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Noncommutative cryptography (NCC) is truly a fascinating area with great hope of advancing performance and security for high
end applications. It provides a high level of safety measures. 	e basis of this group is established on the hidden subgroup or
sub
eld problem (HSP). 	e major focus in this manuscript is to establish the cryptographic schemes on the extra special group
(ESG). ESG is showing one of the most appropriate noncommutative platforms for the solution of an open problem. 	e working
principle is based on the randompolynomials chosen by the communicating parties to secure key exchange, encryption-decryption,
and authentication schemes.	is group supports Heisenberg, dihedral order, and quaternion group. Further, this is enhanced from
the general group elements to equivalent ring elements, known by the monomials generations for the cryptographic schemes. In
this regard, special or peculiar matrices show the potential advantages. 	e projected approach is exclusively based on the typical
sparse matrices, and an analysis report is presented ful
lling the central cryptographic requirements. 	e order of this group is
more challenging to assail like length based, automorphism, and brute-force attacks.

1. Introduction

Cryptography is a discipline of computer science, where
algorithms and security practices are acting as a central tool.
	is is traditionally based on the mathematical foundation.
	epractical applications contain the assurance of legitimacy,
protection of information from confessing, and protected
message communication systems for essential requirements.
To enforce security, the cryptographic schemes are con-
cerning the vital role responsiveness in the 
eld of security
for numerous relevant applications all over the world. 	e
absolute measure of cryptographic approaches shows the
full-�edged appropriateness. But the serenities fondness with
an assortment of more arbitrariness and impulsiveness with
statistical responses is the motivational issue.

Public key cryptography (PKC) thought was 
rst pro-
posed byDi�e andHellman [1]. Since then there are varieties
of PKC algorithms that have been proposed, where Elliptic
Curve Cryptography (ECC) [2, 3] in all of them has attracted
the most attention in the cryptographic area. ECC has played

a crucial role that made a big impact on the lower compu-
tational and communicational cost. Today ECC considered
being tenable, but researchers are looking for alternative
approaches for future security by not putting all the security
protocols in one group only, that is, commutative group. On
behalf of the open opinion, a brief analysis is presented below.

Peter’s [4], in 1994, proposed a competent quantum
algorithm for solving the discrete logarithm problem (DLP)
and integer factorization problem (IFP). A Kitaev framework
in 1996 [5] considered as a special case on DLP, called
hidden subgroup or sub
eld problem (HSP). Stinson sensibly
observed, in 2002, the most eternal PKCs belonging to
a commutative or abelian group only, whose intention is
susceptible in the forthcoming future. According to the same
cryptographers Goldreich and Lee advised that we do not
put all cryptographic protocols in one group. 	e reason
was clear to introduce a new 
eld of cryptography; this
was only the opening of noncommutative cryptography [6].
	en a�erwards for key exchange, encryption-decryption
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(ED) and authentication schemes for cryptographic proto-
cols on noncommutative cryptography were developed for
various problems. 	ose were analogous protocols like the
commutative cases. 	e elliptic curve over the HSP [7]
comprehensively resolved on DLP, as recognized by ECC-
DLP.	e randomHSP over noncommutative groups are well
organized on quantum algorithms, which are well responsive.
Further, the evidences are recommending that HSP over
noncommutative groups are much harder [8].

	e earlier structure of noncommutative cryptography
was based on the braid based cryptography for the gener-
alizations of the protocols. A�erward several other struc-
tures like 	ompsons, polycyclic, Grigorchuk, or matrix
groups/ring elements were proposed. 	e cryptographic
primitives, methods, and systems of the noncommutative
cryptography are based on algebraic structures of group, ring,
and semiring elements. But in all of them matrix group of
elements has shown the prospective advantages. In contrast,
implementation in recent applications (protocols) using pub-
lic key cryptographic approaches on Di�e-Hellman, RSA,
and ECC is based on number theory. 	ey are solving the
various problems like session key establishments, encryption-
decryption, and authentication schemes.

	e basis of noncommutative cryptography is based on∗ (contains re�ection and/or rotation) operation on the
noncommutative group � of (�, ∗) that consists of group,
ring, semiring, or some algebraic structural elements, in
which two group elements � and � of � such that � ∗ � ̸=� ∗ � are known by noncommutative or nonabelian group.
	e group of these problems is broadly encompassed from
mathematics and physics.

1.1. Background. 	e generation of noncommutative crypto-
graphic approach has a solid backbone for security enhance-
ments and performances. A course of numerous attempts has
beenmade available for the same. A brief analysis is described
below.

(i) Wagner and Magyarik in 1985 [9] proposed undecid-
able word problems on semigroup elements for public
key cryptography (PKC). But Birget et al. [10] pointed
out that it is not based onword problem and proposed
a new system on 
nitely generated groups with a hard
problem.

(ii) On braid based cryptography, there is a compact key
established protocol proposed by Anshel et al. [11] in
1999.	e basis was di�culty in solving equations over
algebraic structures. In their research paper, they also
recommended that braid groups may subsist to be a
good alternate platform for PKC.

(iii) A�erwards, Ko et al. in 2000 [12] anticipated a new
PKC by using braid groups. 	e Conjugacy Search
Problem (CSP) is the intractability security founda-
tion, such as e�ective canonical lengths and braid
index when they are chosen suitably. Further, the area
under consideration met with immediate successes
by Dehornoy in 2004 [13], Anshel et al. in 2003 [14],
Anshel et al. in 2006 [15], and Cha et al. in 2001 [16].
Despite the fact, 2001 to 2003, recurring cryptanalytic

sensation, Ko et al. in 2002 [17] and Cheon and Jun
in 2003 [18] diminished the initial buoyancy on the
noteworthy theme, in Hughes and Tannenbaum in
2000 [19]. Many numbers of authors even proclaimed
the impetuous death of the braid based PKC, Bohli
et al. in 2006 [20] and Dehornoy in 2004 [21].
Dehornoy’s paper conducted a survey on the state of
the subject with signi
cant research, but still being
desirable for accomplishing a de
nite 
nal conclusion
on the cryptographic prospective of braid groups.

(iv) In 2001, Paeng et al. [22] also published a new PKC
built on 
nite nonabelian groups. 	eir method is
based on the DLP in the inner automorphism group
passing through the conjugation accomplishment.
	ese were further improved, named MOR systems.

(v) In the meantime, one-way function and trapdoors
generated on the 
nite 
elds were remarkable in
group theory by Magliveras et al. in 2002 [23]. Later
on, in 2002 Vasco et al. [24] con
rmed an appropriate
generality on factorization and a uniform description
of several cryptographic primitives on convincing
homomorphic cryptosystem; those were constructed
in the 
rst time for nonabelian groups. Meanwhile,
Magliveras et al. in [25] proposed a new approach to
designing public key cryptosystems using one-way
functions and trapdoors in 
nite groups. Grigoriev
and Ponomarenko [26] and Grigoriev and Pono-
marenko [27], consequently, extended the di�culty
of membership problems on integer matrices for a

nitely generated random group of elements.

(vi) 	e arithmetic key exchange is enlightened by
Eick and Kahrobaei 2004 [28] and an innovative
cryptosystem on polycyclic groups is proposed by
them. 	e structures of polycyclic groups are a
complex of their own cyclic group. 	e algorithmic
theory and investigation properties are more di�cult
which seems to have a more open proposal. 	e
progression tenure is a succession of subgroups of a
group � = �1 ⊳ �2 ⊳ ⋅ ⋅ ⋅ ⊳ ��+1 = {1}. For each
term of the series, succession not only is in the entire
group but also is not contained in the former term. A
group � is called polycyclic series with cyclic aspects;
that is, ��/��+1 is recurring for 	 = 1, . . . , 
.

(vii) Shpilrain and Ushakov in 2005 [29] recommended
that	ompson’s group is a good proposal for building
PKCs. 	e assumption under the decomposing
problem is intractable, ancillary to the Conjugacy
Search Problem, described over �.

(viii) In 2005, Mahalanobis [30] did not discriminate the�-
 key exchange protocol from a cyclic group to
a 
nitely presented nonabelian nilpotent group of
class 2. 	e nilpotent group is a normal series to
each quotient 
�/
�+1 lying in the center of �/
�+1
and supposed to be a central succession. A class of
nilpotent group is the shortest series length with its
shortest nilpotency degree. Engendered nilpotent

nite groups are polycyclic groups and moreover
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have a central series with cyclic factors. Also in 2006
Dehornoy proposed an authentication scheme based
on the le� self-distributive (LD) systems. 	is idea
was further developed by introducing the concept
of the one-way LD system structured by Wang et
al. in 2010 [31]. 	e algebraic association (�, ∗) is
called le� self-distributive for all elements �, �, � ∈ �,� ∗ (� ∗ �) = (� ∗ �)(� ∗ �).

(ix) To extract from a given � ∗ � and �, this system is
said to be one way, if it is intractable. LD system, in
general, is much di�erent from groups or semigroups
or semirings. Even the regarding facts are not
associative, so solitarily describing a nontrivial LD
system over any noncommutative group � via the
mapping � ∗ � ≜ ���.

(x) Moreover, if the Conjugacy Search Problem (CSP)
over � is intractable, the derivative of LD system is
treated as being one way.

(xi) In 2007, Cao et al. [32] proposed a method to use
polynomials over noncommutative rings or semi-
groups to build cryptographic scheme. 	is method
is referred to as the Z-modular method. Further,
the protocol application was based on nonabelian
dihedral order 6 by Kubo in 2008 [33] which is the
initial order for this group and construction is based
on three-dimensional revolutions.

(xii) In 2008, Reddy et al. [34], Z-modular method was
used to build signature schemes over noncommutative
groups and division rings.

(xiii) 	e cryptographic protocol implementation was
constructed on four-dimensional considerations by
D. N. Moldovyan and N. A. Moldovyan in 2010 [35].
	e perspectives were the generalizations for security
enhancement on the basis of noncommutative
groups.

(xiv) In 2014, Myasnikov and Ushakov [36] cryptanalyzed
the authentication scheme proposed by Shpilrain
and public key encryption to use the hardness of
the Conjugacy Search Problem in noncommutative
monoids. A heuristic algorithm, was devised by
those to solve these problems and declared that these
protocols are anxious.

(xv) Svozil in 2014 [37] proposed the metaphorical recog-
nized hidden variable onnoncontextual indecisiveness
that cannot be comprehended by quantum systems.
	e cryptanalytic attacks are not accompanied and
aligned by quasi con
gurations, and the theorems do
not subsist assembled proofs reclining over the same.

1.2. Motivation and Our Contribution. 	e issues related to
the ring structure of the group elements are one of the most
motivational concerns. A typical semiring structure, such as
sparse matrices, shows the potential advantages towards a
possible way to avoid the various attacks. 	e initial order
for general and monomials [original parameters are hidden,
and monomials structures provably equivalent consideration

takes part in computation process] structure on polynomial
Z-modular noncommutative cryptography is the foundation.

Our contribution is inmultidisciplinary scenario on extra
special group on the cryptographic protocol regarding the
key exchange, encryption-decryption, and authentication in
four-dimensional perspective.	e key idea is based on a spe-
cial case of prime order with more resistance to attacks, and
proposed approach works on the bigger range of probabilistic
theories.

1.3. Manuscript Organization. 	e content of manuscript
is organized into its subsequent sections. 	e next sec-
tion presents cryptographic preliminaries for modular poly-
nomial assumptions on general scalar multiplication and
monomials like scalar multiplication on group, ring, and
semiring elements. Section 3 presents the fundamental of the
proposed work on the extra special group and its elementary
analysis is elaborated. Sections 4 and 5 are our core parts,
where our considerations are perfectly set aside on the
general protocol schemes for the session key establishment,
encryption-decryption, and authentication schemes; further
similar schemes on monomials are presented on a combi-
national congruence on group, ring, or semiring elements.
In Section 6, a brief idea is presented to achieve the bigger
search space for the length based attack, which gives its
security guarantees. Finally, the work concludes, along with
references.

2. Preliminaries

2.1. Z-Modular Assumptions on Noncommutative Cryptog-
raphy. 	e scalar multiplication is the basis for all crypto-
graphic computations.	emajor goal of scalarmultiplication
is to generate the discrete logarithmic value. A new public
key cryptography on polynomials scalar multiplication over
the noncommutative ring � is proposed by Cao et al. in
2007 [32]. 	e developed scheme is based on modulo prime
integers, namedZ-modularmethod.	e derivedZ-modular
structure on ring is Z(�), and this structure applies to
positive Z

+[�] and/or negative Z
−[�] on noncommutative

ring � elements, where � ∈ � is undetermined. Also, group
and semiring are comprehensively applicable on Z-modular
assumptions.

2.1.1. Noncommutative Rings on Z-Modular Method. 	e
integral coe�cient polynomial on additive noncommutative
characterization is de
ned on ring (�, +, 0) and for multi-
plicative noncommutative (�, ⋅, 1); the scalar multiplication
over � is well de
ned for � ∈ Z

+ and � ∈ �:(�) � ≅ � + ⋅ ⋅ ⋅ + �⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
� times

. (1)

Further, for � ∈ Z
−,(�) � ≅ (−�) + ⋅ ⋅ ⋅ + (−�)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

−� times

.
(2)

Finally, if it is to be de
ned on scalar � = 0, it is likely to be(�)� = 0.
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Proposition 1. In general, scalar multiplication on noncom-
mutative property follows (�)� ⋅ (�)� ̸= (�)� ⋅ (�)�, when � ̸= �.
Recall a polynomial with positive integral coe�cient �(�) =�0 + �1� + ⋅ ⋅ ⋅ + ���� ∈ Z

+, for all �. To assign the component� as an element � ∈ �, then attain a precise element in ring �
as

� (�) = �∑
�=0
(��)�� = �0 ⋅ 1 + �1 ⋅ � + ⋅ ⋅ ⋅ + �� ⋅ ��. (3)

In addition, suppose � to be undetermined; then polynomial
over�(�) is univariable polynomial lying on�.�e univariable
polynomial over � as a whole set is denoted as Z+[�], and it is
de	ned as follows for the respective functions on two di
erent
ring elements:

� (�) = �∑
�=0
(�)��� ∈ Z

+ [�] ,
ℎ (�) = �∑

�=0
(�)��� ∈ Z

+ [�] . (4)

Again, if 
 ≥ !, then

( �∑
�=0
(��)��) + ( �∑

�=0
(��)��)

= �∑
�=0
(�� + ��) �� + �∑

�=�+1
(��)�� (5)

and according to the property of distributive law it generalizes
the above equation as

( �∑
�=0
(��)��) + ( �∑

�=0
(��)��) = (�+�∑

�=0
(*�)��) , (6)

where,

*� = ( �∑
�=0

(����−�)��) = ∑
�+�=�

(��) (��) . (7)

�eorem 2. �(�) ⋅ ℎ(�) = ℎ(�) ⋅ �(�), ��(�) ∈ Z
+[�] and

�ℎ(�) ∈ Z
+[�], where � signify for all elements.

Proof. Here ring � is a subset of ring� applying to polynomial
functions of �(�) and ℎ(�), for all positive integers of Z+[�].
A ring is a set of elements with two binary operations
of addition and multiplication satisfying the following case
properties on commutative law, associative law, identity,
inverse, and closure. In addition to the same some more
properties are also satisfying for all ring elements as follows:

(i) Closure undermultiplication: if � and � belong to ring
element, then �� is also in ring.

(ii) Associative law of multiplication: �(��) = (��)� for all�, �, �.

(iii) Distributive laws: �(�+�) = ��+�� or (�+�)� = ��+��
for all �, �, �.

(iv) Commutative multiplication: �� = �� for �, �.
(v) Multiplicative identity: � ⋅ 1 = 1 ⋅ � = � for all �.
(vi) No zero divisors: for all � and � in � and �� = 0, then,

either � = 0 or � = 0 and this does not follow on
dividing by zero.

	erefore, this theorem proofs itself on the above properties
of (i), (iii), and (iv).

2.2. TwoWell-KnownCryptographic Assumptions. The assump-
tions of security strength are due to the di�culty of the
following two problems:

(i) Conjugacy Decisional Problem (CDP). It is, on the
given two group elements � and �, to determine
a random � to produce the value of other group
elements, such that � = �� or to produce the same
using the Conjugacy multiplicative inverse as � =�−1��.

(ii) Conjugacy Search Problem (CSP). It is, for the two
group elements of � and � in a group �, to 
nd
whether there exists � in �, such that � = �� or
Conjugacy multiplicative inverse � = �−1��.

If no algorithm exists to solve the CSP, by applying � on
one group of elements to determine the other group of
elements, that is, � → ��, then this is considered to
be a one-way function. In the contemporary computation,
both problems on general noncommutative group � are
too complicated enough to determine the assumptions on
cryptographic primitives. 	e CSP assumptions are di�cult
enough to solve this problem on probabilistic polynomial
time, whereas CDP assumptions are a unique representation
for any group, ring, or semiring elements for cryptographic
use. 	e CDP transition on all these assumptions 
nishing
e�ciently over each other is one of the major advantages.

2.3. Using Monomials in Z-Modular Method. 	e polyno-
mials used in Z-modular method are constrained to be
monomials; that is, if the original information of group
elements is hidden with its equivalents ring or semiring
elements, such participation in computation is viewed as
a special case. Under these considerations new creations
of public key encryption schemes from Conjugacy Search
Problems are proposed.

2.3.1. Conjugacy Search Problem. Let (�, ⋅, 1) be a noncom-
mutative monomial for an element � ∈ �, the other group
element being � ∈ �, such that � ⋅ � = � ⋅ �; then it assumed
that group � is invertible, and call � an inverse of �. Not
all elements in � are invertible. If the inverse of � exists, it
is unique and denoted by �−1. In monomials, the positive
power of � group element for 
 integer is described as follows:�� = � + ⋅ ⋅ ⋅ + �⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

� times

for 
 > 1. If � is the inverse of �, one can also

de
ne the negative power of � by setting �−1 = � + ⋅ ⋅ ⋅ + �⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
� times

for
 > 1. 	e Conjugacy Search Problem can be extended to
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monomials�, for ∀� ∈ � and ∀� ∈ �−1, ���−1 is a conjugate
to �, and call � as conjugator of the pair (�, ���−1).
De	nition 3 (Conjugacy Search Problem (CSP)). Let � be a
noncommutative monomial; the two elements �, � ∈ � so
that � = ���−1 for some unknown element � ∈ �−1, and
the objective of the CSP in � is to 
nd � ∈ �−1 such that� = �	��	−1.
De	nition 4 (le� self-distributive system). Suppose that 3 is
a nonempty set, 4 : 3 × 3 → 3 is a well-de
ned function,
and let one denote 4(�, �) by 4
(�). If the rewritten formula4�(4�(*)) = 4��(�)(4�(*)), (∀*, �, � ∈ 3) holds then call 4⋅(⋅)
as a le� self-distributive system (LD).

�eorem5. Let� be noncommutativemonomial, the function4 on conjugate follows as 4 : �−1 × � → �, (�, �) 5→ ���−1
and is known by LD system, also abbreviated as Conj-LD.

Proof. According toDe
nition 4, the termLD is an analogical
observation from 4�(�) as a binary operation in � ∗ �; then
this is observed as � ∗ (� ∗ *) = (� ∗ �) ∗ (� ∗ *), where
“∗” is le� distributive with respect to itself.	e proof of these
observations is following from le�-hand side to right-hand
side as follows: 4�(4�(*)) = 4�(� ∗ *) = � ∗ (� ∗ *) = (� ∗ �) ∗(� ∗ *) = 4�(�) ∗ 4�(*) = 4��(�)(4�(*)). Here, it is satisfying
the function 4 on 4�(4�(*)) = 4��(�)(4�(*)) as an LD system.
	us, 	eorem 5 proof is based on these observations.

Proposition 6. Let 4 be a Conj-LD system de	ned over a

noncommutative monomial �; then for the given � ∈ �−1 and�, � ∈ �, the following proposals are well-de	ned, according to
[38]:

(i) 4
(�) = �.
(ii) 4
(�) = � ⇔ 4
−1(�) = �.
(iii) 4
(��) = 4
(�)4
(�).

Proof of (i). Since ���−1 = �, so 4
(�) = �.
Proof of (ii). 4
(�) = � yields7777→ ���−1 = � yields7777→ �−1�� =� yields7777→ 4
−1(�) = �.
Proof of (iii). 4
(��) = �(��)�−1 = (���−1)(���−1) =4
(�)4
(�).
2.4. Symmetry and Generalization Assumptions over Noncom-
mutative Groups. To explain the symmetries, the generaliza-
tions on the noncommutative cryptography are the following
problems on group �:

(i) Symmetrical Decomposition Problem (SDP). Given(�, �) ∈ � and !, 
 ∈ 8, 
nd � ∈ � such that� = �� ⋅ � ⋅ ��.
(ii) Generalized Symmetrical Decomposition Problem

(GSDP). Given (�, �) ∈ �, 3 ⊆ �, and !, 
 ∈ 8, 
nd� ∈ � such that � = �� ⋅ � ⋅ ��.

	eGSDP is evidently a sort of constrained SDP, and if subset3 is large enough, then membership information in general
does not help one to extract � from �� ⋅ � ⋅ ��. Now, it is
understood thatGSDP is at least as rigid as SDP.	e following
GSDP hypothesis says that it is not �exible to solve the same
in probabilistic polynomial timewith nonnegligible precision
with respect to problem scale. In this regard these works are
like discrete logarithm problem (DLP) over group �.
2.5. Computational Di�e-Hellman (CDH) Problem over Non-
commutative Group �. 	e CDH problem with respect to
its subset 3 on noncommutative group determines ��1�2 or��2�1 for known �, ��1 , and ��2 , where � ∈ �, �1, �2 ∈ 3.
	e commutative law keeps an extraction property from �1 ∈�(�2), if it holds the relation for ��1�2 = ��2�1 . It is noticeable
that DLP in GSDP over � is tractable. But the converse of
the same is not true. At present, no clue is available to resolve
this problem without extracting �1 (or �2) from � and ��1
(or ��2). 	en, the CDH hypothesis over � says that problem
over � is intractable. In this regard, no such probabilistic
polynomial time algorithm exists to solve the dilemma with
signi
cant accuracy to problem extent. 	e same de
nition
is also well distinct for a noncommutative semiring. Hence,
DLP of GSDP and CDH assumptions over noncommutative
semigroup are well appropriate.

3. Extra Special Group

	e de
nition says that any prime * to the power 1 + 2
,
that is, *1+2�, sustains the twofold properties: (i) Heisenberg
group and semidirect product of cyclic group order and/or
(ii) dihedral order 8 and quaternion group.	e two belonging
group elements revolve around 
xed center, known by extra
special group [39]. 	ese are based on 
nite size 
elds on
modulo primes and analogues to group elements follow-
ing sparse matrices properties. Due to this reason, group
contains the dual identity, which meets the requirement for
perfect cryptography. 	e quotients or remainders belong to
∗nontrivial (∗nontrivial refers to terms or variables that are
not equal to zero or identity a�er resultant) element, whose
center is cyclic. Since its size is prime, so its classi
cation is
based on either prime * = 2 or * = odd.	e reason is clearly
that any prime starts from 2, and the remaining primes only
belong to odd numbers.

At* = <??.	e extra special group, for* odd, is given below:
(i) 	e group of triangular 3×3matrices is over the 
eld

with * elements, with 1s on the diagonal.	e group is
exponent* for* odd.	ese are known byHeisenberg
group elements.

(ii) 	ere is the semidirect product of a cyclic group

of order *2 by a cyclic group of order * acting
nontrivially on it.

Again, if 
 is a positive integer, then for * odd the following
is given.

(i) 	e central product of 
 extra special group of order*3, all of exponent *: this extra special group also has
exponent *.
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(ii) 	e central product of order *3: at least one of the

exponents should be *2.
Now, consider prime * = 2; the minimum order starts from
 = 1, so extra special group order 8 = 23 is described as
follows:

(i) 	e dihedral group �8 in order 8: this group has 4
elements of order 4.

(ii) 	e quaternion group of order 8: it has six elements
of order 4, for example,

[[[[[[
1 � � �0 1 ? F0 0 1 �0 0 0 1

]]]]]]
. (8)

Again, if we consider 
 as a positive integer for quaternion
groups then,

(i) for an odd integer, the central product is in the
quaternion group;

(ii) for an even integer, the central product is in the
quaternion group.

3.1. Heisenberg Group. A group of 3 × 3 upper triangular
matrices contains the several representations in terms of
functional spaces whose center acts nontrivially on it. A
matrix multiplication is in the form

(1 � �0 1 �0 0 1) , (9)

where elements of �, �, � belong to commutative ring ele-
ments. Further, the real/integer numbers belong to ring struc-
tured elements, known by respective continuous/discrete
Heisenberg group [40]. 	e continuous group comes from
the description of quantum systems in one dimension. 	e
association with 
-dimensional systems is more general in
this regard. 	e products of two Heisenberg matrices in the
three-dimensional case are given by

(1 � �0 1 �0 0 1)(1 �	 �	0 1 �	0 0 1)
= (1 � + �	 � + �	 + ��	0 1 � + �	0 0 1 ) .

(10)

	e Heisenberg neutral element of group is the identity
matrix.	e discrete Heisenberg group �, N, O generator is the
nonabelian group of ring elements on the integers �, �, �:

� = (1 1 00 1 00 0 1) ,
N = (1 0 00 1 10 0 1)

(11)

and relations O = ��−1NN−1, �O = O�, and NO = ON, whereO = ( 1 0 10 1 0
0 0 1

) is the generator with the center. A polynomial

growth rate of order 3 using Bass’s theorem is used to generate
any element through

� = (1 � �0 1 �0 0 1) = N�O��
. (12)

	e behavior of the Heisenberg group to modulo odd prime* over a 
nite 
eld is called extra special group of exponent*.
3.1.1. Security Strength of Heisenberg Group. 	e Heisenberg
group on public key cryptography follows polycyclic behav-
iors if and only if a subseries �1 ⊳ �2 ⊳ ⋅ ⋅ ⋅ ⊳ ��+1 = {1}
for a group � (where ⊳ denotes variations of � in cyclic
form). Each positive integer of the 
th elements ofHeisenberg
generates an in
nite nonabelian form (using the binary
addition and multiplication operations on matrix or sparse
matrix elements), which makes the scheme of Heisenberg be
practical choice for an e�cient implementation on hardware
and so�ware.	is gives a unique normal form just a�er group
operations, so the group may be considered to be an e�ective
solution provider for cryptographic use.

3.2. Dihedral Order 8. 	e dihedral order is a group of
operations on a 
nite set of elements that includes the
problems of mathematics and physics. A cycle of rotations
and re�ections on group elements is the basis that forms the
properties of this group. One of the simplest examples of
nonabelian group is dihedral order 6 [41].

In the proposed work the minimum order is dihedral
order 8, denoted by�8 (or also called�4) [42].	e subgroups
of this (dihedral order group �) are generated by rotations
and/or re�ections; those are forming a cyclic subgroup which
is one of the key advantages. For representing the dihedral
order 8, a glass square of certain thickness with letter “F” is
considered. 	e identity element is denoted by F. 	e letter
“F” makes a visible di�erence upon rotation on 0∘, 90∘, 180∘,
and 270∘ in clockwise directions, as shown in Figure 1; it is
further used in cryptographic purposes.

One more “�” (re�ection) operation is used relative to
its corresponding above four rotations. Further, to de
ne the
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Figure 1: Symmetries of dihedral order 8.
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Figure 2: Four-dimensional representations.

composition movement such as “��,” 
rst do the operation
for “�” and a�er that apply “�” as shown. For the remaining

two of ��2 and ��3 are working as the previous one, now, a�er
the corresponding operation, the same can be represented in
four dimensions, as depicted in Figure 2. 	e group element
is a property whose center and derived subgroup are 
xed on
explicit limitations under it.

	e abstract movements of all operations are 
xed on
certain boundaries, and these are generally represented by
Cayley graph. 	e graph is mixed with eight vertices, four
edges, and eight arrows. 	is is one of the fundamental tools
in combinatorial theory to make group elements revolve
around the 
xed axis, as elaborated in Figure 3.

Again, a table known by Cayley table is presented for a

nite set of elements in all possible permutations by arranging
its products in a square table reminiscent to multiplication.
For the same, the dihedral order 8 basedCayley table is shown
in Table 1.

Finally, we are correlating the same concept from math-
ematics. Here, the composition of eight di�erent but inter-
related operations for �8 is particularly speci
ed for the

Table 1: Cayley table.F � �2 �3 � �� ��2 ��3F F � �2 �3 � �� ��2 ��3� � �2 �3 F ��3 � �� ��2�2 �2 �3 F � ��2 ��3 � ���3 �3 F � �2 �� ��2 ��3 �� � �� ��2 ��3 F �3 �2 ��� �� ��2 ��3 � � F �3 �2��2 ��2 ��3 � �� �2 � F �3��3 ��3 � �� ��2 �3 �2 � F

a

b

ba

e

a2

a3

ba3

ba2

Figure 3: Cayley graph of�4.
mathematical suites that will be used in cryptographic appli-
cations, where mathematics is the foundation for almost all
applications. Here is a similar consideration of the above
concept on square glass; a di�erent perspective to distinguish
the same for the cryptography purposes is presented as a
schematic representation in Figure 4.	ese are in the ordered
group elements from �1 to �8 for rotations/movements

and re�ections in F, �, �2, �3, �, ��, ��2, ��3, as a resultant. A
detailed cryptographic application scheme is considered in
Sections 5.3 and 5.4.

3.3. Quaternion Group. 	e quaternion group [43] is a
nonabelian order of eight elements that forms of four-
dimensional vector space over the real numbers. 	ese are
isomorphic to a subset of certain eight elements under
multiplication. 	e group is generally indicated by R or R8
and is given by the group representation R = (−1, 	, S, �) |(−1)2 = 1, 	2 = S2 = �2 = 	S� = −1, where 1 is the
identity element and −1 commutes with the same. 	is is the
same order as dihedral order �8, but the only di�erence is
in its structure. So, it may be considered an immoderation of
dihedral order 8. Depicted in Table 2 is a Cayley table for R8.
3.3.1. Security Strength of Quaternion Group. Quaternion
group using number theory gives multifold security prop-
erties in cryptography. 	e real beauty of quaternion is
noncommutative nature and multiplication on these groups
lies on a sphere in four-dimensional space. Due this nature,
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Figure 4: Schematic representation on dihedral order 8.

Table 2: Cayley table (quaternion group).1 −1 	 −	 S −S � −�1 1 −1 	 −	 S −S � −�−1 −1 1 −	 	 −S S −� �	 	 −	 −1 1 � −� −S S−	 −	 T 1 −1 −� � S −SS S −S −� � −1 1 	 −	−S −S U � −� 1 −1 −	 	� � −� S −S −	 	 −1 1−� −� � −S S 	 −	 1 −1
highest level of probable confusion can be achieved in applied
applications and it can derive for enormous applications.
	e used matrices and algebra (where multiplication order
is important for end user applications) make quaternion
natured group elements bigger signi
cance for the future
security proposals. 	e resultant of quaternion easily con-
verts to other representations just like the two original
unit quaternions, where from the adversary side it is likely
to be impossible to break such kind of scheme. Further,
still analysis and implementation in cryptography are the
need, which may give a high security speci
cation on the
quaternion group.

4. Noncommutative Cryptography on
Groups and Rings

	emathematical rationalization overmatrix group or ring is
exempli
ed onV(Z�), based onW = *⋅X, where * and X are
two secure primes. 	is is intractable, in view of the fact that� = ( 
 00 0 ) ∈ V(Z�), � ∈ (Z�), from �2 = ( 
2 00 0 ) ∈ V(Z�)
with no signi
cant factors ofW [32].

	e above-mentioned ring can be enhanced with respect
to security by using special or peculiar sparse matrices of
rings elements, as our contribution, which shows the stronger
security speci
cations on described Sections 3.1.1 and 3.3.1
which are based on Heisenberg and quaternion group,
respectively. Further, noncommutative nature of generated
semiring elements for dihedral order of 8 (presented in next
section) also satis
es the properties ofW very well.

4.1. Key Exchange Algorithm on Noncommutative Cryptogra-
phy. 	enoncommutative key exchange cryptographyworks
reminiscent of Di�e-Hellman key exchange [44] similar to a
commutative case, but the major distinction is the itinerary
actions on selection of global parameters, generation of pri-
vate keys, production rule for shared secret session keys, and
encryption-decryption. 	e e�ectiveness of the algorithm
depends on the impenetrability of computing the DLP. 	e
security of the algorithm lies in the prime factorization on two
secure primes, random private polynomial chosen by user� and user Y, respectively. A detailed elaboration through
the numerical example on ring and quaternion group for
key exchange and encryption-decryption is presented in this
section, which belongs to the extra special group.

	e key exchange agreement over matrix ring elements is
depicted as follows.

Key Exchange on Noncommutative Ring

Global Public Parameters!, 
: integers 8+�, �: ring elements

User � Key Generation

(i) Select private random polynomial: �(�).
(ii) If �(�) ̸= 0, then �(�) is considered as private key.

(iii) Generation of public keyZ�:Z� = �(�)� ⋅ � ⋅ �(�)�.
User Y Key Generation

(i) Select private random polynomial: ℎ(�).
(ii) If ℎ(�) ̸= 0, then ℎ(�) is considered as private key.

(iii) Generation of public keyZ�:Z� = ℎ(�)� ⋅ � ⋅ ℎ(�)�.
Generation of Secret Key by User �\� = �(�)� ⋅ Z� ⋅ �(�)�.
Generation of Secret Key by User Y\� = ℎ(�)� ⋅ Z� ⋅ ℎ(�)�.
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	e global parameters are

! = 3,
 = 5,
� = (17 57 4) ,
� = (1 93 2) ,W = 7 ∗ 11.

(13)

User � chose their random polynomial �(�) = 3�3 + 4�2 +5� + 1. Evaluate the polynomial �(�); if �(�) ̸= 0 then the
polynomial will be considered as a private key for user�.	e�’s private key is as follows:
� (�) = 3(17 57 4)3 + 4(17 57 4)2 + 5(17 57 4) + 1 ⋅ T

= (19 2028 44) mod 77. (14)

Now, the generation of public keyZ� by user � is as follows:

Z� = � (�)� ⋅ � ⋅ � (�)�
= (19 2028 44)3 ⋅ (1 93 2) ⋅ (19 2028 44)5
= (3 569 2 ) mod 77.

(15)

At the other end user Y chose their own random polynomialℎ(�) = �5+5�+1. Further, evaluate the polynomial ℎ(�), and
if ℎ(�) ̸= 0 then this polynomial value will be considered as
private key:

ℎ (�) = (17 57 4)5 + 5(17 57 4) + 1 ⋅ T
= (70 5242 58) mod 77 (16)

and the generation of public key for user Y is as follows:

Z� = ℎ (�)� ⋅ � ⋅ ℎ (�)�
= (70 5242 58)3 ⋅ (1 93 2) ⋅ (70 5242 58)5
= ( 0 3935 68) mod 77.

(17)

Finally, the session key is extracted by the user � as \�:\� = � (�)� ⋅ Z� ⋅ � (�)�
= (19 2028 44)3 ⋅ ( 0 3935 68) ⋅ (19 2028 44)5
= (21 3749 69) mod 77

(18)

and the session key is extracted from user Y as \�:\� = ℎ (�)� ⋅ Z� ⋅ ℎ (�)�
= (70 5242 48)3 ⋅ (3 569 2 ) ⋅ (70 5242 48)5
= (21 3749 69) mod 77.

(19)

4.2. Key Exchange Using Heisenberg Group (Upper Triangular
Matrices). Further, we applied the same algorithm for session
key establishment over a Heisenberg group. It is demon-
strated on the global parameters, where assumptions are! = 3,
 = 5,

� = (1 5 70 1 40 0 1) ,
� = (1 6 90 1 30 0 1) ,
W = 7 ∗ 11.

(20)

For user �, a random polynomial is chosen: �(�) = 3�3 +4�2+5�+6. Evaluate the polynomial on�(�), and if�(�) ̸= 0
then polynomial value is considered as a private key for user�:

� (�) = 3(1 5 70 1 40 0 1)
3 + 4(1 5 70 1 40 0 1)

2

+ 5(1 5 70 1 40 0 1) + 6T
= (18 33 290 18 110 0 18) mod 77.

(21)
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	e generation of public keyZ� by user � is as follows:

Z� = � (�)� ⋅ � ⋅ � (�)�
= (18 33 290 18 110 0 18)

3 ⋅ (1 6 90 1 30 0 1)
⋅ (18 33 290 18 110 0 18)

5 = (9 32 100 9 710 0 9 ) mod 77.
(22)

At the other end user Y chose their own random polynomialℎ(�) = �5+5�+1. Evaluating the polynomial ℎ(�), the private
key is as follows:

ℎ (�) = (1 5 70 1 40 0 1)
5 + 5(1 5 70 1 40 0 1) + 1T

= (7 50 390 7 400 0 7 ) mod 77
(23)

and the generation of public key for user Y is as follows:

Z� = ℎ (�)� ⋅ � ⋅ ℎ (�)�
= (7 50 390 7 400 0 7 )

3 ⋅ (1 6 90 1 30 0 1) ⋅ (7 50 390 7 400 0 7 )
5

= (42 56 350 42 00 0 42) mod 77.
(24)

Finally, the session key extracted by the user � as \� is as
follows:

\� = � (�)� ⋅ Z� ⋅ � (�)�
= (18 33 290 18 110 0 18)

3 ⋅ (42 56 350 42 00 0 42)
⋅ (18 33 290 18 110 0 18)

5 = (70 42 280 70 00 0 70) mod 77
(25)

and the session key extracted by user Y as \� is as follows:
\� = ℎ (�)� ⋅ Z� ⋅ ℎ (�)�

= (7 50 390 7 400 0 7 )
3 ⋅ (9 32 100 9 710 0 9 )

⋅ (7 50 390 7 400 0 7 )
5 = (70 42 280 70 00 0 70) mod 77.

(26)

4.3. Encryption-Decryption Algorithm on Heisenberg Group.
	e encryption-decryption procedure on Heisenberg group
is o�ered as follows.

Encryption-Decryption Algorithm on Noncommutative Ring

Global Public Parameters

!, 
: integers 8+�, �: ring elementsV: message
(V): hashed message

User � Key Generation

(i) Select private random polynomial: �(�).
(ii) If �(�) ̸= 0, then �(�) is considered as private key.

(iii) Generation of public keyZ�:Z� = �(�)� ⋅ � ⋅ �(�)�.
User Y Key Generation

(i) Select private random polynomial: ℎ(�).
(ii) If ℎ(�) ̸= 0, then ℎ(�) is considered as private key.

(iii) Generation of public keyZ�:Z� = ℎ(�)� ⋅ � ⋅ ℎ(�)�.
Encryption (by Sender Y)

d: ciphertext�: decryption keyd = ℎ(�)� ⋅ � ⋅ ℎ(�)�,� = 
(ℎ(�)� ⋅ Z� ⋅ ℎ(�)�) ⊕ V
Decryption

V = 
(�(�)� ⋅ d ⋅ �(�)�) ⊕ �
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	e approach of noncommutative cryptography works like
the general case, where our assumptions are as

! = 3,
 = 5,
� = (1 5 90 1 90 0 1) ,
� = (1 9 50 1 30 0 1) ,
W = 7 ∗ 11,
V = (27 19 2534 8 745 5 9 ) .

(27)

User � randomly chose a random polynomial �(�) = 3�3 +4�2 + 5� + 6; then �(�) is considered to be private key:

� (�) = 3(1 5 90 1 90 0 1)
3 + 4(1 5 90 1 90 0 1)

2

+ 5(1 5 90 1 90 0 1) + 6T
= (18 33 130 18 440 0 18) mod 77.

(28)

	e generation of public key is as follows:

Z� = � (�)� ⋅ � ⋅ � (�)�
= (18 33 130 18 440 0 18)

3 ⋅ (1 9 50 1 30 0 1)
⋅ (18 33 130 18 440 0 18)

5 = (9 59 420 9 490 0 9 ) mod 77.
(29)

Moving onwards, user Y randomly chose their own random
polynomial ℎ(�) = �5 + 5� + 1 and computes private key ifℎ(�) ̸= 0:

ℎ (�) = (1 5 90 1 90 0 1)
5 + 5(1 5 90 1 90 0 1) + 1 ⋅ T

= (7 50 10 7 130 0 7 ) mod 77
(30)

and the public key generated for user Y is as follows:

Z� = ℎ (�)� ⋅ � ⋅ ℎ (�)�
= (7 50 10 7 130 0 7 )

3 ⋅ (1 9 50 1 30 0 1) ⋅ (7 50 10 7 130 0 7 )
5

= (42 28 350 42 350 0 42) mod 77.
(31)

	e sender of the public key is treated as ciphertext d (in our
case user Y is sender):

d = ℎ (�)� ⋅ � ⋅ ℎ (�)� = (42 28 350 42 350 0 42) ,
� = 
 (ℎ (�)� ⋅ Z� ⋅ ℎ (�)�) ⊕ V

= 
((7 50 10 7 130 0 7 )
3 ⋅ (9 59 420 9 490 0 9 )

⋅ (9 59 420 9 490 0 9 )
5)⊕(27 19 2534 8 745 5 9 )

= 
((70 21 350 70 70 0 70)) ⊕(27 19 2534 8 745 5 9 )
= (12 42 5735 31 5244 4 30) .

(32)
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	e original message is as follows:V	 = 
 (� (�)� ⋅ d ⋅ � (�)�) ⊕ �
= 
((18 33 130 18 440 0 18)

3 ⋅ (42 28 350 42 350 0 42)
⋅ (18 33 130 18 440 0 18)

5)⊕(12 42 5735 31 5244 4 30)
= (27 19 2534 8 745 5 9 ) .

(33)

4.4. Analysis and Strength of Proposed Scheme. We are now
explaining the computational hardness or complexity anal-
ysis with its related strength as security and performance
considerations (mostly on each parameter of algorithms).

Prime Factors of W. 	e proposed procedure stands on
hidden prime factorization ofW (W is absent in the proposed
algorithm, but due to explicit clari
cation it is shown wher-
ever needed) being the points mentioned below in support of
strong security analysis.

(i) Since W = 7 ∗ 11 is based on two prime factors and
factorization of W has extreme di�culty in 
nding
its exact factors due its computer intensive nature for
large primes, to 
nd an algorithmwhich does it fast is
one of unsolved problems of computer science.

(ii) 	e time required into prime factor grows expo-
nentially, so if the algorithm uses large prime based
integers, it is unrealistic to crack it down.

(iii) Prime factorization is mostly a unique problem, and
all integers (except 1 and 0) are made up of primes,
because this ingeniousness allows hardly encoding
any information of any length as a single integer is
in�exible.

Private Keys. A secret key generation is based on random
chosen polynomial �(�) or ℎ(�), since polynomial is called
irreducible if and only if it cannot be expressed as product of
two polynomials. An integer analogy of irreducible polyno-
mial is called a prime polynomial. A polynomial contains the
three classes of polynomials such as

(i) ordinary polynomial,

(ii) modulo prime based polynomial,

(iii) modulo prime based polynomial de
ned on another
polynomial whose power is in some integer 
.

In class (i) arithmetic operation (addition, subtraction, and
multiplication) performs on polynomials using the ordinary
rules of algebra, and division is only possible if the 
eld

elements are coe�cients of the same. Class (ii) contains
the arithmetic operations as of (i), but the division result
is used (in general) in quotient and remainder forms. 	is
represents a special signi
cance in cryptography because it
gives a unique solution for the above prime factorization on
speci
ed problem. Here class (iii) is not elaborated, because
proposed approach is working on (i) and/or (ii).

Public Keys. 	e polynomial functions of �(�) or ℎ(�) to
the power of ! and 
 with two multiplications on modulo
prime are the basis for public key generation for respective
senders and receivers. 	e generated public key (which
passed into the medium) is represented as a Discrete Log
Problem (DLP) for the algorithm since it is established on
modulo prime based polynomials that are irreducible in
these contexts. Adversaries try to conceptualize the secret
key on the global parameters and public key; those are freely
available. According to proposed scheme, a large prime factor
ofW (standard length 160 bits) may be su�cient for making
adversaries against getting fruitful ideas or valid secret keys.

Timing Attack. Timing attacks is a stunning way abstracting
the pattern generated from the cryptographic algorithm and
trying to access the security appearance fromelectromagnetic
signals released from the computer systems. 	e release of
signals and transmissions are the part of computer opera-
tions.	e signals are alarming in the two senses: (i) a random
interference comes 
rst, which can be only be burglars, and
(ii) these signals can be ampli
ed through some auxiliary
equipment for some useful purposes. A report is available
suggesting electromagnetic radiation interference with radio
navigation devices, as (i) it is a general procedure and it is
not a point to be considerable issue and (ii) it applies to those
interested in such pattern of abstractions for decoding that
may lead to vulnerable information safeties, feedbacks obser-
vations, and/or secret information leakage, where an adver-
sary tries to determine the private key by keeping track on
how long a computer takes to decipher the secrets messages.

In practice, polynomial modular exponentiation imple-
mentation does lead to extreme timing variations. 	erefore,
the uniqueness nature of polynomial based cryptographic
measures makes a practical choice for future security work,
with speci
c addition to noncommutative properties. Instead
of the same, there are some countermeasures, whichmay lead
to strengthening the measures in timing variation e�ects.

Polynomial Exponentiation Time. Since all exponen-
tials take di�erent amount of time before returning
to 
nal result, this one is simply 
x, so performance
analysis does not degrade its e�ciency with its vari-
ances.

Random Delay. One can get a better performance by
adding a random delay to the exponentials in applied
algorithms and may confuse the timing attacks.

Blinding. It can confuse the adversary by multiplying
a randomnumber into the ciphertext before perform-
ing exponentiation. 	is can be one way to make
adversaries outreach from original ciphers.



Security and Communication Networks 13

Brute-Force Attacks. 	e brute-force attacks refer to 
nding
all the possible secret keys. 	e defense against attacks shows
larger randomness and unpredictability behavior on a shorter
key length on our proposed approach; since it is a special
case of Elliptic Curve Cryptography (ECC), therefore the
algorithm su�ciently works on a smaller length keys. 	e
execution time of smaller length key takes a shorter time,
so it re�ects a big impact on e�ciency. A lot of reports are
available regarding the computational performance for ECC
and RSA algorithms, where our approach (noncommutative)
regarding the e�ciency, speed, and cryptanalysis is better in
them.

Chosen Ciphertext Attacks. 	is attack is a form of active
attack, where adversaries try to 
nd plaintext corresponding
to its ciphertexts by its choice.	e 
rst choicemay experience
decryption module on a random chosen ciphertext, before
the actual ciphertext sent for an interested use. 	e second
choice involves the same module on input of one’s choice
at any time, where all these are recorded and try to gain
the actual plaintexts. 	e presented algorithm experienced
a blind feedback, where the noncommutative cryptography
is not a vulnerable one to chosen ciphertext attacks (CCA)
especially for ring or semiring, group, and Heisenberg ele-
ments, because in CCA an adversary chooses a number of
ciphertexts and tries decryption with targeted private keys,
where the chosen ciphertext is hashedwith the corresponding
polynomial exponentials.

Simulation and Importance of Hash Uses. 	e simulation of
hash 
 is based on power of 2 functions on Matlab tool,
where the importance of hash function dictates the following
properties: (i) output of hash generates pseudorandomness
for the standard cryptographic tests, (ii) hash is relatively
easy to compute for any given input that makes a practical
use for hardware and so�ware implementation, (iii) for any
given hash 
, it is computationally infeasible to 
nd N such
that 
(N) = �, (iv) for any pair (�, N) it is computationally
infeasible to 
nd 
(�) = 
(N) is a strong collision resistant
property, and (v) for any block �, it is computationally
infeasible to 
nd N ̸= � is a weak collision resistant property.

5. Monomials Based Cryptography Using
Noncommutative Groups and Semirings

	e polynomial used in Z-modular method for noncommu-
tative cryptography is based on the group elements running
at the back end and its equivalent semirings elements work
from the front, known by the monomials generated schemes.
In this regard the original information is hidden, where for
an adversary it will be practically impossible to decipher
the original information. Such kind of participation in com-
putation is viewed as a special case. We have formulated
the semiring elements that are working perfectly under the
assumptions of our dihedral order 8, which is a part of
extra special group. 	e section is 
rst exploring the basic
assumptions on monomials and then proposed works are
detailed.

5.1. Extension of Noncommutative Groups. For a noncommu-
tative group (�, ⋅, 1�) and ring elements (�, +, ⋅, 1�), monomi-
als generations that are possible through the use of group and
ring elements can be de
ned as f: (�, ⋅, 1�) → (�, ⋅, 1�). 	e

inverse map f−1: f(�) → � is also a well-de
ned monomial.
If �, � ∈ �, then it is true for f(�)+f(�) ∈ f(�); from the same
one can assign a new element � ∈ � as � ≜ f−1(f(�) + f(�))
which is possible. Here � is called as a quasi-sum of � and �
and is denoted by � = �⊞� [31]. Similarly, for � ∈ � and � ∈ �,
if � ⋅ f(�) ∈ f(�), then one can assign a new element ? ∈ � as? ≅ f−1(� ⋅ f(�)) and call ? as quasi-multiple of �, denoted by? = � ⊠ �. 	en, the monomial f in a linear sense holds the
following equalities:

f (� ⊠ � ⊞ �) = f ((� ⊠ �) ⊞ �) = f (? ⊞ �)
= f (f−1 (f (?))) ⊞ f (�)
= f (f−1 (f (f−1 (� ⋅ f (�))))) ⊞ f (�)
= f (f−1 (� ⋅ f (�))) ⊞ f (�)
= � ⋅ f (�) + f (�) .

(34)

For �, � ∈ � and � ⋅ f(�) + f(�) ∈ f(�), function �(�) =O0 + O1� + ⋅ ⋅ ⋅ + O��� ∈ 8[�] can be de
ned as

� (f (�)) = O0 ⋅ 1� + O1 ⋅ f (�) + ⋅ ⋅ ⋅ O� ⋅ f (�)� ∈ f (�) . (35)

Now, assign a new element F ∈ � as

F = f−1 (� (�))
= f−1 (O0 ⋅ 1� + O1 ⋅ f (�) + ⋅ ⋅ ⋅ O� ⋅ f (�)�) . (36)

If it holds to 
nd the inverse of polynomials, call F as quasi-
polynomial of � on �, denoted by F = �(�). For, arbitrary�, � ∈ �, � ∈ � and �(�) ∈ 8[�], � ⊞ �, � ⊠ �, and �(�)
are not always well de
ned.	eorem 7 is natural and general
scheme, which works for noncommutative monomials.

�eorem 7. For some � ∈ � and some �(�), ℎ(�) ∈ 8[�], if�(�) and ℎ(�) are well de	ned, then (i) f(�(�)) = �(f(�)) and
(ii) �(�) ⋅ ℎ(�) = ℎ(�) ⋅ �(�).
Proof. (i) Due to property of monomials on quasi-
polynomial, the group element for any function � applies
with its equivalent ring elements, so in the intermediary
function � results in ring or semiring � and is observed on
numerical analysis; it results in the same elements of ring �.
It can also be validated on LHS and RHS consideration.
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LHS

f (� (�)) = f (�) (∵ � (�) = �, is group elements)= � (∵ f is a monomial, so f (�) → �, since � is inverse of Group) (37)

RHS� (f (a)) = � (�) (∵ f (�) = �, is ring elements)= � (∵ � (�) generates ring elements) . (38)

(ii)� (�) ⋅ ℎ (�) = f (f−1 (� (�))) ⋅ f (f−1 (ℎ (�)))
(∵ f (f−1 (j)) = j, j ∈ �)

= f (f−1 (� (�)) ⋅ f−1 (ℎ (�)))(∵ f is a monomial)= f (f−1 (� (�) ⋅ ℎ (�)))
(∵ f−1 is monomial)

= f (f−1 (ℎ (�) ⋅ � (�))) (∵ Theorem 2)= f (f−1 (ℎ (�)) ⋅ f−1 (� (�)))
= f (f−1 (ℎ (�))) ⋅ f (f−1 (� (�)))= ℎ (�) ⋅ � (�) .

(39)

5.2. Further Assumptions on Noncommutative Groups. Con-
sider the assumption on polynomial version over the non-
commutative group, for any randomly picked-up element of� ∈ � and to de
ne a polynomial set k
 ∈ � by: k
 ≅ {�(�) ∈f(�) : �(�) ∈ 8[�]}.

	en, the de
nition on group � over (�, ⋅) says the
following.

(i) Polynomial Symmetrical Decomposition (PSD) Prob-
lems over Noncommutative Group G. Given (�, �, N) ∈�3 and!, 
 ∈ 8, 
nd O ∈ k
 such that N = O� ⋅ � ⋅ O�.

(ii) Polynomial Di�e-Hellman (PDH) Problems over Non-
commutative Group G. Compute ��1�2 or ��2�1 for
given �, �, ��1 and ��2 , where �, � ∈ � and O1, O2 ∈ k
.

	e PSD or PDH on cryptographic assumptions over (�, ⋅) is
intractable, and there is not any probabilistic polynomial time
algorithm subsisting to solve this problem with accurateness
admiration [31].

�eorem 8. �e generalized extra special *-group over the
monomials is free from attacks.

Proof. Suppose the group on � with (�, ⋅, 1�) is a noncom-
mutative group and semiring � on (�, ⋅, 1�) is semiring and
its monomials are de
ned as � : (�, ⋅, 1�) → (�, ⋅, 1�), such
that the group elements are always working at the back end,
and computation is only de
ned on the monomials semiring
elements. In this regard, the original extent of the algorithm
is always hidden. 	e working of this prime *-group is an
example of hidden subgroup or sub
eld problem. Hence, the
theoremproves the generalized extra special*-groupover the
monomials is free from attacks.

5.3. Monomials Like Key Exchange Algorithm. 	e global
parameters of the proposed algorithm, at dihedral order 8,
for key exchange using monomials are presented as follows.

Monomials Key Exchange on Noncommutative Ring

Global Public Parameters!, 
: integers 8+�, �: group elements from ring

Supposing (�, ⋅, 1�) is a noncommutative group,(�, ⋅, 1�) is ring, and � : (�, ⋅, 1�) → (�, ⋅, 1�) is
monomorphism

User � Key Generation

(i) �(�) is random polynomial chosen by �.
(ii) Select �(�) ∈ 8(�) at random so that �(�) is well

de
ned; that is,�(�(�)) ∈ �(�); then user� takes�(�)
as private keyZ�:Z� = �(�)� ⋅ � ⋅ �(�)�.

User Y Key Generation

(i) ℎ(�) is random polynomial chosen by Y.
(ii) Select ℎ(�) ∈ 8(�) at random so that ℎ(�) is well

de
ned; that is, ℎ(�(�)) ∈ �(�); then user Y takes ℎ(�)
as private keyZ�:Z� = ℎ(�)� ⋅ � ⋅ ℎ(�)�.

Generation of Secret Shared Session Key by User �\� = �(�)� ⋅ Z� ⋅ �(�)�.
Generation of Secret Shared Session Key by User Y\� = ℎ(�)� ⋅ Z� ⋅ ℎ(�)�,
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where our assumptions are as follows:

! = 16,
 = 55,
� = ( 1 2 34 1 2 43 ) ,
� = ( 1 2 31 4 3 42 )

(40)

and the relativemonomials of group elements � : (�, ⋅, 1�) →(�, ⋅, 1�) are represented below, respectively. At dihedral
group of order 8 there is a possibility of 8 groups; we
assumed the same from �1 to �8 and its corresponding ring
monomials from �1 to �8. Such group and ring elements are
assigned in sequence as �1 → �1, �2 → �2, �3 → �3,�4 → �4, �5 → �5, �6 → �6, �7 → �7, and �8 → �8.
	ese all will be used in cryptographic primitives.

�1 = (1 2 3 41 2 3 4) ,
�2 = (1 2 3 44 1 2 3) ,
�3 = (1 2 3 43 4 1 2) ,
�4 = (1 2 3 42 3 4 1) ,
�5 = (1 2 3 44 3 2 1) ,
�6 = (1 2 3 43 2 1 4) ,
�7 = (1 2 3 42 1 4 3) ,
�8 = (1 2 3 41 4 3 2) ,
�1 = (1 00 1) ,
�2 = ( 0 1−1 0) ,
�3 = (1 00 −1) ,

�4 = (−1 00 1) ,
�5 = ( 0 −1−1 0 ) ,
�6 = (0 −11 0 ) ,
�7 = (−1 00 −1) ,
�8 = (1 00 −1) .

(41)

In the computation process, ring elements are generated on
negative modulo prime, where Lemma 9 is well distinct.

Lemma 9. �e variability generation for equivalent monomi-
als ring structured elements in the range of {−1, 0, 1} is negative
modulo prime of (−2).
Proof. By inspection, it is observed that the negative modulo
prime on (−2) results in the variations of {−1, 0, 1}, whichwell
suits equivalence in the monomials like generation elements
to our proposed scheme of dihedral order of 8 (where
dihedral order 8 is specially a part of extra special group).

	e user � chooses a random polynomial �(�) = 4�2 +� + 2 and on �(�) ̸= 0 the secret/private key elected for user� as

� (�) = f−1 (� (f (�)))
= f−1(4( 0 1−1 0)2 + ( 0 1−1 0) + 2)
= f−1 ((−2 31 −2) mod (−2)) [∵ Lemma 9]
= f−1 ( 0 −1−1 0 ) �5→�577777→ (1 2 3 44 3 2 1) .

(42)

	e generation of public keyZ� is as follows:
Z� = � (�)� ⋅ � ⋅ � (�)�

= (1 2 3 44 3 2 1)16 . (1 2 3 41 4 3 2) . (1 2 3 44 3 2 1)55
= (1 2 3 43 2 1 4) .

(43)
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Further, a random polynomial is chosen by user Y as ℎ(�) =3�4 + �3 + 4�2 + 3� + 4 and computes private key:ℎ (�) = f−1 (ℎ (f (�)))
= f−1(3( 0 1−1 0)4 + ( 0 1−1 0)3 + 4( 0 1−1 0)2
+ 3( 0 1−1 0) + 4)

= f−1 ((3 62 3) mod (−2)) [∵ Lemma 9]
= f−1 (−1 00 −1) �7→�777777→ (1 2 3 42 1 4 3)

(44)

and generation of public key for user Y a�erwards sends it to
user �:Z� = ℎ (�)� ⋅ � ⋅ ℎ (�)�

= (1 2 3 42 1 4 3)16 . (1 2 3 41 4 3 2) . (1 2 3 42 1 4 3)55
= (1 2 3 42 3 4 1) .

(45)

Now, user � extracts the session key as\� = � (�)� ⋅ Z� ⋅ � (�)�
= (1 2 3 44 3 2 1)16 ⋅ (1 2 3 42 3 4 1) ⋅ (1 2 3 44 3 2 1)55
= (1 2 3 44 1 2 3)

(46)

and user Y extracts the session key as\� = ℎ (�)� ⋅ Z� ⋅ ℎ (�)�
= (1 2 3 42 1 4 3)16 ⋅ (1 2 3 43 2 1 4) ⋅ (1 2 3 42 1 4 3)55
= (1 2 3 44 1 2 3) .

(47)

5.4. Monomials Like Encryption-Decryption Algorithm on
Noncommutative Cryptography. 	e way for encryption and
decryption module for monomials algorithm is presented at
dihedral order 8, as follows on step-by-step procedure (as
carried out below).

Monomials Based Noncommutative
Algorithm for Encryption-Decryption

Global Public Parameters!, 
: integers 8+

�, �: group elements from ring*, X: secure primesj: generator functionV: message

Supposing (�, ⋅, 1�) is a noncommutative group,(�, ⋅, 1�) is ring, and � : (�, ⋅, 1�) → (�, ⋅, 1�) is
monomorphism

User � Key Generation

(i) �(�) is random polynomial chosen by �.
(ii) Select �(�) ∈ 8(�) at random so that �(�) is well

de
ned; that is,�(�(�)) ∈ �(�); then user� takes�(�)
as private keyZ�:Z� = �(�)� ⋅ � ⋅ �(�)�.

User Y Key Generation

(i) ℎ(�) is random polynomial chosen by Y.
(ii) Select ℎ(�) ∈ 8(�) at random so that ℎ(�) is well

de
ned; that is, ℎ(�(�)) ∈ �(�); then user Y takes ℎ(�)
as private keyZ�:Z� = ℎ(�)� ⋅ � ⋅ ℎ(�)�.

Encryption (User Y)
Ciphertext: d
Decryption key:�d: sender public key�:
(ℎ(�)� ⋅ Z� ⋅ ℎ(�)�) ⊕ V

Decryption (User �)
Original messageV	:
(ℎ(�)� ⋅ d ⋅ ℎ(�)�) ⊕ V

	e algorithm is presented on two random primes * andX, such that X | *−1 ̸= 0, and generator function j is an order
of X and message V. 	e numerical dictation is elaborating
here, where global assumptions are! = 12,


 = 19,
� = (1 2 3 43 2 1 4) ,
� = (1 2 3 41 4 3 2) ,
* = 23,
X = 11,
j = 6,V = 17.

(48)
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	e random polynomial �(�) = 2�5 − 5�2 + 3 is chosen by
user �; the private key is as follows:

� (�) = f−1 (� (f (�)))
= f−1(2 ⋅ (0 −11 0 )5 − 5 ⋅ (0 −11 0 )2 + 3)
= f−1 ((8 15 8) mod (−2)) [∵ Lemma 9]
= f−1 ( 0 −1−1 0 ) �5→�5llllll⇒ (1 2 3 44 3 2 1) .

(49)

	e public key generated asZ� is as follows:Z� = � (�)� ⋅ � ⋅ � (�)�
= (1 2 3 44 3 2 1)12 ⋅ (1 2 3 41 4 3 2) ⋅ (1 2 3 44 3 2 1)19
= (1 2 3 43 2 1 4) .

(50)

Moving ahead, user Y chose their own random polynomialℎ(�) = 9�4 + �3 + 4�2 + 9� + 4 and computes private key as

ℎ (�) = f−1 (ℎ (f (�)))
= f−1(9(0 −11 0 )4 + (0 −11 0 )3 + 4(0 −11 0 )2
+ 9(0 −11 0 ) + 4)

= f−1 (( 9 −412 9 ) mod (−2)) [∵ Lemma 9]
= f−1 (−1 00 −1) �7→�7llllll⇒ (1 2 3 42 1 4 3) .

(51)

	e public key generation for user Y asZ� is as follows:Z� = ℎ (�)� ⋅ � ⋅ ℎ (�)�
= (1 2 3 42 1 4 3)12 ⋅ (1 2 3 41 4 3 2) ⋅ (1 2 3 42 1 4 3)19
= (1 2 3 42 3 4 1) .

(52)

In the next step, we need to use a hash function, where we are
exploring the same through Lemma 10.

Lemma 10. �en hash function is de	ned on


: ( 1 2 3 4n1 n2 n3 n4) 7→
(j20 ⋅�1+21 ⋅�2+22 ⋅�3+23 ⋅�4) mod *. (53)

Proof. By hypothesis for hash 
 assumed by Cao et al.
2007 [32], which is based on dihedral order of 6 for hash
 : ( 1 2 3�1 �2 �3 ), in the present work, as a contribution, the
authenticity of hash is preserved by applying to dihedral order
of 8 (a part of extra special group) without hampering the
original concepts.

Suppose userY is sender, then, according to our proposed
algorithm its public key is treated as our ciphertext. 	e
decryption key� is assigned as� = 
(ℎ (�)� ⋅ Z� ⋅ ℎ (�)�) ⊕ V

= 
((−1 00 −1)12 . (0 −11 0 ) . (−1 00 −1)19) ⊕ 17
= 
(( 0 1−1 0)) ⊕ 17
�2→�2llllll⇒ ((j20 ⋅4+21 ⋅1+22 ⋅2+23 ⋅3) mod *) ⊕ 17

[∵ Lemma 10]
= ((620 ⋅4+21 ⋅1+22 ⋅2+23 ⋅3) mod 23) ⊕ 17
= ((638) mod 23) ⊕ 17 = 6 ⊕ 17 = 23.

(54)

Now, the receiver � decrypts the encrypted message as:= 
 (� (�)� ⋅ Cipher ⋅ � (�)�) ⊕ �
= 
(( 0 −1−1 0 )12 . (−1 00 1) . ( 0 −1−1 0 )19) ⊕ 23
= 
( 0 1−1 0) ⊕ 23
�2→�2llllll⇒ ((j20 ⋅4+21 ⋅1+22 ⋅2+23 ⋅3) mod *) ⊕ 23

[∵ Lemma 10]
= ((620 ⋅4+21 ⋅1+22 ⋅2+23 ⋅3) mod 23) ⊕ 23
= ((638) mod 23) ⊕ 23 = 6 ⊕ 23 = 17.

(55)

5.5. Security Analysis on Monomials. 	e security strength
analysis as presented in Section 4 for general structure
schemes also works in a similar fashion for monomials
structures like schemes. 	e following factors in correlation
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with the same play a crucial role for the cryptographic
schemes generation such as the following: (i) One is gen-
eration of equivalent monomials ring elements on negative
modulo prime behaving like semiring elements and these are
considered as a natural generalization of noncommutative
scheme in the sense that the binary addition and multipli-
cation operations are not required to be commutative. 	e
semigroup action suggests the exponential growth on key,
which does not make any chance to 
nd the solution. (ii) In
hash generation (as Lemma 10) prime factorization ofk keeps
all the similar analysis results for cryptographic existence
as presented in previous section. (iii) As the generation of
private keys and public keys is based on monomials like
structured elements, where the working scheme is initiated
on monomials semiring elements for equivalent group ele-
ments, this means the original information of the group
elements is totally in hidden form. 	e original elements are
used for veri
cation purposes only in proposed work. 	e
generated discrete log value does not keep any signi
cant
information for adversaries. (iv) DLP provides a big con�ict
of interests on randomness and unpredictability generation
for secret keys that also maintains a balance between key
sizes and security extents.	erefore, with regard to the above-
mentioned points, brute-force attacks and chosen ciphertext
attacks are extremely resistant against the proposed scheme.

5.6. E�ciency Issues on General and Monomials Noncommu-

tative Schemes. For noncommutative monoid, 4
� (�) = �� ⋅ � ⋅(��), it 
rst computes �� and then its inversion (��) and 
nally
takes two multiplications in the underlying implementation.
Here o represents either ! or 
 for the polynomial function4. When o is considered to be a big digit, the computer arith-
metic successively does doubling, rather than multiplying
“�” for o times, so in this case the performance evaluation
takes p(log2(o)) times to complete the task. In the present
scenario 160-bit long o is enough to resist exhaustive attacks.
	e assumptions apply on length of group elements � (here
proposed extra special groupwith one of the latest and longest

group lengths) such as �, �, ��, 4
� (�) being a polynomial as
a system security parameter, where the results are generated
using the conventional (bit-by-bit) operations.

Moreover, for the secure and e�cient architecture of the
group elements, it represents the following facts regarding the
same:

(i) Using the above described representation of group �
element is unique. Otherwise the scheme (proposed)
cannot work.

(ii) 	e transition from group � elements to its equiva-
lent ring elements 
nishes e�ciently. Otherwise, the
scheme is impractical.

(iii) 4
� (�) does not reveal any information regarding poly-
nomial ��. Otherwise, the proposed assumptions (in
algorithm) can su�er from the length based attacks.

6. Basic Length Based Attacks

It is a heuristic procedure for 
nding the recipient’s secret
keys and is representing one of the procedures for recovering

e
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Figure 5: Process of generating N = j1j−12 j3j−14 .
each of the conjugating factors as a major goal.	e successful
procedure results in actual conjugator as a product of group
elements. 	e length based attack [45, 46] on dihedral order
6 is presented in [38]. Our proposed approach is based on
dihedral order 8, that is, � = 4; a number of elements
play an enormous role of generation of a subset of 8 group

elements de
ned as 3� = {j±11 , j±12 , j±13 , j±14 }. We consider

a random input series N = j1j−12 j3j−14 , for length 
 = 4.
On choosing input sequence, the operation performs on 2�-
ary tree. It begins with an empty word F and searches for
one of the child nodes of 8 group elements, with successful
generation of 8 individual groups. For each element presented
in input sequence is traced on successful generation, this
procedure repeats until some 
 input of N� length chosen
for N = N1N2 ⋅ ⋅ ⋅ N� satis
es, as shown in Figure 5. 	is is
based on the 
th level that contains (2�)� leaf-nodes elements.
Each leaf-node is likely to be a potential value for N. 	e fact
behind solving the CDP is easy but the fact to solve the CSP
is unavailable, so it can be considered to be secure against the
brute-force search.

For example, during the process of searching, if there are
two children-nodes k and R with equal length and if the
algorithmwrongly predicts any node in one of them, it makes
the algorithm fall into an exponential search in the worst case
for negligible solution. On average, 8 candidates (in dihedral
order 8) nodes in each level represent the time complexity of

attack algorithmonp(82�) for all 
wordper each level length,
on the success or failure attempts.

	e process of attack is reversed, for instance, searching
for the 2�-ary tree. 	is means attack is a reversal procedure,
whichworks on successful cryptanalysis; at 
rst level it should
satisfy 64 elements from 8 groups; similarly for the second
level, it should again satisfy the same, and it should repeat to
word length input. An example is dictated on the target nodes
represented as a dark node that forms the optimal search path
(as shown in Figure 6). 	e best result of an attack algorithm
is to 
nd this path which indicates decomposition of N.
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Figure 6: Process of decomposing N = j1j−12 j3j−14 .
6.1. Analysis on Length Based Attacks. Dihedral order of 8
uses 4 (four) elements to form one group of 8 elements each
(a total of 8 groups' formation with a total of 64 elements),
so adversaries (attackers) try to obtain the input sequence on
level by level; at the 
rst level an adversary needs to satisfy
64 corresponding elements and again for the second level
needs to satisfy the next 64 corresponding elements and it will
continue to repeat until length does not reach to maximum
length. So, one can represent its complexity in the worst case

being p(82�). Here Conjugacy Decisional Problem (CDP) is
easy to apply according to algorithm for the same, but Conju-
gacy Search Problem (CSP) does not work correctly.	eCDP
andCSP are the two advantageous approaches formaking the
exponential impulsiveness and arbitrariness for nonnegligi-
ble solution. Here no such Conjugacy Search Problem exists
to solve such larger scaled problems. 	erefore, in the con-
cluding remarks it can bemention that our proposed problem
ismaking a big impact with regard to cryptographic schemes.

Further, the performance may also improve using the
following artillery variations by using memory uses, rep-
etitions avoidance, look-ahead, alternative solutions, and
automorphism attacks implementation into the algorithms.
A brief idea is presented below.

Memory Uses. To compute the 2�
-child nodes from theW subtrees, the width of search memory increases which
chooses the shortestW ones as the roots of the subtrees for the
next computations. As a result, the search width is enhanced
from 1 to W. According to principle the algorithm becomes
e�cient, but it is still exponential. For example, if in any loop
the right node is not included in theV candidates, then the
algorithm may degenerate to exponential. If a random inputN� is chosen from an adversary that multiplies for a word
(or key) length q�, the necessary and su�cient condition
may be incorporation on r(N�q�+1) < r(q�+1), where q�+1 =N�+1 to N�, and N� le� multiplying to q�+1 forms its length
reduction. So, it can be considered, as corrected node is not
included in the W candidates list, because length of child-
node increases, which happens incorrectly, and therefore
perceptibly on successful attacks (rate) will decrease.

Repetitions Avoidance. Avoiding repetition is an improvement
usually seen in research.	e algorithmmaintains a hash table
of recorded values of visited nodes, and the chance may be
that the two nodes in the search tree have the same value. If
the same node value appears again, then from the candidate
list node value will be cancelled for same. So, to improve
the algorithm, avoiding repetition method used in list not
only improves e�ciency but also prevents the algorithm from
trapping into a closed loop.

Look-Ahead. 	is increases depth of searching. 	e original
algorithm searches one level each time, while the method
searches 
 levels each time; here is a possible way to make
a practical choice to avoid attacks. For better algorithm this is
one of the promising optional problems; the cost of traversing
time at 
-level subtree is (2�)�. 	e algorithm increases in
length of multiple right nodes for 
-steps; the look-ahead
problemnever 
nds the right node.	us, the algorithm again
falls in exponential search.

Alternative Solutions. 	e alternative solution is a speci
c
one, generated on themonomials like cryptographic schemes.
	is type of improvement is much more e�cient, and in
addition it does not change the search complexity. It helps
to in
nitely decrease the search time to 
nd the right nodes.
But one of the basic conditions involved with this algorithm
is that search direction should be correct. A large possibility
is available to make the algorithm fall into an exponential
search, if once it enters into a wrong subtree.

Automorphism Attacks. Under the parameters selected, the
random automorphism functions are extremely allied to each
other on random polynomial chosen for participants, so the
generation of these values is considered to be negligible.

7. Conclusion

In the manuscript, the noncommutative cryptographic
scheme on the extra special group for the multidisciplinary
perspective has been considered. Regarding this the mini-
mum group of the dihedral changes from�3 to�4 enhances
the search space, and two additional group bene
ts ofHeisen-
berg and quaternion groups make the proposal stronger than
all the previously predicted groups. 	e scheme is processed
at the noncommutative platform for the prospective advan-
tages of typical sparse matrices for general structures like
group, ring, or semiring elements. 	e proposed security
assumptions are based on the hidden subgroup or sub
elds
problem (HSP) on the random polynomials chosen for
end users, and monomials generation is presented where
Conjugacy Search Problem (CSP) is likely to be intractable.
For the adversary, the attacks like length based, brute-force,
automorphism, are being negligible.
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