residues essential for dif-
ferential affinity of PC homologues to different methyla-
tion marks, however, remain elusive. Interestingly we find

several residues that are uniquely conserved in paralogue
specific manner (Figure 4, highlighted in gray). Further
studies will be needed to understand functional signifi-
cance of these residues.

Polycomb repressor (PcR) domain

The C-terminal region is responsible for the repressive
role of PC protein [30,40-43] and is, therefore, referred to
as Polycomb Repressor (PcR) box. PcR box shows high
degree of conservation in all homologues and is unique to
Polycomb proteins (Figures 7 &8) unlike chromodomain
that is found in several other chromatin associated pro-
teins. Deletion of this region in fly shows loss of PC func-
tion [40], and has been shown to be essential for
interaction of PC homologues CBX2 and CBX8 with
RING1A which is a homologue of fly dRING and a com-
ponent of PRC1 [43,44]. The phylogenetic tree con-
structed based on the multiple sequence alignment (MSA)
of PcR box shows that this motif has inherent homology
pattern specific to each CBX (Figure 9), an observation
parallel to that in case of chromodomain. A consensus
pattern was drawn for each CBX protein and insect PC to
look for the residues that are conserved and those that are
specific to certain CBX proteins (Figure 7). The sixth
amino acid residues in MSA of consensus pattern shows
diversity with CBX4 and CBX6 having N, CBX2 having H
and CBX7 having E at this position. Likewise, at residue 9,
CBX4 and PC of insects have I where as other proteins
have V at this position. At position 24, CBX2 and CBX8
have S whereas CBX4, CBX6, CBX7 and insects PC have Y,
F, A and C, respectively. These observations indicate that

Conserved regions of PC homologuesFigure 2
Conserved regions of PC homologues. The conserved regions are mapped to the scale in fly and human homologues. 
Each novel motif identified is named based on the name of the homologue and the order it occurs in the protein. SRR-serine 
rich region; CIPC-Conserved region of insects PC; PcR box - Polycomb Repressor box; ATHL - AT-Hook Like, a conserved 
motif present in CBX4, CBX6, CBX7 and CBX8; Cx2.1 and Cx2.2 - Conserved Region (CR) of CBX2; Cx4.1, Cx4.2, Cx4.3 
and Cx4.4 - CR of CBX4; Cx6.1, Cx6.2 and Cx6.3 - CR of CBX6; Cx8.1 - CR of CBX8.

Chromodomain ATHL PcR boxCBX7

CBX2 Chromodomain AT Hook Cx2.2 PcR boxSRR Cx2.1

CBX4 Chromodomain ATHL PcR boxCx4.1 Cx4.2 Cx4.3 Cx4.4

CBX6 Chromodomain ATHL PcR boxCx6.1 Cx6.2 Cx6.3

CBX8 Chromodomain ATHL PcR boxCx8.1 ATHL

PC Chromodomain PcR boxCIPC 100 aa
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Novel, conserved and CBX specific motifsFigure 3
Novel, conserved and CBX specific motifs. The conserved motifs present between chromodomain and PcR box are 
listed. Each row represents name of the motif, name of homologue having the motif and the amino acid conservation pattern in 
logo format. The height of amino acids is proportional to the frequency of occurrence (degree conservation) in each position. 
The MSA of motifs is in the Additional file 5.
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CBX specific alterations occurred early in the vertebrate
ancestor and have since been conserved. Such conserved
residues may, therefore, play an essential role in differen-
tial interaction of PC and RING homologues or other
functions that specify their distinct roles.

AT-Hook and AT-Hook Like motifs in PC homologues

CBX2 has a conserved AT-hook motif adjacent to N-termi-
nal chromodomain. This motif is present in many DNA
binding proteins and interacts with the minor groove of
AT rich region and enhances the interaction of the protein
with chromatin and/or DNA [45]. In CBX4, 6, 7 & 8 we
found a highly conserved motif with close similarity to
AT-Hook and named it as 'AT-Hook Like' (ATHL) motif.
Like AT-Hook, this motif is also not specific to Cbx pro-
teins and found in several other nuclear proteins that are
likely to interact with DNA (see Additional file 6). The
core region of AT-Hook motif has highly conserved P, G
and two basic amino acids, K and R. Similarly the ATHL
motif is also rich in basic amino acids and has P and G in
the core region (Figure 3, see Additional file 5). This indi-
cates a possible alternative to the AT-Hook in other CBX
protein for their chromatin binding. Interestingly, except
in Xenopus, CBX8 has two ATHL motifs. Although the
functional importance of this motif in PC homologues is
not clear yet, it is tempting to suggest that it may be
involved in a cooperative three way interaction:
"H3K27Me3_chromodomain+AT-Hook/ATHL_DNA" on
the nucleosome (see below).

Novel motifs in PC homologues

The region between chromodomain and PcR domain of
Polycomb homologues gives uniqueness to each CBX pro-
tein as it contains motifs that are specific to each homo-
logue. In our analysis we found several such additional
conserved motifs in this region (Table 1, Figure 3, see
Additional files 3, 4 &5). We suggest that these domains
confer unique and essential functionality to these proteins
that allowed their conservation during the evolution from
fish to human spanning over 500 million years.

CBX2 specific motifs

In addition to AT-Hook motif, CBX2 has three conserved
motifs (Figure 2). A Serine rich region (SRR) is present
next to the AT-Hook motif. SRR is found in proteins with
wide range of function and thought to be the site for phos-
phorylation and associated functions [46]. The length of
SRR has reduced during evolution from fish to human.
Fishes have 24 Serine residues whereas human have a
stretch of 16 serine residues (see Additional file 5). An
exception is the CBX2 of Tetraodon, where one of the two
homologues identified does not have SSR and the size of
the motif in other homologue is smaller than that in
human. Two more unique motifs present in CBX2 are
named as Cx2.1 and Cx2.2. In the 74 aa long Cx2.1 motif,
the highly conserved core is rich in basic residues and Pro-
line. Cx2.2 is present in C terminal region; closer to PcR
box and has highly conserved Serine residues and acidic
amino acids D and E.

CBX4 specific motifs

The CBX4 protein functions as a SUMO E3 ligase and is
involved in SUMOylation of CtBP, SIP1, HIPK2, CTCF
and Dnmt3a [47-50]. The CBX4 is highly conserved across
vertebrates. It has four conserved motifs (Cx4.1, Cx4.2,
Cx4.3 and Cx4.4) (Figure 2, see Additional file 5). Cx4.1,
a 88aa conserved motif, has a duplicated and highly con-
served shorter stretch of Y [QE]LNSKKHH [QHP]YQP
separated by a stretch of poorly conserved 19aa residues
(Figure 3). A SUMO binding site is present in motif Cx4.2
and the region flanking this site is rich in Lysine with a
highly conserved (KN)3 repeat within it. The motif Cx4.3,
which has highly conserved hydrophilic residues (Q, S
and T), is absent in Danio rerio but present in Fugu. CBX4
has a conserved CtBP binding site and a SUMOylation site
as well. These are absent in other PC homologues [51]
which indicates the functional specificity of CBX4.

CBX6 specific motifs

CBX6 has three conserved regions between chromodo-
main and PcR box (Figure 2, see Additional file 5). Cx6.1
is a 88 aa highly conserved region unique to CBX6 and is
rich in S, T, N, P and basic amino acids. One end of the
motif is rich in Serine, followed by basic amino acid rich

Consensus sequences of chromodomain of Polycomb homologuesFigure 4
Consensus sequences of chromodomain of Polycomb homologues. Represented in MSA format, the consensus of 
each CBX protein and the consensus pattern of insect PC are shown in the alignment. The residues conserved across the 
homologues are highlighted in green and residues that are selectively conserved in one or more proteins are highlighted in 
gray. √ - The key residues of Drosophila PC for H3K27Me3 interaction and PC dimerization.
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The multiple sequence alignment of chromodomain of Polycomb homologuesFigure 5
The multiple sequence alignment of chromodomain of Polycomb homologues. Sequences are named with protein 
and species name. The amino acids are highlighted in different colours based on their properties. The degree of conservation 
observed at each position is represented as bar graph in the bottom. The duplicated fish homologues are represented with a 
number following to the species name.
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The phylogenetic tree constructed using chromodomain of Polycomb homologuesFigure 6
The phylogenetic tree constructed using chromodomain of Polycomb homologues. The phylogenetic tree was 
constructed using neighbour joining method. The value of bootstrap consensus (>50%) for 1000 replicates is shown in the 
branches. The sequences are named with the homologue name and species name. The duplicated fish homologues are repre-
sented with a number following to the species name.
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CBX4

CBX2

CBX6

CBX8
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region, Proline rich region and basic amino acid rich
region, indicating possible multiple functional domains
present within this motif. Cx6.2 is rich in basic amino
acids, of the 36 residues 10 are basic amino acids. Cx6.3 is
a small conserved motif present closer to PcR box and is
rich in acidic amino acids and Proline.

CBX8 specific motifs

CBX8 has one conserved motif unique to it, Cx8.1 follow-
ing its first AT-Hook like motif (Figure 2, see Additional
file 5). CBX8 of mammals also has a RED/RD repeats,
present in several nuclear proteins although the function
of this acid-base dipeptide repeat is not known (see Addi-
tional file 5). Unlike SRR repeat in CBX2, which shows
reduction in the repeat length as we move from fish to
human, the length of the RED repeat has expanded from
mouse to human - mouse has 4 while human has 16
repeat units. In all the species studied, the repeat ends
with RG residues. The less conserved region of CBX8 (con-
served from Xenopus to mammals but not in fishes), 202-
333 amino acids, was shown to interact with the nuclear
protein AF9 in mouse [52]. Although the function of AF9
protein is not well understood, its human homologue,
ENL, is involved in transcriptional activation [53] and
interacts with CBX8 [54]. The AF9 locus is prone to gene
rearrangement involving MLL and the MLL-AF9 fusion
protein is associated with acute leukaemia in mice [52].
Further studies will be needed to understand the precise
role of CBX8 in these events.

Insect specific conserved region

In sequence comparison analysis along with the verte-
brate homologues of PC, insect PC always clusters in one
group indicating its highly conserved nature compared to
the vertebrate counter parts. In this analysis we identified
a novel insect specific highly conserved motif, conserved
inset specific Polycomb (CIPC) box (Figure 2). This unique
motif is mainly composed of basic, hydroxyl and acidic
residues (see Additional file 5). Vertebrate homologues of
PC do not have this extremely conserved insect specific

motif. It appears as though CIPC was replaced by different
conserved motifs that are specific to each homologue in
order to acquire functional uniqueness.

Evolution of Polycomb homologues

The homologues identified by our analysis (Additional
file 1) were subjected to phylogenetic analysis. The phylo-
genetic tree constructed by maximum parsimony method
is in agreement with our grouping based on motif conser-
vation (Figure 10). The phylogenetic analysis of PC
homologues shows that insect PC homologues group into
a single branch. In vertebrates, each CBX protein branches
along with their other vertebrate counterparts (Figure 9).
For example CBX2 of human shows more similarity with
CBX2 of other vertebrates but not with the other para-
logues present in human. This indicates that each CBX
protein is evolving independently since the duplication
event under a common selection pressure in different ver-
tebrate lineages. The phylogenetic analysis of chromodo-
main and PcR box also show similar clustering (Figure 6
&9). While each CBX protein from different vertebrate
species grouped together whether we use chromodomain,
PcR domain or entire protein for phylogenetic tree analy-
sis, the branching pattern varies depending upon the
sequence used for the analysis (see Additional file 7). As
the bootstrap values for the branching of each CBX pro-
tein cluster are not significant, it is difficult to speculate
the closeness in terms of homology between different CBX
proteins. This analysis also suggests that domains of PC
homologues have independently evolved within certain
constraints during expansion of vertebrate lineage.

The members of PRC2 are conserved across the species
including plants [55]. Earlier studies, although suggested
that members of PRC1 are absent in plants [56], recent
findings indicate that plant do have distant homologues
of these genes. Arabidopsis protein LHP1/TFL2 that has
chromodomain and a chromoshadow domain, like HP1
in animals, does recognize H3K27Me3 modification
which is a major repressive mark in plants [57-59]. LHP1/

Consensus sequences of PcR box of Polycomb homologuesFigure 7
Consensus sequences of PcR box of Polycomb homologues. Represented in MSA format, the PcR box consensus of 
each CBX protein and the consensus pattern of insect PC are shown in the alignment. The conserved residues are highlighted 
in green and residues that are specifically conserved in one or more CBX proteins are highlighted in gray.
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The multiple sequence alignment of PcR box of Polycomb homologuesFigure 8
The multiple sequence alignment of PcR box of Polycomb homologues. Sequences are named with protein name 
and species name. The amino acids are highlighted in different colours based on their properties. The degree of conservation 
observed at each position is represented as bar graph in the bottom. The duplicated fish homologues are represented with a 
number following to the species name.
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The phylogenetic tree constructed using PcR box of Polycomb homologuesFigure 9
The phylogenetic tree constructed using PcR box of Polycomb homologues. Phylogenetic tree was constructed 
using neighbour joining method. The value of bootstrap consensus (>50%) for 1000 replicates is shown in the branches. The 
sequences are named with the homologue name and species name. The duplicated fish homologues are represented with a 
number following to the species name.
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TFL2 is, therefore, considered as the functional homo-
logue of PC in plants [58,60]. More recently, Arabidopsis
homologues of ring finger proteins have been identified
that also interact with LHP1 [61,62]. In our analysis we
found PC homologues in cnidarians Nematostella, Hydra
and Podocoryne. This shows that PC is pre bilaterian origin.

The PC homologues of sea anemone show high sequence
homology with the chromodomain and the PcR box of
other PC homologues. PC of Podocoryne carnea interacts
with mouse RING1B [63] which is a PRC1 member. This
shows that PC appeared in the common ancestor of bilat-
erians and cnidarians, 570-700 millions years ago.

Table 1: The conserved motifs of PC homologues

Conserved motif Present in Size(aa) Secondary structure Function

Chromodomain All 61 Twisted antiparallel β sheet (3 β 
strands and a helix)

Binds with H3K27me3

Polycomb Repressor
(PcR) box

All 29-31 β strand Interacts with dRING

AT-Hook CBX2 29 Coils DNA binding

AT-Hook Like
(ATHL)

CBX4, CBX6, CBX7 and CBX8 15 Coils Present in several nuclear proteins 
(DNA binding?)

CX 2.1 CBX2 69-74 Coils -

CX 2.2 CBX2 25 Coils -

CX 4.1 CBX4 84-88 Coils -

CX 4.2 CBX4 29 Coils -

CX 4.3 CBX4 20 Coils SUMO binding

CX 4.4 CBX4 31 Coils -

CX 6.1 CBX6 82-88 Coils -

CX 6.2 CBX6 36 Coils -

CX 6.3 CBX6 15 Coils -

CX 8.1 CBX8 39-42 Coils -

Poly histidine site Insect PC
CBX4 of mammals

6-11
10-14

Coils -

RED repeat CBX8 of mammals 13-37 Coils Present in several proteins

CtBP interaction motif CBX4 5 Coils CtBP binding

Sumoylation site CBX4 (Except fishes) 4-5 Coils Sumoylation

Serine rich region
(SRR)

CBX2
CBX6

23-38
4-6

Coils -

Conserved
Insect Pc box
(CIPC)

Insect PC 25-29 Coils Present in insect Polycomb

The multiple sequence alignments of the conserved motifs are given in Additional file 5.
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The Phylogenetic tree of PC homologuesFigure 10
The Phylogenetic tree of PC homologues. The phylogenetic tree was constructed using neighbour joining method. The 
branching pattern for invertebrates PC and vertebrate PC homologues are highlighted in different colours. The bootstrap value 
(>50%) of 1000 replicates is shown in the branches. The sequences are named with the homologue name and species name.
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In nematode Caenorhabditis elegans, Cec-1 is predicted as a
homologue of PC [64]. Functional analysis has shown
that expression profile of cec-1 is similar to that of Dro-
sophila Pc [65]. It has N-terminal chromodomain but the
predicted PcR box of CEC-1 shows a poor sequence
homology [64]. In Drosophila it has been shown that both
N-terminal chromodomain and C-terminal PcR box is
essential for PC function [40]. PcR box of vertebrates
shows much higher sequence homology with PcR box of
cnidarians compared to that of C. elegans. This raises the
possibility that CEC-1 may be at best a highly diverged PC
homologue. Function of PcR box includes the assembly of
PRC1. In C. elegans, where all homologues of PRC2 mem-
bers are present, only a few homologues of PRC1 mem-
bers have been identified [61,66]. It remains possible that
CEC-1 may not be a true PC homologue or it may be a
remote homologue of PC that interacts with different class
of proteins for its repressive function.

Invertebrates have one PC where as mammals have 5
homologues. The teleosts like Zebrafish, Fugu and Tetrao-
don have up to 7 PC homologues. This expansion of PC
homologue in vertebrate shows remarkable parallel with
the expansion of Hox gene complex. In teleosts PC genes
are duplicated in species-specific manner. CBX8 is dupli-
cated in Zebrafish and Tetraodon. CBX2, CBX4, CBX7 are
duplicated in Tetraodon, Fugu, Zebrafish, respectively (see
Additional file 1). Interestingly, teleosts have more copies
of Hox clusters than mammals. Invertebrates have one
Hox cluster where as tetrapods have four Hox clusters. In
teleosts lineage, Hox cluster duplicated further and ray
finned fishes have 7-8 Hox clusters. During vertebrate evo-
lution, genome of the common ancestor of vertebrates
underwent two rounds of duplication events that led to
increase in the copy number of several genes [67] and
many of the extra copies acquired novel functions. It is
believed to have paved the way for increase in the system
complexity. In teleosts lineage, genome underwent an
additional round of species-specific duplication event that
led to duplication of several genes.

Discussion
PC is the key protein in the epigenetic control of gene
expression from early development to adult stages. Precise
expression of Hox genes along the anterior-posterior body
axis and its maintenance in subsequent cell divisions is
dependent on PcG and trxG of genes. PC homologues
begin to appear in cnidarians. This early origin of PC and
its expansion in vertebrates shows a remarkable parallel
with the pre bilaterian-cnidarian origin of Hox complexes
and their expansion in vertebrates [68]. While most verte-
brates have five PC homologues, we found more PC
homologues in fishes. This may be due to the fish specific
genome duplications. Interestingly, fishes have more Hox
clusters too [69,70]. Genome duplication event that

occurred in vertebrate lineage [67] caused gene duplica-
tions that lead to increase in complexity-associated acqui-
sition of novel functions in these additional copies. We
show that different PC homologues carry distinct motifs
and, therefore, are likely to have functional distinctions.
This also suggests that common ancestor of vertebrate -
the link between invertebrate and vertebrates - acquired
novel features in various duplicated copies of the PC gene.
These novelties have been conserved for more than 500
million years indicating their functional relevance in ver-
tebrate diversity. Expansion of PC gene itself and that of
several other members of PcG/trxG genes vis-à-vis expan-
sion of genome size, in particular, the increasing propor-
tion of non-coding part of genome indicates enforcement
of epigenetic regulatory toolkit and its important role in
vertebrate evolution. It is known that vertebrates that have
four or more Hox clusters also have similarly higher
number of PC homologues [69,70]. This parallel expan-
sion may indicate that the expanded group of the master
control Hox genes also need a matching degree of expan-
sion of the epigenetic tools including PC. This may have
been one of the selection pressures behind the amplifica-
tion and conservation of PC genes in vertebrates.

The vertebrate homologues of Polycomb gene, CBX2, 4, 6,
7 and 8 acquired distinct combination of motifs that sep-
arates them from one another and have been remarkably
well conserved. We also found that each vertebrate PC
homologue has a putative DNA binding domain AT-
Hook or ATHL, a newly identified variant. Since these
motifs are present adjacent to the chromodomain that rec-
ognizes specific histone tail modification, it raises the pos-
sibility that PC contact with the target site may involve
bimodal recognition and binding. In addition to chromo-
domain binding to the histone tail, AT-Hook/ATHL can
bind to the adjacent site in the minor groove of DNA,
sandwiching the DNA between PC and histone surface
(see Additional file 8). It is interesting to note that this
interaction will 'lock' the nucleosome from shuffling or
remodelling and may explain why PRC1 makes nucleo-
some more stable and the entire region repressive for tran-
scription [1]. While several DNA binding proteins are
known as the members of the PcG in flies, our finding that
all CBX counterparts in vertebrates contain their own
DNA binding motif, indicates that at least at some loci in
vertebrate genomes PRC1 by itself can read the epigenetic
histone tail mark and associate with it.

Why vertebrates have more PC homologues? In this study
we report for the first time that each homologue has its
own signature. We think that the expansion, which
allowed addition of novel features to different PC homo-
logues, created greater possibilities in the variety of factors
interacting with this protein. This may also allow distinct
kind of PRC1 complexes depending on the CBX homo-
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logue associated with it. Very recently CBX7 and CBX8
have been shown to exist in distinct complexes [71], it
remains to be seen, however, if other homologues follow
the same trend. In mouse embryonic stem cells, PC homo-
logues follow distinct sub nuclear localization patterns
and show differential dynamics during ES cell differentia-
tion [72,73]. It is possible that novel motifs identified in
our study may contribute to these distinct properties of
the PC homologues by themselves or with the help of dif-
ferent sets of interactors. It also remains possible that
some CBX proteins may function as individuals and not
as components of a complex. Detailed biochemical anal-
ysis will be needed to explore these possibilities.

We also identified a novel insect specific conserved motif,
CIPC, absent in vertebrate homologues. While the func-
tion of this novel domain remains to be studied, it seems
likely that expansion of Polycomb gene and acquisition of
novel motifs have come at the expense of the CIPC.
Expansion of epigenetic mechanisms has been one of the
significant events in the evolution of complexity. Since
PcG and trxG are the key players in regulating the differ-
ential expression of genes, having more homologues of
these groups of proteins may have provided regulatory
capabilities needed for the evolution of complex organ-
isms. Diversification of PC function (recognition of his-
tone tail modification by its chromodomain and
recruitment of repressor factor by PcR box) coincides with
the trade off between insect specific CIPC and vertebrate
homologue specific motifs including the DNA binding
motif AT-Hook/ATHL. We suggest that CIPC may be
restricting PC to selected loci or processes and that its
absence allows the new protein architecture to be
recruited for diverse functions depending on the newly
acquired motifs. It will be important to dissect out the
function of these new motifs to understand the epigenetic
mechanisms of developmental gene regulation controlled
by PC homologues and various disease conditions where
these proteins are involved.

Conclusion
Using genome wide scanning approach we report an effi-
cient strategy to mine homologues in the genome data-
bases. We find that PC is of pre-bilaterian origin and it is
evolving from the common ancestor of bilaterians and
cnidarians. We find that multiple PC homologues present
in vertebrates, CBX2, 4, 6, 7 & 8, have acquired CBX pro-
tein specific conserved motifs, including signature motifs
for each homologue. This indicates that these homo-
logues emerged early during the vertebrate evolution and
have been conserved under positive selection pressure.
The chromodomain and PcR domains of vertebrate PC
proteins also show orthologue specific features indicating
functional uniqueness of these domains as well within the
globally conserved constraints. We also see two major fea-

tures in the PC that sets apart the vertebrate and insect
proteins - presence of CIPC motif in the insect protein and
that of DNA binding AT-Hook or ATHL (identified in this
study) motif in all vertebrate homologues. We also sug-
gest a model in which chromdomain-H3K27Me3 interac-
tion on the one hand and AT-Hook/ATHL - DNA
interaction on the other, locks nucleosomes in repressed
state.

Several lines of studies indicate that complexity of the
higher vertebrates evolved by increase in the non-coding
part of the genome that is likely to have functional ele-
ments where a set of trans-acting factors interact. One of
such set of factors is the PcG system. Our study shows a
quick expansion and acquisition of novelties in vertebrate
PC homologues. We suggest that increase in the number
of homologues of these proteins resulted into the expan-
sion of epigenetic mechanisms in the common ancestor
of vertebrates that led to the evolution of complexity and
diversity in these organisms.

Methods
Mining of the PC homologues

One PC is present in fly and other insects. The Drosophila
PC protein was used as a seed for mining its homologues.
The overall schema for mining PC homologues is shown
in Figure 1. PC homologues were searched in NCBI Nr
Genpept (release156, 3,570,920 sequences) database
using PSI BLAST [74]. It is based on iterative profile based
search and constructs position specific weight matrices on
the basis of the alignment generated by the blast search.
This matrix was used to score the next iteration. The avail-
ability of protein sequence information is lesser than the
possible coding regions in genome. So it is essential to
search in genome to find the homologues, which are not
reported in protein databases. For this purpose the
genome sequence of model organisms (see Additional file
9) were also searched by using tBLASTN [75]. The
genomic region showing hits with any length irrespective
of their score and identity were considered as probable
candidates for our analysis. The BLAST hits were parsed
and the regions showing hits were extended 5 kb
upstream and 5 kb downstream. After extending their
length if any hit over laps with another hit, they were com-
bined together and extended 5 kb further from the over-
lapping regions. This approach will be useful to extract
larger size gene sequence and homologues with less
sequence homology. The extended blast hits were sub-
jected for gene prediction. Genscan [76] was used to pre-
dict genes in the genomic regions showing hits with PC of
Drosophila. The sequences showing similarity >98% over
the length of the sequences in same organism were con-
sidered as redundant set. The predicted genes of same
organism were aligned using Blastclust [75] and clustered
with above cut off and redundant data were removed.
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Motif prediction

The sequence homology among PC homologues is less.
Conventional methods to find sequence homologues
based on sequence homology are not efficient enough to
pick up conserved regions in sequences having less
sequence homology in larger dataset. The conserved
motifs among our training dataset were predicted and
used for picking true homologues. The motifs were pre-
dicted by using the program MEME [77]. It uses expecta-
tion maximization algorithm to identify motifs with best
width, in a group of protein or DNA sequences. The pre-
dicted motifs were assigned to Genpept hits and predicted
proteins of our genome wide search approach. The
sequences were aligned based on motif conservation by
MAST (Motif Alignment Search Tool) [78]. The conserved
regions in homologues were extracted from predicted
motifs and HMM profile was created by using HMMER
[79]. The profiles were searched in Swissprot protein
sequence database to identify the existence of these con-
served regions in other proteins.

Multiple sequence alignment and phylogenetic analysis

The multiple sequence alignment was done by using Clus-
talW [80] and T-Coffee [81]. The alignments were visual-
ized by using ClustalX [82]. The consensus pattern was
drawn in logo format using WebLogo [83]. The phyloge-
netic analysis was performed by maximum parsimony
method using MEGA [84]. The sequences were boot-
strapped 1000 times, to check the chance for occurrence
of each internal branch of the tree. This method is helpful
to know the reliability of tree.

Secondary structure analysis

The secondary structure prediction was done by using
PSIPRED [85]. It uses a neural network method to predicts
the secondary structure based on PSI BLAST result of the
given query sequence.
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