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ABSTRACT

In this work we present an introduction to photonic crystals by discussing the basic concepts and principles
behind these artificial materials, as well as their abilities to control light and enable unusual optical phenomena.
We will focus on specific examples including (1) negative refraction of light, (2) the superprism effect (anomalous
electromagnetic dispersion), and (3) the possibility of superlensing (subwavelength focusing). These are very
general results based on direct solutions of Maxwell’s equations, and can consequently be of relevance to many
areas of science and technology.
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1. INTRODUCTION TO PHOTONIC CRYSTALS

Photonic crystals are materials whose electromagnetic (EM) properties vary periodically on a lengthscale com-
parable to the wavelength of light, particularly with strong contrast. Within such materials, the propagation of
classical EM waves is determined by the detailed structures of the photonic lattice, and is completely governed
by Maxwell’s equations. The crystal structure in three dimensions can be very complicated and thus affect
light propagation in a highly nontrivial way, sometimes exhibiting spectacular features that are unfamiliar in
conventional optics of a uniform material.

The physics of photonic crystals1, 2 are often compared to those of crystalline solids, in which the periodic
scattering potentials provide a similar modification to the quantum-mechanical motion of electrons. The basic
problem is to determine the modes of light propagation in a given photonic lattice, usually described by a
position-dependent permittivity ǫ(r). The Maxwell’s equations can be casted in a stationary-state form as3

ΘF =
ω2

c2
F, (1)

where Θ is a position-dependent Hermitian operator containing ǫ(r), F is the EM field, and ω is the frequency
of the eigenstate (for example, when F is the magnetic field H, Θ = ∇ × ǫ−1(r)∇×). The form in Eq. (1)
provides an explicit analogy to the Schrödinger’s equation, and the square eigen-frequency ω2/c2 corresponds to
the energy eigenvalue in quantum mechanics. The solution to Eq. 1 in a photonic crystal can be classified using
the fundamental concepts in the band theory of electrons. According to the Bloch’s theorem, the eigenmode F can
be made Bloch-periodic with a Bloch wavevector k that lies within a Briilouin zone. The eigenfrequency ω then
emerges as a function of k and band index n: ω = ωn(k), and maps out the photonic band structure as k is varied
throughout the Brillouin zone. A photonic band gap may result for a frequency range in which no eigenmodes
are allowed. Actual photonic band structures may be calculated using the numerical techniques developed in
the studies of electron band structure, such as plane-wave expansion4 or the Korringa-Kohn-Rostoker method.5

On the other hand, there exist a number of physical differences between EM eigenmodes in photonic crystals
and electron Bloch waves in crystals. Of particular importance is the extreme wide generality of the principle
of photonic crystals. This is because there are no fundamental lengthscales in Maxwell’s equations, and the
band structure may be scaled to arbitrary frequencies provided the photonic lattice is correspondingly scaled.
A system designed at the microwave regime can therefore be “scaled” to other wavelengths, e.g. the optical
regime, using identical dimensionless parameters. This is vastly different from the electronic case in which the
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Bohr radius sets a natural lengthscale for the system. Moreover, as the EM waves are vector fields, the photonic
band structure contains information about light polarization and is richer than its scalar-wave counterpart in the
electronic problems. Finally, it is worth noting that numerical results of photonic band structure are essentially
exact within the linear response approximation and can be more reliable than those of electronic band structures,
which are almost always complicated by the effects of electron-electron interaction and Fermi statistics.

Photonic crystals have been proposed to revolutionize the generation6–10 and propagation11–16 of light waves.
Indeed, the existence of a photonic band gap in a range of frequencies prohibits light propagation in all possible
directions. This has led not only to novel photon-atom bound states that alter the fundamental physics of
light emission, but also to the concept of basic building blocks for optical materials that can used to construct
practical devices for applications. Deliberate defect structures inside the band gap adds a new design dimension
for versatile light control. Ultrahigh-Q cavities may be introduced as point defects in a perfect crystal to realize
resonance channel add-drop filters and ultra-low threshold lasers. Channels for efficient light transportation are
formed by line defects which can guide light through very sharp corners. Furthermore, by combining the index-
guiding mechanism of slab waveguides with two-dimensional photonic band gap effects, control and manipulation
of light in full three dimensions can be realized with present planar lithographic techniques. These developments
echo with the past band-gap engineering in semiconductor electronics and suggest that photonic crystals may be
used to tailor the properties of light in much the same way.

This paper is about photonic crystals as a new class of bulk optical materials. The pioneering works on
this subject are those of Lin et al,17 Kosaka et al,18 Gralak et al,19 and Notomi.20 Via experimental
and computational means, these authors explored the effects of photonic-crystal dispersion relations on the
direction of light flow and discovered the superprism phenomenon as well as an effective negative index of
refraction for light. Recently, negative refractive index has been observed in microwave left-handed materials21–23

and was further proposed to lead to the formation of a perfect lens.24 The superprism effect has also been
studied in detail in two-dimensional (2D) triangular optical lattices25–28 and in three-dimensional (3D) photonic
crystals.29, 30 In this paper, we discuss using photonic crystals to achieve negative refraction of light without
using a negative index .31–34 We then distinguish two superprism effects and discuss their different influence on
radiation propagation. In addition, we extend our analysis to evanescent waves, and demonstrate the possibility
of focusing light to subwavelength resolutions using photonic crystals. All of these novel optical phenomena
are a direct consequence of Maxwell’s equations and thus should have extremely wide validity, making photonic
crystals an attractive material candidate for designing novel technologies in many disciplines of science and
technology.

2. NEGATIVE REFRACTION WITHOUT A NEGATIVE INDEX

Let us first consider light refraction from vacuum into an isotropic uniform material, using a coordinate system
in which the interface plane is perpendicular to the z axis. Because the system is invariant under an arbitrary
translation in the interface plane, the refraction process will conserve the wavevector components parallel to the
interface. From the dispersion contours (diagrams of wavevector k for propagation at a constant frequency ω)
for both mediums, one can find the wavevector of the refraction modes corresponding to the incident ω and
surface-parallel wavevector. The direction of refraction may then be determined by finding the direction of the
Poynting’s vector for the refraction modes that propagates away from the interface. This procedure is illustrated
in Fig. 1 for a material with permittivity ǫ and permeability µ. In the plane of refraction, the dispersion contours
of both vacuum and the material are circles given by k2 = ǫµω2/c2. For ǫ > 0 and µ > 0, the direction of
the Poynting vector is along that of the wavevector, and thus the refraction angle satisfies the usual Snell’s law
sin θinc =

√
ǫµ sin θrefr, where θinc and θrefr are incidence and refraction angles as marked in Fig. However,

if ǫ < 0 and µ < 0 as in a left-handed material,21, 22 the EM modes are the so-called backward waves and
their Poynting vector must be anti-parallel to the wavevector, a property also known as having a negative group
velocity. In order for the refracted wave to propagate away from the interface, the mode with the negative kz

becomes the refraction mode, which travels on the negative side of the surface normal. This gives rise to a Snell’s
law,

sin θinc = −
√

|ǫµ| sin θrefr, (2)
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Figure 1. (Color) Illustration of refraction in uniform media. A: positive refraction in a medium with ǫ > 0 and µ > 0. B:
negative refraction in a medium with ǫ < 0 and µ < 0. In each subfigure, the left panel is the wavevector diagram, and the
right panel shows the propagation directions for the incident and refraction beams. Thick arrows indicate group-velocity
directions, and thin arrows stand for phase-velocity directions.

with a negative index of refraction. This possibility of a negative refracted index has been confirmed experimen-
tally23 and become one of the many experimental proofs for the existence of metamaterials with epsilon < 0 and
µ < 0.

The situation becomes more interesting if the second material is a photonic crystal. The interface now has a
lowered translational symmetry along only discrete surface lattice constants, leading to the conservation of the
surface-parallel Bloch-wavevector within the surface Brillouin zone. To find the refraction mode in the photonic
crystal, one needs to calculate the dispersion contour at an arbitrary frequency ω for the photonic crystal. It can
be shown35 that the gradient vector ∂ω/∂k to such a dispersion contour continues to give the group velocity, i.e.
the spatially-averaged Poynting vector, of the photonic modes. The above approach can thus be generalized to
the case with photonic crystals. Due to the strong optical modulation in the crystal, the shape of the dispersion
contour may differ considerably from being circular, providing a variety of interesting refraction possibilities.

As a specific example, we consider a 2D square lattice of air holes in dielectric ǫ = 12.0 with lattice constant
a and hole radius r = 0.35a. We consider light waves propagating in the plane of 2D periodicity and having
a magnetic field parallel to the cylinders (TE modes). The photonic band structure of this crystal can be
numerically calculated using planewave expansion,36 and is shown as the dispersion contours in Fig. 2. Here
we observe that due to the negative-definite effective mass tensor ∂2ω/∂ki∂kj at the M point, the frequency
contours are convex in the vicinity of M and have inward-pointing group velocities. According to our approach,
for frequencies that correspond to all-convex contours near M, negative refraction occurs as illustrated in Fig. 2.
The distinct refracted propagating modes are determined by the conservation of the frequency and the wavevector
component parallel to the air/photonic-crystal surface. If the surface normal is along ΓM [(11) direction], and
the contour is everywhere convex, then an incoming planwave from air will couple to a single Bloch mode that
propagates into this crystal on the negative side of the surface normal. We have thus realized negative refraction
in the first band.

To verify negative refraction, we proceed with a computational experiment using Finite-Difference Time-
Domain (FDTD) simulations. Here, a continuous-wave (CW) Gaussian beam of frequency ω0 = 0.195(2πc/a)
and a half width σ = 1.7(2πc/ω0 is launched at 45◦ incidence toward the (11) crystal surface of our photonic
crystal and subsequently refracts into it. A snapshot of this refraction process is shown in Fig, which shows that
the overall electromagnetic energy indeed travels on the reversed side of the surface normal. If we look closely
at the refracted field profile in the photonic crystal, we can see that there are constant-phase regions lying on
parallel straight lines and forming “phase-fronts” in the photonic crystal. However, there are multiple ways of
constructing parallel lines connecting these discrete regions, corresponding to multiple choices of phase-front
definitions. This fact reflects that, in a photonic crystal, k is only defined up to a reciprocal lattice vector G.
For the present situation, we choose the phase fronts for the refracted beam to be the set of constant-phase
lines with the largest wavelength in the crystal, which corresponds to the smallest |k| and hence the unique k
representing the Bloch-phase in the first Brillouin zone. The normals of the phase-fronts defined in this way now
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Figure 2. (Color) Left panel: dispersion contours of the first band of a model photonic crystal, drawn in the repeated
zone scheme. Frequency values are in units of 2πc/a. Middle panel: wavevector diagram of negative refraction in this
photonic crystal. Thick arrows indicate group-velocity directions, and thin arrows stand for phase-velocity directions.
Right panel: diagram of refracted rays in the actual crystal.

points toward the positive side of the surface normal, i.e. the phase velocity exhibits positive refraction.

It is clear from this example that the notion of a backward wave or a left-handed material is in fact not a
prerequisite for negative refraction. The physics of our example differs from those of left-handed materials in
that the lowest band now has k · ∂ω/∂k ≥ 0 everywhere within the first Brillouin zone, meaning that the group
velocity is never opposite to the Bloch-wavevector k. In this sense, we are operating in a regime of forward
waves and positive effective index. Such a scenario can also happen in a right-handed medium with hyberbolic
dispersion relations induced by anisotropy. For example, the TE modes in a uniform nonmagnetic medium with
dielectric tensor:

ǫ̃ =

(

ǫ1 0
0 ǫ2

)

, (3)

with ǫ1 > 0 and ǫ2 < 0, have a dispersion relation k2
2/ǫ1 − k2

1/|ǫ2| = ω2/c2. Similar negative refraction will then
happen on the (01) surface. Again, the phase velocity always makes an acute angle with the group velocity.

It should be noted, however, that the analogy of photonic crystals with high dielectric contrast to a uniform
medium is usually accurate only when the frequency is in the lowest few bands and away from the band edge.
As the frequency approaches the band edge or goes into higher photonic bands, each photonic mode begins to
exhibit strong, wavelength-scale spatial modulations, and more than one distinct modes will occur for the same
frequency. Absent from an effective medium theory but important for the optical properties of the crystal, these
additional features present difficulties in general in regarding photonic crystals in their higher bands as effective
uniform materials.

As an example, let us look at an example in a 3D photonic crystal. We consider a body-centered cubic
lattice of cube-shaped air voids in dielectric ǫ = 18, whose band structure is shown in Fig. 4. The side of the
conventional bcc cell is a, and the side of the void cubes is taken to be 0.75a. Marked out in the shaded region
in the third band is a large frequency range within which the dispersion surface of the photonic crystal forms a
single all-convex, near-spherical surface and is larger than that of air. This guarantees that the crystal in this
frequency range exhibit negative refraction for all incident angles (AANR) and precludes the possibility of near
band-edge operation. Because the third band exhibits negative group velocity (k ·∂ω/∂k) the 3D crystal may be
regarded as having an effective index neff less than −1. However, since there is only one band in this frequency
range in full 3D, the refraction phenomena will be strongly polarization dependent. For example, along the (001)
direction, the two degenerate polarizations of normal-incidence radiation in vaccum and the single-degenerate
photonic-crystal mode belong to different irreducible representations of the surface symmetry group. As a result,
they do not couple with each other, and thus the (001) surface should not be used as the interface with air. To
fix this problem, the (101) surface, whose symmetry group has different irreducible representations for the two
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Figure 3. (Color) FDTD simulation of negative refraction in a photonic crystal. Shown is the pattern for the magnetic
field H perpendicular to the plane (red for positive and blue for negative values). The dielectric boundaries are outlined.
The arrows and texts illustrate the various important directions for this effect. Also shown in red and blue lines are two
possible ways of construction phase fronts from the field pattern. We choose the set of phase front with the maximum
wavelength (λ1) to be that of the refracted beam.

polarizations, should be used. Along the normal direction on this surface, the crystal mode favors coupling with
waves polarized along (101̄) and does not couple with those polarized along (010). This dependence of coupling
efficiency on surface termination and polarization direction illustrate the important difference between photonic
crystal in their higher bands and an isotropic, uniform medium and a negative refractive index.

It should become clear from this discussion that negative refraction is an unambigous effect made possible
by 2D and 3D photonic crystals. In passing we note that in the above we have mainly relied on the method of
dispersion surfaces in our understanding. This method is powerful in finding the direction of the refracted waves
for an incident planewave, but does not yield information concerning the detailed coupling efficiency for such
processes. This deficiency, however, is not a great difficulty for two reasons. On the one hand, Fig. 3 shows that
the coupling efficency itself can be very large in the frequency regions we are looking at. On the other hand,
given the material into which light waves are refracted from vacuum, the direction of refraction is universal,
while the intensity of the refracted wave depends greatly on the details of the material and holds a less general
significance. We thus postpone a detailed discussion on the issue of coupling to Section 3.

3. THE SUPERPRISM EFFECT

In this section, we discuss two types of effects that exhibit anomalously large electromagnetic dispersion, whose
magnitude can be orders of magnitude larger than the intrinsic dispersion of dielectric materials. The first
type was introduced by Kosaka et al,18 and makes main use of group-velocity dispersion properties of photonic
crystals. The other type was due to pioneering work of Lin et al17 and depends primarily on a photonic
crystal’s phase-velocity dispersion. As we will see, these are two physically different but closely related effects
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Figure 4. (Color) Band structure (red) of a bcc lattice of air cubes in dielectric whose parameters are given in the text.
In the shaded AANR frequency range (green) the photonic crystal exhibits negative refraction for incoming radiation for
all angles. The dashed lines are light lines along ΓH and ΓN . Insets are the shape and special symmetry vertices of the
first Brillouin zone and a computer rendering of the actual crystal.

that correspond to two extreme regions of the photonic-crystal dispersion surface. Hence, we will use the term
superprism effect to refer to either one of them.

Let us continue using our model photonic crystal of Section 2 as an example, and continue to consider
refraction on the (11) surface. In the superprism effect of the group velocity type, a small change in the
parameters of the incident planewave (incident angle θinc or frequency ω) gives a large change in the refraction
angle θrefr of the Bloch wave in the crystal. Here, for example, we take the parameter to be θinc at a constant
ω and consider the change ∆θrefr in the refraction direction by a change ∆θinc in the incident direction, seeking
the condition for large ∆θrefr/∆θinc. As in Section 2, θrefr is the gradient direction of the dispersion surface,
and ∆θrefr stands for the difference in the gradient directions of two nearby refraction modes on the dispersion
surface. On the other hand, ∆θinc corresponds to a change in the transverse wavevector and measures the
distance in k-space of the two nearby refraction modes up to an angular factor. Thus, the condition for large
∆θrefr/∆θinc can be regarded to be the condition for large curvature locations, i.e. sharp corners, on the
dispersion surface. For example, near the photonic band edge, the radius of the dispersion contour rk becomes
small and exhibits large curvature, giving a large angular amplification

|∆θrefr/∆θinc| ≈
ω

crk
(4)

(see Fig. 5). Note that as rk → 0 the angular amplification is unlimited, indicating that arbitrarily strong
dispersion is in principle possible. Moreover, similar behaviors can also occur for small changes in the frequency
of light, and can be expected near other sharp corners such as X-point as well. Furthermore, this group-velocity-
based superprism effect does not require a complete photonic band gap in general and may persist even for
systems with a small dielectric contrast (in which case, of course, there are usualy more than one refraction
beams and not all of them experience this superprism effect at the same time).

In the superprism effect above, the agile beam steering occurs only for light waves travelling inside the crystal.
For beams entering a prism-shape photonic crystal, their large angular separation disappears once the light exits
the photonic lattice from an output facet. This is because the Bloch-wavevector k, or the phase velocity of light
in the crystal, is the key quantity responsible in determining the final beam direction: the component of k along
the exit surface must be conserved. Since the group-velocity superprism effect occurs in a region of the dispersion
surface with a large curvature, despite the large change in the direction of ∂ω/∂k, the change in k inside the
crystal is actually very small. As a result, a large crystal is needed to spatially separate light beams using the
group-velocity basied superprism effect as shown in Fig. 5. It is natural to wonder whether a superprism effect in
k itself would be possible, in which the direction of light outside the crystal can be steered with high sensitivity.
The large space region used to separate light may then be replaced by air and the size of the crystal itself may
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Figure 5. (Color) Left panel: dispersion-surface analysis of group-velocity based superprism effect in our model photonic
crystal, using the same notation as in Fig. 2. Right panel: illustration of a possible way of realizing this superprism effect
in a semi-circular shaped photonic crystal (yellow). The thick red arrows indicate the group-velocity directions inside the
photonic crystal.

then be reduced. According to the experiments by Lin et al,17 a dispersion increase of roughly 20% can be
expected for frequencies approaching the photonic band gaps. This magnitude of dispersion in k, however, is
comparable to that in a classical grating operating in the grazing-angle limit and about an order of magnitude
smaller than that predicted by Eq. 4. We show below that photonic crystals can actually be used to achieve a
much larger magnitude of phase-velocity dispersion.

A large change in the Bloch wavevector k corresponds to a large change in the component of k that is parallel
or perpendicular to the interface. Since the change in the parallel k-component is the same as that in the incident
radiation, ∆kinc, which is small for a small change in incident angle θinc or frequency ω, we need to change the
perpendicular component, which we call ∆krefr. That ∆krefr/∆kinc is large for a small but continuous range
of ∆kinc means that the corresponding part of the dispersion surface is almost perpendicular to the interface
and flat. This criterion points to a regime of dispersion surface different from what we studied above–a region
with very small curvature. In the dispersion contours of Ref. 2, such flat regions do exist for frequencies between
the X band-edge and the M band edge. In fact, in this frequency region an extremely flat part occurs between
concave and all-convex contour shapes, with a radius of curvature much larger than that of a uniform medium
with a dielectric constant as high as ǫ = 12. To realize the superprism effect with this part of dispersion surface,
an arrangement such as that shown in Fig. 6 can be employed. Here an extra prism of a high-index material
ǫ = 12 is added before the incidence (11) facet of the photonic crystal so that the flat portion of the dispersion
surface is perpendicular to the interface and can be coupled to. In this way, a tiny change in the incident angle
can be reflected in a huge change in the refracted wavevector, steering a beam exiting the device within a large
range of outgoing directions. Similar analysis can also be applied to frequency dispersions, and a tiny change in
the incoming frequency can also modify the Bloch wavevector k greatly. Moreover, we note that in the present
effect the occurrence of flat dispersion surfaces requires strong dielectric constant, which is similar to negative
refraction in photonic crystals. It is, however, different from the superprism effect based on group velocities in
which sharp dispersion-surface corners appear even for small index contrast or small filling ratios. Furthermore,
it should be noted that this effect is also similar to situations in elementary refraction or diffraction gratings
when one of the output beams occurs at grazing angles. In those latter cases ∆krefr/∆kinc can approach large
values as well for a very small range of ∆kinc in which krefr approaches the grazing condition. The key difference
in our photonic crystal is that the dispersion surface can be much flatter, permitting a much larger ∆krefr for
a given ∆kinc.

Finally we study the energy transmission properties in the superprism phenomena. For simplicity, here we
mainly focus on the effect due to the group velocity, and entirely similar conclusions may be extended to the effect
with phase velocities as well. We consider a wave going through a finite slab of photonic crystal and study the
properties of the transmission using the well-established scattering-matrix approach.37 If the incident wave is
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Figure 6. (Color) Left panel: dispersion-surface analysis of phase-velocity based superprism effect in our model photonic
crystal, using the same notation as in Fig. 2. Right panel: illustration of a possible way of realizing this superprism effect
in a prism-shaped photonic crystal (yellow), with an extra prism (green) added before the incidence interface. The thin
arrows indicate the Bloch-wavevector directions inside the prisms.

also a finite-sized beam, a lateral shift L will occur due to the refraction at the crystal interfaces. The magnitude
of L may thus be used to measure the angular dispersion inside the crystal.∗ We represent a finit-sized beam by
a superpositions of planewaves of different transverse wavevector kp’s whose weights peak at a certain kp. For
very wide beams, L can be estimated by the following equation,

L ≈ −∂Arg[t(kp), ω]

∂kp

, (5)

where t(kp, ω) is the complex transmission coefficient as a function of kp and ω. In this approach, both the
transmission efficiency |t|2 and the lateral shift L can be obtained to construct a complete picture of the refraction
process.

For analytical convenience, we now consider a slab of 2D “checkerboard” crystal, which is a square lattice
of (11)-oriented, alternating square regions of dielectric ǫ = 12 and vacuum. The slab is taken to be symmetric
and has a thickness of 25.5 periods (1 period along the thickesness direction is

√
2a where a is the lattice

constant of the square lattice). The calculated transmission |t|2 and lateral shift L for incident radiation having
a common transverse wavevector kx = 0.1(2π/

√
2a) for frequencies around the first band edge are shown in Fig.

7. As frequency increases toward the band edge, the envelope trend of the lateral shift L moves from positive
to negative, confirming the negative refraction discussed in the previous section. Moreover, this envelope of
L becomes more and more negative as the band edge is approached and eventually diverges L → −∞ at the
edge, depicting the super-dispersive nature near the photonic band edge. However, both |t|2 and L exhibits
oscillatory behaviors. These oscillations result from interference effects between interfaces, and larger osccilation
amplitudes correspond to weaker coupling strength between the photonic modes and the external planewave.
Since the oscillations in |t|2 and L grow stronger and stronger as the band edge is approached, the intensity
of the refracted wave inside the crystal generally becomes weaker and weaker and decays continuously to zero
in this limit. In the superprism effect, the huge dispersion induced by photonic crystals always occurs near a
photonic band edge, and thus such an effect always comes with a sacrifice in coupling efficiency, which can be a
rather serious problem for the superprism effect to be useful in potential applications.

A practical remedy to this problem is to design some appropriate photonic-crystal structures to improve the
rate at which the coupling efficiency drops near the band edge, so that a relatively strong transmission can be
maintained in a region of simultaneously high dispersion. This brings up the issue of engineering crystal interfaces
for better transmission, a possibility recently discussed by Baba in the context of a particular type of interface.38

∗It should be noted that L contains information about both the refraction angle and the wave interference between
the crystal interfaces and is a quantity beyond geometric optics.
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Figure 7. (Color) Calculated transmission |t|2 (black) and lateral shift L (red) for a photonic-crystal slab. The incident
radiation is assumed to have a trasverse wavevector kx = 0.1(2π/

√
2a). The inset shows the shape of the structure (only

one period along the transverse direction x is shown).

Here we demonstrate that a systematic method for improving the coupling efficiency into bulk crystals is to use
adiabatic-tapering interfaces similar to that in the waveguide field.39 The design criteria for the taper is simply
that it should provide a continuously and slowly varying environment for light to go from one medium into the
other, in the course of which no photonic band gap should appear. For tapering the checkerboard crystal to free
space, we can simply use intermediate cells with the same lattice constant a but reduced-size dielectric rods,
gradually bringing the rods to zero size. Fig. 8 shows the calculated transmission and lateral shift results for
the same photonic crystal in Fig. 7 with extra taper layers on each side to provide a smooth transition from
the photonic crystal to vacuum. As can be seen clearly, the additional taper layers greatly help reduce the
Fabry-Perot oscillations and increases the transimssion to near unity for a wide range of frequencies even for
a mere taper thickness of 4 periods. This improvement becomes better with an increasing number of tapering
layers, and for a 8-period taper, for example, lateral shifts of more than 100a, corresponding to an approximate
refraction-angle magnitude larger than 80◦, are realizable with an efficiency higher than about 80%. Note that
the position where L crosses 0 will be slightly modified in the presence of the taper structure by the lateral shifts
of the transition layers, which are usually positive. In general, as in the theory of waveguides,39 the envelope of
the reflection coefficient is inversely proportional to the square of the taper length for linear tapers. Therefore,
with sufficiently long tapers, good coupling can always be achieved very close to the band edge, solving the
efficiency problem in the extraordinary dispersion processes of photonic crystals.

4. SUBWAVELENGTH IMAGING

In the previous sections we have seen that photonic crystals can be used to create unusual phenomena by
controlling the properties of propagating waves. In this section, we examine the effect of photonic crystals on
evanescent waves, which are characterized by |k|p > ω/c. These waves represent the very fine, subwavelength
details that decay rapidly away from the source. Although conventional optical instruments such as lenses
and mirrors can focus propagating waves, they are powerless in transforming evanescent waves, which remains
exponentially small after transmission. One novel way to manipulate evanescent waves was to use a slab of
left-handed material with ǫ = −1 and µ = −1, which is predicated to amplify evanescent waves.24 Both the
propagating waves and the evanescent waves emitted by a point source placed in front of the slab can then be
captured by the slab and refocused into a perfect point image behind the slab. Here we show that a slab of
negative-refractive photonic crystals discussed in Sec. 2 can be used to amplify a range of evanescent waves and
to create focused images with subwavelength details.

We now focus on a 2D photonic crystal with a shape shown in Fig. 9A, a configuration very similar to the
crystal studied in Sec. 2 and more efficient for numerical calculation of transmission. For this crystal, a frequency
range exits where the negative refraction effect described in Sec. 2 happens for propagating waves at all incident
angles. Such an all-angle-negative-refraction (AANR) effect can be used to collect all the propagating waves
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Figure 8. (Color) Calculated transmission |t|2 (black) and lateral shift L (red) for a photonic-crystal slab with a taper-
transition interface. The incident radiation is assumed to have a trasverse wavevector kx = 0.1(2π/

√
2a). The inset shows

the shape of the structure (only one period along the transverse direction x is shown). A: results for a taper transition of
4 periods. B: results for a 8-period taper.

from a point source placed in front of a slab and refocus them behind it, a starting point for subwavelength
imaging. Fig. 9B shows this AANR range, as well as the bound-photon band structure of a slab of the present
photonic crystal. Below the light cone and inside the region of the projected band structure of the infinite crystal,
the bound photon states are guided by the bulk slab; the modes inside the partial photonic band gap are the
surface states guided by the air/slab interfaces. The surface modes have two bands with even and odd mirror
symmetry, and their splitting become small deep in the gap where the confinement is strong. All the bound
photon states are the poles of transmission for evanescent waves, and consequently they can be used to amplify
incident near-fields. The crystal thickness h and its associated surface termination position are chosen so that
the surface bands are very flat near the frequency ω = 0.192(2πc/a). In this way, evanescent waves within a
range of wavevectors near ω = 0.192(2πc/a) can all be amplified, and images formed by AANR can be further
focused to subwavelength resolutions.

We calculate the image of a TE point source behind the slab by integrating the transmission complex field
for planewaves of different transverse wavevectors, using a coordinate system with x parallel to the slab and z
perpendicular to the slab. The region z > 0 corresponds to the image region. For slightly different frequencies
across the flat surface bands, the image exhibits several distinctive types of patterns, which are strongly influ-
enced by the coupling to the surface photon states. The detailed results illustrating the delicate interplay between
propagating and evanescent waves are shown in Fig. 10. For ω = 0.193(2πc/a), an isolated intensity maximum
with width about 0.7λ can be realized in the image space, if the evanescent waves are amplified to a strength
comparable to those of propagating waves. Moreover, because of the resonant nature of the present situation (no
loss is assumed) and the extremely small group velocities of the bound photon modes, some transmitted evanes-
cent waves can also have such an extraordinaryily enhanced amplitude that they dominate over other evanescent
and all propagating modes. This leads to the enhanced surface resonance effect at ω = 0.192(2πc/a), for which
large field oscillations exist near the crystal surface, and the transverse image profile becomes delocalized and no
longer produce an isolated peak. Furthermore, a particularly interesting situation occurs at ω = 0.191(2πc/a),
where the evanescent waves are amplified to such a degree that an intermediate imaging behavior results. In
this case a distinct intensity peak can appear within the plane of AANR focusing with a size 0.45λ that is
significantly below the wavelength, with no intensity maximum in z > 0. This is thus a pattern quite similar
to that considered in the original perfect lens proposal. These different regimes of imaging patterns are a result
of the delicate balance between far fields and near fields and are impossible to realize in conventional geometric
optics. With their great flexibility and tunability, photonic crystals are thus a powerful and beautiful candidate
in manipulating and focusing light on subwavelength scales, especially in the optical regime.

216     Proc. of SPIE Vol. 5166



Figure 9. (Color) Bound photon modes with TE (magnetic field perpendicular to the plane) polarization in a 2D photonic
crystal slab. A: Left panel: the actual photonic crystal used in calculation. The parameters are as =

√
2a, b1 = 0.5as,

b2 = 0.2as and h = 4.516as. Right panel: the calculated band structure of bound photon modes (black curves), plotted
on top of the photonic band structure projected along the surface direction (the red filled region). The blue filled region
indicates the light cone. The green range is the frequency range for AANR in this photonic crystal. B: Distribution of
the magnetic field perpendicular to the plane for the surface photonic modes at k = 0.45 (2π/as). Left and right panels
represent odd and even symmetries with respect to the mirror plane at the center of the structure. Red and blue indicate
positive and negative values of the magnetic field.

5. CONCLUSIONS

In this paper, we have discussed several types of novel optical phenomena enabled by photonic crystals. In the
case of negative refraction, photonic crystals demonstrate a realistic example that negative refraction may occur
in materials without an effective negative index. Their complex Bragg scattering effect represents anomalous
electromagnetic dispersion in certain occasions, which can be further employed to manipulate the group velocity
or the phase velocity of light. In properly designed crystals these processes can occur at a high efficiency. Further-
more, photonic crystals can be used to amplify evanescent waves and focus light to subwavelength resolutions.
Although our discussion mainly focuses on dielectric crystals, entirely similar analysis may be applied to crystals
containing metallic components, and thus these effects can be easily observed in the microwave regime. Given
the extreme versatle nature of photonic crystals, we are sure that these unusual effects are only a very small part
of the rich and unconventional electrodynamics made possible by photonic crystals. We hope that this paper
serves as a useful guide for the reader to understand the fundamentals of photonic crystals and to discover novel
applications of these new materials on their own.
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