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Myeloproliferative neoplasms (MPNs) originate from genetically
transformed hematopoietic stem cells that retain the capacity
for multilineage differentiation and effective myelopoiesis.
Beginning in early 2005, a number of novel mutations involving
Janus kinase 2 (JAK2), Myeloproliferative Leukemia Virus
(MPL), TET oncogene family member 2 (TET2 ), Additional Sex
Combs-Like 1 (ASXL1), Casitas B-lineage lymphoma proto-
oncogene (CBL), Isocitrate dehydrogenase (IDH) and IKAROS
family zinc finger 1 (IKZF1) have been described in BCR-ABL1-
negative MPNs. However, none of these mutations were MPN
specific, displayed mutual exclusivity or could be traced back
to a common ancestral clone. JAK2 and MPL mutations appear
to exert a phenotype-modifying effect and are distinctly
associated with polycythemia vera, essential thrombocythemia
and primary myelofibrosis; the corresponding mutational
frequencies are B99, 55 and 65% for JAK2 and 0, 3 and 10%
for MPL mutations. The incidence of TET2, ASXL1, CBL, IDH or
IKZF1 mutations in these disorders ranges from 0 to 17%; these
latter mutations are more common in chronic (TET2, ASXL1,
CBL) or juvenile (CBL) myelomonocytic leukemias, mastocy-
tosis (TET2), myelodysplastic syndromes (TET2, ASXL1) and
secondary acute myeloid leukemia, including blast-phase MPN
(IDH, ASXL1, IKZF1). The functional consequences of MPN-
associated mutations include unregulated JAK-STAT (Janus
kinase/signal transducer and activator of transcription) signal-
ing, epigenetic modulation of transcription and abnormal
accumulation of oncoproteins. However, it is not clear as to
whether and how these abnormalities contribute to disease
initiation, clonal evolution or blastic transformation.
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Introduction

The WHO (World Health Organization) classification system for
hematological malignancies includes eight clinicopathological
entities under the category of myeloproliferative neoplasms
(MPNs): chronic myelogenous leukemia (CML), polycythemia
vera (PV), essential thrombocythemia (ET), primary myelofibro-
sis (PMF), chronic neutrophilic leukemia, chronic eosinophilic
leukemia-not otherwise specified, mastocytosis and MPN-
unclassifiable.1 Among these, the first four were first assembled
in 1951 by William Dameshek,2 as ‘myeloproliferative dis-
orders’; accordingly, they are now referred to as ‘classic’ MPNs.
As CML is invariably and specifically associated with BCR-
ABL1, the other three (that is, PV, ET and PMF) are operationally
dubbed as ‘BCR-ABL1-negative MPN’.3

PV, ET and PMF are traditionally considered as stem
cell-derived monoclonal hemopathies.4–6 Furthermore, family
studies and Janus kinase 2 (JAK2) haplotype analysis have
suggested a hereditary component for disease susceptibility.7–14

The possibility of independently emerging multiple abnormal
clones (that is, leading to oligoclonal rather than monoclonal
myeloproliferation) has recently been raised and challenges the
prevailing concept that considers an ancestral abnormal clone
that gives rise to mutually exclusive subclones (Figure 1).15–21 In
the past 5 years, a number of stem cell-derived19,22–26 mutations
involving JAK2 (exon 1427–30 and exon 12),31 Myeloproliferative
Leukemia Virus (MPL) (exon 10),32,33 TET oncogene family
member 2 (TET2) (across several exons),25 Additional Sex
Combs-Like 1 (ASXL1) (exon 12),26 Casitas B-lineage lymphoma
proto-oncogene (CBL) (exons 8 and 9),34 Isocitrate dehydrogen-
ase 1 (IDH1) (exon 4),35,36 IDH2 (exon 4)35,37 and IKAROS
family zinc finger 1 (IKZF1) (deletion of several exons) have
been described in chronic- or blast-phase MPN and are
discussed in this review (Table 1).

JAK2 mutations

JAK2 is located on chromosome 9p24 and includes 25 exons
and its protein 1132 amino acids. JAK2 is one of the four Janus
family nonreceptor protein tyrosine kinases; JAK1, JAK2 and
TYK2 are ubiquitously expressed in mammalian cells, whereas
JAK3 expression is limited to hematopoietic cells. Janus kinase/
signal transducer and activator of transcription (JAK-STAT)
signaling is important for a wide spectrum of cellular processes,
including proliferation, survival or normal functioning of
hematopoietic, immune, cardiac and other cells.38,39 JAKs
transduce signals from their cognate type I and type II nonkinase
cytokine receptors. Selective association of a JAK family
member with specific cytokines or growth factors might explain
some of the differences in therapeutic and side-effect profiles
among drugs that primarily target JAK1, JAK2, JAK3 or multiple
JAKs (Figure 2).39–44

JAK2V617F
Oncogenic JAK1, JAK2 and JAK3 mutations have been
associated with both lymphoid and myeloid neoplasms.45 Of
particular relevance to MPN, JAK2V617F was discovered in
200427 and the first reports appeared in early 2005.27–30

JAK2V617F is by far the most prevalent mutation in BCR-
ABL1-negative MPN (occurs in B95% of patients with PV, in
B55% with ET and in B65% with PMF),45 but it is also seen in
some patients with myelodysplastic syndrome (MDS)/MPN (for
example, refractory anemia with ring sideroblasts and thrombo-
cytosis)46–48 and, rarely, in primary acute myeloid leukemia
(AML), MDS or CML.49–52 However, this should not undermine

Received 10 February 2010; accepted 18 March 2010; published
online 29 April 2010

Correspondence: Professor A Tefferi, Division of Hematology,
Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester,
MN 55905, USA.
E-mail: tefferi.ayalew@mayo.edu

Leukemia (2010) 24, 1128–1138
& 2010 Macmillan Publishers Limited All rights reserved 0887-6924/10

www.nature.com/leu

http://dx.doi.org/10.1038/leu.2010.69
mailto:tefferi.ayalew@mayo.edu
http://www.nature.com/leu


its broad specificity to patients with myeloid neoplasms
(including those with occult disease and splanchnic vein
thrombosis)53,54 and the fact that the mutation is not seen in
patients with lymphoid neoplasms, reactive myeloproliferation
or in healthy volunteers.55–58

JAK2V617F results from a somatic G to T mutation involving
JAK2 exon 14, which leads to nucleotide change at position
1849 and the substitution of valine to phenylalanine at codon
617.59 The mutation affects the noncatalytic ‘pseudo-kinase’
domain and is believed to derail its kinase-regulatory activity.
JAK2V617F-mediated transformation is believed to require
coexpression of type I cytokine receptor and leads to STAT5/3
activation;60–63 in addition, a recent study has suggested an
epigenetic effect through nuclear translocation of the mutant
molecule and direct phosphorylation of histone H3.62 Such a
noncanonical mode of action has previously been reported to
disrupt heterochromatin-mediated tumor suppression in Droso-
phila.64 Some patients with MPN might carry multiple JAK2
mutations, sometimes occurring in the same exon and in cis
configuration.65 Such events might have functional relevance as
they might alter specific signaling.
JAK2V617F induces PV-like phenotype in mouse transplanta-

tion models,27 and this observation has been further confirmed
by a recent report of an inducible JAK2V617F knock-in mouse
model, in which both heterozygous and homozygous mutation
expressions induced PV-like disease, with the latter causing a
more aggressive phenotype with myelofibrosis.66 Such experi-
mental data along with the fact that virtually all patients with PV
carry a JAK2mutation,67 suggest a cause–effect relationship with
erythrocytosis.31,68–71 Somewhat consistent with this conten-
tion, JAK2V617F homozygosity is infrequent in ET and its
frequent occurrence in PV has been ascribed to mitotic
recombination, possibly facilitated by JAK2V617F-induced

genetic instability.72 However, both ET- and PMF-like disease
are also induced in mice by experimental manipulation of the
JAK2V617F allele burden,73,74 and mutant allele burden in PMF
is often as high as that seen in PV and its level increases further
during fibrotic transformation.75 These observations suggest the
presence of additional phenotype determinants in primary and
post-PV/ET MF.

Despite the above-described experimental and clinical
observations, JAK2V617F does not appear to be the disease-
initiating event and probably defines an MPN subclone, which
does not always account for leukemic transformation.18,76,77 In
the latter regard, JAK2V617F-positive, as opposed to
JAK2V617F-negative, blast-phase MPN might require a fibrotic
phase disease transition.18 On the other hand, JAK2 wild-type
AML that develops in the setting of JAK2V617F-positive MPN
does not necessarily arise from originally mutation-positive
clones that have undergone mitotic recombination of wild-
type JAK2.18 The complexity of clonal hierarchy and struc-
ture in MPN has become more evident with recent demonstra-
tions of multiple mutations occurring in the same patient and
the fact that such mutations are neither necessarily mutually
exclusive nor follow a predictable sequence of occur-
rence.16,36,78

JAK2V617F-positive MPN has been associated with older age
at diagnosis (ET and PMF), higher hemoglobin level (ET and
PMF), leukocytosis (ET and PMF) and lower platelet count (ET).75

A higher mutant allele burden has been associated with pruritus
(PV and PMF), higher hemoglobin level (PV), leukocytosis (PV,
ET and PMF) and larger spleen size (PV, ET and PMF).79–83

However, save for some contrary observations,80,84 the mere
presence of JAK2V617F or increased mutant allele burden does
not seem to affect survival or leukemic transformation.83,85–90

Instead, a lower mutant allele burden has been associated with
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Figure 1 Clonal origination and evolution in myeloproliferative neoplasms (MPNs). PV, polycythemia vera; ET, essential thrombocythemia; PMF,
primary myelofibrosis; CML, chronic myelogenous leukemia; AML, acute myeloid leukemia; JAK2, Janus kinase 2; MPL, thrombopoietin receptor;
TET2, TET oncogene family member 2; ASXL1, Additional Sex Combs-Like 1; CBL, Casitas B-lineage Lymphoma proto-oncogene; IDH, isocitrate
dehydrogenase; IKZF1, IKAROS family zink finger 1.
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Table 1 Novel mutations in polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF) and blast-phase
myeloproliferative neoplasm (MPN)

Mutations Chromosome location Mutational
frequency

Pathogenetic
relevance

Prognostic
relevance

JAK2V617F exon 14
(Janus kinase 2)

9p24 PVB96% Believed to contribute to
myeloproliferation and
progenitor cell growth
factor hypersensitivity

Limited
ETB55%

PMFB65%
Blast-phase MPNB50%

JAK2 exon 12 9p24 PVB3% Believed to contribute
to primarily erythroid
myeloproliferation

Not enough information
ETBrare

PMFBrare
Blast-phase MPNB?

MPL exon 10 (Myeloproliferative
Leukemia Virus oncogene)
(encodes for thrombopoietin
receptor)

1p34 PVBrare Believed to contribute
to primarily
megakaryocytic
myeloproliferation

Not enough information
ETB3%

PMFB10%
Blast-phase MPNB?

TET2 mutations occur across
several of the gene’s 12 exons
(TET oncogene family
member 2)

4q24 PVB16%
ETB5%

PMFB17%
Blast-phase MPNB17%

Might contribute to
epigenetic modulation of
transcription (TET1
catalyzes conversion
of 5-methylcytosine
to 5-hydroxymethyl-
cytosine)

Not enough information

ASXL1 exon 12 (Additional Sex
Combs-Like 1)

20q11.1 PVB? Believed to affect
regulation of transcription
and RAR-mediated
signaling

Not enough information

ETB?
PMFB?

Blast-phase MPNB19%

CBL exons 8 and 9
(Casitas B-lineage lymphoma
proto-oncogene)

11q23.3 PVBrare
ETBrare

PMFB6%
Blast-phase MPNB?

Believed to alter the
regulatory function of
wild-type CBL against
kinase signaling because
of defective ubiquitylation
of oncoproteins

Not enough information

IDH1/IDH2 exon 4/exon 4
(Isocitrate dehydrogenase)

2q33.3/15q26.1 PVBrare Induces accumulation of
2-hydroxyglutarate, a
possible oncoprotein

Not enough information
ETBrare

PMFB4%
Blast-phase MPNB20%

IKZF1 (IKAROS family zink
finger 1)

7p12 PVBrare Believed to alter tumor
suppressor activity of the
wild-type protein

Not enough information
ETBrare

PMFBrare
Blast-phase MPNB19%

Abbreviation: RAR, retinoic acid receptor.
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Figure 2 The spectrum of cytokines and growth factors that use Janus kinases (JAKs) for signal transduction.

Novel mutations in MPNs
A Tefferi

1130

Leukemia



inferior survival in PMF.80,84 This particular finding illustrates
prognostically relevant clonal complexity in PMF. JAK2V617F
allele burden increases with time in PV and PMF,80,82,91 but not
in ET.83 This phenomenon in PV and PMF coincides with the
development of post-PV myelofibrosis, marked splenomegaly
and requirement for chemotherapy.79,90,92,93 Current evidence
is not conclusive with regard to the relationship between
JAK2V617F and thrombosis.82,83,85,86,93–95

JAK2 exon 12 mutations
JAK2 exon 12 mutations are relatively specific to JAK2V617F-
negative PV and were first described in 2007.31 Subsequent
studies have identified N542-E543del as the most frequent
among the 410 JAK2 exon 12 mutations described so
far.31,68,69,96 JAK2 exon 12 mutations include in-frame dele-
tions, point mutations and duplications, mostly affecting seven
highly conserved amino-acid residues (F537–E543). As is the
case with its exon 14 counterpart (that is, JAK2V617F), the
JAK2K539L exon 12 mutation has also been shown to induce
erythrocytosis in mice.31 JAK2 exon 12 mutation-positive PV
patients are often heterozygous for the mutation and are
characterized by predominantly erythroid myelopoiesis, sub-
normal serum erythropoietin level and younger age at diag-
nosis.31,97,98 The clinical course of these patients seems to be
similar to that of patients with JAK2V617F-positive PV.68,98,99

MPL mutations

MPL, located on chromosome 1p34, includes 12 exons and
encodes for the thrombopoietin receptor (635–680 amino
acids). MPL is the key growth and survival factor for
megakaryocytes. Gain-of-function germline MPL mutations
have been associated with familial thrombocytosis (S505N) that
is, interestingly, associated with an MPN phenotype, including
splenomegaly, myelofibrosis and an increased risk of thrombo-
sis.100 The particular observation further attests to the pheno-
type-modifying effect of somatic MPL mutations in MPN. An
MPL single-nucleotide polymorphism (G1238T) that results in a
K39N substitution is found in B7% of African Americans and is
associated with higher platelet counts.101

Somatic MPL mutations are rare and their occurrence is
largely limited to patients with MPN, although their occurrence
in acute megakaryocytic leukemic patients has also been
reported.102 MPLW515L results from a G to T transition at
nucleotide 1544 (exon 10), resulting in a tryptophan to leucine
substitution at codon 515. MPLW515L was first described in
2006 among patients with JAK2V617F-negative PMF and
induces a PMF-like disease with thrombocytosis in mice.32

Subsequently, MPLW515K and other exon 10 MPL mutations
(such as MPLW515S and MPLS505N) were described in ET
and PMF with mutational frequencies that range from 3 to
15%.32,33,103–106 MPLW515L is the most frequent MPN-associated
MPL mutation, whereas MPLS505N also occurs in the setting of
hereditary thrombocythemia, as mentioned above.100

As is the case with JAK2 mutations, MPL515 mutations are
stem cell-derived events that involve both myeloid and
lymphoid progenitors.24,33,107 MPL mutant-induced oncogen-
esis also results in constitutive JAK-STAT activation and might
require specificMPLmutant variants (such asMPLW515)108 and
receptor residues (such as Y112).109 Some patients with ET or
PMF display multiple MPL mutations and others a low allele
burden JAK2V617F clone together with a higher allele burden
MPL mutation.104,110 Homozygosity for MPL mutations is also

ascribed to acquired uniparental disomy, as is the case with
JAK2V617F.111

MPL-mutated ET has been associated with older age, lower
hemoglobin level, higher platelet count, microvascular
symptoms and a higher risk of post-diagnosis arterial
thrombosis.106,112 The presence of MPLmutation did not appear
to affect survival, fibrotic or leukemic transformation.106 MPL-
mutated PMF has been associated with the female gender, older
age, lower hemoglobin level and a higher likelihood of
becoming transfusion dependent.105 This set of findings suggests
a phenotype-modifying effect that is different from that seen
with a JAK2 mutation.

TET2 mutations

TET2 is one of three homologous human proteins (that is, TET1,
TET2 and TET3) the function of which, based on a recent report
on TET1,113 might include conversion of 5-methylcytosine to
5-hydroxymethylcytosine, and thus possibly affect the epige-
netic regulation of transcription. TET1 was the first of the three
TET genes to be described and the name is derived from ‘ten–
eleven translocation 1’Fa name given to a novel gene located
at chromosome 10q22 and was identified as the fusion partner
of MLL during an AML-associated chromosomal translocation,
t(10;11)(q22;q23).114 TET2 is located on chromosome 4q24,
which is a breakpoint that is also involved in other
AML-associated translocations, including t(3;4)(q26;q24),
t(4;5)(q24;p16), t(4;7)(q24;q21) and del(4)(q23q24).115 TET2
has multiple isoforms and isoform A, which is affected by most
of the TET2 mutations described so far, and includes 12 exons.
TET3 is located at 2p13.1.

TET2 mutations, first described in 2008,25 include frameshift,
nonsense and missense mutations, scattered across several of its
12 exons, and are seen in both JAK2V617F-positive (17%) and
JAK2V617F-negative (7%) MPNs with approximate mutational
frequencies of 16% in PV, 5% in ET, 17% in PMF, 14% in post-
PV MF, 14% in post-ET MF and 17% in blast-phase MPN.116

Higher incidences of TET2 mutations have been reported in
systemic mastocytosis, MPN-unclassifiable, chronic myelomo-
nocytic leukemia (CMML), MDS, MDS/MPN, AML and
idic(X)(q13)-positive myeloid malignancies;117–124 in addition,
a germline TET2 mutation was recently described in a
patient with PV.16 Furthermore, TET2 mutations have been
shown to coexist with other pathogenetically relevant mutations
involving RARA, MPL, KIT, FLT3, RAS, MLL, CEBPA or
NPM1.117–120 TET2 mutations in MPN can either antedate or
follow the acquisition of a JAK2 mutation (exon 12 or 14), or
occur in an independent manner leading to a biclonal
pattern.16,18,25

Taken together, the ubiquitous nature of TET2 mutations
undermines their specific pathogenetic contribution to MPN.
Furthermore, the presence of the mutant TET2 did not seem to
affect survival, leukemic transformation, thrombosis risk or
cytogenetic profile in either PV or PMF.116,125–127 By contrast,
the presence of TET2 mutations was associated with superior
survival in MDS121 and inferior survival in AML120 and
CMML.128 A further twist in the TET2 story was recently
reported by a study that suggested the possible acquisition of the
mutation during leukemic transformation of MPN;36 a paired
sample analysis in 14 patients disclosed the absence of TET2
mutations in chronic-phase disease but their presence in 5 cases
during blast-phase disease, regardless of JAK2V617F mutational
status. However, these results were not reproduced by two other
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studies that looked for the presence of TET2 mutations in patient
samples obtained during chronic- and blast-phase dis-
eases.126,129 One of the latter studies also showed that post-
MPN AML can develop in the presence or absence of TET2 or
JAK2 mutations in a mutually exclusive manner or not.129

ASXL1 mutations

ASXL1 (includes 12 or 13 exons) maps to chromosome 20q11.1
and belongs to the Enhancer of trithorax and Polycomb gene
family. Gene function is believed to include dual activator/
suppressor activity toward transcription and includes repression
of retinoic acid receptor-mediated transcription.130 ASXL1 is
expressed in most hematopoietic cell types, and a knockout
mouse model displayed mild defects in myelopoiesis but did not
develop MDS or other hematological malignancy.131 PAX5-
ASXL1 has been associated with the B precursor acute
lymphoblastic leukemia.132 Truncation exon 12 mutations,
which affect the C-terminal PHD (plant homeodomain), have
recently (2009) been described in 11% of patients with MDS,
43% of those with CMML, 7% with primary and 47% with
secondary AML.133,134 In a more recent study of 300 patients
with a spectrum of non-MPN myeloid malignancies, ASXL1
mutations were found in 62 patients (B21%): B7% in MDS
without excess blasts, 11–17% in MDS with ring sideroblasts,
31% in MDS with excess blasts, 23% in post-MDS AML, 33% in
CMML and 30% in primary AML. ASXL1 mutations might be
more common in patients with normal karyotype or �7/7q�
and infrequent in the presence of �5/5q�. In AML with normal
karyotype, ASXL1 mutations were often absent in patients with
NPM1 or FLT3 mutations; mutational frequency was 34% in
non-NPM1 cases.134

ASXL1 mutations occur in both chronic- and blast-phase
MPNs;26,36 in a study of 64 patients with ET (n¼ 35), PMF
(n¼ 11), PV (n¼ 10), blast-phase MPN (n¼ 5) and MPN-
unclassifiable (n¼ 3), heterozygous mutations of ASXL1 were
identified in 5 cases who were all JAK2V617F negative (B8%; 3
PMF, 1 ET and 1 blast-phase ET).26 In an even more recent study
of 63 patients with post-MPN AML, ASXL1 mutations were seen
in 12 (19%) cases and did not appear to be acquired during
leukemic transformation.36 ASXL1 mutations in the latter study
were shown to coexist with JAK2 or TET2 but not IDH1
mutations and, in some instances, appeared to predate the
acquisition of both JAK2 and TET2 mutations.36 Obviously,
larger studies are required to confirm these findings and
determine prognostic impact, especially in terms of leukemic
transformation risk. Similarly, additional laboratory studies are
required to clarify ASXL1 mutation-mediated oncogenesis and
whether it involves loss of tumor suppression or aberrant
retinoic acid receptor signaling.

CBL mutations

CBL (includes 16 exons) is located at 11q23.3, telomeric to MLL
and encodes for a cytosolic protein capable of dual function:
negative regulation of kinase signaling mediated by E3 ubiquitin
ligase activity and an adaptor protein function with a positive
effect on downstream signaling.135 CBL (906 amino acids) is one
of three cytosolic CBL family of proteins (CBL, CBL-B and CBL-
C/3) and its N terminal features tyrosine kinase-binding and
zinc-binding RING-finger domains with a linker domain
between them, and its C terminal is composed of a proline-
rich region. E3 ubiquitin ligase activity is central to the primary
function of CBL, which is the downregulation of activated

receptor and nonreceptor protein-tyrosine kinases by
ubiquitination, internalization and lysosomal/proteosomal de-
gradation.

Of relevance to myeloid neoplasms, wild-type CBL has been
shown to participate in the ubiquitination of MPL,136 KIT137 and
FLT3,138 and ubiquitylation of the latter two proteins was shown
to be defective in the presence of mutant CBL.137,138 Mutant CBL
induces oncogenic phenotype in various cell lines and promotes
growth factor independence.139 CBL knockout mice display
expanded hematopoietic stem cell pool, splenomegaly and
enhanced growth factor sensitivity of hematopoietic progenitor
cells.139 Retroviral expression of mutant CBL in transplanted bone
marrow induced extensive and diffuse multiorgan infiltration by
mast cells accompanied by mast cell sarcoma, myeloproliferative
phenotype and acute leukemia in some instances.137 In contrast
to this observation, CBLmutations were not detected in any of the
60 patients with systemic mastocytosis.34

CBL mutations in myeloid malignancies are usually asso-
ciated with 11q acquired uniparental disomy139 and were first
recognized in AML as an MLL–CBL fusion resulting from
interstitial CBL deletion.140 Subsequent studies have shown that
CBL mutations were most frequent in juvenile monomyelocytic
leukemia (JMML) and CMML. In one large study,141 mostly exon
8 CBL mutations were detected in 27 (17%) of 159 cases with
JMML (40% mutational frequency among patients without
known RAS pathway mutations) and 5 (11%) of 44 patients
with CMML.141 The respective mutational frequencies for JMML
and CMML, from another group of investigators, were 10 and
5%.142,143 Others have also shown relatively high CBL mutation
rates in CMML (13–15%)34,139 and one of the latter studies
reported an 8% incidence in BCR-ABL1-negative atypical
CML.34 It is to be recalled that CMML, JMML and atypical
CML are all subcategories of MDS/MPN.144 By contrast, CBL
mutations were infrequent in refractory anemia with ring
sideroblasts and thrombocytosis (0 of 19 analyzed cases), a
provisional MDS/MPN entity.145

Most CBL mutations in JMML are homozygous, which
suggests a tumor-suppressor function for the normal protein.
This conjecture is supported by the observation that two patients
with homozygous mutations in their hematopoietic cells
displayed germline heterozygous mutations in their buccal or
cord blood cells.141 In general, CBL mutations associated with
JMML and CMML consist of missense substitutions or in-frame
deletions and are located throughout the linker and RING-finger
domain. JMML patients with mutant CBL do not express RAS or
PTPN11 mutations but display similar biochemical (for exam-
ple, cellular granulocyte macrophage-colony-stimulating factor
hypersensitivity) and clinical features.141,143 By contrast, mutant
CBL has been shown to coexist with mutations involving
RUNX1, FLT3, JAK2 and TP53.139,141

CBL mutations are infrequent in myeloid malignancies
other than JMML or CMML. In a recent study of 577 patients
with MPN or MDS/MPN, including 74 patients with PV, 24
with ET and 53 with PMF, CBL mutations in either exon 8 or 9
were identified in 3 (6%) patients with PMF and 1 of 96 patients
with CEL/HES (chronic eosinophilic leukemia/hypereosinophilic
syndrome).34 CBL mutations were found in o1% of patients
with primary AML, MDS, systemic mastocytosis, CNL (chronic
neutrophilic leukemia), blast-phase CML and T-acute lympho-
blastic leukemia.34,139,142,146 Mutational frequency might be
higher in post-MDS/MPN AML142 or in AML with core-binding
factor or 11q aberrations.146,147 Acquisition of mutant CBL
during disease progression from ET to post-ET MF was
documented in one instance.34 Additional studies are required
to clarify the pathogenetic contribution of altered CBL to PMF or
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post-ET/PV MF and its potential role in fibrotic or leukemic
disease transformation.

IDH mutations

IDH1 (located on chromosome 2q33.3; includes 10 exons) and
IDH2 (located on chromosome 15q26.1; includes 11 exons)
encode for isocitrate dehydrogenase 1 and 2, respectively,
which are homodimeric NADPþ -dependent enzymes that
catalyze oxidative decarboxylation of isocitrate to a-ketogluta-
rate, generating NADPH from NADPþ . IDH1 and IDH2 are
different from the mitochondrial NADþ -dependent IDH3-a,
IDH3-b and IDH3-g. IDH1 (414 amino acids) is localized in the
cytoplasm and peroxisomes, whereas IDH2 (452 amino acids) is
localized in the mitochondria. IDH1 and IDH2 mutations were
first described in gliomas148 and subsequently in AML149–151

and are infrequently seen in other tumors.152–155 These
mutations were all heterozygous and affected three specific
arginine residues: R132 (IDH1), R172 (the IDH1 R132
analogous residue on IDH2) and R140 (IDH2). Functional
characterization suggests a loss of activity toward isocitrate (that
is, the mutant wild-type heterodimer has decreased affinity to
isocitrate) and gain of function in catalyzing NADPH-dependent
reduction of a-ketoglutarate to the (R) enantiomer of
2-hydroxyglutarate; the hypoxia-inducible factor-1a pathway
also appears to be activated.156,157 Excess accumulation of
2-hydroxyglutarate has been demonstrated in both glioma and
AML with IDH1 or IDH2 mutations.150,151,156

IDH1 (exon 4 affecting R132) and IDH2 (exon 4 affecting
R172) mutations are mutually exclusive and occur in 470%
and o1%, respectively, of patients with WHO grade II or III
histology and secondary glioblastomas but are infrequently
(o5% incidence) seen in primary glioblastoma.158–161 In one
study of 496 gliomas, 490% of the IDH1 mutations were
IDH1R132H.162 Paired sample analysis in glioma patients
transforming from low- to high-grade histology showed that
IDH mutations were early events. IDH-mutated glioma patients
are younger and display better survival and often express TP53
but not PTEN, EGFR, CDKN2 or CDKN2B mutations.158,161,163

The superior survival associated with IDH mutations has been
attributed to increased sensitivity to treatment, as a result of
decreased NADPH production, and, therefore, reduced risk of
progression.164–166

The first study on IDH mutations in AML included 188
patients with primary AML and reported IDH1 but not IDH2
mutations in 16 (B9%) cases: R132C in 8, R132H in 7 and
R132S in 1.149 In a subsequent AML study of 493 adult Chinese
patients,167 27 (B6%) expressed IDH1 mutations (37% R132C,
26% R132H, 19% R132S, 15% R132G and 4% R132L). In both
studies, IDH1 mutations clustered with normal karyotype,
NPM1 mutations and trisomy 8. More recently, IDH2 exon 4
mutations, affecting R172 or R140, were also shown to occur in
primary AML.150,151 In one of these studies, 18 (23%) of 78
patients displayed either IDH1 (n¼ 6; B8%) or IDH2 (n¼ 12;
B15%; 7 R140Q and 5 R172K) mutations.150 AML patients with
IDH2 mutations were also less likely to carry FLT3, NPM1 or
ASXL1 mutations,150 whereas the above-mentioned study from
China167 reported the coexistence of IDH1 mutations and
RUNX1, PTPN11, NRAS, FLT3-ITD, FLT3-TKD or MLL-PTD
mutations.150,167 In general, survival in primary AML did not
seem to be affected by the presence of IDH mutations.149,150,167

IDH mutations have also been described in post-MPN
AML.35–37 In one such study, IDH1 mutations were seen in
B8% (5 of 63) of patients, mostly occurring in the absence of

TET2 and ASXL1 mutations.36 In this particular study, there was
not significant difference in IDH1 mutational frequency
between post-MPN AML, post-MDS AML and primary AML.
Furthermore, paired sample analysis did not suggest acquisition
of IDH1 mutation during leukemic transformation.36 In another
study of AML occurring in the setting of JAK2-mutated MPN,35

mutant IDH was seen in 5 (31%) of 16 patients: 3 R132C (1 post-
PMF, 1 post-ET and 1 post-PV with exon 12 mutation) and 2
R140Q (1 post-PMF with trisomy 8 and 7q� and 1 post-PV with
complex karyotype). Three patients lost their mutant JAK2 at the
time leukemic transformation; in two of these three patients,
the IDH mutation was present in leukemic blasts with wild-type
JAK2 but absent from JAK2 mutation-positive progenitor
colonies. By contrast, in the PMF patient with IDH2R140Q,
the mutation was detected in both JAK2V617F-positive erythroid
colonies and leukemic blasts. The authors did not find IDH
mutations in 180 patients with either PV or ET.35

Most recently, 200 patients with either chronic- or blast-phase
MPN were screened for IDH1 and IDH2 mutations.37 A total of
nine IDH mutations including five IDH1 and four IDH2 were
found and mutational frequencies were B21% for blast-phase
MPN and B4% for PMF. No mutations were seen in PV or ET.
Furthermore, IDH mutations were found in only 1 of 12 paired
chronic- and blast-phase samples and the mutation was
detected in both chronic- and blast-phase disease samples in
the single IDH-mutated case. The specific IDH1 mutations
found in this study included R132C and R132S and the IDH2
mutations R140Q and R140W. IDH mutations coexisted with
JAK2V617F. The results of this and the aforementioned study
suggest that IDH mutations are relatively frequent in blast- but
not chronic-phase MPN, but more studies are required to find
out whether they represent early genetic events or are acquired
during leukemic transformation.

IKZF1 mutations

IKAROS family zinc finger 1 (IKZF1; 7p12) encodes for Ikaros
transcription factors, which are important regulators of lym-
phoid differentiation. IKZF1 gene (seven translated exons)
transcription is characterized by multiple alternatively spliced
transcripts with common C- (inter-Ikaros protein dimerization)
and N-terminal (DNA-binding) domains. IKZF1 is believed to
modulate expression of lineage-specific genes through a
mechanism that involves chromatin remodeling and results in
effective lymphoid development and tumor suppression. Loss-
of-function animal models develop severe B, T and NK cell
defects (homozygous gene deletions) or lymphoblastic leukemia
(heterozygous for a dominant-negative allele).169 IKZF1mutations
and overexpression of dominant-negative isoforms are prevalent
in ALL, including blast-phase CML or BCR-ABL1-positive ALL,
suggesting a pathogenetic contribution to leukemic transforma-
tion.170 A recent study demonstrated that IKZF1 deletions were
rare in chronic-phase MPN but were detected in approximately
19% of patients with blast-phase MPN.171 The occurrence of
IKZF1 mutations in MPN is particularly relevant, as part of their
functional consequence might include JAK–STAT activation.

Concluding remarks

PMF–PV–ET were first described in 1879–1892–1934 and their
close relationship was formally recognized in 1951 and
molecularly validated in 2005.2 Unlike CML, pathogenetic
mechanisms in these BCR-ABL1-negative MPN are turning out
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to be more complex than originally believed, and their
trademark JAK2 and MPL mutations do not appear to be
analogous to BCR-ABL1 in terms of their importance as
therapeutic targets.41,78 The repertoire of other mutations (such
as TET2, ASXL1, CBL, IDH mutations) in MPN is growing but
their specific pathogenetic relevance is undermined by their
omnipresence in other myeloid malignancies. Conversely, the
particular scenario might reflect our collective oversight
regarding the molecular inter-relationship among phenotypi-
cally disparate myeloid malignancies. Regardless, on the basis
of the assumption that JAK-STAT is central to the pathogenesis of
BCR-ABL1-negative MPN,27,31,32,68,69,105,112 a number of orally
administered anti-JAK2 ATP mimetics have been developed and
are undergoing clinical trials.42–44 So far, the two that have
shown the most promising clinical activity are TG101348 (JAK2
inhibitor) and INCB018424 (JAK1/2 inhibitor).41 Other drugs
that are currently in clinical trials for PMF, PV or ET include
other kinase inhibitors (such as CYT387, CEP-701, AZD1480,
SB1518, erlotinib), histone deacetylase inhibitors (such as
ITF2357, MK-0683, panobinostat) and the anti-vascular en-
dothelial growth factor monoclonal antibody bevacizumab
(http://ClinicalTrials.gov).42,168
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