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ABSTRACT In previous investigations, the nonlinear hypothesis use the linear bounded maps. Nonlinear

hypothesis are described as the combination of the first order terms, and after of the mentioned combination,

one bounded map is applied to alter the result. This document proposes two nonlinear hypothesis which use

different structures instead of using the linear bounded maps. They are termed as novel nonlinear hypothesis

and second order nonlinear hypothesis and their goal is to improve the second order processes modeling. The

proposed nonlinear hypothesis are described as the combination of the first order and second order terms.

Since the delta parallel robot is a second order process, it is an excellent platform to prove the effectiveness

of the two proposed hypothesis.

INDEX TERMS Novel nonlinear hypothesis, second order nonlinear hypothesis, nonlinear hypothesis,

delta parallel robot.

I. INTRODUCTION

In the last few years, artificial intelligence has permeated

many aspects of the lives such as the modeling [1]–[3] and

optimization [4]–[6]. There are two important approaches of

the artificial intelligence used for the modeling like the fuzzy

models and neural networks. The fuzzy models and neural

networks require of hypothesis containing the membership

and activation maps for their acceptable performance. Since

all the membership and activation maps are bounded, they are

called boundedmaps. This document is focused in hypothesis

containing bounded maps for the modeling.

There exist several interesting investigations about

hypothesis containing bounded maps for the modeling.

In [7], [8], authors use hypothesis containing linear mem-

bership maps. In [9], [10], authors use hypothesis contain-

ing triangular membership maps. In [11], [12], authors use

hypothesis containing trapezoidal membership maps. In [13],

[14], authors use hypothesis containing Gaussian member-

ship maps. In [15], [16], authors use hypothesis containing

linear activation maps. In [17], [18], authors use hypothe-

sis containing discontinuous activation maps. In [19], [20],
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authors use hypothesis containing sigmoid activation maps.

In [21], [22], authors use hypothesis containing hyperbolic

tangent activation maps. In [23], [24], authors use hypothesis

containing relu activation maps. In [25], [26], authors use

hypothesis containing sign-bi-power activation maps.

From the above mentioned investigations, all nonlinear

hypothesis part from the linear bounded maps like the linear

membership maps of [7], [8], or the linear activation maps of

[15], [16]. Nonlinear hypothesis are described as the combi-

nation of the first order terms and it is detailed as the sum of

the multiplication of the first order modeling parameters with

the first order inputs, and after of the mentioned combination,

one bounded map like the sigmoid [19], [20], hyperbolic

tangent [21], [22], Gaussian [13], [14], or other is applied to

alter the result.

It is important to notice that in previous investigations,

the nonlinear hypothesis use the linear bounded maps. This

document proposes two nonlinear hypothesis which use dif-

ferent structures instead of using the linear bounded maps.

They are termed as novel nonlinear hypothesis and sec-

ond order nonlinear hypothesis and their goal is to improve

the second order processes modeling. The proposed nonlinear

hypothesis are described as the combination of the first order

and second order terms and it is detailed as the sum of the
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multiplications of the first order modeling parameters with

the first and second order inputs. The steps of this design are

as follows:
1) One of the next four hypothesis is chosen for the second

order processes modeling: 1) a linear hypothesis, it

considers the sum of multiplication of the first order

modeling parameters with the first order inputs, 2) a

nonlinear hypothesis of previous investigations, it con-

siders the sumofmultiplication of the first ordermodel-

ing parameters with the first order inputs, and after, one

bounded map is applied to alter the result, 3) a second

order nonlinear hypothesis, it considers the sum of

multiplications of the first order modeling parameters

with the first and second order inputs, and 4) a novel

nonlinear hypothesis, it considers the sum of multi-

plications of the first order modeling parameters with

the first and second order inputs, and multiplications

of the first order modeling parameters with the cross

first and second order inputs. In all the hypothesis,

the gradient is utilized for the updating.

2) Finally, since the delta parallel robot is a second order

process, the nonlinear hypothesis of previous investi-

gations, second order nonlinear hypothesis, and novel

nonlinear hypothesis are applied for themodeling of the

experimental linear and curve paths in a delta parallel

robot. The delta parallel robot takes into account the

behavior of the pick and place configuration. In this

configuration, the delta parallel robot is utilized for the

positioning of objects.

The document is structured in the next sentence.

In Section II, the linear hypothesis, nonlinear hypothesis of

previous investigations, second order nonlinear hypothesis,

and novel nonlinear hypothesis are designed for the second

order nonlinear processes modeling. In Section III, the exper-

imental platform of the delta parallel robot is described.

In Section IV, nonlinear hypothesis of previous investiga-

tions, second order nonlinear hypothesis, and novel nonlinear

hypothesis are compared. Finally, in Section V conclusions

and forthcoming works are explained.

II. HYPOTHESIS FOR THE SECOND ORDER

PROCESSES MODELING

Since the delta parallel robot is a second order process, this

section will design two variants of second order hypothe-

sis denoted as novel nonlinear hypothesis and second order

nonlinear hypothesis to improve the second order processes

modeling, and the proposed nonlinear hypothesis will be

compared with a nonlinear hypothesis of previous investiga-

tions. Since the delta parallel robot is a second order process,

it will be used in a posterior section to prove the effectiveness

of the two proposed hypothesis.

A. LINEAR HYPOTHESIS

A linear hypothesis is described as the combination of the first

order terms and it is detailed as the sum of multiplication of

the first order modeling parameters with the first order inputs

[7], [8], [15], [16].

FIGURE 1. Structure of the linear hypothesis.

A linear hypothesis is described to relate the input

variable of the end-effector (x i, yi, zi)T with the output angles

(θ i1, θ
i
2, θ

i
3)
T as:

θ
i

1 = ai0 + ai1X
i
1 + ai2X

i
2 + ai3X

i
3

θ
i

2 = bi0 + bi1X
i
1 + bi2X

i
2 + bi3X

i
3

θ
i

3 = ci0 + ci1X
i
1 + ci2X

i
2 + ci3X

i
3 (1)

where i = 1, . . . ,m, m is the data number, X i0 = 1,

X i1 = x, X i2 = y, X i3 = z are the inputs, θ
i

1, θ
i

2, θ
i

3 are

estimated outputs, aij, b
i
j, c

i
j, are modeling parameters to be

updated, j = 0, 1, 2, 3. The goal is to find the modeling

parameters aij, b
i
j, c

i
j, such that θ

i

1, θ
i

2, θ
i

3 are near to θ i1, θ
i
2, θ

i
3.

Figure 1 shows the structure of the linear hypothesis for the

output θ
i

1, it is similar for the outputs θ
i

1, θ
i

3.

The cost functions J (a), J (b), J (c) are described as:

J (a) =
1

2m

m
∑

i=1

(

θ
i

1 − θ i1

)2

J (b) =
1

2m

m
∑

i=1

(

θ
i

2 − θ i2

)2

J (c) =
1

2m

m
∑

i=1

(

θ
i

3 − θ i3

)2
(2)

Utilizing the gradient, the updating for aij, b
i
j, c

i
j are as:

ai+1
j = aij − α

∂J (a)

∂aj
= aij −

α

m

m
∑

i=1

(

θ
i

1 − θ i1

)

X ij

bi+1
j = bij − α

∂J (b)

∂bj
= bij −

α

m

m
∑

i=1

(

θ
i

2 − θ i2

)

X ij

ci+1
j = cij − α

∂J (c)

∂cj
= cij −

α

m

m
∑

i=1

(

θ
i

3 − θ i3

)

X ij (3)

where i = 1, . . . ,m, j = 0, 1, 2, 3, α is the modeling speed.

B. NONLINEAR HYPOTHESIS OF PREVIOUS

INVESTIGATIONS

From the above mentioned investigations, all nonlinear

hypothesis part from the linear bounded maps like the linear
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membership maps of [7], [8], or the linear activation maps of

[15], [16]. Nonlinear hypothesis are described as the combi-

nation of the first order terms and it is detailed as the sum of

the multiplication of the first order modeling parameters with

the first order inputs, and after of the mentioned combination,

one bounded map like the sigmoid [19], [20], hyperbolic

tangent [21], [22], Gaussian [13], [14], or other is applied to

alter the result.

A nonlinear hypothesis of previous investigations is

described to relate the input variable of the end-effector

(x i, yi, zi)T with the output angles (θ i1, θ
i
2, θ

i
3)
T as:

θ
i

1 = ς i1

(

ai0 + ai1X
i
1 + ai2X

i
2 + ai3X

i
3

)

θ
i

2 = ς i2

(

bi0 + bi1X
i
1 + bi2X

i
2 + bi3X

i
3

)

θ
i

3 = ς i3

(

ci0 + ci1X
i
1 + ci2X

i
2 + ci3X

i
3

)

(4)

where i = 1, . . . ,m, m is the data number, X i0 = 1, X i1 =

x, X i2 = y, X i3 = z are the inputs, θ
i

1, θ
i

2, θ
i

3 are estimated

outputs, aij, b
i
j, c

i
j, are modeling parameters to be updated, j =

0, 1, 2, 3. The goal is to find the modeling parameters aij, b
i
j,

cij, such that θ
i

1, θ
i

2, θ
i

3 are near to θ i1, θ i2, θ i3. ς i1 (·), ς i2 (·),

ς i3 (·) are bounded maps like the sigmoid, hyperbolic tangent,

Gaussian, or other.

Figure 2 shows the structure of the linear hypothesis for the

output θ
i

1, it is similar for the outputs θ
i

1, θ
i

3.

The cost functions J (a), J (b), J (c) are described as:

J (a) =
1

2m

m
∑

i=1

(

θ
i

1 − θ i1

)2

J (b) =
1

2m

m
∑

i=1

(

θ
i

2 − θ i2

)2

J (c) =
1

2m

m
∑

i=1

(

θ
i

3 − θ i3

)2
(5)

Utilizing the gradient, the updating for aij, b
i
j, c

i
j are as:

ai+1
j = aij − α

∂J (a)

∂aj

= aij −
α

m

m
∑

i=1

(

θ
i

1 − θ i1

)

ς i′1

(

ai0

+ ai1X
i
1 + ai2X

i
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i
3

)

X ij
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= bij −
α

m

m
∑
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)

ς i′2

(
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i
1

+ ai2X
i
2 + ai3X

i
3

)

X ij
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j = cij − α

∂J (c)
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= cij −
α

m
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∑
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)
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(
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i
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i
3

)

X ij (6)

FIGURE 2. Structure of the nonlinear hypothesis.

where i = 1, . . . ,m, j = 0, 1, 2, 3, α is the modeling speed,

ς i′1 (·), ς i′2 (·), ς i′3 (·), is the first derivative of the boundedmap.

C. SECOND ORDER NONLINEAR HYPOTHESIS

The second order nonlinear hypothesis is described as the

combination of the first order and second order terms and

it is detailed as the sum of multiplications of the first order

modeling parameters with the first and second order inputs.

A second order nonlinear hypothesis is described to relate

the input variable of the end-effector (x i, yi, zi)T with the

output angles (θ i1, θ
i
2, θ

i
3)
T as:

θ
i

1 =

{

ai0 + ai1X
i
1 + ai2X

i
2 + ai3X

i
3

+ ai4

(

X i1

)2
+ ai5

(

X i2

)2
+ ai6

(

X i3

)2
}

θ
i

2 =

{

bi0 + bi1X
i
1 + bi2X

i
2 + bi3X

i
3

+ bi4

(

X i1

)2
+ bi5

(

X i2

)2
+ bi6

(

X i3

)2
}

θ
i

3 =

{

ci0 + ci1X
i
1 + ci2X

i
2 + ci3X

i
3

+ ci4

(

X i1

)2
+ ci5

(

X i2

)2
+ ci6

(

X i3

)2
}

(7)

where i = 1, . . . ,m, m is the data number, X i0 = 1, X i1 = x i,

X i2 = yi, X i3 = zi are the inputs, θ
i

1, θ
i

2, θ
i

3 are estimated

outputs, aij, b
i
j, c

i
j, are modeling parameters to be updated, j =

0, . . . , 6. The goal is to find the modeling parameters aij, b
i
j,

cij, such that θ
i

1, θ
i

2, θ
i

3 are near to θ i1, θ
i
2, θ

i
3.

Figure 3 shows the structure of the second order

nonlinear hypothesis for the output θ
i

1, it is similar for the

outputs θ
i

1, θ
i

3.

The cost functions J (a), J (b), J (c) are described as:

J (a) =
1

2m

m
∑

i=1

(

θ
i

1 − θ i1

)2

J (b) =
1

2m

m
∑

i=1

(

θ
i

2 − θ i2

)2

J (c) =
1

2m

m
∑

i=1

(

θ
i

3 − θ i3

)2
(8)
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FIGURE 3. Structure of the second order nonlinear hypothesis.

Utilizing the gradient, the updating for aij, b
i
j, c

i
j are as:

ai+1
j = aij − α

∂J (a)

∂aj
= aij −

α

m

m
∑

i=1

(

θ
i

1 − θ i1

)

X ij

bi+1
j = bij − α

∂J (b)

∂bj
= bij −

α

m

m
∑

i=1

(
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2 − θ i2

)

X ij

ci+1
j = cij − α

∂J (c)

∂cj
= cij −

α

m

m
∑

i=1

(

θ
i

3 − θ i3

)

X ij (9)

where i = 1, . . . ,m, j = 0, 1, 2, 3, α is the modeling speed,

and:

ai+1
j = aij − α

∂J (a)

∂aj
= aij −

α

m

m
∑

i=1

(

θ
i

1 − θ i1

) (

X ij

)2

bi+1
j = bij − α

∂J (b)

∂bj
= bij −

α

m

m
∑

i=1

(

θ
i

2 − θ i2

) (

X ij

)2

ci+1
j = cij − α

∂J (c)

∂cj
= cij −

α

m

m
∑

i=1

(

θ
i

3 − θ i3

) (

X ij

)2
(10)

where i = 1, . . . ,m, j = 4, 5, 6.

D. NOVEL NONLINEAR HYPOTHESIS

The novel nonlinear hypothesis is described as the

combination of the first order and second order terms and

it is detailed as the sum of multiplications of the first order

modeling parameters with the first and second order inputs,

and multiplications of the first order modeling parameters

with the cross first and second order inputs.

A novel nonlinear hypothesis is described to relate the

input variable of the end-effector (x i, yi, zi)T with the output

angles (θ i1, θ
i
2, θ

i
3)
T as:

θ
i

1 =

{

ai0 + ai1X
i
1 + ai2X

i
2 + ai3X

i
3 + ai4

(

X i1

)2

+ ai5

(

X i2

)2
+ ai6

(

X i3
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+ ai7

(

X i1

)2 (

X i2

)2

FIGURE 4. Structure of the novel nonlinear hypothesis.
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ci0 + ci1X
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+ ci5

(
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(11)

where i = 1, . . . ,m, m is the data number, X i0 = 1, X i1 = x i,

X i2 = yi, X i3 = zi are the inputs, θ
i

1, θ
i

2, θ
i

3 are estimated

outputs, aij, b
i
j, c

i
j, are modeling parameters to be updated, j =

0, . . . , 11. The goal is to find the modeling parameters aij, b
i
j,

cij, such that θ
i

1, θ
i

2, θ
i

3 are near to θ i1, θ
i
2, θ

i
3.

Figure 4 shows the structure of the novel nonlinear hypoth-

esis for the output θ
i

1, it is similar for the outputs θ
i

1, θ
i

3.

The cost functions J (a), J (b), J (c) are described as:

J (a) =
1

2m

m
∑

i=1

(

θ
i

1 − θ i1

)2

J (b) =
1

2m

m
∑

i=1

(

θ
i

2 − θ i2

)2

J (c) =
1

2m

m
∑

i=1

(

θ
i

3 − θ i3

)2
(12)
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Utilizing the gradient, the updating for aij, b
i
j, c

i
j are as:

ai+1
j = aij − α

∂J (a)

∂aj
= aij −

α

m

m
∑

i=1

(

θ
i

1 − θ i1

)

X ij

bi+1
j = bij − α

∂J (b)

∂bj
= bij −

α

m

m
∑

i=1

(

θ
i

2 − θ i2

)

X ij

ci+1
j = cij − α

∂J (c)

∂cj
= cij −

α

m

m
∑

i=1

(

θ
i

3 − θ i3

)

X ij (13)

where i = 1, . . . ,m, j = 0, 1, 2, 3, α is the modeling speed,

and:

ai+1
j = aij − α

∂J (a)

∂aj
= aij −

α

m

m
∑

i=1

(

θ
i

1 − θ i1

) (

X ij
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m

m
∑

i=1

(

θ
i
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) (

X ij
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j = cij − α

∂J (c)

∂cj
= cij −

α

m

m
∑

i=1

(

θ
i

3 − θ i3

) (

X ij

)2
(14)

where i = 1, . . . ,m, j = 4, 5, 6, and:

ai+1
7 = ai7 − α

∂J (a)

∂a7
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α

m
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bi+1
7 = bi7 − α
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α

m

m
∑

i=1

(
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i
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) (
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)2 (
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α

m

m
∑
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(

θ
i
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) (

X i1

)2 (

X i2

)2

(15)

where i = 1, . . . ,m, j = 7, and:

ai+1
8 = ai8 − α
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∂a8
= ai8 −

α

m

m
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θ
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∂b8
= bi8 −

α

m
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α

m

m
∑
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X i3
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(16)

where i = 1, . . . ,m, j = 8, and:

ai+1
9 = ai9 − α

∂J (a)

∂a9
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α

m
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∑
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where i = 1, . . . ,m, j = 9, and:

ai+1
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)2 (

X i3

)2

bi+1
10 = bi10 − α

∂J (b)

∂b10

= bi10 −
α

m

m
∑

i=1

(

θ
i

2 − θ i2

) (

X i1

)2 (

X i2

)2 (

X i3

)2

ci+1
10 = ci10 − α

∂J (c)

∂c10

= ci10 −
α

m

m
∑

i=1

(

θ
i

3 − θ i3

) (

X i1

)2 (

X i2

)2 (

X i3

)2
(18)

where i = 1, . . . ,m, j = 10, and:

ai+1
11 = ai11 − α

∂J (a)

∂a11
= ai11 −

α

m

m
∑

i=1

(

θ
i

1 − θ i1

)

X i1X
i
2X

i
3

bi+1
11 = bi11 − α

∂J (b)

∂b11
= bi11 −

α

m

m
∑

i=1

(

θ
i

2 − θ i2

)

X i1X
i
2X

i
3

ci+1
11 = ci11−α

∂J (c)

∂c11
=ci11−

α

m

m
∑

i=1

(

θ
i

3−θ i3

)

X i1X
i
2X

i
3 (19)

where i = 1, . . . ,m, j = 11.

Remark 1: It is important to notice that in previous investi-

gations, the nonlinear hypothesis of equations (4), (6) use the

linear bounded maps. This document proposes two nonlinear

hypothesis which use different structures instead of using the

linear bounded maps. They are termed as novel nonlinear

hypothesis of equations (11), (13), (14), (15), (16), (17), (18),

(19) and second order nonlinear hypothesis of equations (11),

(13), (14), (15), (16), (17), (18), (19) and their goal is to

improve the second order processes modeling.

III. EXPERIMENTAL PLATFORM

A delta parallel robot has four degrees of freedom, three of

them for the three-dimensional space translating movement

of the effector and a fourth to control the orientation of the end

effector, due to the configuration of the links that make up the

mechanism, the platform of the end effector is always parallel

to the base of the delta parallel robot. Figure 5 shows the main

parts of our delta parallel robot of three degrees of freedom,

it presents a Revolution-Revolution-Revolution (RRR) con-

figuration, given that the variables of control correspond to

the angles between the motor link and the fixed base of the

mechanism.

Using our delta parallel robot shown in Figure 5, the

experimental linear and curve paths are programmed, a con-

trol is implemented in an Arduino due development board

and consists of 3 proportional integral controllers with

pulse-width modulation (PWM) output (with a base fre-

quency of 25 × 103 Hz to avoid unwanted vibration of

the motors), which are tuned using the Zieglers-Nichols
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FIGURE 5. Main parts of our delta parallel robot.

FIGURE 6. Electronic components of our delta parallel robot.

methodology in closed loop and 10 × 103 � linear poten-

tiometers were used as feedback, on the other hand themotors

(12 V) have a speed reducer with 60 : 1 ratio, while 4 H

bridges L298N are used for the power interface; although

each of these is capable of controlling up to two direct

current motors, it is preferred to use one for each motor in

order to avoid overheating the H bridges. Figure 6 shows the

electronic components of our delta parallel robot.

An user program is developed in Python that allows to

generate the experimental paths of the end effector of the

delta parallel robot. Figure 7 shows the flow chart of the user

program.

IV. EXPERIMENTAL RESULTS

In this section, the novel nonlinear hypothesis called NNH

and second order nonlinear hypothesis called SONH of this

document are compared with the nonlinear hypothesis of

previous investigations [21], [22] called NH for modeling

FIGURE 7. Flow chart of the user program.

FIGURE 8. The experimental linear path.

of the experimental linear path called ELP and experimental

curve path called ECP in a delta parallel robot. The goal is

that the estimated outputs θ
i

1, θ
i

2, θ
i

3 should be near to the

outputs θ i1, θ
i
2, θ

i
3 and the cost functions J (a), J (b), J (c) should

be small. The ELP and ECP are selected for the comparison

results; hence, other different paths could be used for the same

goal with similar results.

A. LINEAR PATH

Selecting a starting point Po = (xo; yo; zo) = (x1; y1; z1) and

a final point Pf = (x f ; yf ; zf ) = (xm; ym; zm), the parame-

terized equations of an ELP in three-dimensional space as a

function of time t can be written as:

x i = x1 + t
(

xm − x1
)

yi = y1 + t
(

ym − y1
)

zi = z1 + t
(

zm − z1
)

(20)

where x, y, z are in centimeters and t is in seconds. Figure 8

shows the ELP obtained with equation (20).
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TABLE 1. Cost functions for the ELP.

Before the training with equations (4), (6), and α = 1, the

initial parameters for the NH are in equation (21), rand is a

random number with values between 0 and 1.

a = [rand, rand, rand, rand]T

b = [rand, rand, rand, rand]T

c = [rand, rand, rand, rand]T (21)

Before the training with equations (7), (9), (10), and α = 1,

the initial parameters for the SONH of this document are in

equation (22), rand is a random number with values between

0 and 1.

a = [rand, rand, rand, rand, rand, rand, rand]T

b = [rand, rand, rand, rand, rand, rand, rand]T

c = [rand, rand, rand, rand, rand, rand, rand]T (22)

Before the training with equations (11), (13), (14), (15),

(16), (17), (18), (19), and α = 1, the initial parameters for the

NNH of this document are in equation (23), rand is a random

number with values between 0 and 1.

a = [rand, rand, rand, rand, rand, rand,

rand, rand, rand, rand, rand, rand]T

b = [rand, rand, rand, rand, rand, rand,

rand, rand, rand, rand, rand, rand]T

c = [rand, rand, rand, rand, rand, rand,

rand, rand, rand, rand, rand, rand]T (23)

Table 1 shows the cost functions J (a) of (5), J (b) of (8),

J (c) of (12) for the modeling of θ i1, θ i2, θ i3 in an ELP during

the training.

After the training with equations (4), (6), and α = 1, the

final parameters for the NH are in equation (24).

a = [−5.2035, −35.9658, 36.7725, 37.0851]T

b = [−3.9967, −3.5788, 4.7108, 4.4442]T

c = [−14.2486, −28.4926, 30.2933, 29.9999]T (24)

After the training with equations (7), (9), (10), and α = 1,

the final parameters for the SONH of this document are in

equation (25).

a = [−4.6120, 36.7327, 36.9275, −36.1591,

− 2.4196, −2.1817, −2.4426]T

b = [−8.1301, 4.7920, 4.1345, −3.8051,

16.2484, 16.6913, 16.5910]T

c = [−14.8846, 30.0773, 29.9877, −28.7174,

2.7486, 2.8680, 2.0529]T (25)

FIGURE 9. Modeling for θ1 of an experimental linear path.

FIGURE 10. Modeling for θ2 of an experimental linear path.

After the trainingwith equations (11), (13), (14), (15), (16),

(17), (18), (19), and α = 1, the final parameters for the NNH

of this document are in equation (26).

a= [−4.5613, 36.5261, 35.939,−35.14,−3.0534,−2.7143,

− 3.0323, 2.7521, 2.3571, 2.2612, 1.445, −14.7544]T

b= [−8.1311, 5.5969, 5.2089,−5.2069, 15.9037, 15.9643,

15.6599, 4.6625, 4.3839, 3.8098, 1.7316, 21.8141]T

c= [−14.8432, 29.4209, 29.1562, 28.5380, 1.4909, 2.2351,

1.9687, 3.2333, 2.8903, 3.3560, 1.6412, 11.0734]T

(26)

Figures 9, 10, 11 show the NH, SONH, and NNH for the

modeling of θ i1, θ
i
2, θ

i
3 in an ELP after the training where θ i1,

θ i2, θ
i
3 are in degree and t is in seconds.

From Figures 9, 10, 11, and Table 1, since θ
i

1, θ
i

2, θ
i

3 are

the nearest to θ i1, θ
i
2, θ

i
3 and the cost functions J (a), J (b), J (c)

are the smallest in the NNH, it can be observed the NNH

reaches better performance than both the SONH and NH for
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FIGURE 11. Modeling for θ3 of an experimental linear path.

FIGURE 12. The experimental curve path.

the modeling of an ELP. Then the NNH is the best alternative

for the modeling of an ELP.

B. CURVE PATH

Selecting a starting point Po = (xo; yo; zo) = (x1; y1; z1) and

a final point Pf = (x f ; yf ; zf ) = (xm; ym; zm), the parame-

terized equations of an ECP in three-dimensional space as a

function of time t can be written as:

x i = x1 + rC (ωt)

yi = y1 + rS (ωt)

zi =

(

z1 − zm
)

t (27)

where C is cosine, S is sine, r is the radius, ω is the angular

velocity, x, y, z are in centimeters and t is in seconds.

Figure 12 shows the ECP obtained with equation (27).

Before the training with equations (4), (6), and α = 1, the

initial parameters for the NH are in equation (21), rand is a

random number with values between 0 and 1.

Before the training with equations (7), (9), (10), α = 1,

the initial parameters for the SONH of this document of are in

equation (22), rand is a random number with values between

0 and 1.

Before the training with equations (11), (13), (14), (15),

(16), (17), (18), (19), and α = 1, the initial parameters for the

NNH of this document are in equation (23), rand is a random

number with values between 0 and 1.

TABLE 2. Cost functions for the ECP.

FIGURE 13. Modeling for θ1 of an experimental curve path.

Table 2 shows the cost functions J (a) of (5), J (b) of (8),

J (c) of (12) for the modeling of θ i1, θ
i
2, θ

i
3 in an ECP during

the training.

After the training with equations (4), (6), and α = 1, the

final parameters for the NH are in equation (28).

a = [15.7968, 19.1404, 2.0891, −13.2512]T

b = [−26.6402, 20.0150, −19.7215, −26.4806]T

c = [2.0498, 62.2792, 0.9871, −39.0685]T (28)

After the training with equations (7), (9), (10), α = 1,

the final parameters for the SONH of this document are in

equation (29).

a = [16.6848, 13.6311, −4.5955, −10.1233,

− 11.5888, 5.5343, −3.7544]T

b = [−24.4864, 19.8091, −21.6198, −21.6870,

− 14.1592, 13.1037, −0.06419]T

c = [5.1496, 41.9544, −21.0604, −33.4090,

− 29.0659, 5.7099, −10.5814]T (29)

After the training with equations (11) , (13), (14), (15),

(16), (17), (18), (19), and α = 1, the final parameters for

the NNH of this document are in equation (30).

a = [16.6377, 13.8735, −4.2849, −9.6467,

− 10.2981, 4.1885, −2.8381, −0.2291,

− 2.3846, 0.8919, −0.1770, 4.9935]T

b = [−24.5127, 19.8641, −21.3004, −21.0702,

− 12.1057, 11.0084, −0.2256, 0.2732,

− 2.5322, 1.9621, −0.1237, 8.1622]T
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FIGURE 14. Modeling for θ2 of an experimental curve path.

FIGURE 15. Modeling for θ3 of an experimental curve path.

c = [5.1318, 41.6783, −21.2594, −32.3082,

− 25.5617, 3.4821, −10.4259, −2.1242,

− 6.4280, 0.1610, −0.6708, 10.8756]T (30)

Figures 13, 14, 15 show the NH, SONH, and NNH for the

modeling of θ i1, θ
i
2, θ

i
3 in an ECP after the training where θ i1,

θ i2, θ
i
3 are in degree and t is in seconds.

From Figures 13, 14, 15, and Table 2, since θ
i

1, θ
i

2, θ
i

3 are

the nearest to θ i1, θ
i
2, θ

i
3 and the cost functions J (a), J (b), J (c)

are the smallest in the NNH, it can be observed the NNH

reaches better performance than both the SONH and NH for

the modeling of an ECP. Then the NNH is the best alternative

for the modeling of an ECP.

V. CONCLUSION

In this document, three kind of hypothesis were studied for

the second order processes modeling: the nonlinear hypoth-

esis of previous investigations, the second order nonlinear

hypothesis, and the novel nonlinear hypothesis. The men-

tioned hypothesis were applied for the experimental linear

and curve paths modeling in the delta parallel robot, since the

estimated outputs were the nearest to the outputs and the cost

functions were the smallest for the novel nonlinear hypoth-

esis, the novel nonlinear hypothesis reached better perfor-

mance than both the second order nonlinear hypothesis and

nonlinear hypothesis of previous investigations. This method

could be applied to other mechatronic processes as are medic,

biologic, robotic, hydraulic, mechanic, and electronic. In the

forthcoming work, other kind of nonlinear hypothesis will

be designed, or the stability of the proposed method will be

analyzed.
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