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Abstract

Reservoir computing is a potential neuromorphic paradigm for promoting future disruptive applications in the era of

the Internet of Things, owing to its well-known low training cost and compatibility with hardware. It has been

successfully implemented by injecting an input signal into a spatially extended reservoir of nonlinear nodes or a

temporally extended reservoir of a delayed feedback system to perform temporal information processing. Here we

propose a novel nondelay-based reservoir computer using only a single micromechanical resonator with hybrid

nonlinear dynamics that removes the usually required delayed feedback loop. The hybrid nonlinear dynamics of the

resonator comprise a transient nonlinear response, and a Duffing nonlinear response is first used for reservoir

computing. Due to the richness of this nonlinearity, the usually required delayed feedback loop can be omitted. To

further simplify and improve the efficiency of reservoir computing, a self-masking process is utilized in our novel

reservoir computer. Specifically, we numerically and experimentally demonstrate its excellent performance, and our

system achieves a high recognition accuracy of 93% on a handwritten digit recognition benchmark and a normalized

mean square error of 0.051 in a nonlinear autoregressive moving average task, which reveals its memory capacity.

Furthermore, it also achieves 97.17 ± 1% accuracy on an actual human motion gesture classification task constructed

from a six-axis IMU sensor. These remarkable results verify the feasibility of our system and open up a new pathway for

the hardware implementation of reservoir computing.

Introduction

Recently, emerging sensor applications, such as the

Internet of Things (IoT)1 and ubiquitous sensing, require

sensors with smaller size and lower power consumption,

as well as “edge computing”2 capabilities, to process a

deluge of data locally. These expanding computing

requirements have motivated the creation of new and

specialized computing paradigms to break through the

“von Neumann bottleneck”. Among them, neuromorphic

computing that mimics a biological neural network has

been advocated as a candidate in recent years because of

its high energy efficiency3. As a neuromorphic computing

paradigm, reservoir computing (RC)4–6 was originally a

recurrent neural network (RNN)7–9 framework and is

therefore suitable for temporal information processing.

RC is different from conventional RNNs in that the

weights on the recurrent connections in the reservoir are

not trained; only the output connection weights in the

readout are trained, which makes it possible to drastically

reduce the computational cost of learning. More impor-

tantly, the hardware implementation of RC can be

achieved using a variety of nonlinear dynamic systems

with nonlinearity and fading memory (or short-term

memory). Because a mechanism for adaptive changes is
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not necessary for training, the main two implementation

structures are RC based on numerous randomly inter-

acting nonlinear nodes and a time-delayed nonlinear

system10.

RC based on spatially extended nodes provides efficient

parallel information processing11,12. However, it suffers

from the complexity of hardware implementation. Simple

RC based on a time-delayed nonlinear system possessing

only a single nonlinear node has been proposed. It can

emulate the spatially extended nodes of RC using virtual

nodes temporally extended along with a delayed feedback.

This superiority has recently motivated the search for

hardware implementation using emerging devices, such as

electronic devices13, optical systems14–19, spintronic

devices20, dynamic memristors21–25, and mechanical

resonators26,27. However, the delayed feedback and the

additional masking procedure reduce processing effi-

ciency. Recent studies have aimed to solve this problem by

optimizing the system parameters13,28, such as mask

length and feedback strength, or using different feedback

structures, such as double feedback loops16 and parallel

multiple feedback loops29,30. However, the effect of the

nonlinear characteristics of the device on the performance

of the RC system has rarely been studied. Moreover, an

initial report demonstrated the feasibility of RC with a

single “delay-coupled” nonlinear microelectromechanical

system (MEMS) resonator, and its best classification

accuracy was only 78+2% for the TI-46 recognition

benchmark.

In this work, we propose a novel reservoir computer

structure using a single micromechanical resonator with

hybrid nonlinear dynamics and omitting time-delayed

feedback. Moreover, we focus on the well-known non-

linear dynamics of the micromechanical resonator and

first propose a hybrid nonlinear response (HNL), which

comprises the transient nonlinear response (TNL) and the

Duffing nonlinear response (DuNL). Due to the dynamic

richness of the HNL, time-delayed feedback can be

removed to achieve high-efficiency RC. Furthermore, we

define a self-masking process to replace the traditional

masking procedure to simplify and improve the efficiency

of RC. The self-masking process directly feeds serialized

input data into the reservoir, reshaped by the

e-exponential characteristics of TNL with a certain tem-

poral solution, and then picks up the nonlinear cumula-

tive response at the separation time. Since our mask

procedure utilizes the self-nonlinear characteristics of the

reservoir, the masking procedure and RC are simulta-

neously completed, which is why we call it a self-masking

process.

This allows us to achieve a novel RC architecture using

the HNL with the self-masking process for high-efficiency

temporal pattern classification, such as the Mixed

National Institute of Standards and Technology (MNIST)

handwritten digit task, TI-46 spoken word recognition

benchmark, and human motion gesture recognition task

sensing, from a six-axis inertial measurement unit (IMU)

sensor. To evaluate the memory capacity of our system,

we perform a nonlinear autoregressive moving average

(NARMA) task. The results show that this novel structure

can effectively adjust the nonlinear richness of the system

to adapt to the specific pattern classification task13; it also

reduces system multiparameter optimization difficulties

and simplifies control loop complexities. More impor-

tantly, the simple structure and device compatibility with

MEMS can facilitate the hardware implementation of RC

and promote the emergence of disruptive applications

using MEMS technology in the future IoT era.

Results

Hybrid nonlinear resonator-based RC system

In the time-delayed RC, structural parameters such as

the mask function, the number of virtual nodes, and

feedback strength should be optimized to generate a

sufficiently rich reservoir state, which reduces processing

efficiency. In particular, to obtain a large number of dif-

ferent transient responses to the input, the input signal is

time-multiplexed by a mask function that serves the dual

purpose of serializing the input and maximizing the

effectively used dimensionality of the system. Therefore,

we propose hybrid nonlinear RC with a self-masking

process. The basic principle of our scheme is shown in

Fig. 1a. It is composed of three distinct parts: an input

layer, a reservoir, and an output layer. The serialized input

signals are fed to the reservoir after preprocessing. Then

the self-masking process and nonlinear transformation

are simultaneously realized in the hybrid nonlinear

reservoir. Thus, the reservoir states are sampled through

postprocessing, and the training and test procedures are

implemented using a linear regression algorithm. Com-

pared with time-delayed feedback RC13, we directly seri-

alize the input stream U(t) and feed it into the reservoir,

and different degrees of nonlinear cumulative effects can

be obtained by the self-masking process, which simplifies

the masking procedures and improves the information

processing efficiency.

The concept of HNL we introduce ensures the rich

nonlinear dynamics of the reservoir. Figure 1b shows the

envelope detection result of the HNL oscillation response

of the resonator, which can be roughly divided into four

stages: T1 represents the oscillation starting stage, T2 the

steady-state oscillation stage, T3 the oscillation attenua-

tion stage, and T4 the oscillation resting stage. For

T1–T4, all operate in the Duffing nonlinear oscillation

state of the resonator, but the T1 and T3 stages also

operate in the TNL. We select θ < T (T=T1=T3) for

better state richness due to the HNL we propose. Thus,

the masking procedure in time-delayed RC can be
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replaced with the self-masking process, and the feedback

loop is not necessary. As a result of this simple structure,

the system is capable of generating a sufficiently rich

reservoir state for high-efficiency information processing.

Model analysis of hybrid nonlinear RC

In this hybrid nonlinear RC system, a microelec-

tromechanical clamped–clamped (C-C) silicon beam

resonator is used as the reservoir to nonlinearly map the

input data into a higher-dimensional state space, which

can also be seen as a typical underdamped second-order

oscillation system. This hybrid nonlinear reservoir com-

bines the DuNL characteristics of the resonator31,32 and

its transient exponential nonlinear response character-

istics as a typical second-order oscillation system, which

guarantees the rich nonlinear dynamics of single reso-

nator RC to process the pattern classification tasks. The

resonator is driven and detected by the parallel plate

electrostatic force. A scanning electron microscopic

(SEM) image of the resonator is shown in Fig. 3, and its

displacement can be approximated by the Duffing non-

linear equation:

€xþ 2ξwn _xþ w2
nxþ βx3 ¼ FdðtÞ; ð1Þ

where x, _x, and €x are the displacement, velocity, and

acceleration of the resonator, respectively, wn ¼ 2πfn is

the natural angular frequency of the resonator in its linear

regime, ξ ¼ 1
2Q is the damping ratio, Q is the quality factor,

and Fd is the force per unit mass driving the beam. Note

that β is the coefficient controlling the amount of

nonlinearity in the restoring force and introduces the

Duffing nonlinearity to the equation. In the case of the

C-C beam (Figs. 2e and 3), the value of β can be estimated

by32

β ¼ 32E
p2ρL4A

ð2Þ

where E is the silicon Young’s modulus, L is the beam

length, ρ is its density, and A is a constant term. Equation

(2) further indicates that the geometric nature of the

nonlinearity of the resonator depends on the beam length.

Short beams can cause a larger nonlinear restoring force

term than long beams but need a larger excitation

amplitude.

The size information of the (C-C) silicon beam reso-

nator is described in the “Device fabrication” part, which

is designed to satisfy the demands for the appropriate

value of β and Q. To drive the C-C beam to the sufficient

nonlinear region with less energy consumption, an

expected β value of 2.4 × 1022Hz2m−2 with an effective

beam length of 500 µm should be determined. If β= 0, the

beam will oscillate periodically in a linear region, and we

can obtain the analytical solution x tð Þ ¼ 1 ± e
�wn
2Q

t

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1
2Qð Þ2

q .

When assuming the initial condition Fd= 0, this

e-exponential term is introduced as the TNL. The HNL

provides sufficiently rich computing dynamics when

mixing the β and e-exponential terms. In addition, the

natural frequency and quality factor also influence the

performance of RC. To maintain a certain memory

capacity, a high quality factor Q >1000 should be

considered, which determines the decay time for the TNL.
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Fig. 1 RC system architecture and hybrid nonlinear phenomena. a Scheme of the hybrid nonlinear resonator-based RC system. The duration

t ¼ τ ¼ θ � N is the total length of the input sequences, θ is the separation time between input signal data, and N is the number of neural nodes.

x tð Þ ¼ f ðUðtÞÞ, f is the hybrid nonlinear function constructed with TNL and DuNL, and the output nodes are linear weighted sums of the reservoir

states, which are given by the value y tð Þ ¼ wT
x tð Þ, where w is a vector of weights and y(t) is the target value. The dark brown circles with the label

“TNL” represent the neural nodes of the reservoir, and the light yellow circles represent a series of interconnection “virtual nodes” contained in a

neural node. b Hybrid nonlinear time-domain response of the resonator. Here the input sequence is a periodic sine wave (Vac ¼ 1 V, fd ¼ 184:2 KHz,

t= 0.035 s), and the responding current is recorded by the data acquisition and processing circuit.
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Fig. 2 Nonlinear resonator and RC models. a, b Simulation results of the frequency sweep and amplitude sweep of the resonator. Left: response of

the resonator to frequency sweeping for Q= 4300, polarization voltage Vdc= 30 V, and excitation amplitude Vac= 1 V; right: amplitude sweeping for a

fixed drive frequency of fd= 182 KHz. c, d Open-loop experiment test results of the frequency sweep and amplitude sweep of the resonator under the

same conditions. The optimal driving frequency is fd= 184.2 KHz at the g point, and the resonator natural frequency is fn= 175 KHz. e FEA model of

the beam showing its first mode shape. f–i Time domain response at different frequencies. j Some examples from the MNIST database. k Classification

results of two RC models. The reservoir states are significantly different after the two different models corresponding to the number “4-6-7-9.”
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To further reduce the “anchor loss”, a unique “cross”

anchor design is adopted.

In the hardware implementation of time-delayed RC by

a mechanical oscillator26,27, a high natural frequency and

relatively low value quality factor must be combined for a

higher processing speed t�1
0 ¼ πfn

MQ
, whereM is the number

of virtual nodes. Generally, several hundred virtual

nodes28 (M ~ 400) are employed to obtain good perfor-

mance; thus, the system needs a larger driving voltage to

operate in suitable nonlinear states because of the low

quality factor (Q ~ 100). While the number of virtual

nodes M is not needed in the self-masking process, a high

quality factor (Q ~ 4300) can be chosen, which not only

ensures the processing speed but also improves the

nonlinear effect of the TNL.

As mentioned above, the characterization of the non-

linear dynamic response of the beam is crucial since it is

the source of reservoir nonlinearity. A “frequency sweep”

and “amplitude sweep” are common characterization

methods used to analyze the nonlinear response of a

beam; therefore, we construct a numerical simulation of

Eq. (1) to determine several main parameters, which are

used to drive the resonator into an appropriate nonlinear

state for the realization of reservoir state richness, such as

the driving frequency fd and the excitation amplitude.

The Duffing nonlinear frequency/amplitude response

can be observed in Fig. 2a, b, and the nonlinear solutions

to (1) equation of motion have been well studied pre-

viously32. Finite element analysis is performed through

the solid mechanics interface of COMSOL Multiphysics

5.3a to further simulate the dynamic vibration modes of

the beam. Figure 2e shows the first mode shape. More-

over, to ensure that the beam works in a higher signal-to-

noise ratio and stability amplitude output at the specified

drive frequency, the value at the front bifurcation point

(g point) of the frequency hysteresis loop is selected33, as

shown in Fig. 2c. The sweep results of the simulation are

almost the same as the experimental results (Fig. 2c, d),

verifying the feasibility of the constructed model. There-

fore, we can choose suitable parameters and states to

verify our HNL-RC concept.

After determining the key parameters of the beam, we

choose the handwritten digit recognition dataset to

compare the classification performance of the TNL- and

HNL-RC models. We choose a subdataset to test or

optimize the system, which contains 1000 samples with 10

classes randomly selected from the MNIST dataset34:

100 samples for the test set, and 900 samples for the

training set. Preprocessing is performed before the sam-

ples are input to the reservoir to reduce redundant

information of the input signal, as shown in Fig. 4a. The

details are shown in the “Methods” section.

Figure 2k shows the reservoir states corresponding to

the four test samples shown in Fig. 2j for the two different

models. The reservoir states of the two models are sig-

nificantly different, preliminarily verifying the rationality

of the above analysis. The reservoir state is then used as

input to the readout function via ridge regression for

training and classification. The better temporal informa-

tion processing ability of the HNL reservoir is clearly

revealed by recognizing the test dataset; the classification

accuracy rate of the TNL model is 88% and that of the

HNL model is 91%. We thus demonstrate that the novel

RC structure possesses highly efficient information pro-

cessing capabilities and good classification accuracy.

Experimental set-up for single-resonator RC

When verifying the concept of the hybrid nonlinear RC

structure by the simulation, hardware implementation

experiments should be further established to verify the

Vdc
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DAC TlA
B-P

ADC
ENV

D-Samples

DAQ card

Functional
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Fig. 3 Schematic of the experimental reservoir computer. The experimental set-up of the control system and the scanning electron microscope

(SEM) image of the resonator. The doubly clamped silicon beam resonator can be actuated by the driving electrode (the green solid block) and read

by the sensing electrode (the blue solid circle) simultaneously; polarization voltage Vdc is added to the beam (the black hollow circle with arrow) so

that the parallel plates form a stable potential.
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feasibility of the system. We select the widely studied

MEMS C-C beam resonator, and its nonlinear oscillation

characteristic is verified through numerical simulation

and yields similar results. The SEM image and the

experimental set-up are shown in Fig. 3.

In the experimental set-up of our system, the hard-

ware implementation of the time-delayed RC26 is sim-

plified because of the self-masking process, including

the multiplier applied to multiply input digital data U(t)

with a mask. The adder is used to add the feedback

signal, the shift register, and amplifier for the precise

time delay, which are no longer required in our system.

When the sensing electrode obtains the state response,

an envelope filter (ENV) and a downsampling module

(D-Samples) are set behind the analog-to-digital con-

verter (ADC) because it is convenient to adjust the

response waveform under different nonlinear response

conditions using the LabVIEW program. Therefore,

the experimental set-up of the single resonator RC

better simplifies the complexity compared with the

time-delayed feedback RC and improves the flexibility

and information processing efficiency.

MNIST handwritten digit recognition

The nonlinear cumulative effect during the self-masking

process can be adjusted by varying the parameter θ, θ ¼
n � T n 2 0; 1½ �ð Þ, where T ¼ 2Q

wn
is the decay time of the

resonator. Here we ignore the influence of the decay time

itself because T is not changed under the specific

experimental conditions. According to previous

research13,26 and our simulation analysis, the separation

time value is set at θ � 1
2
T ¼ 0:008 s to offer optimal

performance. A parameter optimization trial is designed

by changing the parameter θ with the subdataset, and the

results are shown in Fig. 4b, c. We can obtain a classifi-

cation accuracy of 67% when θ ¼ 1
80
T ; increasing the

separation time to 1
2
T can potentially achieve 91% accu-

racy, and the accuracy can be lowered to 88% as θ con-

tinues to increase because the steady-state oscillation

stages only have one nonlinear response. Consequently,

we experimentally verify that the richness of the nonlinear

dynamics of the reservoir can be effectively optimized by

varying the separation time θ so that it can be more widely

and effectively applied to different types of classification

tasks with this hybrid nonlinear RC system.
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Fig. 4 Handwritten digit recognition using an HNL resonator-based RC system. a Schematic diagram of handwritten digit classification. b HNL

time-domain response curve of the resonator. The decay time T is equal to T1 or T3 in this curve, and the black circle indicates different separation

times, θ. c Optimal parameter θ experiment results. The plot of the MNIST subdataset classification accuracy versus the separation time θ in Fig. 4b.

The test conditions of the experiment are fd ¼ 184:2 KHz; Vdc ¼ 30 V; Vac ¼ 1 V; T ¼ 0:016 s. d False color confusion matrix showing the predicted

results from the resonator-based RC system versus the target outputs. The color bar on the right side of the figure is the color distribution value after

the normalization operation, and the color blocks in the matrix correspond to it. The classification accuracy is 93%, and the specifics of the training

procedure are detailed in the “Methods” section.
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In addition, after parameter optimization and selection

of specific nonlinear vibration states, it is vital to further

verify that the system is suitable for MNIST tasks with a

large amount of data. We randomly select 25,000 samples

from the MNIST dataset, of which 2500 samples are used

as the test set and 22,500 samples are used as the training

set. When we set the separation time θ ¼ 1
2
T , the final

classification accuracy obtained from the RC system is

93%. Figure 4d shows a false-color confusion matrix

highlighting the experimentally obtained classification

results from the RC system versus the desired outputs.

NARMA task to assess memory capacity

Different tasks require different key properties to make

a correct estimation of the target function. While classi-

fication tasks require a strong nonlinear transformation13,

forecasting tasks are strongly dependent on good linear

memory. In the experiments assessing the handwritten

digit recognition task, we demonstrate the high-efficiency

classification performance of the HNL reservoir. Here we

can also verify the memory capacity of this reservoir

through the NARMA benchmark.

NARMA is an acronym for the nonlinear autoregressive

moving average. It is one of the most widely used

benchmarks for measuring memory ability. The para-

meter n represents the correlation between the current

and the previous n data. We choose the task parameter

n= 1, as the nearest-neighbor correlation in this reservoir

framework only exists between the virtual nodes (the

details are presented in “Methods”). Based on the research

results13, we should choose a weak nonlinearity condition

to obtain better forecasting precision by selecting a sui-

table θ, which is not smaller than T. Another option is

reducing the parameter Q to weaken the Duffing non-

linear effect. Formula (3) is the transfer function of the

NARMA1 task, described as follows:

yk ¼ 0:3yk�1 þ 0:05y2k�1 þ 1:5u2k þ 0:1: ð3Þ

where k is the length of the training and test sequences, and

the input u(k) is generated from a uniform density in [0,0.5].

To quantify the performance of the reservoir, the nor-

malized mean square error (NMSE) of the predicted value

versus the value obtained from the NARMA model is used.

The details are described in the “Methods” section. In Fig. 5,

we depict the predicted results versus the target value. The

training set result is NMSE= 5.5e-3, and the test set result

is NMSE= 0.051. Therefore, we achieve memory capacity

in the HNL reservoir but have the potential to realize a

longer memory capacity with the novel architecture.

Motion gesture recognition of six-axis IMU sensor

To further verify the high-efficiency information pro-

cessing ability of the proposed HNL-RC system for the

real sensing of temporal signals and demonstrate its

application potential in real-world scenarios, we design an

application scenario to recognize the different human

motion gestures by our proposed HNL-RC system. Signal

data acquisition from a homemade six-axis IMU sensor,

which integrates commercial three-axis accelerometers

and three-axis gyroscopes, is performed using the func-

tional integrated circuits made by our research group.

Figure 6a, b shows the optical image of the six-axis IMU

sensor and wearing effect and the samples of four out of

eight different motion gestures, which include jumping

jacks, jogging, walking, squatting, stretching, chest

expansion, arm circling, and body circling. Figure 6c

shows the response of the sensor when the subject per-

forms the eight gestures. The preprocessing involves only

smooth filtering with a 30-point window length to reduce

the noise, sampling, and normalization of each waveform.

The final signal contains 600 feature points. We train and

test the system with the motion gesture sample set, which

consists of 8 actions, each repeated 20 times, for a total of
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Fig. 5 NARMA prediction task. a is the training set results, and b is

the test set results. When we set k= 300, the training/test input

contains 300 random data sequences. The figure shows the results of

100 intercepted data points, ~T, and the other parameters are the

same as above.
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3 subjects. After obtaining the response of the HNL-RC,

as shown in Fig. 6d, e, tenfold cross-validation is used to

obtain the optimal weight matrix to prevent the system

from overfitting to specific training and test data. The

experimental conditions are the same as above, and the

input voltage streams with 10 different time intervals θ

(0.05T, 0.1T, 0.2T, 0.3T, 0.4T, 0.5T, 0.7T, 0.9T, T, 2T) and

the optimal θ= 0.2T.

Figure 6g shows the best recognition results obtained by

the HNL-RC system; it can achieve (97.17 ± 1)% recog-

nition accuracy for the real sensing signal from the six-

axis IMU sensor. Moreover, if the application scenario is

changed to only the motion gesture recognition of a

certain person, a classification accuracy rate of (99.29 ±

0.5)% can be obtained by using this system. Therefore, the

single resonator-based HNL-RC system is verified as a

new architecture with high efficiency information pro-

cessing ability.

Discussion

The remarkable performance demonstrates the high-

efficiency information processing ability for pattern

recognition tasks and short-term memory capacity for

simple forecasting tasks, which shows the feasibility of our

system and opens up a new pathway for the hardware

implementation of RC. The use of a hybrid nonlinear

system can simplify the hardware reservoir implementa-

tion of RC, and it can improve the computation rate

compared with traditional time-delayed architectures.

To further illustrate the excellent performance and

reliability of the new architecture proposed here, we test

the MNIST handwritten digit recognition benchmark by

our HNL-RC system based on a single resonator, and the

classification accuracy is better than that of memristor-

based RC, which uses 88 memristors24. Furthermore, a

“similar” preprocessing procedure is performed in the

TI-46 spoken word classification task. We construct a

time-delayed feedback reservoir system using the same

resonator to compare the HNL-RC system, and the

experimental results show that the classification accuracy

of the latter (87.4%) is superior to that of the former

(78%). All of these results verify the high efficiency and

accuracy pattern recognition ability of this novel HNL-RC

architecture. The NARMA benchmark verifies the

regression forecasting ability when n= 1 for the memory

capacity, which we will improve in future work. Then we

design a motion gesture recognition experiment to test

the feasibility of the architecture. The sample set is
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composed of a real signal sensed from a six-axis IMU

sensor or three accelerometers. The high classification

accuracy in the “Results” section proves the high-

efficiency signal classification capability, and it also pro-

vides basic performance verification for future “sensing+

computing” integrated device applications in this novel

hybrid nonlinear RC hardware system.

Conclusion

In summary, we propose a novel RC architecture using a

single micromechanical resonator with hybrid nonlinear

dynamics while omitting time-delayed feedback. Based on

this approach, we numerically and experimentally analyze

the nonlinear response of the resonator and first propose

that the hybrid nonlinear dynamics of the resonator

comprise hybrid types of nonlinear responses, transient

responses, and Duffing responses. Moreover, a self-

masking process is defined based on the approach. We

also perform two typical tasks and one real signal sample-

set task sensed by a self-assembled six-axis IMU sensor to

verify its classification capability and memory capacity.

Experimental tests on the MNIST dataset show a high

accuracy of 93% for handwritten digit classification, the

motion gesture classification accuracy of the sample set

composed of three subjects is 98.17%, and the accuracy can

reach 99. 79% when the sample set is composed of only one

subject. For the NARMA task, the results show that the

NMSE is 0.051 when the correlation parameter n equals 1,

which is consistent with the situation wherein only the

nearest-neighbor input is correlated in the reservoir.

Considering the simple structure of our system and the

device compatibility with MEMS, we expect that the

proposed novel structure can facilitate the hardware

implementation of RC and inspire emerging applications

using MEMS technology in the future IoT era.

Methods

Device fabrication

The C-C beam resonator is microfabricated on (100)

p-doped silicon on a glass substrate by the standard

silicon-on-glass process. A device layer thickness of 40 µm

defines the width of the beam; the length, in-plane

thickness, and the gap between the beam and the drive/

sense electrode are chosen to be 500, 6.5, and 3 µm,

respectively, and the electrode length is 360 µm. For more

complex nonlinearity of the resonator, we select the

parallel plate drive and detection mode instead of the

comb drive mode. For the COMSOL simulation diagram

and the actual device diagram of the designed resonator,

please refer to Figs. 2e and 3, respectively.

Device characterizations

The experimental single resonator RC system is realized

with a personal computer (PC), an NI 6366 X Series Data

Acquisition (SDA), and a resonator device with a func-

tional interface circuit (IC). The PC is used to run the

loop of the control algorithm, which is programmed by

LabVIEW 17.0; the SDA is used to realize the function of

an ADC and a digital-to-analog converter, which are 12

bits, and the functional IC contains a trans-impedance

amplifier module, a second amplifier module, and a

bandpass filter module for transforming, amplifying, and

filtering the response signal, respectively.

Suitable driving parameters should be chosen before the

final test with special tasks. A Zurich lock-phase amplifier

is the most commonly used basic performance measure-

ment instrument for MEMS devices. It is used to perform

the open-loop frequency scanning test to determine the

required driving frequency and the effective quality factor.

Mixed National Institute of Standards and Technology

The MNIST database34 is a large dataset that is com-

monly used for training and testing classification capacity.

The database was created by “remixing” the digit samples

written by high school students and employees of the

United States Census Bureau and consists of 60,000

training samples and 10,000 test samples. Each sample in

the dataset is composed of a 28 × 28 gray value matrix.

Preprocessing was performed before the images were fed

into the reservoir, as shown in Fig. 4a. Taking the image of

6 as an example, the original grayscale image of 28 × 28

pixels was trimmed to a 22 × 20 pixel image to reduce

redundant information. Then the 22 × 20 pixel matrix was

transformed into 1 × 440 temporal sequences of input

pulse streams with separation time θ, serializing the N=

440 input signal as the “neural” nodes of the HNL

reservoir.

Finally, we obtained a 440 × 10 readout network that

was used for classification after training. To perform the

MNIST classification function, we need to construct ten

appropriate target functions as ten linear classifiers, each

of which is a polynomial function composed of the opti-

mal weight coefficient vector, yiðtÞ ¼ wT
i xðtÞ with i= 10.

For every test sample, the function is applied to select the

actual digit through a winner-takes-all approach. The

target function is +0 if the handwritten digit does not

correspond to the sought digit and +1 if it does. We called

this postprocessing.

NARMA task

The NARMA task is one of the most widely used

benchmarks for measuring RC memory capacity. The full

name is the nonlinear autoregressive moving average13. It

is used in many other publications in the context of RC,

such as refs. 5,35. For the NARMA task, the input u(k) is

generated from a uniform density in [0,0.5]. Then, after

being normalized, the variable n is a positive integer value

of [1,∞], where a larger n represents a stronger correlation
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between the generated data contexts, which means longer

memory length. The target yk is given by the following

recursive formula:

u kð Þ ¼ rand 0; 0:5½ �;
U kð Þ ¼ 2 � u kð Þ;

yk ¼ 0:3yk�1 þ 0:05yk�1

Pn�1
i yk�i�1

� �

þ 1:5uk�nþ1uk þ 0:1

ð4Þ

Different n values represent different correlations.

Our new model is designed for pattern classification

tasks that need strong nonlinear mapping ability;

therefore, it sacrifices a certain memory capacity in this

special RC framework. We choose n= 1, which indi-

cates that the current input is only associated with the

last previous response. For the regularization, training,

and testing of the dynamic system modeling task, we

used two samples with a length of 300 points as the

dataset, one for the training and one for the testing. To

calculate the memory capacity of the RC system, we

calculated our output signal error using the NMSE,

which is defined as follows:

NMSE ¼
Pm

k¼1

P

i2O pi kð Þ � yi kð Þð Þ2
Pm

k¼1

P

i2O y2i kð Þ ð5Þ

where p(k) is the predicted signal, y(k) is the original

signal, and m is the number of time steps in the target

function.

Readout function training via ridge regression

The reservoir readout layer was constructed by a linear

regression algorithm. We chose ridge regression with

Tikhonov regularization to prevent data from overflowing

during training and adjusted the weights to minimize the

mean squared error between y and yt.

y tð Þ ¼ wTx tð Þ;
w ¼ ytX

T ðXXT þ λIÞ�1 ; ð6Þ

where w is a vector of weights, yt is the target vector, X is

the data matrix that contains y(t) and x(t), and λ is the

regularization coefficient.
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