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Novel Multiclass Classifiers Based on the
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Abstract—In this paper, a novel class of multiclass classifiers
inspired by the optimization of Fisher discriminant ratio and
the support vector machine (SVM) formulation is introduced.
The optimization problem of the so-called minimum within-class
variance multiclass classifiers (MWCVMC) is formulated and
solved in arbitrary Hilbert spaces, defined by Mercer’s kernels,
in order to find multiclass decision hyperplanes/surfaces. Af-
terwards, MWCVMCs are solved using indefinite kernels and
dissimilarity measures via pseudo-Euclidean embedding. The
power of the proposed approach is first demonstrated in the facial
expression recognition of the seven basic facial expressions (i.e.,
anger, disgust, fear, happiness, sadness, and surprise plus the
neutral state) problem in the presence of partial facial occlusion
by using a pseudo-Euclidean embedding of Hausdorff distances
and the MWCVMC. The experiments indicated a recognition
accuracy rate achieved up to 99%. The MWCVMC classifiers are
also applied to face recognition and other classification problems
using Mercer’s kernels.

Index Terms—Face recognition, facial expression recognition,
Fisher linear discriminant analysis (FLDA), Mercer’s kernels,
multiclass classifiers, pseudo-Euclidean embedding, support
vector machines (SVMs).

I. INTRODUCTION

T
HE best studied techniques for binary pattern classi-

fication include Fisher’s linear discriminant analysis

(FLDA) [1], its nonlinear counterpart, the so-called kernel

Fisher discriminant analysis (KFDA) [2], [3], and support

vector machines (SVMs) [4]. A combination of SVMs and

FLDA has been performed in [5], where a two-class classifier

has been constructed, inspired by the optimization of the Fisher

discriminant ratio and the SVMs separability constraints. More

precisely, motivated by the fact that the Fisher’s discriminant

optimization problem for two classes is a constraint least

squares optimization problem [2], [5], [6], the problem of

minimizing the within-class variance has been reformulated,

so that it can be solved by constructing the optimal separating

hyperplane for both separable and nonseparable cases. The

classifier, proposed in [5], has been applied successfully in

order to weight the local similarity value of the elastic graphs
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nodes according to their corresponding discriminant power for

frontal face verification. It has been also shown there that it

outperforms the typical maximum margin SVMs in the specific

problem.

In [5], the proposed classifier has been developed only for

two-class problems. Moreover, only the linear case has been

considered and only when the number of training vectors is

larger than the feature dimensionality (i.e., when the within-

class scatter matrix of the samples is not singular). An effort

to extend the two-class classifiers of [5] in order to solve mul-

ticlass classification problems has been performed in [7]. The

limitation of the multiclass classifier constructed in [7] is that its

optimization problem has not been formally defined in Hilbert

spaces, but has been considered only for cases in which the

within-class scatter matrix of the data is invertible. The classi-

fiers proposed in [7] have been shown to outperform the typical

maximum margin SVMs in the recognition of the six basic fa-

cial expressions by large margins.

A lot of research has been conducted regarding facial expres-

sion recognition in the past 15 years [8]. The facial expressions

under examination were defined by psychologists as a set of six

basic facial expressions (anger, disgust, fear, happiness, sadness,

and surprise) [9]. The interested reader may refer to [7], [10],

[11] and the references therein, regarding the various technolo-

gies developed for facial expression recognition. In the system

proposed in [7], the Candide grid [12] is manually placed on the

neutral image and afterwards tracked until the fully expressive

video frame is reached. The vectors of the Candide node defor-

mations are the features that have been used for facial expression

recognition. The system requires the detection of the neutral fa-

cial expression prior to tracking and recognition. Highly related

methods with the one proposed in [7] have been also proposed

in [13] and [14].

In this paper, a general multiclass solution of the optimization

problem proposed in [5] and [7] is presented. The problem is

solved in arbitrary Hilbert spaces built using Mercer’s kernels,

without having to assume the invertibility of the within-class

scatter matrix neither in the input nor in the Hilbert space. In this

way, a new class of multiclass decision hyperplanes/surfaces is

defined. In order to build our classifiers in arbitrary dimensional

Hilbert spaces, we use a method similar to the one proposed in

[3]. In [3], a framework for solving the Fisher discriminant opti-

mization problem (the KFDA optimization problem) using ker-

nels has been proposed. That is, in [3], it has been shown that by

using kernel principal component analysis (KPCA), it is feasible

to solve KFDA using kernels and that under KPCA the nonlinear

Fisher discriminant analysis optimization problem with kernels

is transformed into an equivalent linear (without kernels) op-

timization problem that produces the so-called complete kernel

1045-9227/$25.00 © 2008 IEEE
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Fisher discriminant analysis (CKFDA). Since the approach pro-

posed in this paper requires the solution of a quite different op-

timization problem than the one in [3] (i.e., the optimization

problem in [3] is solved via eigenanalysis and our problem is

a quadratic optimization problem), we explicitly prove that the

framework in [3] can be safely applied in our case for providing

solutions to proposed classifiers. Moreover, we provide some in-

sights of the relationship between the proposed multiclass clas-

sifiers and the classifiers proposed in [3].

Afterwards, the problem is solved using indefinite kernels

and/or dissimilarity measures with the help of pseudo-Euclidean

embedding. The extension of the proposed classifiers using dis-

similarity measures for facial expression recognition problems

is motivated by the following. In [7], facial expression recogni-

tion has been performed by classifying the displacements of the

grid nodes between the neutral and the expressive grid. In that

case, the knowledge of the neutral state is required a priori. In

order to be able to recognize the neutral state, as well as the other

expressions, we had to deal with directly comparing grids (and

not grid displacements). The grids consist of a set of points and

some of the most widely used measures for comparing point sets

that are also robust to a series of manipulations (i.e., partial oc-

clusion, etc.) is the family of Hausdorff distances (which are dis-

similarity measures). Thus, we had to successfully combine the

multiclass classifiers (which are naturally defined in Euclidean

spaces) with pseudo-Euclidean spaces defined by dissimilarity

measures. By using the proposed classifier in pseudo-Euclidean

spaces, combined with Haussdorf distances, the recognition of

the six basic facial expressions plus the neutral state is achieved.

The use of dissimilarity measures and indefinite kernels has

gained significant attention in the research community due to

their good performance in various pattern recognition applica-

tions [15]–[18]. In [15], various classifiers, such as two-class

FLDA and maximum margin SVMs, have been designed in var-

ious pseudo-Euclidean spaces. For more details on the geometry

of Euclidean and pseudo-Euclidean spaces, the interested reader

may refer to [19]–[23]. In [16] and [18], indefinite kernels have

been used for feature extraction to boost the performance of face

recognition. The geometric interpretation of maximum margin

SVMs with indefinite kernels has been given in [17].

In summary, the contributions of this paper are as follows:

• the presentation of the minimum within-class variance

multiclass classifiers (MWCVMC) in their general form

for multiclass classification problems using the multiclass

SVM formulation in [4] and [24], the exploration of their

relationship with SVMs, and with FLDA;

• the generalization of MWCVMC in arbitrary Hilbert

spaces, using Mercer’s kernels in order to define a novel

class of nonlinear decision surfaces;

• the solution of MWCVMC using indefinite kernels and

pseudo-Euclidean embedding.

Finally, the power of the proposed classifiers is demonstrated in

various classification problems. In order to show the potentials

of the proposed MWCVMCs we apply the following:

• Mercer’s kernels, such as polynomial kernels, for face

recognition and for various other classification problems

using multiclass data sets from University of California at

Irvine (UCI) repository [25];

• dissimilarity measures with pseudo-Euclidean embedding

for the recognition of seven basic facial expressions.

The rest of this paper is organized as follows. The problem is

stated in Section II. The novel class of multiclass classifiers in

Hilbert spaces is developed in Section III. The proposed clas-

sifier in pseudo-Euclidean spaces is described in Section IV.

The application of the novel classifiers in facial expression, face

recognition, and other classification problems is demonstrated

in Section V. Conclusions are drawn in Section VI.

II. PROBLEM STATEMENT

Let be a training data set with finite number of elements

, whose elements belong to two

different classes and , containing training data samples

(feature vectors) and class labels . The

simplest way to separate these classes is by finding a separating

hyperplane

(1)

where is the normal vector of the hyperplane and

is the corresponding scalar term of the hyperplane, also

known as bias term [5]. The decision whether a test sample

belongs to one of the different classes or is taken by using

the linear decision function , also

known as canonical decision hyperplane [4].

A. Fisher Linear Discriminant Analysis

The best known pattern classification algorithm for separating

these classes is the one that finds a decision hyperplane that

maximizes the Fisher’s discriminant ratio, also known as FLDA

(2)

where the matrix is the within-class scatter matrix defined

as

(3)

and are the mean sample vectors for the classes and

, respectively. The matrix is the between-class scatter ma-

trix defined in the two class case as

(4)

(5)

where and are the cardinalities of the classes and

, respectively, and is the overall mean vector of the set

. The solution of the optimization problem (2) can be found

in [1]. It can be proven that the corresponding separating hy-

perplane is the optimal Bayesian solution, when the samples of

each class follow Gaussian distributions with same covariance

matrices [1].
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B. Support Vector Machines

In the SVM case, the optimal separating hyperplane is the

one which separates the training data with maximum margin

[4]. The SVM optimization problem is defined as

(6)

subject to the separability constraints

(7)

C. Minimum Within-Class Variance Two-Class Classifier

In [5], inspired by the maximization of the Fisher discrim-

inant ratio (2) and the SVM separability constraints, the min-

imum within-class variance two-class classifier (MWCVTCC)

has been introduced. The MWCTCC optimization problem is

defined as

(8)

subject to the separability constraints (7). Thus, the within-class

variance of the training samples is minimized when projected to

the direction subject to the constraint that the samples are sep-

arable along this projection. More details about the motivations

of the optimization problem (8) can be found in [5].

If training errors are allowed, the optimum decision hyper-

plane is found by using the soft formulation [4], [5] and solving

the following optimization problem:

(9)

subject to the separability constraints

(10)

where is the vector of the nonnegative slack

variables and is a given constant that defines the cost of the

errors after the classification. Larger values of correspond to

higher penalty assigned to errors. The linearly separable case

(8) can be found when choosing .

The solution of the minimization of (9), subject to the con-

straints (10), is given by the saddle point of the Lagrangian

(11)

where and are the vec-

tors of the Lagrangian multipliers for the constraints (10). The

Karush–Kuhn–Tucker (KKT) conditions [26] imply that for the

optimal choice of , the following hold:

(12)

where the subscript denotes the optimal case and

is the vector denoting the class labels.

If the matrix is invertible, i.e., the feature vector dimen-

sionality is less or equal to the number of samples minus two

, the optimal normal vector of the hyperplane

is given by (12)

(13)

By replacing (13) to (11) and using the KKT conditions (12),

the constraint optimization problem (9) is reformulated to the

Wolf dual problem

subject to

(14)

where is an -dimensional vector of ones and

. It is worth noting here that, for the typ-

ical maximum margin SVM problem [4], the matrix has ele-

ments . The corresponding decision function

is given by

(15)

The optimal threshold can be found by exploiting the fact

that for all support vectors with , their corre-

sponding slack variables are zero, according to the KKT condi-

tions (12). Thus, for any support vector with

, the following equation holds:

(16)

Averaging over these patterns yields a numerically stable

solution

(17)
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As can be seen, the described MWCVTCC [5] have been pro-

posed for two-class problems and define only linear classifiers.

Actually, in [5], nonlinear decision surfaces have been defined,

but there were not the generalization of MWCVTCC in Hilbert

spaces. These surfaces will be discussed in Section III-B.

D. Multiclass SVM

Many methods have been proposed for the extension of

binary SVMs to multiclass problems [4], [24], [27], [28]. The

multiclass SVMs classifiers in [4], [24], [27], and [28] are

the most elegant multiclass SVM algorithms closely aligned

with the principle of always trying to solve problems directly.

That principle entails the modification of the SVM objective

in such a way that it simultaneously allows the computation of

a multiclass classifier learning with kernels [4]. Nevertheless,

the theory that will be presented in the next sections can be

extended using other multiclass SVM classifiers in a straight-

forward manner. The interested reader can refer to [4], [24],

[27], [29], and the references therein for the formulation and

solution of multiclass SVM optimization problems.

Let the training data set be separated to disjoint classes

. The training data are and

are the class labels of the training vectors. The

multiclass SVM problem solves only one optimization problem

[27]. It constructs classification rules, where the th function

separates the training vectors of the class from

the rest of the vectors, by minimizing the objective function

(18)

subject to the constraints

(19)

where is the term that penalizes the training errors.

The vector is the bias vector and

is the slack variable vector.

Then, the decision function is

(20)

For the solution of the optimization problem (18), subject to the

constraints (19), the reader can refer to [4], [24], and [27].

E. Relationship Between the Minimum Within-Class Variance

Classifiers and Support Vector Machines

In this section, we will explore the relationship between

MWCVTCC and maximum margin SVMs. Let us define the

following optimization problem:

(21)

under the separability constraints

(22)

which is the MWCVTCC (under some minor calculations, i.e.,

subtracting the mean vector from all vectors).

Let the matrix be nonsingular. We consider the trans-

formed vectors to the vectors and

by letting , the above optimization problem is refor-

mulated to a maximum margin classifier such that

(23)

subject to the separability constraints

(24)

The above analysis shows that MWCVTCCs are equivalent to

maximum margin classifiers when the within-class scatter ma-

trix is the identity matrix.

The geometric interpretation of the optimization problem

(21) subject to the constraints (22) and of the equivalent opti-

mization problem (23) subject to (24) is pictorially described

in Fig. 1(a) and (b). The optimum hyperplane in the case of

the optimization of (21) subject to (22) is demonstrated in

Fig. 1(a). The optimum hyperplane in this case is the one with

normal vector such that is minimized. The equivalent is

a maximum margin hyperplane (maximize ) in a normalized

space where , as described in Fig. 1(b).

Another attempt to relate further MWCVTCCs, maximum

margin SVM classifiers, and the recently introduced Ellip-

soidal kernel machines [30] is through the following. From

Vapnik–Chervonenkis (VC) dimension theory for a set of

binary classifiers in with minimum margin and under

the assumption that the data are enclosed in a hypersphere with

radius , then the VC dimension is

(25)

where is the ceiling operator. The VC dimension is di-

rectly related to the generalization error [4], [30], [31]. The

theory of SVMs has emerged from the above equation. That is,

in SVM theory, the family of classifiers obtained by the con-

straint optimization problem (6) maximize the margin, while

the constraints (7) ensure empirical error minimization. As can

be seen by the generalization error theory [4], [30], the VC di-

mension depends not only on the margin but also on the di-

ameter of the enclosing hypersphere. The geometric area of a

hypersphere in with radius and center is defined as

, or equivalently,

with being an diagonal matrix with diagonal ele-

ments .

Let us now consider the enclosing hyperellipse with semi-

major axis equal to . The minimum enclosing hyperellipse is

defined as where

is the covariance matrix of the hyperellipse. From the above

observation, it is easy to show that for the VC dimension of a

classifier defined in a hyperellipse, it is valid that

(26)
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Fig. 1. Geometrical interpretation of minimum within-class variance two-class classifiers: (a) the optimization problem (21) subject to the constraints (22) finds
the optimum hyperplane � �� � such that the variances � � � is minimized subject to data separability; (b) the equivalent optimization problem (23) subject
to the constraints (24) is to find a maximum margin SVM hyperplane in a space where � � � (i.e., maximize �� subject to separability).

The above can be easily proven by observing that the area de-

fined by the hyperellipse is inside the hypersphere [30]. Sup-

pose the two parallel hyperplanes that define the classifier can

shatter -points for a known margin in the hyperellipse. Then,

the exact -points can be shattered having the same margin in

the hypersphere.

As has been shown by the above analysis, the so-called ellip-

soidal classifiers in [30] have VC dimension less or equal to the

dimension of maximum margin classifiers. The ellipsoidal clas-

sifiers minimize the functional (instead of the functional

for SVMs and for MWCVTCCs). Thus, the

ellipsoidal classifiers [30] are equivalent to maximum margin

classifiers subject to the transformation .

In MWCVTCCs, we use instead of . The above

is a first attempt to relate intuitively the proposed classifiers

with maximum margin classifiers and the ellispoidal classifiers

in [30].

III. MINIMUM WITHIN-CLASS VARIANCE MULTICLASS

CLASSIFIERS USING MERCER’S KERNELS

In this section, we describe the way the two-class

MWCVTCC (described in Section II-C) can be extended

to multiclass classifications problems using the multiclass

SVM formulation presented in [4], [24], and [27]. The proce-

dure followed in order to generalize in arbitrary Hilbert spaces

the optimization problem (9) subject to the constraints (10),

using a nonlinear function , so as to define decision surfaces,

is also presented. The training data are initially mapped to

an arbitrary Hilbert space under the map . In

this section, only the case in which the mapping 1 satisfies

the Mercer’s condition [4] (or conditionality positive kernels)

will be taken into consideration. It is not necessary to know

the explicit form of the function , since all the algorithms that

1The following discussion holds for the linear case as well, when ���� � �

and is interesting since it provides solutions in linear cases when the number of
samples is smaller than the dimensionality, i.e., the within-class scatter matrix
is singular.

will be defined from now onwards require only the close form

of the dot products in , the so-called kernel trick

(27)

where is called the kernel function. The typical kernels used

in literature are the polynomial and the radial basis functions

(RBFs)

(28)

where is a positive integer that is the degree of the polynomial

and is the spread of the Gaussian kernel.

A. Solution of the Optimization Problem

Using Mercer’s Kernels

The constrained optimization problem (9) subject to (10) is

extended in Hilbert spaces using the multiclass SVM formula-

tion in Section II-D. This novel multiclass classifier is the gen-

eralization of the two-class problem defined in (9) in arbitrary

Hilbert spaces. The within-class scatter matrix of the training

vectors is defined in the -class case as

(29)

where is the mean vector of the class , i.e.,

.

The modified constraint optimization problem is formulated

as

(30)
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subject to the separability constraints in

(31)

and inspired by the above constraints, we propose a variant

where we subtract the mean of each class from the vectors. In

this case, we have to solve the optimization problem (30) sub-

ject to

(32)

The solution of the constraint optimization problem (30) sub-

ject to the constraints (31) can be given by finding the saddle

point of the Lagrangian

(33)

where and

are the Lagrangian multipliers for

the constraints (31) with

(34)

and constraints

(35)

For the second optimization problem of the variant

MWCVMCs [i.e., (30) under the constraints (32)], the corre-

sponding Lagrangian is

(36)

The Lagrangian equations (33) and (36) have to be maxi-

mized with respect to and and minimized with respect to

and . In order to produce a more compact equation form, let

us define the following variables:

if

if .
(37)

One of the KKT conditions for the Lagrangian (33) requires

(38)

where is the mean vector of the pro-

jected samples, and for the second Lagrangian (36)

(39)

where the subscript denotes the optimal parameter choice.

Since the Hilbert space is of arbitrary dimension, the matrix

is almost always singular. Thus, the optimal normal vector

cannot be directly found from (38) or from (39), since the

matrix cannot be inverted. A solution of the optimization

problem (30) subject to the separability constraints (31) [and of

(30) subject to (32)] will be provided without having to assume

that the within-class scatter matrix of the data is invertible, nei-

ther in the input space nor in the Hilbert space . The exis-

tence of a solution to this optimization problem will be justified

by proving that we can find a mapping that makes the solution

feasible. This mapping is the kernel PCA (KPCA2) transform

[32].

Let the total scatter matrix in the Hilbert space be de-

fined as

(40)

The matrix is a bounded, compact, positive, and self-ad-

joint operator in the Hilbert space . Thus, according to the

Hilbert–Schmidt theorem [26], its eigenvectors system is an or-

thonormal basis of . Let and be the complementary

spaces spanned by the orthonormal eigenvectors of that cor-

respond to nonzero and zero eigenvalues, respectively. An arbi-

trary vector can be uniquely represented as

with and . Let us define the linear mapping

as

(41)

The following proposition demonstrates that the optimization of

the (30), subject to the constraints (31), can be performed in the

space , instead of , without any information loss.

Proposition 1: Under the mapping , the optimization

problem (30) subject to the constraints (31) is equivalent to

(42)

2This is particularly important for the small sample size problem in which
the within-class scatter matrix is singular. In the linear case, i.e., ���� � �, the
KPCA degenerates to the typical PCA transform.
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subject to the constraints

(43)

The corresponding optimization problem for the MWCVMCs

variant is to optimize (42) subject to the constraints

(44)

A proof of this Proposition can be found in Appendix I.

The optimal decision surfaces of the optimization problem

(30) subject to the constraints (31) and of (30) subject to (32)

can be found in the reduced space spanned by the nonzero

eigenvectors of . The number of the nonzero eigenvectors of

is , Thus, the dimensionality of is .

Therefore, according to the functional analysis theory [33], the

space is isomorphic to the -dimensional Euclidean

space . The isomorphic mapping is

(45)

where is the matrix having as columns the eigenvectors of

that correspond to nonnull eigenvalues. Equation (45) is a

one-to-one mapping from onto .

Under this mapping, the optimization problem is reformu-

lated to

(46)

where is the within-class scatter matrix of the projected vec-

tors at the nonnull KPCA space given by , sub-

ject to the constraints

(47)

and for the variant the constraints are

(48)

where and are the projected vec-

tors to the nonnull KPCA space. More details on the calculation

of the projections to the KPCA space can be found in [3] and

[32]. Under mapping (45), the optimal decision surface in for

the optimization problem (42), subject to (43), can be found by

solving the optimization problem (46) subject to (47) in .

However, the matrix may still be singular, since its rank is

equal to . If this is the case, i.e., is singular, it contains

null dimensions. Thus, in order to satisfy the invertibility of

along with the null eigenvectors of , more eigenvectors

are discarded, which correspond to the lowest nonzero eigen-

values. An alternative way here is to perform eigenanalysis on

the singular matrix and remove the eigenvectors that cor-

respond to null eigenvalues (the latter case requires a second

eigenanalysis).

The Lagrangian of the optimization problem (46) subject to

the constraints (47) is given by

(49)

The search of the saddle point of the Lagrangian (49) is re-

formulated to the maximization of the Wolf dual problem

(50)

which is a quadratic function in terms of with the linear

constraints

(51)

The above optimization problem can be solved using optimiza-

tion software packages [27] or the MATLAB [34] function

quadprog. The corresponding decision hyperplane is

(52)

as detailed in Appendix II.

For the variant [i.e., (46) subject to (48)], the corresponding

Lagrangian multiplier is

(53)

as can be seen in Appendix III. The Wolf dual problem is the

maximization of

(54)
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Fig. 2. Diagram of the MWCVMC training procedure.

Fig. 3. Diagram of the MWCVMC testing procedure.

where is defined in Appendix III. The corresponding de-

cision function for the variant is

(55)

Summarizing, in the training phase, the samples are first pro-

jected using KPCA. Afterwards, the optimization problem (46)

subject to (47) [or the variant (46) subject to (48)] is solved. The

training phase is schematically described in Fig. 2. When a test

sample arrives, it is first projected using KPCA and afterwards

it is classified using (52) or (55). The test step is schematically

described in Fig. 3.

B. Alternative Multiclass Decision Surfaces in [5] and [18]

The decision surfaces proposed in [5] and [7] have been

inspired by the solution of the linear case where the term

is employed in the dual optimization problem (14).

Assuming that the original within-class scatter matrix of the

data is not singular, this term has been expressed as an inner

product of the form (if is invert-

ible, then it is a positive–definite matrix). Then, in [5], instead of

projecting using (as described previously), the transformed

vector is projected in the Hilbert space (also using

) and the matrix

is used for the solution of the dual optimization problem. Of

course, the decision surface provided in [5] does not constitute

the solution of the optimization problem of MWCVTCC in

Hilbert spaces.

Following this strategy, the nonlinear multiclass decision

surfaces proposed in [7] have been formulated. The fact that

the term can be written in terms of dot products as

is taken under consideration. Then,

kernels are applied in (50) as

(56)

The corresponding decision function is

(57)

The above decision surfaces are not the ones derived from

the generalized MWCVMC optimization problem (30), subject

to the constraints (19), which is described in Section III. It has

been shown, in [7], that these surfaces outperform maximum

margin SVM in facial expression recognition. Moreover, in [5],

it has been shown that the above surfaces outperform maximum

margin SVMs in a two-class problems for face verification. As

we already mentioned, we have generalized the methods and

concepts presented in [5] and [7] using arbitrary Mercer’s kernel

in multiclass problems (the two-class problem is a special case

of the treated problem).

C. Relationship With Complete Kernel Fisher

Discriminant Analysis

In this section, the relationship of the proposed decision hy-

perplanes/surfaces with the ones derived through CKFD [3] is

analyzed. Only the linear case will be considered, in our discus-

sion, since the nonlinear case is a direct generalization of the

linear one using Mercer’s kernels.

As it has been shown by the Proposition 1, in order to solve

the linear or the generalized nonlinear constraint optimization

problems of MWCVMCs, the problem can be solved in

using PCA (KPCA using a linear kernel becomes PCA), where

an equivalent linear can be solved.
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Fig. 4. Illustration of the effect of the projection to a vector�with� � � �

�. If � � � � � is valid for the vector �, then all the training vectors of the
different classes are projected to one vector different for each class, while if
� � � � �, all the training vectors are projected to the same point.

In the linear case (i.e., when a linear kernel

is used), in order to move from to , we have re-

moved columns from the matrix (the PCA matrix), which

are the eigenvectors that correspond to the lowest nonzero eigen-

values of . If these columns are not removed from , then

contains eigenvectors that correspond to

a null eigenvalue. Let be , then, under the

projection to , all the training samples are separated without

an error, since and . That is, is

a solution of the optimization problem (9) and since the data

are projected to the 1-D space, it is very easy to find thresholds

in order to perfectly separate the projected vectors. This can be

easily proven by observing that all samples after projecting to

one of the directions fall in the center of each class [35].

Fig. 4 describes pictorially the effect of the vectors ( total

vectors) for the cases, and .

It is interesting to notice that the vectors are the same ones

given by the irregular discriminant projection defined in [3] and

[36]. That is, the vectors are produced by the solution of the

optimization problem

subject to (58)

which is also a maximization point of the Fisher discriminant

ratio

(59)

that makes and . Summa-

rizing, we can tell that we remove the dimensions of the

space due to the fact that the interesting vectors with

that provide fully class separability can be only

found by eigenanalysis and not by solving a quadratic optimiza-

tion problem. Hence, in the new space , all the solutions

of the MWCVMC optimization problem satisfy

.

IV. MINIMUM WITHIN-CLASS VARIANCE MULTICLASS

CLASSIFIERS IN PSEUDO-EUCLIDEAN SPACES

In the previous section, only conditionally positive kernels

have been considered [17]. In this section, the use of not condi-

tional positive kernels (i.e., indefinite kernels and dissimilarity

measure) along with the MWCVMC will be presented. In [15]

and [37], a unified theory for (dis)similarity measures and ker-

nels has been developed. In terms of kernels, the similarity

measure between the two vectors and using a function

can be written as

(60)

Let us define the similarity (or dissimilarity) matrix

as

(61)

The centered matrix is defined as

(62)

where is the centering

matrix, is the identity matrix, and is the

-dimensional vector of ones. It can be proven that the matrix

is positive semidefinite, if and only if the kernel is con-

ditionally positive [37]. Many kernels exist, which have been

used very successfully in pattern recognition applications such

as face recognition [16]–[18] that do not necessarily define posi-

tive–semidefinite matrices . Typical examples of these kernels

are the sigmoid kernels

(63)

with and , as well as the fractional polynomial

models [16], [18]

(64)

with . In the following, the MWCVMC using noncon-

ditionally positive kernels will be defined for the general case

where only the dissimilarity measure is known and the explicit

form of the kernel function remains unknown. In the trivial

case that the kernel function is known, the dissimilarity can be

built using . In this case, data representation is not strictly per-

formed with vectors but possibly by other means as well (e.g.,

sets). A dissimilarity measure that can quantify the similarity be-

tween object representations 3 and obeys the following prop-

erties should be available:

• reflectivity: ;

• positivity: if ;

• symmetry: ;

where is a dissimilarity measure between the two ob-

ject representations .

A. Embedding Function to Pseudo-Euclidean Spaces

The dissimilarity matrix is used to define an embedding

function , where is the dimensionality of

the embedding. Therefore, the th column of , denoted by ,

corresponds to the features of the object in the pseudo-Eu-

clidean space. In order to find the embedding , the matrix is

3The object� can be a set/vector but is not necessary to be explicitly defined
because its definition is not of particular interest here. The only thing that should
be defined is the dissimilarity measure.
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defined as in (62). The matrix projects the data so that the em-

bedding has zero mean. The eigendecomposition of the ma-

trix will give us the desired embedding. The matrix is pos-

itive semidefinite (i.e., it has real and nonnegative eigenvalues),

if and only if the distance matrix is a Euclidean matrix [15].

Therefore, for a non-Euclidean , has negative eigenvalues.

For more details on pseudo-Euclidean embedding and dissimi-

larity-based pattern recognition, the interested reader may refer

to [15], [20], [23], and [38]. Let the matrix have positive

and negative eigenvalues. Then, the matrix can be written

as

(65)

where is a diagonal matrix with the diagonal consisting of the

positive and negative eigenvalues, which are presented in

the following order: first, positive eigenvalues with decreasing

values, then negative ones with decreasing magnitude, and

finally zero values. The matrix is an orthogonal matrix of

the corresponding eigenvectors. The matrix is equal to

where and are the identity and

matrices, and . The matrix is the embedding

of the facial image database in the pseudo-Euclidean space

[15]

(66)

where contains only the nonnull diagonal elements of .

is the matrix with the corresponding eigenvectors.

Actually, the pseudo Euclidean-space consists of two

Euclidean spaces, where the inner product is positive definite

for the first one and negative definite for the second one. Using

the previous remark, for the sake of completeness, a brief de-

scription of the procedure followed, when going back from the

embedding to the dissimilarity matrix , will be provided.

The inner products in the pseudo-Euclidean space are defined as

(67)

The norm of a nonzero vector in a pseudo-Euclidean space is

defined as

(68)

which can be positive, negative, or zero (contrary to the positive

or zero norm value in a Euclidean space). The dissimilarity ma-

trix can now be retrieved from the embedding , using the

notion of the inner products as

(69)

where is a vector with the diagonal elements of the matrix .

Prior to proceeding to the description of the MWCVMC in

pseudo-Euclidean spaces, someone should notice that the ma-

trix has uncorrelated features with zero mean vector

. That is, if is the total scatter matrix,

then

(70)

Therefore, can be considered to be the result of a mapping of

a KPCA projection procedure [32] using indefinite kernels [15],

[17]. Thus, if a vectorial object representation is available (i.e.,

the representation of is a vector) and is defined as in (60)

using conditionally positive kernels, then this embedding is the

KPCA projection that has been used in Section III prior to the

optimization of the MWCVMC in Hilbert spaces.

Each object is supposed to belong to one of the object

classes . For notation compactness, the set

will be used for referring to both to the set of the object represen-

tations of the th object class and to the various feature vectors

that are produced during the embedding and correspond to the

objects of the th object class. The mean vector for the class

is denoted as . Then, the within-class scatter for the vectors

is defined as

(71)

As seen previously, the dimensions that correspond to the null

eigenvalues of have not been taken into consideration for the

definition of the embedding and the matrix , since they

offer no information for the optimization of the MWCVMCs

(as described in the previous section). Now we should take care

of the dimensions of the embedding that correspond to negative

eigenvalues. The problem of these dimensions is that they lead

to Hessian matrices that are not positive semidefinite. Hence, the

optimization problems are not convex and generally NP-com-

plete. Two alternatives exist regarding the dimensions of the em-

bedding that correspond to negative eigenvalues.

• To remove the dimensions that correspond to negative

eigenvalues. In this case, the embedding degenerates to

(72)

where . This step is preferred when the negative

eigenvalues are few in number and very small in magni-

tude, in comparison to the magnitude of the positive eigen-

values (i.e., the dissimilarity measure is almost Euclidean).

Such embedding has been successfully used for face recog-

nition when using KPCA with fractional polynomial ker-

nels [16], [18].

• To use only the magnitude of the negative eigenvalues. This

step is preferred when the magnitude of the negative eigen-

values is not small, or when there are many dimensions that

correspond to negative eigenvalues in the embedding. In

this case, the new embedding is

(73)

where is a diagonal matrix having as diagonal ele-

ments the magnitude of the diagonal elements of , in

descending magnitude order. The matrix contains the

corresponding eigenvectors. For the dimensionality of the
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new embedding, it is valid that . This step is

preferred for the definition of the Hessian matrix of the

quadratic optimization problem of SVMs in pseudo-Eu-

clidean spaces [15], [17].

In both cases, the new embedding is purely Euclidean.

Without loss of generality, the embedding will be consid-

ered for the description of the MWCVMC. Let the vector be

the th column of the matrix . The mean vector for the class

is denoted by and the mean of all classes by (which,

in the case under examination, is a zero vector). Since there

are no dimensions that correspond to negative eigenvalues, the

within-class scatter matrix of the embedding is defined as

(74)

The dimensionality of the embedding is , while

the rank of is less than or equal to . Thus, there is

not a guarantee that the within-class scatter matrix will be

invertible. Two alternatives exist regarding the solution of this

problem:

• to avoid initially eigenvectors corresponding to the

smallest eigenvalues of , when defining the pseudo-Eu-

clidean space (i.e., );

• to perform eigenanalysis to and remove the null

eigenvectors.

Without loss of generality, let us follow the first approach, by

choosing . The MWCVMC is defined in the pseudo-

Euclidean space as

(75)

subject to the constraints

(76)

For the MWCVMCs, the variant is

(77)

The corresponding hyperplanes are

found by solving the optimization problem (75) subject to the

constraints (76) as in Appendix II, and for the variant solving

(75) subject to (77) as presented in Appendix III.

B. Classifying Novel Object Representations Using

Pseudo-Euclidean Embedding and MWCVMC

Let be a set of objects. The matrix

is created: , which represents the

similarity between the test object and all the training object

representations. The matrix of inner products re-

lating all new data to all data from the training set can be found

as follows:

(78)

where is the centering matrix and

. The embedding of the test object representations

that is used for classification is

(79)

The columns of the matrix are the features used for classi-

fication. Let be the th column of the matrix . For

more details about the embedding of novel data in pseudo-Eu-

clidean spaces, the interested reader may refer to [15]. After

the embedding, the classification of to one of the -object

classes is performed by using the decision function

(80)

or for the variant

(81)

where and have been found during training.

V. EXPERIMENTAL RESULTS

Three sets of experiments have been conducted in order to

test the proposed methods:

• multiclass classification experiments using Hausdorff

distances for the facial grids in order to recognize the

seven basic facial expressions (i.e., test the MWCVMCs

in pseudo-Euclidean spaces);

• multiclass classification experiments using polynomial

Mercer’s kernels for face recognition (i.e., test the

MWCVMCs in Hilbert spaces);

• multiclass classification experiments with various Mercer

kernels using data sets from UCI repository [25].

Moreover, we compare the two MWCVMCs variants presented

in Section III [i.e., the one that optimized (30) subject to the

constraints (31) and the one that optimizes the same functional

subject to (32)]. Since these two MWCVMCs variants minimize

the same functional and have about the same separability con-

straints with a small difference (i.e., in the first, we subtract the

total mean vector, like a normalization, while in the second, we

subtract the mean of the class to be classified), we anticipate

small performance difference between them.

A. Multiclass Classification Experiments in

Face Expression Recognition

1) Database Description: The database used for the experi-

ments was created using the Cohn–Kanade database. This data-

base is annotated with facial action units (FAUs). These com-

binations of FAUs were translated into facial expressions ac-

cording to [39], in order to define the corresponding ground truth

for the facial expressions. The facial expressions under exam-

ination are the six basic ones (anger, disgust, fear, happiness,

sadness, and surprise) plus the neutral state. All the available

subjects were taken under consideration to form the database

for the experiments.

The geometrical information vector taken under considera-

tion is the deformed Candide grid produced by the grid tracking

system as described in [40]. In Fig. 5, a sample of an image
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Fig. 5. Facial expression image and the corresponding grid for a poser of the Cohn–Kanade database.

Fig. 6. Poser example from the Cohn–Kanade database, depicting the grid taken under consideration in the original image (second row) and when mouth and eyes
occlusion is present (first and last row, respectively).

for every facial expression for one poser from this database and

the corresponding deformed grid is shown. The deformed grids

were afterwards normalized in order to have the same scale and

orientation.

Facial expression recognition was also studied in the pres-

ence of partial facial occlusion. A pair of black glasses and a

mouth mask as well as left and right face area masks were cre-

ated using a graphics computer program, to be superimposed on

the eyes or mouth regions, respectively, to simulate partial oc-

clusion. The glasses were similar to black sun glasses, while the

mouth mask was similar to a medical mask that covers the nose,

cheeks, mouth, and chin. The Candide nodes corresponding to

the occluded facial area were discarded. Fig. 6 presents one ex-

presser from Cohn–Kanade database posing for the six basic fa-

cial expressions. On each image, the Candide grid has been su-

perimposed and deformed to correspond to the depicted facial

expression, as it is used for the facial expression classification

using shape information. The first and last rows show the fa-

cial part that is taken under consideration when mouth and eyes

occlusion is present. The equivalent subset of the Candide grid

used for classification is also depicted. In Fig. 7, one expresser

is depicted from the Cohn–Kanade database for the six basic fa-

cial expressions under partial occlusion.

2) Hausdorff Distance: In order to calculate the distance be-

tween two grids, the Hausdorff distance has been used. More

specifically, given two finite point sets, and

(in our case, this set of points is the set of

Candide nodes), the Hausdorff distance is defined as

(82)

where

(83)

represents some underlying norm defined in the space of

the two point sets, which is generally required to be an norm,

usually the or Euclidean norm.

In the proposed method, a robust alternative of the Hausdorff

distance, the so-called mean Hausdorff distance [41], is used in

order to measure the similarity between facial grids. The mean

Hausdorff distance from to is defined as

(84)

where is the number of points in . The mean Haus-

dorff distance is used to create a feature space, using pseudo-Eu-

clidean embedding, as described in Section IV, so as to de-

fine later a multiclass SVM classifier in this space. It should be

noted here that in the setup used in this paper, where the same

grid (the Candide grid) is tracked in all cases over facial video

frames, the correspondences between the grid nodes and ,

in the two grid sets are known. Thus, the

sum of Euclideans would suffice. However, the

use of Hausdorff distance makes the proposed system applicable

to other scenarios, e.g., when different grids are used or when

part of the grid is not available ( , e.g., due to image crop-

ping). This may occur when a tracking algorithm is applied and

some nodes are lost or considered unreliable. Thus, the general
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Fig. 7. Poser example from the Cohn–Kanade database, depicting the original images (second row) and eyes and mouth occlusion (first and last row, respectively).

Hausdorff distance is adopted. Another measure that we are cur-

rently investigating is the angle of the Candide points between

the neutral and expressed grids. Using the angle of points in a

sequence of grids, the dynamics of facial expression could be

described. However, this approach has the same disadvantage

as the one proposed in [7], in which deformation vectors have

been used for facial expression recognition, and require the ini-

tial detection of the neutral state (the neutral state is not required

in the proposed procedure).

3) Experimental Protocol: The most frequently used ap-

proach for testing the generalization performance of a classifier

is the leave-one-out cross-validation approach [42]. It was

devised in order to make maximal use of the available data

and produce averaged classification accuracy results. The

term leave-one-out cross validation does not correspond to the

classical leave-one-out definition, as a variant of leave-one-out

was used (i.e., leave 20% of the samples out) for the formation

of the test data set in our experiments. However, the procedure

followed will be called leave-one-out from now on for notation

simplicity without loss of generalization. More specifically,

all image sequences contained in the database are divided into

seven facial expression classes. Five sets containing 20% of

the data for each class, chosen randomly, were created. One set

containing 20% of the samples for each class is used as the test

set, while the remaining sets form the training set. After the

classification procedure is performed, the samples forming the

test set are incorporated into the current training set, and a new

set of samples (20% of the samples for each class) is extracted

to form the new test set. The remaining samples create the new

training set. This procedure is repeated five times. A diagram of

the leave-one-out cross-validation method can be seen in Fig. 8.

The average classification accuracy is defined as the mean value

of the percentages of the correctly classified facial expressions

over all data presentations. The accuracy achieved for each

facial expression is averaged over all facial expressions and

does not provide any information with respect to a particular

expression. The confusion matrices [7] have been computed to

Fig. 8. Diagram of leave-one-out method used in classification assessment for
facial expression and FAUs recognition.

handle this problem. The confusion matrix is an matrix

containing information about the actual class label (in

its columns) and the label obtained through classification

(in its rows). The diagonal entries of the confusion matrix

are the percentages that correspond to the cases when facial

expressions are correctly classified, while the off-diagonal

entries correspond to misclassifications. The abbreviations

, , , , , and , represent anger, disgust, fear,

happiness, sadness, surprise, and neutral, respectively. We have

experimented with various values of the parameter (from

until in log scale) and the best setup has

been when using for all tested classifiers. Only the

best accuracies achieved for any method used are taken under

consideration to make the final conclusions.

4) Experiments Regarding the Entire Candide Grid: The

confusion matrix obtained when maximum margin SVMs were

used taking under consideration the deformed Candide grids
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TABLE I
CONFUSION MATRICES WHEN USING (A) MAXIMUM MARGIN SVMS AND (B) MWCVMCS

Fig. 9. Recognition accuracies obtained for facial expression recognition using maximum margin SVMs and MWCVMC in the pseudo-Euclidean space when
(a) all the grid nodes were used, (b) eyes occlusion is present (mouth nodes discarded), and (c) mouth occlusion is present (eyes nodes discarded).

is presented in Table I(a). The accuracy achieved was equal

to 85.2%. As can be seen from the confusion matrix, fear

seems to be the most ambiguous facial expression having the

lowest correct classification ration (71.2%). The overall facial

expression recognition accuracy rates achieved for different

number of dimensions of the pseudo-Euclidean space of the

Hausdorff distances taken under consideration when maxim

margin SVMs, MWCVMCs, and MWCVMCs variant were

used are depicted in Fig. 9(a). The highest overall accuracy rate

achieved was equal to 99% (achieved by MWCVMC and the

variant). The confusion matrix calculated in this case is pre-

sented in Table I(b). As can be seen from the confusion matrix,

almost all previous misclassifications are now eliminated. The

only misclassification remaining is the one between fear and

happiness, which was actually the most usual misclassification

appearing when the maximum margin SVMs were used.

A comparison of the recognition rates achieved for each

state-of-the-art facial expression [42]–[45], when six facial ex-

pression were examined (the neutral state was not taken under

consideration) is depicted in Fig. 10, where the recognition rate

of each of the six basic facial expressions is depicted. As can

be seen, our recognition rates are the highest for each facial ex-
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Fig. 10. Comparison of the recognition rate for every of the six basic facial
expression of various state-of-the-art facial expression recognition methods.

pression. The second best reported results are the ones in [45],

where a 97% total recognition rate has been reported. Moreover,

the proposed method has been tested for the recognition of the

neutral state, unlike the methods in [43]–[45] that have been

tested only for the recognition of the six expression. That is,

the error that will be introduced by the inclusion of the neutral

state to the other expressions remains unknown. The method

in [42] has been tested for the recognition of neutral state and

has achieved 78.59% (our method had 100% performance for

the neutral state). To the best of the authors’ knowledge, these

are the best results achieved in Cohn–Kanade database for the

recognition of the seven facial expressions.

5) Experiments in the Presence of Eyes Occlusion: The

recognition accuracy rate achieved when eyes occlusion was

present and the maximum margin SVMs were used was equal

to 83.5%. Thus, the introduction of eyes occlusion results

in a 1.7% recognition accuracy rate drop. The equivalent

recognition accuracy rate achieved when MWCVMC (or

MWCVMC variant) were used was equal to 96.3% (2.7% drop

in recognition accuracy due to eyes occlusion). The recognition

accuracy rates achieved for different number of dimensions of

the pseudo-Euclidean space of the Hausdorff distances taken

under consideration when maximum margin SVMs and the two

MWCVMC were used are depicted in Fig. 9(b).

6) Experiments in the Presence of Mouth Occlusion: The

recognition accuracy rate achieved when mouth occlusion was

present and the maximum margin SVMs were used was equal

to 79.8%. Thus, eyes occlusion results in a 5.4% recognition

accuracy rate drop. The equivalent recognition accuracy rate

achieved when MWCVMC (or MWCVMC variant) were used

was equal to 93.7% (5.3% accuracy drop due to eyes occlu-

sion presence). The recognition accuracy rates achieved for dif-

ferent number of dimensions of the pseudo-Euclidean space of

the Hausdorff distances taken under consideration when max-

imum margin SVMs and MWCVMC were used are depicted in

Fig. 9(c).

Fig. 11. Mean face recognition error rates in ORL database.

B. Multiclass Classification Experiments in Face Recognition

The face recognition problem has been performed in order

to assess the proposed method using Mercer’s kernels. Experi-

ments were performed using the Olivetti Research Laboratory

(ORL) database. This database includes ten different images

of 40 distinct subjects. For some of them, the images were

taken at different times and there are variations in facial expres-

sion (open/closed eyes, smiling/nonsmiling) and facial details

(glasses/no glasses). The original face images were all sized

92 112 pixels. The gray scale was linearly normalized to

lie within the range . The experiments were performed

with five training images and five test images per person for

a total of 200 training images and 200 test images. There was

no overlap between the training and test sets. Since the recog-

nition performance is affected by the selection of the training

images, the reported results were obtained by training five

nonoverlapping repetitions with different training examples

(random selection of five images from ten ones per subject, out

of a total of selections) and selecting the average error over all

the results. In Fig. 11, the mean error rates for the proposed

approach and the maximum margin SVM are depicted. The

tested kernels have been the polynomial kernels with degrees

from 1 to 4. The best error rate of the proposed method has

been measured at about 1.5% for the proposed methods (both

MWCVMC variants gave the same mean recognition rate in

this experiment). However, individual experiments had given

error rates as low as 0%. The SVM classifier in this problem

achieved the best error rate at about 3%.

For completeness, we should note here that the proposed

MWCVMCs classifiers are similar to the classifiers tested

for face recognition in the ORL database using a KPCA plus

SVM scheme. That is, the method for finding the MWCVMCS

classifier comprises an initial KPCA step, and afterwards, a

minimum within-class variance multiclass system is trained.

The method of the KPCA plus SVM classifier in [46] has

shown superior results in face recognition in comparison to the

other tested methods. Actually, the successful application of

a KPCA plus SVM scheme has motivated the application of

MWCVMCs for face recognition in ORL database. We have

experimented with a KPCA plus SVM approach as in [46] and
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TABLE II
MEAN ERROR RATES (A) BALANCE SCALE, (B) GLASS, (C) IRIS, AND (D) WINE

the best mean recognition rate has been 2.5%. As can be seen,

our method outperforms KPCA plus SVMs in ORL database.

C. Experimental Results in Other Databases

Apart from facial expression and face recognition, we have

applied the proposed classifier to other problems. To do so, we

have used benchmark data sets from the UCI Repository data-

base [25]. More precisely, we have used the Balance Scale,

Glass, Iris, and Wine databases. We have used a similar testing

protocol as the one used in facial expression recognition exper-

iments, but this time, we have considered 70% for training and

the remaining 30% for testing. This procedure has been repeated

five times. The average classification accuracy is defined as the

mean value of the percentages of the correctly classified samples

over all data presentations. We have tested various kernels (i.e.,

polynomial and RBF kernels) but we will report only the best

results for all the tested kernels and for all the tested approaches.

The values that we have tested were from to

in log scale. For case of RBF kernels, in order to

choose the parameter (spread), we have used a simple heuristic

method. That is, on the training set, we calculate the average of

the distance from each instance to its nearest neighbor and call

this . We used in the experiments .

The Balance Scale was separated into three classes with a

total of 625 four-dimensional vectors. For this data set, the

linear kernel (i.e., ) has given the best

results that have been 87.7% for typical SVMs, 92.9% for the

MWCVMCs, and 93.5% for the second variant of MWCVMCs

(in this case, the within-class scatter matrix was invertible). The

second data set was the Glass data set that was separated into

six classes giving a total of 214 nine-dimensional vectors. For

this data set, the best kernel was an RBF kernel with variance

for SVMs and an RBF with variance for the

MWCVMCs. The best mean error rate for SVMs was 58.4%,

and for MWCVMCs and for the second variant, it was 63%

and 64%, respectively. The third data set was Iris, which was

separated into three classes of a total of 150 four-dimensional

vectors. The best kernel for this data set was an RBF with

variance for all the tested classifiers. The best results

were 96.07% for SVMs and 96.73% for both MWCVMCs and

for the second variant. The final data set was the Wine data

set, which was separated into three classes containing a total

of 178 13-dimensional vectors. The RBF kernel gave the best

results for all the tested classifiers, with . In this data

set, SVMs gave 93.3%, and the MWCVMCs achieved 96.67%

and the variant of MWCVMCs achieved 97.1%.

The best results are summarized in Table II. As can be seen,

the proposed classifiers outperform maximum margin classifiers

in all cases.

VI. CONCLUSION

In this paper, novel multiclass decision hyperplanes/surfaces

have been proposed based on the minimization of within-class

variance in Hilbert spaces subject to separability constraints. We

have provided robust solutions for the optimization problem. We

have related the proposed classifiers with SVMs and we have

provided insights why the proposed surfaces can outperform

maximum margin classifiers. Moreover, we have tried to relate

the proposed classifiers with Fisher kernel discriminant anal-

ysis. We have extended the proposed classifiers in pseudo-Eu-

clidean spaces (i.e., defining the proposed classifiers with in-

definite kernels). We have shown the usefulness of this exten-

sion by applying the proposed classifiers in a space defined

by Hausdorff distances and we have applied the method for

the classification of seven facial expressions, where state-of-

the-art facial expression recognition rates have been achieved.

We have applied the proposed classifiers to other classification

problems where it was shown that they outperform typical max-

imum margin classifiers. Further research on the topic includes

the explicit measurement of the VC dimension of the proposed

classifiers and finding surfaces with VC dimension strictly less

than the one of maximum margin classifiers. Another subject for

research on the topic is the robust calculation of the enclosing

hyperellipse of each class. This can be achieved by the robust

calculation of the covariance and the mean of each class. More-

over, the proposed classifiers can be applied in a straightforward

manner to other multiclass SVM approaches apart from the one

described in this paper [29], [47]. Furthermore, it would be an

interesting topic to make the training procedure of the classifiers

an online one. This requires the use of both iterative KPCA and

SVM algorithms. Thus, another possible research topic would

be the combination of algorithms such as [48] and [49] for iter-

ative KPCA and such as [50] for online SVM training in order
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to make online minimum within-class variance classifiers. Fi-

nally, it would be a very interesting topic to compare the pro-

posed classifiers to recently introduced SVM variants that con-

sider class statistics as well [30], [51], [52].

APPENDIX I

PROOF OF PROPOSITION

Proposition 2: If for some , , then under

the projection for all training vectors with

, the following holds: .

In other words, under the projection , all the training vectors

fall in the same point. Thus, is a constant

.

Let the matrix that has as columns

the projected training vectors. The total scatter matrix can

be written as

(85)

where is a matrix with elements equal to . Let be

the identity matrix. The following holds:

(86)

Let and be the complementary spaces spanned by

the orthonormal eigenvectors of that correspond to nonzero

eigenvalues and to zero eigenvalues, respectively. Let

and . Thus, . A proof

of the above proposition can be found in [3]. The normal vector

of the decision surface can be written as with

and .

Taking under consideration that , the La-

grangian of the optimization problem (30) subject to the sep-

arability constraints (19) can be written as

(87)

Taking under consideration the Proposition 2, since for

, , then is a constant for all .

That is, and . Thus,

becomes

(88)

The optimum hyperplane can be written as

. Then

(89)

It can be shown in a straightforward way that the gradient in (89)

is the same as the gradient of the optimization problem (42) sub-

ject to the constraints (43). Hence, the separability constraints

(31) can be safely replaced by the separability constraints (43).

Thus, the part of the vector does not play any role in

the separability constraints (since an arbitrary vector can

be chosen, the vector is selected) and the Proposition

1 has been proven. A similar approach can be used for proving

the equivalent proposition for the MWCVMCs variant.

APPENDIX II

WOLF DUAL PROBLEM FOR THE OPTIMIZATION OF

LAGRANGIAN (49)

In order to find the optimum separating hyperplanes for the

optimization problem (46) subject to the constraints (47), we

have to define the saddle point of the Langragian (49). At the

saddle point, the solution should satisfy the KKT conditions,

for

(90)

(91)

and (92)
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Substituting (90) back into (49), we obtain

(93)

Adding the constraint (92), the terms in disappear. Only the

two terms in are considered

and

(94)

However, from (91)

(95)

so and the two terms cancel each other, giving

(96)

Since , we have

but , so

(97)

which is a quadratic function in terms of alpha with linear

constraints

(98)

and

(99)

The combination of (90) with the fact that

[from the isomorphic mapping (45)] and the results of Proposi-

tion 1, provides the following decision function:

(100)

or, equivalently

(101)

APPENDIX III

WOLF DUAL PROBLEM FOR THE OPTIMIZATION OF

LAGRANGIAN (53)

At the saddle point, the solution should satisfy the KKT con-

ditions, for

(102)



32 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

The other conditions are the same as (91) and (92).

By substituting (102) back into (53), we obtain

(103)

As in Appendix II, the terms in disappear and (103) becomes

(104)

where and

.

In order to isolate in (104), we expanded as

, where

if and if . We expand the term as

(105)

while the other one is expanded as

(106)

Thus, the Wolf dual problem is

(107)

where

(108)

After solving the quadratic optimization problem (108), the de-

cision function is

(109)
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