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Abstract

Neurodegenerative disorders including Alzheimer's and Parkinson's diseases, amyotrophic lateral

sclerosis, and stroke are rapidly increasing as population ages. The field of nanomedicine is rapidly

expanding and promises revolutionary advances to the diagnosis and treatment of devastating human

diseases. This paper provides an overview of novel nanomaterials that have potential to improve

diagnosis and therapy of neurodegenerative disorders. Examples include liposomes, nanoparticles,

polymeric micelles, block ionomer complexes, nanogels, and dendrimers that have been tested

clinically or in experimental models for delivery of drugs, genes, and imaging agents. More recently

discovered nanotubes and nanofibers are evaluated as promising scaffolds for neuroregeneration.

Novel experimental neuroprotective strategies also include nanomaterials, such as fullerenes, which

have antioxidant properties to eliminate reactive oxygen species in the brain to mitigate oxidative

stress. Novel technologies to enable these materials to cross the blood brain barrier will allow efficient

systemic delivery of therapeutic and diagnostic agents to the brain. Furthermore, by combining such

nanomaterials with cell-based delivery strategies, the outcomes of neurodegenerative disorders can

be greatly improved.
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Introduction

Disorders of the central nervous system (CNS) are numerous, diverse, frequently severe, and

affect a large portion of the world's population. Epilepsy, migraine, chronic pain and psychiatric
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disorders such as anxiety, depression, and schizophrenia are debilitating conditions that

significantly affect the morbidity and mortality of modern society. In neurodegenerative

diseases, such as Alzheimer's diseases (AD), Parkinson's diseases (PD) and multiple sclerosis,

patients experience symptoms related to movement, memory, and dementia due to the gradual

loss of neurons. Brain tumors constitute a profound and unsolved clinical problem and are a

common cause of cancer-related death especially for children. The causes of CNS disorders

are complex and associated with many factors such as advancing age, environmental cues, and

disordered immunity and less with the host genetics (Mayeux 2003).

Diagnosis and treatment of CNS disorders represents a considerable challenge. There are many

devastating and pervasive disorders, for which there are few safe and effective therapeutic

options. This is mainly due to the unique and complicated environment imposed by the CNS.

The restricted anatomical access of the CNS makes any diagnosis or surgery-based therapy

more difficult than any other disease site. The blood–brain barrier (BBB) represents a

formidable obstacle for most macromolecules and small molecules to enter the brain (de Boer

and Gaillard 2007). Thus, treatment of CNS disorders by systemic administration or local

delivery of drugs is currently inefficient in many cases. Furthermore, clinical neuroscience

faces great challenges due to the extremely heterogeneous cellular and molecular environment

and the complexities of the brain's anatomical and functional “wiring” and associated

information processing (Silva 2005). However, the emergence of nanotechnology provides

hope that it will revolutionize diagnosis and treatment of CNS disorders.

The origin of nanotechnology can be traced back to 1959 when physicist Richard Feynman

(1960) recognized the potential of manipulating individual atoms and molecules at the

nanometer scale and suggested that materials at this scale possess unique physical properties.

The nanotechnology field encompasses concepts and approaches deeply rooted in physics,

polymer and colloidal chemistry, pharmaceutics, biomaterials, as well as cell and molecular

biology and biophysics. The main theme of nanotechnology is the development and use of

nanometer-scale materials that display unique functional properties not shown by bulk

materials. Examples of nanomaterials include nanotubes and nanofibers, liposomes,

nanoparticles, polymeric micelles, block ionomer complexes, nanogels, and dendrimers. Such

nanomaterials can interact with biological systems at a molecular and supra-molecular level,

can be tailored to respond to specific cell environments and even to induce desired

physiological responses in cells, while minimizing unwanted side effects. The unique structural

organization and function of these nanomaterials, as well as their potential applications for

treatment of CNS disorders, are discussed in this review.

Nanomaterial scaffolds for neuroregeneration

Neurodegenerative diseases are usually linked to a loss of brain and spinal cord cells. For

example, the neuronal damage in AD and PD is associated with abnormal protein processing

and accumulation and results in gradual cognitive and motor deterioration (Shaw et al. 2007).

Neuronal deterioration is also found in the conditions of stroke, heat stress, head and spinal

cord trauma, and bleeding that occurs in the brain. One promising strategy for treatment of

neurodegenerative diseases is to support and promote neurite and axonal growth by implanting

nanometer-scale scaffolds using tissue-engineering approaches.

Some promising nanomaterials to use for this application are nanotubes and nanofibers. These

materials mimic tubular structures that appear in nature, such as rod shaped bacteria or viruses,

microtubules, ion channels, as well as axons and dendrites. They are low-dimensional nano-

structures, having a very large axial ratio. Current methods for synthesis of these nanomaterials

allow for manipulation of their length-to-volume ratio. For example, the diameter of semi-

conducting nanotubes and nanofibers can be reduced to enhance conductivity. Variation in the
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surface curvature of these materials can cause different levels of strain on the constituent

molecules. In this way, properties of a molecule in a nanotube or nanofiber structure can be

different from those in the bulk or in other nanomaterials, such as spherical nanoparticles. Also,

these materials have a large surface–volume ratio, which results in a high exposure of the

material components to the surrounding environment. This makes nanotubes and nanofibers

promising structures for biosensing and molecular recognition. Also, it provides a way to

control drug release through the nanotube wall, while the large hollow area inside nanotubes

provides an excellent storage for drugs and other agents. Furthermore, nanotubes can be

synthesized to be open-ended, which can be exploited for certain biological applications

(Hartgerink et al. 1996; Martin and Kohli 2003; Greiner et al. 2006; Tsai et al. 2006).

Discovery of carbon nanotubes (CNTs) is attributed to Sumio Iijima (1991), although some

earlier reports from different laboratories also described hollow nanosized carbon tubes

(Oberlin et al. 1976). CNTs are composed of carbon atoms arranged in hexagonal ring

structures similar to graphite, with some five-membered or seven-membered rings providing

the structure curvature (Baxendale 2003). CNTs and related carbon spheres and buckyballs

belong to a broader class of carbon allotropes named fullerenes. The discovery of fullerene

chemistry in 1985 is attributed to H. Kroto, R. Curl, and R. Smalley (Kroto et al. 1985), who

were awarded the Nobel Prize in chemistry in 1996 for this discovery. These materials can be

synthesized through discharge of arc-burned graphite rods, laser ablation, chemical vapor

deposition, or high-pressure carbon monoxide (Hirsch et al. 2005). Studies have reported that

CNTs are compatible with biological tissues for scaffolding purposes and that the charge

carried by the nanotubes can be manipulated to control neurite outgrowth (Lovat et al. 2005).

Another study also suggested that CNTs functionalized with growth factors, such as nerve

growth factor or brain-derived neurotrophic factor, can stimulate growth of neurons on the

nanotube scaffold (Matsumoto et al. 2007). The toxicity of CNTs remains an issue in such

applications. Recent reports suggest that such materials can induce lipid peroxidation and

oxidative stress, pulmonary toxicity, carcinotoxicity, as well as toxicity from synthetic

impurities (Lacerda et al. 2006). Furthermore, they are hydrophobic and tend to aggregate in

the body fluids.

Although the majority of early work focused on CNTs, several new techniques have been

recently described which can produce nanotubes from a variety of other materials, including

synthetic polymers, DNA, proteins, lipids, silicon, and glass (Martin 1994; Greiner et al.

2006; Tsai et al. 2006; Yuwono and Hartgerink 2007). These techniques include templating of

nanotubes on porous templates, such as alumina or silica (Fig. 1a), on electrospun nanofibers

of degradable polymers (Fig. 1b), or using self-assembled nanofibers of peptide molecules

(Fig. 1c). These techniques allow for the production of various nanotube designs, including

layered nanotubes, conducting nanotubes, and biopolymer nanotubes from proteins or DNA.

Multilayer nanotubes with a controlled wall diameter and different materials in the layers can

also be synthesized by templating (Liang et al. 2003). For example, a recent study reported a

nanotube produced by a layer-based assembly of cytochrome C, poly(sodium styrene

sulfonate), and poly(ethylenimine) (PEI). The enzyme incorporated in such nanotubes retained

its catalytic activity, suggesting that it may be possible to use these materials to catalyze redox

processes (Tian et al. 2006). Similar designs have also been used to produce nanotubes with

glucose oxidase and hemoglobin (Hou et al. 2005b). As a result, novel nanomaterials are

available that have decreased toxicity and increased biocompatibility compared to CNTs. For

example, nanotubes made of conducting polymers, such as polypyrrole, polyaniline, poly (3-

hexylthiophene), and poly(3,4-ethylenedioxythiophene) (PEDOT) can be synthesized by

electrochemical polymerization on a porous surface (Xiao et al. 2007). Although these

nanotubes were initially applied in electronic devices (Xiao et al. 2007), they also have

significant potential in biomedical applications. A recent study by D. C. Martin and colleagues

developed conductive nanotubes, which can be electrically stimulated for a controlled release
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of drugs (Abidian et al. 2006). For this purpose, they generated PEDOT nanotubes with

biodegradable poly(lactide-coglycolide) (PLGA) fiber cores loaded with dexamethasone.

PLGA fibers with the nanotube coating substantially slowed down the release of

dexamethasone compared to uncoated fibers. However, an electrical stimulation to the

nanotube caused it to dilate and facilitated the drug release. This design can be used to deliver

drugs to neural prosthetic devices. Furthermore, similar designs can be also used for local

neurite outgrowth stimulation, neural tissue regeneration, as well as local release of drugs to

other specific populations of cells. More recently the same group used PEDOT nanotubes to

generate conductive polymer coatings for living neural cells (Richardson-Burns et al. 2007).

In this setup, the electric conductivity of PEDOT was used to enhance the electrical activity

of the tissue with a long range aim of treating CNS disorders, which show sensory and motor

impairments. On a downside, this study reported that cells coated with the polymers showed

increased apoptosis, increased permeability, and cytoskeletal changes. Nevertheless, future

designs of nanotubes as neuronal scaffolds may provide novel modalities for treatment of

neurodegenerative diseases.

These studies may be aided by using well-known biocompatible polymers, such as poly(α-

hydroxy acids)-poly(lactic acid) (PLA), poly(glycolic acid) and PLGA. For example, PLA was

successfully used to produce nanomaterial scaffolds for tissue regeneration after spinalcord

injury (Yang et al. 2004). In this study, scaffolds of nanoscale PLA fibers with diameters of

50∼350 nm were fabricated using liquid–liquid separation in tetrahydrofuran system. The

neonatal mouse cerebellar progenitor cells cultured with such scaffolds were shown to extend

neurites and differentiate into mature neurons. All together, these observations suggested that

nanotube and nanofiber scaffolds have potential for neuroregeneration as well as treatment of

CNS trauma.

These approaches may be greatly enhanced by new possibilities of assembling nanotubes and

nanofibers from biologically active molecules, such as certain peptides and proteins (Tsai et

al. 2006). For instance, a well-known antibiotic, gramicidin A, has a tubular structure forming

transmembrane ion-channels. Similar characteristic features have been used to design other

nanotube-forming peptides. In this design, cyclic peptides with an even number of alternating

D- and L-amino acids assemble in β-sheet-like structures with outward-facing side chains, which

are stabilized by hydrophobic packing and a network of hydrogen bonds (Hartgerink et al.

1996). Peptide nanofibers have been examined as potential neuronal scaffolds. In one study,

nanofibers of self-assembling peptide molecules (IKVAV) were shown to promote and support

neuronal regeneration (Silva et al. 2004). In physiological conditions, the peptide molecules

self-assemble into a dense three-dimensional network of nanofibers, which expose the neurite-

promoting laminin epitope. Such networks mimic the neuron-specific extracellular matrix and

induce very rapid differentiation of cells into neurons, without stimulation of the growth of

astrocytes. In another publication, a nanofiber scaffold of self-assembling peptide (RADA)

was shown to induce regeneration of axons with sufficient density to promote functional return

of vision (Ellis-Behnke et al. 2006).

DNA and other polynucleotide molecules can also be successfully incorporated into nanotubes.

For example, dual-functionalized nanotubes were developed for use either as molecular probes

or DNA carriers (Jang et al. 2006). These nanotubes were fabricated in the pores of an anodic

alumina oxide membrane using a pyrrole-2-carboxylic acid monomer and then functionalized

by attachment of silica-NH2 nanoparticles. To obtain a molecular probe, the free amino groups

of these nanotubes were modified with pyrene acetic acid. To obtain a DNA carrier, the

carboxyl groups of the nanotubes were used to conjugate DNA. Another study reported

nanotubes designed with multiple layers of hybridized DNA fragments (Hou et al. 2005a).

These materials were unstable, as the DNA dissociated from the nanotubes at temperatures

above the DNA melting point. However, stabilization may be achieved by adding extra ‘outer
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skin’ layers, e.g., α,ω-diorganophosphonate Zr(IV), and the resulting materials may have

potential applications in DNA delivery. One work in this direction by Li et al. described

nanotubes composed of cationic dipeptides that were loaded with ssDNA and then shown to

spontaneously disassemble into vesicles and enter into cells (Yan et al. 2007). C. R. Martin et

al. developed 380 nm long nanotubes, which are open at one end and closed at the other, which

they refer to as “nano test tubes” (Buyukserin et al. 2007). Such tubes can be loaded with drug

and DNA and used as nanocontainers for drug delivery. All together, these examples suggest

that nanotechnology can provide a new range of promising applications for neuroregeneration

by combining tissue and cell engineering with drug- and gene-delivery approaches.

Nanomaterials for neuroprotection

Neuroprotection is an effect that may result in salvage, recovery, or regeneration of the nervous

system. A promising neuroprotective strategy involves mitigating oxidative stress, which is

believed to be a key neuropathological process that contributes to CNS ischemia, trauma, and

degenerative disorders (Metodiewa and Koska 2000) Hence, some recent studies focused on

using nanomaterials having antioxidant properties to eliminate reactive oxygen species (ROS)

in the brain (Blass 2003). For example, nanoparticles composed of cerium and yttrium oxides

(CeO2 and Y2O3) can act as direct antioxidants and inhibit the ROS production pathway.

Neuroprotective effect of these nanoparticles were shown using HT22 hippocampal neuronal

cell line (Schubert et al. 2006). Separately, many recent studies focused on potential

neuroprotective effects of fullerenes. Fullerenes are composed of three-dimensional arrays of

evenly spaced carbon atoms with extensive interconnecting double bonds. As a result, water-

soluble derivatives of fullerenes display high reactivity with respect to oxygen free radicals

and possess antioxidant and free-radical scavenger properties. Specifically, polyhydroxylated

C60 fullerenol was shown to inhibit glutamate receptors, which can further induce elevation of

intracellular calcium and lead to reduction of neuronal toxicity (Jin et al. 2000). Furthermore,

a water-soluble carboxyfullerene, malonic acid C60 derivative exhibited neuroprotective

effects in vitro by limiting excitotoxicity (Dugan et al. 1997) and apoptosis of cultured cortical

neurons and in vivo by delaying the onset of motor degeneration in a mouse model of familial

amyotrophic lateral sclerosis (Dugan et al. 2001). In another study, fullerene C60 core was

modified with a layer of malonate ester dendrimers, which increased solubility and reactive

surface area of the nanoparticles. The resulting core-shell material possessed even more

pronounced antioxidant activity than fullerenol (Hirsch 2003).

However, as already mentioned above, toxicity of fullerenes hinders their application in clinical

neuroscience. In particular, ability of fullerenes to induce lipid peroxidation has caused serious

concern. A recent study of largemouth bass exposure to pure unmodified fullerenes showed

that C60 fullerenes localized to the brain and led to an increase in lipid peroxidation, as well

as a decrease of glutathione in the gill (Oberdorster 2004). Part of the problem may be related

to hydrophobicity of fullerenes and their propensity to aggregate and interact with the cell

membranes. There are indications that these problems may be mitigated by surface

modifications of fullerenes. For example, some modifications that decrease surface

hydrophobicity and increase solubility of the CNTs were also shown to decrease CNTs

cytotoxicity (Sayes et al. 2006). Furthermore, there are reports suggesting that ability of

fullerenes to generate free radicals may be due to metal ion impurities that can be removed

from fullerene samples. One work concluded that the free-radical generation by commercial

single-walled CNTs (SWCNTs) can be abolished by separating SWCNTs from iron impurities

(Pulskamp et al. 2007). It was also shown that simple filtering of SWCNTs can decrease their

toxicity with respect to smooth muscle cells (SMC), as measured by SMC growth inhibition

(Raja et al. 2007). Another study evaluated the free-radical generation and scavenging activities

of purified multi-walled carbon nanotubes (MWCNTs; Fenoglio et al. 2006). It was found that

purified MWCNTs do not produce free radicals but display scavenging activity towards
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hydroxyl radicals and superoxide radicals. Hence, purification and chemical modification of

fullerenes aimed to increase solubility and decrease toxicity will be needed for their successful

application in medicine and clinical neuroscience.

Nanomaterials for drug delivery across the blood–brain barrier

The BBB is the most restrictive barrier in the body, which prevents most small molecules and

nearly all macromolecules from entering the CNS (de Boer and Gaillard 2007). Current

strategies used for drug delivery to the brain include invasive delivery, temporary disruption

of the BBB, as well as the use of drug-delivery systems. While direct injection in selected cases

can be an effective invasive modality for local delivery (e.g., in some tumors), it is not efficient

for brain metastasis or neurodegenerative diseases, which require therapeutic agents to be

widely spread in the brain (de Boer and Gaillard 2007). Reversible opening of the BBB by an

osmotic or chemical method allows therapeutic agents to enter the brain (Fortin 2003).

However, this approach can also result in significant damage to the brain. In comparison,

selective delivery of diagnostic and therapeutic molecules to the whole brain through the

vascular route using drug-delivery system is much less invasive and is potentially safe. This

strategy has been receiving significant attention with remarkable development of

nanomedicine. Recent advances in using polymers and nanotechnology for effective drug

delivery to the brain have been comprehensively reviewed elsewhere (Kabanov and

Gendelman 2007) This section presents a brief overview of these technologies including

liposomes, nanoparticles, polymeric micelles, nanogels, and dendrimers for CNS drug

delivery.

Liposomes are, perhaps, the earliest type of nanomaterial developed for drug delivery (Maurer

et al. 2001). They are vesicles composed of one (unilamellar) or several (multilamellar) lipid

bilayers surrounding internal aqueous compartments. Relatively large amounts of drug

molecules can be incorporated into the aqueous compartment (water-soluble compounds) or

lipid bilayers (lipophilic compounds). Conventional liposomes are rapidly cleared from

circulation by the reticuloendothelial system (RES). Extended circulation time can be

accomplished by decreasing the particle size (<100 nm) and by liposome-surface modification

with polyethylene glycol (PEG). To target PEGylated liposomes to the brain, they can be

additionally modified (vectorized) with monoclonal antibodies to glial fibrillary acidic proteins

(Pardridge 1999; Chekhonin et al. 2005), transferrin receptors (OX26), or human insulin

receptors (83–14 Mab; Pardridge 1999). Such immunoliposome constructs were successfully

used to deliver small drugs, Daunomycin and Digoxin, as well as DNA to the brain (Shi et al.

2001).

Nanoparticles (NPs) are solid colloidal particles often made of insoluble (bio) degradable

polymers. As carriers for drug delivery to the brain, NPs need to be small (<100 nm) and stabile

in the blood, as well as avoid the RES, neutrophil activation, platelet aggregation, and

inflammation (Lockman et al. 2002). Surfactant-coated polybutylcyanoacrylate NPs were

shown to successfully deliver analgesics (Dalargin, Loperamide), anti-cancer agents

(Doxorubicin), and anticonvulsants (NMDA receptor antagonist, MRZ 2/576) across the BBB

(Kreuter et al. 2003). In another work, NPs conjugated with the metal chelator, Desferioxamine,

were reported to cross the BBB and reduce the metal load in neuronal tissue (Cui et al. 2005).

These results would be of significance for mitigating the harmful effects of oxidative damage

in AD and other neurodegenerative diseases. Overall, the mechanism of entry of NPs as well

as liposomes into the brain remains unclear and, in some cases, may include disruption of the

tight junctions of brain microvessel endothelial cells forming the BBB.

Polymeric micelles are another type of nanomaterial that have attracted considerable attention

as carriers for drug delivery (Kataoka et al. 2001; Kabanov and Alakhov 2002; Kwon 2003;
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Allen and Cullis 2004; Torchilin 2004; Aliabadi and Lavasanifar 2006) and diagnostic imaging

agents (Torchilin 2002). These micelles form spontaneously in aqueous solutions of

amphiphilic block copolymers and have core-shell architecture. The core is composed of

hydrophobic polymer blocks [e.g., poly(propylene glycol) (PPG), poly(D,L-lactide), poly

(caprolactone), etc.] and a shell of hydrophilic polymer blocks (often PEG). The size of

polymeric micelles usually varies from ca. 10 to 100 nm. Their core can incorporate

considerable amounts (up to 20–30% weight) of water-insoluble drugs preventing premature

drug release and degradation. The shell stabilizes micelles in dispersion and masks the drug

from interactions with serum proteins and untargeted cells. After reaching target cells, the drug

is released from the micelle via diffusion. Several clinical trials are completed or are underway

to evaluate polymeric micelles for delivery of anti-cancer drugs (Danson et al. 2004; Kim et

al. 2004; Matsumura et al. 2004; Armstrong et al. 2006; Matsumura 2006).

One study has shown that polymeric micelles of Pluronic block copolymers, after conjugation

with an antibody against α2-glycoprotein or insulin, showed increased delivery of a drug

(haloperidol) or a fluorescent probe to the brain in vivo (Kabanov et al. 1989). Pluronic block

copolymers contain two hydrophilic PEG and one hydrophobic PPG blocks (PEG-PPG-PEG).

They were shown to bind with the membranes of brain microvessel endothelial cells and to

inhibit a drug efflux transport protein, Pglycoprotein (Pgp) that severely restricts transport of

many drugs to the brain (Batrakova et al. 1998, 2001) As a result of formulating Pgp-dependent

drugs with Pluronic, the bioavailability of such drugs to the brain was increased. Another recent

work used Pluronic molecules capable of crossing the membranes of brain microvessel

endothelial cells to increase delivery of proteins to the brain (Batrakova et al. 2005). It was

shown that by conjugating Pluronic molecules with a model protein, horseradish peroxidase

(HRP), the transport of HRP across the BBB in vitro and in vivo was considerably enhanced.

All together, significant promise has been achieved by utilizing Pluronic block copolymers

and polymeric micelle systems for CNS drug delivery, and one should expect further research

and development in this direction.

Polyion complex micelles (also termed “block ionomer complexes”) are novel nanosystems

for incorporation of charged molecules. They are formed as a result of the reaction of double

hydrophilic block copolymers containing ionic and nonionic blocks with macromolecules of

opposite charge including oligonucleotides, plasmid DNA and proteins (Kabanov et al.

1995; Harada and Kataoka 1999a, b; Nguyen et al. 2000; Zhang et al. 2003; Jaturanpinyo et

al. 2004), or surfactants of opposite charge (Bronich et al. 1997, 1998, 1999, 2000; Solomatin

et al. 2003, 2004). For example, block ionomer complexes were prepared by reacting trypsin

or lysozyme (that are positively charged under physiological conditions) with an anionic block

copolymer, PEG-poly(α,β-aspartic acid) (Harada and Kataoka 1999b; Jaturanpinyo et al.

2004). Such complexes spontaneously assemble into nanosized particles having core-shell

architecture (Fig. 2). The core contains polyion complexes of a biomacromolecule and an ionic

block of the copolymer. The shell is formed by the nonionic block. In the case of surfactant-

based complexes, the core is composed of mutually neutralized surfactant ions and polyion

chains. It contains hydrophobic domains of surfactant tail groups and can additionally

incorporate water-insoluble drugs (Bronich et al. 1999; Oh et al. 2006). Depending on

surfactant and block copolymer architectures, the complexes assume different morphologies

including vesicles and micelles of different shapes (Bronich et al. 1998; Solomatin et al.

2007). These nanomaterials are versatile and can incorporate solutes of different structures

with a high loading capacity. Furthermore, they can release solutes upon change of

environmental conditions such as pH (acidification), concentration, and chemical structure of

elementary salt (Solomatin et al. 2003; Oh et al. 2006). These nanomaterials were shown to

efficiently deliver DNA molecules in vitro and in vivo (Roy et al. 1999; Nguyen et al. 2000;

Harada-Shiba et al. 2002; Junghans et al. 2005), and were used to stabilize enzymes for cell-

mediated drug delivery discussed in the next section.
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Nanogels are another novel class of nanomaterials proposed in our laboratories for drug

delivery (Vinogradov et al. 2002). They represent hydrogels of cross-linked polymer networks

that often combine ionic and nonionic chains. Such networks can incorporate charged

molecules such as siRNA, DNA, oligonucleotides, and low-molecular-mass compounds,

which bind to oppositely charged ionic chains. Nanogels were shown to enhance transport of

incorporated oligonucleotides to the brain in vitro and in vivo (Vinogradov et al. 2004). The

mechanism of nanogel-mediated delivery of oligonucleotides apparently involves transcytosis

across brain microvessel endothelial cells. The permeability of oligonucleotides with nanogels

was enhanced when the nanogel surface was modified with polypeptides (transferrin or insulin)

that bind receptors at the luminal side of the brain microvessel endothelial cells and transport

to their abluminal side. Nanogels are currently being investigated for CNS delivery of various

low-molecular-mass compounds and biomacromolecules including nucleoside analogs and

plasmid DNA (Vinogradov 2006).

Finally, many studies focused on using dendrimers as carriers of small drugs and

biomacromolecules. Dendrimers are repeatedly branched polymer molecules containing

cascade of branches grown from one or several cores. They contain three architectural domains:

(1) the core, to which the branches are attached, (2) the shell of the branches surrounding the

core, and (3) the multivalent surface formed by the branches termini (Svenson and Tomalia

2005). Compared to most other nanomaterials described in this section, dendrimers have a

smaller size and lower polydispersity (Jean 2003). A typical dendrimer molecule, for example

poly(amidoamine) (PAMAM) dendrimer, has a diameter ranging from 1.5 to 14.5 nm (Hahn

et al. 2002). Various solutes can be entrapped within the dendrimer interior cavities (“dendritic

boxes”) during the dendrimer synthesis (Fig. 3a). In this case, a dense shell can prevent

diffusion of the solutes from the interior, even after prolonged heating, solvent extraction, or

sonication (D'Emanuele and Attwood 2005). Dendritic boxes may be suitable for drug delivery

if a shell can be degraded under physiological conditions resulting in drug release. Dendritic

structures can also be used as building blocks for attachment of various functional moieties to

the surface. For example, hydrophobic and hydrophilic polymer blocks can be grafted to the

surface resulting in formation of unimolecular micelles (Fig. 3b; Liu et al. 2000; Wang et al.

2005; Tsai et al. 2006; Yang and Kao 2006). Unlike conventional micelles, such unimolecular

micelles are stable upon dilution and do not disintegrate during circulation in the body.

Several studies evaluated dendrimers for CNS intratumoral delivery of dendrimer conjugates

with anti-cancer agents to treat glioma (Wu et al. 2006; Yang et al. 2006). Transport of

dendrimers across cell barriers was evaluated using intestinal epithelial cells (Caco-2; Kitchens

et al. 2005). Notably, the generation and surface properties of dendrimers were found to be

very important. Cationic dendrimers were generally more toxic and disrupted the tight

junctions. These effects increased as dendrimer generation and, consequently, net surface area

increased. Surface modification of dendrimers with carboxylic groups greatly decreased the

toxicity, although the modified dendrimers still opened tight junctions. It is also well known

that the fourth- and fifth-generation PAMAM dendrimers can bind DNA and enhance DNA

delivery into a cell (Haensler and Szoka 1993). It has recently been demonstrated that

Starburst™ PAMAM dendrimer/DNA complexes can also penetrate the BBB resulting in

enhanced expression of a reporter gene in the brain (Ding et al. 2005). Gene transfer into brain

capillary cells have been also shown using a transferrin-conjugated PEG-modified PAMAM

dendrimer (Huang et al. 2007). A widespread expression of an exogenous gene in mouse brain

was observed after i.v. administration of complexes of this dendrimer and DNA, suggesting

potential use of such materials as nonviral vectors for CNS gene delivery.

Clearly, the use of polymers and nanomaterials for drug delivery to the brain is still in its

infancy. However, one should expect new developments in this area, which ultimately can

revolutionize the diagnosis and therapy of neurodegenerative disorders. Notably, several
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nanoscale drugs (“nanomedicines”), such as liposomal Doxorubicin, Doxil (Gabizon et al.

2006) or albumin-bound Paclitaxel, Abraxane (Gradishar 2006) have been used in clinic

already for treatment of cancer and other diseases. Others, such as Doxorubicin incorporated

in polymer micelles, SP1049C (Danson et al. 2004; Armstrong et al. 2006) and NK911

(Matsumura et al. 2004), are in clinical trials. Most importantly, such studies have demonstrated

that nano-materials can be safely administered in the human body. Clearly, some of the

approaches developed in these earlier studies can and will be extended to develop efficient

therapeutic modalities for neurodegenerative disorders.

Cells and nanomaterial hybrids for clinical neuroscience

In addition to use of nanomaterials as cell and tissue scaffolds, which in essence, places

nanomaterial outside of the cell, nanomaterials can be placed inside of the cells, resulting in

nanomaterial–cell hybrids, which have a variety of possible applications in medicine. One

application uses immune cells as carriers for nanomaterial delivery in the body. For example,

macrophages and microglia as well as other mononuclear phagocytes can endocytose colloidal

nanomaterials, for example, liposomes or nanosuspensions, and subsequently carry and release

the drug to site of tissue injury, infection, or disease (Daleke et al. 1990; Jain et al. 2003;

Gorantla et al. 2006). Recent works by H. E. Gendelman and colleagues demonstrate that bone-

marrow-derived monocytes (BMM) can be used as carriers of nanoformulated drugs, both in

the periphery and across the BBB (Dou et al. 2006; Dou et al. 2007). In these studies, an anti-

retroviral drug, Indinavir, was fabricated into nano-suspensions, which were then internalized

into BMM. The acidic environment within the lysosomes allowed Indinavir to be steadily

released from the nanosuspensions and outside the macrophages. After a single intravenous

administration of BMM-laden Indinavir nanoparticles, a robust of BMM and drug distribution

was observed in lung, liver, and spleen. Tissue and sera Indinavir levels were high and lasted

for 2 weeks. Indinavir nanosuspension BMM administered to Human immunodeficiency virus

type 1 (HIV-1)-challenged humanized mice revealed reduced numbers of virus-infected cells

in plasma, lymph nodes, spleen, liver, and lung, as well as, CD4+ T-cell protection. These data

demonstrate that a single dose of Indinavir nanosuspension, using BMM as a carrier, is effective

and leads the way towards consideration for human testing.

Entry of immune cells into the brain occurs as a consequence of the establishment of a

chemokine gradient induced through neuroinflammatory responses (Kadiu et al. 2005).

Moreover, the ability of BMM to cross BBB was also investigated (Lawson et al. 1992;

Kurkowska-Jastrzebska et al. 1999a, b; Streit et al. 1999; Male and Rezaie 2001; Simard and

Rivest 2004) In particular, it was demonstrated that monocytes infiltrate the brain in the 1-

methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD (Kurkowska-

Jastrzebska et al. 1999a, b; Kokovay and Cunningham 2005).

Based on this, our laboratories developed cell mediated delivery of catalase nanozyme to the

brain to mitigate production of ROS and induce neuroprotection (Batrakova et al. 2007). To

preclude BMM-mediated enzyme degradation, catalase was packaged into a block ionomer

complex with a cationic block copolymer, PEI-PEG. The self-assembled catalase/PEI-PEG

complexes, were ca. 60 to 100 nm in size, stable in pH and ionic strength, and retained

antioxidant activities. Nanozyme particles were rapidly (40–60 min) taken up by BMM, and

released in active form for greater than 24 hours. The released enzyme decomposed microglial

hydrogen peroxide. Following adoptive transfer of nanozyme-loaded BMM to MPTP-

intoxicated mice, ca. 0.6% of the injected dose was found in the brain. Hence, nanozymes

coupled with cell-delivery strategies can reduce oxidative stress in laboratory and animal

models of PD. Parallel efforts are using the same system for delivery of growth factors and

other anti-inflammatory nanomedicines in divergent neurodegenerative diseases. These

diseases would collectively benefit from immunomodulation, neurotrophic factors such as glial
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derived neurotrophic factor, or brain-derived neurotrophic factor, and in the case of HIV-1

disease, anti-retroviral therapy (Kabanov and Gendelman 2007).

Conclusion

Although applications of nanotechnologies in clinical neuroscience are only in the early stages

of development, the possibilities offered by using these nanomaterials for treatment and

diagnosis of CNS disorders are outstanding. As presented in this review, various nanomaterials

and nanodevices can be used in neural regeneration, neuroprotection, and targeted delivery of

drugs and macromolecules across the BBB. These systems have significant potential for

clinical applications. All together, these works lay an important foundation for future studies

into improving diagnosis and therapy of human disease. With the threat of significant increases

in the prevalence and incidence of human neurodegenerative disorders, these advances are very

much needed.
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Fig. 1.

Nanotube synthesis. a Template synthesis on a porous surface; b template synthesis on

electrospun biodegradable nanofibers; c peptide nanotube self-assembly
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Fig. 2.

Block ionomer complexes. Block ionomer complexes contain hydrophilic shell and

hydrophobic core. The hydrophilic shell is formed by the nonionic PEG. The core is formed

by neutralized polyions of opposite charge such as complexes of synthetic polyions (a),

polycation and plasmid DNA (b), polycation and siRNA (c), polycation (or polyanion) and

protein (d), or peptide (e). The ionic chains in the core can be further cross-linked to form

polymer networks that can incorporate small polypeptides, or charged hydrophobic drug

molecules (f)
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Fig. 3.

Dendrimer structures. a Dendritic box b unimolecular micelle
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