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Novel mutations target distinct
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Medulloblastoma is amalignant childhood brain tumour comprising four discrete subgroups.Here, to identifymutations
that drivemedulloblastoma,we sequenced the entire genomes of 37 tumours andmatched normal blood. One-hundred
and thirty-six genes harbouring somatic mutations in this discovery set were sequenced in an additional 56
medulloblastomas. Recurrent mutations were detected in 41 genes not yet implicated in medulloblastoma; several
target distinct components of the epigenetic machinery in different disease subgroups, such as regulators of H3K27
and H3K4 trimethylation in subgroups 3 and 4 (for example, KDM6A and ZMYM3), and CTNNB1-associated chromatin
re-modellers inWNT-subgroup tumours (for example, SMARCA4 and CREBBP). Modelling ofmutations inmouse lower
rhombic lip progenitors that generateWNT-subgroup tumours identified genes that maintain this cell lineage (DDX3X),
aswell asmutated genes that initiate (CDH1) or cooperate (PIK3CA) in tumorigenesis. These data provide important new
insights into the pathogenesis of medulloblastoma subgroups and highlight targets for therapeutic development.

Medulloblastoma is the most common malignant childhood brain
tumour1. The disease includes four subgroups (sonic hedgehog (SHH)
subgroup, WNT subgroup, subgroup 3 and subgroup 4), defined
primarily by gene expression profiling, that show differences in
karyotype, histology and prognosis2. Studies of genetically engineered
mice show that these tumours arise from different cell types: SHH-
subgroup medulloblastomas develop from committed cerebellar
granule neuron progenitors (GNPs) in Ptch11/2 mice3,4; WNT-
subgroup tumours are generated by lower rhombic lip progenitors
(LRLPs) in Blbp-Cre;Ctnnb11/lox(Ex3);Tp53flx/flx mice5; whereas
subgroup-3medulloblastomas probably arise from an undefined class
of cerebellar progenitors6. The identification ofmedulloblastoma sub-
groups has not changed clinical practice. All patients currently
receive the same combination of surgery, radiation and chemotherapy.
This aggressive treatment fails to cure two thirds of patients with
subgroup-3 disease, and probably over-treats children with WNT-
subgroup medulloblastoma who invariably survive with long-term
cognitive and endocrine side effects2,7. Drugs targeting the genetic
alterations that drive each medulloblastoma subgroup could prove
more effective and less toxic, but the identity of these alterations
remains largely unknown.

The genomic landscape of medulloblastoma
To identify genetic alterations that drive medulloblastoma, we per-
formed whole-genome sequencing (WGS) of DNA from 37 tumours
and matched normal blood (discovery cohort). Tumours were sub-
grouped by gene expression (WNT subgroup, n5 5; SHH subgroup,
n5 5; subgroup 3, n5 6; subgroup 4, n5 19; ‘unclassified’ (profiles
not available), n5 2; Fig. 1, Supplementary Figs 1–3 and Sup-
plementary Table 1). Validation of all putative somatic alterations
including single nucleotide variations (SNVs), insertion/deletions
(indels) and structural variations (SVs) identified by CREST8, was
conducted for 12 tumours using custom capture arrays and
Illumina-based DNA sequencing (Supplementary Table 2). Putative
coding alterations and SVs were validated in the remaining 25
discovery cohort cases by polymerase chain reaction (PCR) and
Sanger-based sequencing. Mutation frequency was determined in a
separate ‘validation cohort’ of 56medulloblastomas (WNT subgroup,
n5 6; SHH subgroup, n5 8; subgroup 3, n5 11; subgroup 4, n5 19;
unclassified, n5 12; Fig. 1 and Supplementary Table 1).
WGS of the discovery cohort detected 22,887 validated or high-

quality somatic sequence mutations (SNVs and indels), 536 validated
or curated SVs, and 5,802 copy number variations (CNVs; 92%
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concordant with 6.0 SNP mapping arrays; Supplementary Tables 3–6
and Supplementary Figs 4–7). In all but five tumours with the highest
mutation rates, .50% of SNVs were CRT/GRA transitions
(Supplementary Fig. 8). The mean missense:silent mutation ratio
was 3.6:1 and 40% of all missense mutations were predicted to be
deleterious, suggesting a selective pressure for SNVs that affect protein
coding (Supplementary Table 5). Global patterns of total SNVs
and amplifications varied significantly among medulloblastoma
subgroups, even when corrected for age and sex, supporting the notion
that these tumours are distinct pathological entities (Fig. 1 and
Supplementary Fig. 6). Custom capture-based analysis of the allele
frequency of all somatic mutations in 12 medulloblastomas allowed
us to predict the ancestry of certain genetic alterations, suggesting
that aneuploidy precedes widespread sequence mutation in medullo-
blastomas with highly mutated genomes (Supplementary Figs 9–11).

Novel CNVs and SVs are rare in medulloblastoma
The repertoire of focally amplified or deleted genes seems to be very
limited in medulloblastoma. We detected expected2 gains of MYC,
MYCN and OTX2 in subgroups 3 and 4, but no novel recurrent
amplifications (Fig. 1, Supplementary Fig. 12 and Supplementary
Table 7). In keeping with recent reports9, high-level amplification of
MYCN in subgroup-3 sample no. 16 (samplenumbering as in Fig. 1)was
generated by chromothripsis; although chromothripsis was observed
infrequently (n5 2/37 of the discovery cohort; Supplementary Fig. 13).
Focal homo- or heterozygous deletions of genes previously impli-

cated in medulloblastoma were also detected (for example, PTCH1,
PTEN; Fig. 1)10,11 but novel recurrent focal deletions were rare. Three
subgroup-4 tumours (nos 11–13) and one unclassified tumour
deleted DDX31, AK8 and TSC1 at chromosome 9q34.14 in concert
with OTX2 amplification, suggesting that these alterations are coop-
erative (P, 0.0005, Fisher’s exact test). The breakpoint in this
deletion occurs in DDX31, and two samples contained a missense
mutation (subgroup 4, no. 15) and complex rearrangement
(unidentified case SJMB026) in this gene, suggesting that DDX31 is
the target of these alterations (Supplementary Fig. 14).
Over 50% of SVs detected by WGS broke the coding region of at

least one gene, but less than 2% (n5 6/314, excluding two tumours

with excessive SVs) encode potential in-frame fusion proteins
(Supplementary Fig. 15); none affect the same gene or signal pathway.
Therefore, fusion proteins are likely to be an uncommon transform-
ing mechanism in medulloblastoma.
Although germline mutations in TP53, PTCH1, APC and CREBBP

predispose to medulloblastoma11–14, only 23 mutations previously
associated with cancer were detected in discovery cohort germ lines.
Only one of these—in a known case of Turcot’s syndrome—was
accompanied by a somatic mutation (germline APC Y935*/somatic
deletion; WNT subgroup no. 11; Supplementary Table 8). Thus,
inherited forms of medulloblastoma seem to be rare in our cohort.

Novel mutations in medulloblastoma subgroups
Because SVs and CNVs are unlikely to drive most medulloblastomas,
we investigated whether recurrent (more than two samples) somatic
SNVs and/or indels might target discrete genes and pathways. This
analysis identified 49 genes, across all 93 tumours, which were tar-
geted by non-silent, recurrent, somatic mutations; 84% (n5 41/49)
have not yet been implicated in medulloblastoma (Supplementary
Tables 9 and 10). Several of these congregated in disease subgroups
and converged on specific cell pathways (Fig. 1, Supplementary Fig. 8
and Supplementary Table 11).

Histone methylation is deregulated in subgroups 3 and 4
TheH3K27 trimethylmark (H3K27me3) represses lineage-specific genes
in stem cells15 (Supplementary Fig. 8). H3K27me3 is written by the
polycomb repressive complex 2 (PRC2) that includes the methylase
EZH2(refs16, 17) and is erasedduringdifferentiationby thedemethylase
KDM6A18. As H3K27me3 is erased, chromatin remodellers recruited to
H3K4me3promotedifferentiation, for example,CHD7(refs 19, 20).This
process is tightly controlled during development and deregulated in
cancers; EZH2 is mutated in lymphomas21 and upregulated in breast22

and prostate23 cancer, while biallelic inactivation of KDM6A (chro-
mosome Xp11.2) or KDM6A and its paralogue UTY (chromosome
Yq11), occurs in adult female and male cancers, respectively24.
Hypergeometric distribution analyses revealed selective muta-

tion of histone modifiers in subgroup-3 and -4 medulloblastomas
(Supplementary Table 11). Six subgroup-4, one subgroup-3, and
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Figure 1 | The genomic landscape
of medulloblastoma. Top, clinical,
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one unclassifiedmedulloblastoma contained novel inactivatingmuta-
tions in KDM6A (Figs 1 and 2 and Supplementary Figs 8 and 16). The
single female with aKDM6A splice-site mutation showed a deletion of
the second allele that escapes X inactivation25 (subgroup 4, no. 15), and
57% (n5 4/7) of KDM6A-mutant male medulloblastomas deleted
chromosome Y, compared with only 6% (n5 3/51) of male,
KDM6A wild-type tumours (P, 0.005, Fisher’s exact test; Fig. 1).
Thus, a two-hit model of KDM6A-UTY tumour suppression seems
to operate in subgroup-4 medulloblastomas. Notably, mutations in
six other KDM family members (KDM1A, KDM3A, KDM4C,
KDM5A, KDM5B and KDM7A) were detected exclusively in
subgroup-3 and -4 tumours, implicating broad disruption of lysine
demethylation in these medulloblastomas (Fig. 1, Supplementary
Table 11 and Supplementary Fig. 16).
Subgroup-3 and -4medulloblastomas also gained andoverexpressed

EZH2 (chromosome 7q35-34), which writes H3K27me3, and
contained novel inactivating mutations in effectors and regulators of
the H3K4me3 mark26 (Fig. 2a and Supplementary Fig. 8). Gain of
chromosome 7q was significantly enriched among subgroup-3 and
-4 medulloblastomas (P, 0.005, Fisher’s exact test) and correlated
directly with EZH2 expression. Indeed, EZH2 was the eighth most
significantly overexpressed gene on chromosome 7 among subgroup-3
and -4medulloblastomas that gained chromosome 7q relative to those
with diploid chromosome 7 (P, 0.005, Bonferroni correction).
Nonsense and frameshift mutations were detected in CHD7 in four
subgroup-3 and -4 tumours. ZMYM3 (chromosome Xq13.1), which
participates in a protein complex with KDM1A to regulate gene
expression at the H3K4me3 mark27, was targeted by novel frameshift,
nonsense and missense mutations in three male subgroup-4 medullo-
blastomas. All three tumours with mutations in ZMYM3 also mutated
KDM6A (subgroup 4, nos 19, 20) or KDM1A (subgroup 4, no. 21),
suggesting that these alterations are cooperative. Remarkably,
KDM6A, CHD7 and ZMYM3 mutations were confined to subgroups
3 and 4, and clustered in samples with sub-median EZH2 expression
levels (Fig. 2a; P, 0.05, Fisher’s exact test). These data suggest that

subgroup-3 and -4 medulloblastomas retain a stem-like epigenetic
state by aberrantly writing (EZH2 upregulation) or preserving
(KDM6A-UTY inactivation) H3K27me3, or disrupting H3K4me3
associated transcription (CHD7 and ZMYM3 inactivation). Indeed,
human and mouse subgroup-3 and -4 medulloblastomas contained
significantly more H3K27me3 than did WNT- or SHH-subgroup
tumours (Fig. 2b). Thus, gain of EZH2 and loss of KDM6A probably
maintains H3K27me3 in subgroup-3 and -4 medulloblastomas.
Finally, we looked to see if the differential expression of H3K27me3

among medulloblastoma subgroups reflects ancestral chromatin
marking in the progenitors that generate these tumours (Fig. 2b).
Relatively low levels of H3K27me3 were detected in LRLPs and com-
mitted GNPs, which generate WNT- and SHH-subgroup medullo-
blastomas, respectively3–5, potentially explaining why mutations that
preserve this epigenetic mark are absent from these tumours. We
recently showed that subgroup-3 medulloblastomas arise from a rare
fraction of cerebellar progenitors6. We are currently investigating
whether these progenitors are found among the H3K27me3-positive
cells seen in the external germinal layer (Fig. 2b).

Novel mutations in WNT-subgroup medulloblastomas
WNT-subgroup medulloblastomas contained mutations in epigenetic
regulators that are different to those seen in subgroup-3 and -4 disease.
CTNNB1, the principal effector of the WNT pathway, forms a
transcription factor with the T-cell factor/lymphoid enhancer factor
(TCF/LEF)28. The carboxy terminus of CTNNB1 then recruits a series
of protein complexes that remodel chromatin and promote transcrip-
tion at WNT-responsive genes (Supplementary Fig. 8). These include:
histone acetyltransferases (for example, CREBBP and TRRAP–TIP60
complexes)28,29; ATPases of the SWI/SNF family (for example,
SMARCA4)30; and the mediator complex that coordinates RNA
polymerase II placement (for example, MED13)31. As expected,
.70% (n5 8/11) of WNT-subgroup medulloblastomas contained
mutations that stabilize CTNNB1 (Fig. 1 and Supplementary Fig. 8;
P, 0.0001, Fisher’s exact test)32,33. A single subgroup-3 case (no. 5)
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also showed a mutation in CTNNB1, but this mutation has not
been reported in cancer, did not upregulate nuclear CTNNB1
(Fig. 1) and is of unclear relevance. Remarkably, six WNT-subgroup
medulloblastomas showed mutations in chromatin modifiers that
are recruited to TCF/LEF WNT-responsive genes by CTNNB1
(Fig. 1 and Supplementary Fig. 8). Four WNT-subgroup tumours
contained heterozygous missense mutations in the helicase domain of
SMARCA4 (P, 0.002, Fisher’s exact test), two samples, including one
with a SMARCA4 mutation (no. 5), contained nonsense mutations in
CREBBP (WNT-subgroup enrichment, P, 0.02, Fisher’s exact test),
andmissensemutations inTRRAP andMED13were detected in a single
WNT-subgroup medulloblastoma each. Thus, in addition to stabiliza-
tion ofCTNNB1, thedevelopment ofWNT-subgroupmedulloblastoma
may require disruption of chromatin remodelling at WNT-responsive
genes.
A small number of WNT-subgroup medulloblastomas lack muta-

tions in CTNNB1 or APC, suggesting that alternative mechanisms
drive aberrant WNT signals in these tumours. ThreeWNT-subgroup
medulloblastomas in our series contained wild-type CTNNB1 (nos 1,
10 and 11; Fig. 1). Sample no. 11 inactivated APC as the sole case of
Turcot’s syndrome in our study, but this tumour and sample no. 10
also contained novel missense mutations in CDH1 (R63G, V329F;
WNT-subgroup enrichment, P, 0.05, Fisher’s exact test; Fig. 1).
CDH1 sequesters CTNNB1 at the cell membrane34, and mutations
that disrupt this interaction promote WNT signalling in adult
cancers35,36. The functional consequences of CDH1(R63G) and
CDH1(V329F) remain to be determined, but their restriction to
WNT-subgroup tumours, mutual exclusivity with CTNNB1 muta-
tions, and adjacency to residues mutated in breast cancer (http://
www.sanger.ac.uk/genetics/CGP/cosmic/), suggest they might pro-
mote aberrant WNT signals in medulloblastoma.
We showed previously inmice that mutant Ctnnb1 initiatesWNT-

subgroup medulloblastoma by arresting the migration of LRLPs from
the embryonic dorsal brainstem to the pontine grey nucleus (PGN)5.
Therefore, to test whether disruption of CDH1 might substitute for
mutant CTNNB1 in medulloblastoma, we used short hairpin (sh)RNAs
to knockdownCdh1 in embryonic day (E)14.5mouse LRLPs (Fig. 3a–c).
Deletion of Cdh1 expression upregulated Tcf/Lef-mediated gene tran-
scription in LRLPs and more than doubled their self-renewal capacity
(Fig. 3b). Furthermore, in utero electroporation of LRLPs with Cdh1
shRNAs impeded their migration from the dorsal brainstem to the
PGN with an efficiency similar to that of mutant Ctnnb1 (Fig. 3d, e;
see Supplementary Methods). These data support the hypothesis that
CDH1 suppresses the formation of WNT-subgroup medulloblastoma
by regulating WNT-signals in LRLPs.
WNT-subgroup medulloblastomas were also enriched for novel,

recurrent somaticmissensemutations in theDEAD-box RNAhelicase
DDX3X at chromosomeXp11.3 (P, 0.0001, Fisher’s exact test; Fig. 1).
DDX3X regulates several critical cell processes including chromosome
segregation37, cell cycle progression38, gene transcription and trans-
lation39. Previously reported cancer-associated mutations in DDX3X
disrupt the ATPase activity of the protein, but seven of eight muta-
tions identified in our series clustered in the DEAD-box domain
(Supplementary Information and Supplementary Fig. 8). Structural
modelling predicts that these mutations interfere with nucleic acid
binding, possibly altering specificity and/or affinity for RNA substrates,
rather than inactivating DDX3X (Supplementary Figs 17–22). Indeed,
thewild-type allele ofDDX3X that escapesX inactivation25was retained
by two of threeDDX3X-mutant female medulloblastomas, and knock-
down of Ddx3x halved the self-renewal rate of mouse LRLPs, suggest-
ing that this protein is important for the proliferation and/or
maintenance of the LRLP lineage (Fig. 3b).
To understand better the role of DDX3X in WNT-subgroup

medulloblastoma, we used our in utero migration assay to assess
the impact of Ddx3x shRNAs, mutant Ddx3xT275M (identified in
WNT-subgroup sample no. 9), or mutant Ddx3xG325E (WNT sample

no. 8) onLRLPs.Remarkably, althoughDdx3x shRNAswere expressed
abundantly in E14.5 brainstem cells within 48 h of electropora-
tion,#0.5% of Ddx3x-shRNA-positive cells were present by postnatal
day (P)1, confirming the critical importance of this gene to maintain
the LRLP lineage (Fig. 3d, e). In contrast, mice electroporated with
either mutant Ddx3xT275M or Ddx3xG325E consistently contained
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Figure 3 | Genes mutated in WNT-subgroup medulloblastomas regulate
LRLPs. a, b, Isolated Olig31/Wnt11 LRLPs were transduced in bwith mutant
Ctnnb1 (above hashed line) or the indicated shRNA-RFP (red fluorescence
protein) construct (below hashed line). LRLPs were also transduced (1) or not
(2) with a Tcf/Lef-enhanced green fluorescence (Tcf) reporter. Numbers on
right show clonal percentage 29 to 39 passage neurosphere formation
(6 standard deviation (s.d.)). N/A, not applicable. Scale bar, 10mm.
c, Knockdown of genes targeted by shRNA relative to control transduced cells.
Data show mean 6 s.d. d, Immunofluorescence of P1 mouse hindbrains
electroporated in utero at E14.5 with GFP (to control for equivalence of
electroporation between embryos control) and the indicated construct. High-
power views of indicated areas are shown right. Cells targeted byDdx3x shRNA
are present 48 h after electroporation but ablated by P1. Scale bars, 200mm.
e, Heatmap showing the distribution ofGFP1/RFP1 cells in eletroporatedmice
at P1.Median distancemigrated by cells and P values ofmigration distance and
cell number relative to controls is shown. ****P, 0.00005; ***P, 0.0005; **
P, 0.005; *P, 0.05. Red and green text reports significant increase or
decrease, respectively, relative to control.
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,50% more labelled cells at P1 than did controls, although these cells
migrated normally (Fig. 3d, e and data not shown). Thus, mutations in
DDX3X may contribute to WNT-subgroup medulloblastoma by
increasing LRLP proliferation rather than perturbing the migration
of their daughter cells. Notably, comparable knockdown in utero of
Mll2, Gabrg1 and Kdm6a that were selectively mutated in non-WNT
medulloblastomas had no apparent impact on LRLPs; supporting the
value of our assay for assessingWNT-subgroup specificmutations and
underscoring the importance of cell context for functional studies of
genes mutated in cancer subgroups.

PIK3CA mutations promote WNT-subgroup medulloblastoma
Cancer-associated, activating mutations in PIK3CA were detected in
a single case each of WNT-subgroup (PIK3CA(Q546K)), SHH-
subgroup (PIK3CA(H1047R)) and subgroup-4 (PIK3CA(N345K))
medulloblastoma (Fig. 1 and Supplementary Fig. 23). Although
PIK3CA mutations are common in adult cancers40 and reported in
medulloblastoma41, their role in tumorigenesis remains controversial.
In particular it is not known if these mutations initiate or progress
cancer. To test this, we generated mice that express a conditional
allele of the Pik3caE545K mutation. Mice harbouring Pik3caE545K

or Pik3caE545K and Tp53flx/flx were bred with Blbp-Cre, which drives
efficient recombination in LRLPs5. Blbp-Cre;Pik3caE545K mice, with
or without Tp53flx/flx, survived tumour free for a median of 212
days with no evidence of aberrant LRLP migration (Fig. 4a and
data not shown). In stark contrast, 100% (n5 11/11) of Blbp-
Cre;Ctnnb11/lox(Ex3);Tp531/flx;Pik3caE545K mice developed WNT-
subgroup medulloblastomas by 3 months of age; only 4% (n5 2/54)
of Blbp-Cre;Ctnnb11/lox(Ex3);Tp531/flx mice develop WNT-subgroup
medulloblastoma by 11 months (Fig. 4a, b). Pik3ca wild-type and
mutantmousemedulloblastomas displayed similar ‘classic’ histologies
and nuclear Ctnnb11, but Pik3caE545K mutant tumours contained
greater AKT pathway activity as measured by pS6 and p4EBP1
immunostaining. Thus mutations in PIK3CA probably activate
the AKT pathway to progress, rather than initiate, WNT-subgroup
medulloblastoma.

SHH-subgroup medulloblastomas
Four of thirteen SHH-subgroup medulloblastomas contained
expected biallelic inactivating alterations in SUFU or PTCH1. What

drives aberrant SHH signals in the remaining cases remains unclear.
These tumours contained mutations in MLL2, TP53 and PTEN that
have been reported previously in medulloblastoma42; but these muta-
tions occur in other subgroups and are not known to activate SHH
signals. Two SHH-subgroup tumours (nos 11 and 12) contained
identical novel T48Mmutations in the GABAA (c-aminobutyric acid,
subtype A) receptor, c1, which is predicted to be deleterious (Fig. 1
and Supplementary Table 9). Disruption of GABAA receptors can
enhance neural stem cell proliferation43, suggesting that these muta-
tions might deregulate the proliferation of GNPs that generate SHH-
subgroup medulloblastomas.

Discussion
We have identified several, new, recurrent, somatic mutations in spe-
cific subgroups of medulloblastoma. Alterations affecting EZH2,
KDM6A, CHD7 and ZMYM3 seem to disrupt chromatin marking
of genes in subgroup-3 and -4 tumours. Further epigenetic studies
will be required to uncover the identity of these genes, but evidence
suggests thesemay includeOTX2,MYC andMYCN44,45. As amplifica-
tion of these genes was detected almost exclusively in subgroup-3 and
-4 tumours that lacked mutations in KDM6A, CHD7 or ZMYM3, it is
tempting to speculate that these genetic alterations target common
transforming pathways. A recent study detected recurrent mutations
in three other chromatin remodellers in medulloblastoma42:
SMARCA4, MLL2 and MLL3, but this study did not include details
of tumour subgroup. Here, we show that mutations in SMARCA4,
CREBBP, TRRAP and MED13 are enriched in WNT-subgroup
medulloblastomas; thereby uncovering potential cooperative muta-
tions in chromatin remodellers and their binding-partner oncogene,
CTNNB1. Thus, disruptions in the epigenetic machinery of medullo-
blastoma are likely to be subgroup specific and may cooperate with
other oncogenic mutations. The low incidence of MLL2 mutations
detected in our study relative to previous work42 probably reflects
differences in study populations (see Supplementary Results).
Although medulloblastoma is more prevalent in males, especially

with subgroup-3 and -4 disease46, the reason for this sex bias is
unknown.One potential explanation is the locationofmedulloblastoma
oncogenes or tumour suppressor genes on chromosome X47. Three of
themost recurrentlymutated genes detected in our study are located on
chromosome X, of which two (ZMYM3 and KDM6A) were observed
almost exclusively in males. Mutation in these genes might explain
some of the male sex bias in medulloblastoma. The third mutated X
chromosome gene, DDX3X, is more likely to be a WNT-subgroup
medulloblastoma oncogene. Three of four female medulloblastomas
carried heterozygousmutations inDDX3X that escapeX inactivation25,
and our functional data indicate that mutations in this gene provide a
proliferative advantage to LRLPs that generate these tumours.
Our findings also have important implications for drug develop-

ment. Inhibitors of the epigenetic machinery, especially those that
maintain H3K27me3—for example, EZH2 methylase—may be useful
treatments for subgroup-3 and -4 disease. These tumours include the
most aggressive forms of medulloblastoma, for which treatment
options are limited. Mutations that activate PIK3CA and DDX3X in
WNT-subgroup tumoursmight alsobe targetedwith novel therapeutic
strategies48,49. Future clinical trials of drugs that target these mutant
proteins must recruit the appropriate patient populations, as we
demonstrate that mutations show subgroup specificity in medullo-
blastoma. Our accurate mouse models of WNT-subgroup, SHH-
subgroup and subgroup-3 medulloblastoma should help with future
studies of the biological and therapeutic importance of the novel
genetic alterations described in this study.

METHODS SUMMARY
Human tumour and matched blood samples were obtained with informed
consent through an institutional review board approved protocol at St Jude
Children’s Research Hospital. WGS and analysis of WGS data were performed
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Figure 4 | Pik3caE545K accelerates but does not initiate WNT-subgroup
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as previously described50. Details of sequence coverage, custom capture and other
validation procedures are provided in Supplementary Information (Supplemen-
tary Tables 12–15). Immunohistochemistry and immunofluorescence of
human and mouse tissues were performed using routine techniques and primary
antibodies of the appropriate tissues as described (Supplementary Methods).
Medulloblastoma mRNA and DNA profiles were generated using Affymetrix
U133v2 and SNP 6.0 arrays, respectively (Supplementary Methods). Real-time
PCR with reverse transcriptase (RT–PCR) analysis of genes targeted in mouse
LRLPs by shRNAswere performed as described previously32. LRLPswere isolated
and transduced with indicated lentiviruses in stem cell cultures or targeted
in utero with shRNAs or mutant cDNA sequences by electroporation as
described5 (Supplementary Information). Mice harbouring a Cre-inducible
Pik3caE545K allele were generated using homologous recombination: a lox-
puro-STOP-lox cassette was introduced immediately upstream of the exon con-
taining the initiation codon, exon 9 was replaced with an exon containing the
E545Kmutation. Pik3caE545Kmice were bred with Blbp-Cre;Ctnnb1lox(Ex3)/lox(Ex3)

and Tp53flx/flx mice to generate progeny of the appropriate genotype and sub-
jected to clinical surveillance.
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