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 Cataract or opacification of all or part of the lens in the
eye is a major ocular disease that renders millions of people
blind throughout the world. Congenital cataract is the most
common cause of treatable childhood blindness. Worldwide,
20 million children under the age of 16 suffer from cataract
and 1.4 million of them are blind [1]. Inherited cataract ac-
counts for at least 50% of all congenital cataracts [2]. Heredi-
tary cataracts are most commonly inherited in an autosomal
dominant manner and are phenotypically and genotypically
heterogeneous, showing considerable inter- and intrafamilial
variability [3]. Autosomal recessive and X-linked forms are
also known to exist [4,5].

The lens is an avascular structure that has an anterior layer
of cuboidal epithelial cells that terminally differentiate at the
equatorial zone to form lens fiber cells [6]. Fully differenti-
ated lens fibers lose their intracellular organelles and accu-
mulate high concentrations of soluble proteins known as
crystallins. Initially, these cells are arranged as concentric lay-
ers extending from the anterior to the posterior surface of the
lens, but as the lens develops, the lens fiber cells extend from
the capsule to the lens sutures. Lens fiber cells lack nuclei,
mitochondria, and ribosomes, so that they must be physiologi-
cally maintained to prevent precipitation of crystallin and cata-
ract formation. Since the lens lacks any vasculature, this is
achieved by highly sophisticated protein architecture of inter-

cellular junctions, which allow the metabolically active epi-
thelium to maintain the precise intercellular communication
and transport between the lens periphery and its interior [7].

Connexin genes encode intercellular channels that in dif-
fusion of signaling molecules regulate growth and develop-
ment. These channels allow rapid exchange of ions and me-
tabolites up to about 1 kDa in size [8]. Connexins are a
multigene family consisting of >20 members, three of which
are expressed in the lens [9]. The lens epithelial cells show a
predominant expression of connexin 43 (Cx43) [10]. During
differentiation into fibers, Cx43 expression is down regulated
and replaced by Cx46 and Cx50 [11,12]. Targeted ablation of
Cx46 and Cx50 in mice caused cataract and genetics studies
in humans revealed that mutations in either of these genes
(GJA3 and GJA8, respectively) lead to the development of
distinct cataract phenotypes [13-16]. This studys aims were to
analyze GJA8 in Indian patients affected with congenital/child-
hood cataract.

METHODS
Patients:  Probands with a positive family history of congeni-
tal cataract or developmental cataract were ascertained through
the Paediatric Ophthalmology Clinic, Aravind Eye Hospital
(AEH), Madurai, India. Probands with a history suggestive of
intrauterine infection, such as rubella, complicated cataract,
unilateral cataract, and traumatic cataract were excluded from
the study. Ethics approval for the study was obtained from the
Institutional Review Board and the study was performed in
accordance to the tenets of Declaration of Helsinki. Blood
samples were collected from the proband and their available
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family members after obtaining informed consent. The con-
trol subjects who matched the ethnic background of the
proband were recruited from the general ophthalmology clinic
of the AEH. Ophthalmologic examination included the best
corrected visual acuity (Snellen’s), slit lamp biomicroscopy,
and fundus examination. Corneal diameter and axial length
were measured when indicated.

Mutation analysis:  DNA was isolated from peripheral
blood lymphocytes using protocols described by Miller et al.
[17]. Connexin 50 encoded by GJA8 located on chromosome
1q21.1 is comprised of two exons, the coding sequence being
encompassed in its entirely by the second exon (NM_005267).
Polymerase chain reaction (PCR) was used to amplify the cod-
ing exon using oligonucleotide primer pairs and PCR condi-
tions as previously described in the literature [18]. One vol-
ume of PCR product was mixed with 1 volume of formamide
dye and denatured at 98 °C for 4 min prior to loading on an
8% nondenaturing gel. Electrophoresis was carried out at 700
V for 12-15 h. Direct sequencing was performed for product
that displayed a difference in electrophoresis pattern from that
of the controls. Primers flanking codon 1-108 and 169-318
were used to amplify the fragment harboring the mutation for
RFLP analysis to test the identified sequence variants in the
family members of the proband for segregation of the disease.
The segregating sequence variants with the diseased pheno-
type were analyzed for the presence in 400 normal control
chromosomes.

RESULTS
 Sixty probands of unrelated families with inherited congeni-
tal or developmental cataract, including 11 probands with cata-
ract and microcornea, were enrolled in this study. The probands
of each of these families were analyzed for GJA8 mutations,
which revealed significant changes in two probands. In both
proband families all affected members were diagnosed with
congenital cataract associated with microcornea. The clinical
phenotypes are summarized in Table 1.

In family 1, six members (two affected and four unaf-
fected) participated in the study. The affected members had
congenital cataract and microcornea. The proband had total
lens opacification. She is a glaucoma suspect postoperatively

(intraocular pressure is high but has normal fundus). The axial
length of individual III:1 (R-25.65, L-25.95) suggested a mild
degree of myopia. Mutation analysis revealed c.131T>A trans-
version that led to the replacement of evolutionarily conserved
valine at position 44 by glutamic acid (V44E; Figure 1A,B,E).
The mutation resulted in the gain of a TaqI restriction site.
RFLP analysis confirmed the presence of a heterozygous T>A
transversion in the affected members of the pedigree (Figure
1D).

Family 2 was comprised of three generations, with three
affected members (Figure 2C). The proband (III:2) was diag-
nosed with bilateral developmental cataract. The axial length
was 25 mm in both eyes, suggestive of mild myopia. The type
of cataract was posterior subcapsular. Medical records of in-
dividuals I:1 and II:1 show that they underwent cataract ex-
traction at 27 and 10 years of age, respectively. The cataract
phenotype was not available. Individual II:1 is diagnosed with
high myopia; the axial length was 29.5 mm in the right eye
and 24.5 mm in the left eye. The decreased axial length in the
left eye is a complication of an old retinal detachment, which
led to the impairment of vision in the eye. The mutation in
this family was identified as a c.593G>A transition that re-
sulted in a missense mutation where a highly conserved argi-
nine was replaced by glutamine (R198Q; Figure 2A,B,E). The
loss of a MspI restriction site in the mutant allele was used to
confirm the cosegregation of the mutation with the disease
phenotype (Figure 2D).

In both families, individuals with the mutation had cata-
ract with microcornea variably associated with myopia. The
mutation segregated with the disease phenotype in the respec-
tive families and was not present in 400 normal controls ana-
lyzed. The GenBank sequence (P48165) revealed that residue
V44 was in the first transmembrane domain and R198 on the
second extra cellular loop.

DISCUSSION
 We report two novel missense mutations in connexin 50 that
is shown to be responsible for congenital cataract and micro-
cornea, while previous reports of mutations in Cx50 (summa-
rized in Table 2) are associated with isolated congenital cata-
ract.
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TABLE 1. CLINICAL FINDINGS OF INDIVIDUALS WITH THE GJA8 MUTATION

                                           Snellen best     Corneal
                                            corrected       diameter        Axial
                                 Age at       vision          (mm)       length (mm)
                        Age     cataract   ------------   ------------   ------------
Family   Individual   (years)   surgery    Right   Left   Right   Left   Right   Left
------   ----------   -------   --------   -----   ----   -----   ----   -----   -----
  1         II:1        40       3 years   6/36    6/36   10.5    10.5   25.65   25.95
           III:1         6      3 months   6/24    6/24   10.0    10.0   19.50   21.03

  2          I:1        57      22 years   6/60    6/60   10.0    10.0   21.05   20.98
            II:1        32      10 years   6/60     HM    10.0    10.0   29.50   24.50
           III:1         7       4 years   2/60    2/60   10.5    10.5   25.21   25.06

The column “Age” refers to the age at which corneal diameter (microcornea is defined as corneal diameter <11 mm) and axial length was
measured. “HM” refers hand motions.
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Microcornea is defined by the horizontal corneal diam-
eter measuring less than 11.00 mm. The association of cata-
ract with microcornea in the absence of other ocular anoma-
lies has been observed in rare pedigrees [19,20]. Microcornea

and cataract occurs in association with other ocular manifes-
tations such as microphthalmia, myopia, iris coloboma, scle-
rocornea, and Peter’s anomaly [21,22].
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E:
CXA8_HUMAN    11   LEEVNEHSTVIGRVWLTVLFIFRILILGTAAEFVWGDEQS   50
CXA8_MOUSE    11   LEEVNEHSTVIGRVWLTVLFIFRILILGTAAEFVWGDEQS   50
CXA8_SHEEP    11   LEEVNEHSTVIGRVWLTVLFIFRILILGTAAEFVWGDEQS   50
CXA8_CHICK    11   LEQVNEQSTVIGRVWLTVLFIFRILILGTAAELVWGDEQS   50
CXA1_HUMAN    11   LDKVQAYSTAGGKVWLSVLFIFRILLLGTAVESAWGDEQS   50
CXA3_HUMAN    11   LENAQEHSTVIGKVWLTVLFIFRILVLGAAAEDVWGDEQS   50
CXA4_HUMAN    11   LDQVQEHSTVVGKIWLTVLFIFRILILGLAGESVWGDEQS   50
CXA5_HUMAN    11   LEEVHKHSTVVGKVWLTVLFIFRMLVLGTAAESSWGDEQA   50
CXA10_HUMAN   11   LEEVHIHSTMIGKIWLTILFIFRMLVLGVAAEDVWNDEQS   50

Figure 1. Analysis of family 1.  A: The genomic sequence of the wild
type showing valine at codon 44. B: The mutant allele showing a
heterozygous T>A transversion that replaces Val by Glu. C: Pedi-
gree of family 1. D: PCR-RFLP analysis showing a gain of a TaqI
site that cosegregates with the affected individuals. The unaffected
individuals display a 648 bp band while the affected individuals dis-
play a 648 bp, 519 bp, and 129 bp bands. In the image, M indicates
the 100 bp DNA ladder, C indicates control, and UD indicates undi-
gested PCR product. E: A multiple alignment of amino acid sequence
of GJA8 with different species and five other connexins from hu-
man. The amino acid marked in red indicates a neutral amino acid
(valine, alanine, or serine) at codon 44.

D:
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TABLE 2. SUMMARY OF MUTATIONS IN HUMAN GJA8

Base change   Mutation            Location             Population   Reference
-----------   --------   ---------------------------   ----------   ----------

 c.68 G>C      R23T      Cytoplasmic N-terminal        Iranian      [16]

 c.131 T>A     V44E      First transmembrane domain    Indian       This study

 c.142 G>A     E48K      First extracellular loop      Pakistani    [37]

 c.191 T>G     V64G      First extracellular loop      Chinese      [38]

 c.262 C>T     P88S      Second transmembrane domain   British      [18]

 c.593 G>A     R198Q     Second extracellular loop     Indian       This study

 c.741 T>G     I247M     Cytoplasmic C-terminal        Russian      [39]

Shown are connexin 50 gene mutations that have been identified in this and other studies.

D:

E:
CXA8_HUMAN    193   DCFVSRPTEKTIFILFMLSVASVSLFLNVMELGHLGLKGIR   233
CXA8_MOUSE    193   DCFVSRPTEKTIFILFMLSVAFVSLFLNIMEMSHLGMKGIR   233
CXA8_SHEEP    193   DCFVSRPTEKTIFILFMLSVASVSLFLNILEMSHLGLKKIR   233
CXA8_CHICK    193   DCFVSRPTEKTIFIMFMLVVAAVSLFLNLVEISHLILKRIR   233
CXA1_HUMAN    193   DCFLSRPTEKTIFIIFMLVVSLVSLALNIIELFYVFFKGVK   233
CXA3_HUMAN    193   DCFISRPTEKTIFIIFMLAVACASLLLNMLEIYHLGWKKLK   233
CXA4_HUMAN    193   DCFVSRPTEKTIFIIFMLVVGLISLVLNLLELVHLLCRCLS   233
CXA5_HUMAN    193   DCYVSRPTEKNVFIVFMLAVAALSLLLSLAELYHLGWKKIR   233

CXA10_HUMAN   193   DCFVSRPTEKTIFLLFMQSIATISLFLNILEIFHLGFKKIF   233

Figure 2. Analysis of family 2.  A: The genomic sequence of the wild
type pedigree showing an arginine at codon 198. B: The mutant al-
lele showing a heterozygous T>A transition that substitutes Glu for
Arg. C: Pedigree of family 2. D: PCR-RFLP analysis showing the
loss of an MspI site in the mutant allele that results in 243 bp, 144 bp,
27 bp, 21 bp, and 16 bp bands while the normal allele shows 243 bp,
105 bp, 39 bp, 27 bp, 21 bp, and 16 bp bands. The latter 39 bp, 27 bp,
21 bp, and 16 bp bands are not visible on the gel. In the image, M
indicates the 100 bp DNA ladder, C indicates control, and UD indi-
cates undigested PCR product. E: A multiple sequence alignment of
Cx50 with other connexin proteins. The amino acid marked in red
indicates the position of R198, where ariginine is highly conserved
among connexins.
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Mutations identified in transcription factor gene such as
PAX6 have led to cataract, microcornea, and anterior segment
dygenesis, while mutations in MAF resulted in pulverulent
cataract variably associated with microcornea, and iris
coloboma [23,24]. A missense mutation in CRYAA and a ho-
mozygous nonsense mutation in CRYBB2 have been reported
to cause cataract, microcornea and microphthalmous [25,26].
To date, the X253R mutation in CRYBB1 is the only report to
be associated with cataract and microcornea in the absence of
other ocular or systemic anomalies [27], and cataract associ-
ated with myopia has been described as a result of a bfsp2
mutation [28].

Connexin 50 is a gap junction protein that forms an array
of intercellular channels that are established by docking of
hemichannels, one from each of two closely apposed cells. A
hemichannel is comprised of a hexamer of connexin subunits.
All connexins are composed of four transmembrane domains
linked by two extracellular loops that have highly conserved
amino acid sequence identity, and a single highly variable in-
tracellular loop and an intracytoplasmic NH

2
- and COOH-ter-

minal [29,30].
In family 1, the nonconservative substitution of the nega-

tively charged polar glutamic acid for an uncharged nonpolar
valine at position 44 is predicted to lie on the first transmem-
brane domain (Figure 1). The transmembrane domains of the
connexins are proposed to participate in the oligomerization
into connexon hemichannels and are also essential for the cor-
rect transport of the protein into the plasma membrane. It has
been identified that pore lining residues lie in the first trans-
membrane domain and are essential for the formation of the
pore and therefore channel permeability [31]. In family 2 the
c.593G>A change results in a R198Q missense mutation. The
replacement of the highly conserved basic polar ariginine by
the uncharged nonpolar glutamine lies on the second extra-
cellular loop (Figure 2E). The extracellular loops are crucial
for the docking of the two hemichannels to generate a gap
junction unit, and it has been demonstrated that primary se-
quence of second extracellular loop plays a role in determin-
ing the compatibility of heterotypic channel formation among
different lens connexins [32]. This is the first report of mis-
sense change in the first transmembrane domain and the sec-
ond extracellular loop, which highlights the functional impor-
tance of this region of the protein.

Cataractogenesis has been observed in both Cx46 and
Cx50 knockout mice. In contrast to the Cx46 knockout, the
target ablation of Cx50 mice resulted in reduced growth of the
lens and eye [13,14]. Targeted replacement of Cx50 with Cx46
prevented cataract but did not restore normal ocular growth
[33]. The reduction in the total ocular growth is possibly due
to the reduction in lens growth, as it has also been proposed
from the chick studies that normal lens development is essen-
tial for the normal growth of the eye [34]. Naturally occurring
missense mutation G22R in Lop10 mice led to cataract and
mice homozygous for the mutation developed microphthalmia
with dense cataract [35]. A similar effect was observed in the
No2 mouse mutation (D47A) where heterozygous mice de-

veloped milder cataract and mice homozygous for the muta-
tion exhibited a reduction in the total ocular mass by approxi-
mately 30% compared with wild-type [36]. It would be inter-
esting to study the effect of V44E and R186Q mutation on the
ocular phenotype of mice.

This is the first report of mutations in GJA8 to be associ-
ated with autosomal dominant cataract and microcornea.
Though the etiology of microcornea in these families is not
clear, mutations disrupting the protein structure severely and
thereby interfering with the lens development can affect the
anterior segment development.
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