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This paper studies recursive optimal filtering as well as robust fault and state estimation for linear stochastic systems with
unknown disturbances. It proposes a new recursive optimal filter structure with transformation of the original system. This
transformation is based on the singular value decomposition of the direct feedthrough matrix distribution of the fault which
is assumed to be of arbitrary rank. The resulting filter is optimal in the sense of the unbiased minimum-variance criteria.
Two numerical examples are given in order to illustrate the proposed method, in particular to solve the estimation of the
simultaneous actuator and sensor fault problem and to make a comparison with the existing literature results.
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1. Introduction

Joint fault and state estimation of linear time-varying
stochastic systems with unknown disturbances is consid-
ered. This problem is solved by using an unknown input
filtering approach to produce unknown disturbance decou-
pled joint fault-state estimation. This may be achieved
by making use of unbiased minimum-variance estimation.
The proposed filter can play a significant role in several
applications, e.g., the model-based Fault Detection and
Isolation (FDI) problem (Ben Hmida et al., 2010; Chen
and Patton, 1996; 1999) and the Fault Tolerant Control
(FTC) problem (Blanke et al., 2006).

The subject of Unknown Input Filtering (UIF) has
been studied extensively in the past three decades. A first
approach was developed by Kitanidis (1987) using an Un-
biased Minimum-Variance (UMV) estimation technique.
This approach assumes that no prior knowledge about the
dynamical evolution of the unknown inputs is available.
Since then, many authors have extended Kitanidis’s filter,
(e.g., Cheng et al., 2009; Gillijns and Moor, 2007b).

A parameterizing technique is used to obtain an opti-
mal filter under less restrictive conditions as in the work of
Darouach and Zasadzinski (1997). Their results are only

limited to treat the state estimation problem. However,
Hsieh (2000) as well as Gillijns and Moor (2007a) inves-
tigated the joint input and state estimation problem using
an innovation filtering technique. All the previous works
are, nevertheless, limited to linear systems without direct
feedthrough of the unknown input to the output.

In the case where the unknown inputs or disturbances
affect both the system state and the output, the state esti-
mation problem was addressed by Hou and Patton (1998),
Darouach et al. (2003) as well as Cheng et al. (2009). Hou
and Patton (1998) developed a straightforward state esti-
mation method to design an optimal filter. A parameteriz-
ing technique was used by Darouach et al. (2003) to derive
an Optimal Estimator Filter (OEF). Recently, Cheng et al.
(2009) developed a recursive optimal filter with global op-
timality in the sense of unbiased minimum-variance. In
addition, they established a necessary and sufficient con-
dition for the convergence and stability of this filter. How-
ever, all these results are solely limited to the estimation
of the state, not the input.

The joint input and state estimation problem for lin-
ear systems with direct feedthrough was treated by Gilli-
jns and Moor (2007b) as well as Hsieh (2009). In the for-
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mer work the Recursive Three Step Filter (RTSF) is de-
rived where the input estimation is based on the Weighted
Least-Squares (WLS) approach and the state estimation
problem is solved by Kitanidis’s method. The RTSF is
usable if only the direct feedthrough matrix has full rank.
Recently, the case of arbitrary rank was proposed by Hsieh
(2009). The designed optimal filter, known as the ERTSF
(Extended RTSF), made it possible to estimate an UMV
state and input. But, in certain cases, the filter suffers from
a degradation of the input estimates.

The FDI problem for linear systems without and with
unknown disturbances has been thoroughly investigated
(Nikoukhah, 1994; Keller, 1998; 1999; Keller and Sauter
2011; Jamouli et al., 2003, Chen and Patton, 1996; 1999;
Ben Hmida et al., 2010). Keller (1999) designed a full-
order Kalman filter under a particular eigenstructure as-
signment. A new state filtering strategy was developed
to detect and isolate multiple faults appearing simultane-
ously or sequentially. Keller and Sauter (2011) presented
a restricted diagonal detection filter for multiple fault de-
tection and isolation. The proposed filter makes it possi-
ble to generate a minimum variance white innovation se-
quence having directional properties in response to each
fault. For detection and isolation of multiple impulsive
faults, a bank of Generalised Likelihood Ratio (GLR) tests
is applied to the innovation sequence generated by the de-
tection filter.

Unfortunately, these works do not attack the case
where unknown disturbances may affect the systems and
produce a false alarm. To deal with this case for sys-
tems with unknown disturbances, we can, according to
Nikoukhah (1994), develop a robust fault detection and
isolation in continuous time by using the error innovation
technique to generate unbiased white residual signals. The
fault is diagnosed by a statistical testing of the whiteness,
mean and covariance of residuals.

A new method was developed by Keller (1998) to de-
tect and isolate multiple faults appearing simultaneously
or sequentially in Linear Time-Invariant (LTI) stochastic
discrete-time systems with unknown inputs. That method
consists of generating directional residuals using an iso-
lation filter. Jamouli et al. (2003) presented a Fault Iso-
lation Filter (FIF) for fault detection in linear stochastic
systems affected by disturbances. The filter will generate
a directional residual decoupled from the unknown input
allowing the treatment of multiple faults appearing simul-
taneously or sequentially.

Chen and Patton (1996; 1999) studied the optimal
filtering and robust fault diagnosis problem for stochas-
tic systems with unknown disturbances. An optimal ob-
server was proposed, which can produce disturbance de-
coupled state estimation with minimum-variance for lin-
ear time-varying systems with both noise and unknown
disturbances. The output estimation error with distur-
bance decoupling is used as a residual signal. After that,

a statistical testing procedure is applied to examine the
residual and to diagnose faults. Nevertheless, the simul-
taneous actuator and sensor faults problem has not been
studied.

Recently, Ben Hmida et al. (2010) presented a new
recursive filter to joint fault and state estimation of linear
time-varying discrete-time systems in the presence of un-
known disturbances. The method is based on the assump-
tion that no prior knowledge about the dynamical evolu-
tion of the fault and the unknown disturbances is avail-
able. The filter has two advantages: it considers an arbi-
trary direct feedthrough matrix of the fault and allows for
estimation of multiple faults. However, in certain cases
the obtained filter may suffer from poor fault estimation
quality.

In this paper, we extend the version of Ben Hmida
et al. (2010) to further propose a new recursive optimal
filter structure. The fault affects both the state and output
equations where the direct feedthrough matrix has arbi-
trary rank, whereas the unknown disturbances only affect
the state system equation, without any prior information
about their dynamical evolution. This filter has been ob-
tained through a linear transformation of the original sys-
tem. Next, we use a linear Unbiased Minimum-Variance
(UMV) estimation. The estimation of the fault is obtained
by using a weighted least-squares approach. Thus, the re-
sulting filter will be applied to solve a simultaneous actu-
ator and sensor fault estimation.

The remainder of this paper is organized as follows.
Section 2 states the problem of interest. In Section 3 we
design the proposed filter. Thus Section 4 presents an il-
lustrative example.

2. Problem statement

Consider a linear stochastic discrete-time system in the
following form:

xk+1 = Akxk + Bkuk + F x
k fk + Ex

kdk + wk, (1)

yk = Hkxk + F y
k fk + vk, (2)

where xk ∈ R
n is the state vector, yk ∈ R

m is the
observation vector, uk ∈ R

r is the known input vec-
tor, fk ∈ R

p is the additive fault vector and dk ∈ R
q

is the unknown disturbances vector. Here wk and vk

are uncorrelated white noise sequences with zero means,
and the covariances matrices Qk = E [

wkwT
k

] ≥ 0
and Rk = E [

vkvT
k

]
> 0, respectively. The matrices

Ak, Hk, F x
k , Ex

k and F y
k are known and have appropri-

ate dimensions. We assume that (Ak, Hk) is observable,
m ≥ p + q and the initial state is uncorrelated with the
white noise processes wk and vk. The initial state x0

is a Gaussian random variable with E [x0] = x̂0 and
E [

(x0 − x̂0)(x0 − x̂0)T
]

= P x
0 , where E [·] denotes the

expectation operator.
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The aim of this paper is to extend the results of
Ben Hmida et al. (2010) in order to derive a new recursive
optimal filter structure to obtain a better fault and state es-
timation when 0 < rank (F y

k ) ≤ p in spite of the presence
of the unknown disturbances dk.

Initially, we seek to change the coordinates of the
system (1) and (2) by using the technique developed by
Cheng et al. (2009). Let rk = rank (F y

k ) < p. Then the
singular value decomposition of the matrix F y

k is given by

F y
k =

[
U1,k U2,k

]
[
Σk 0
0 0

] [
V T

1,k

V T
2,k

]
, (3)

where we have Σk ∈ R
rk×rk , U1,k ∈ R

m×rk , U2,k ∈
R

m×(m−rk), V1,k ∈ R
p×rk and V2,k ∈ R

p×(p−rk).[
U1,k U2,k

]
and

[
V1,k V2,k

]
are unitary matrices.

There exists a transformation matrix of the from
Tk =

[
T T

1,k T T
2,k

]T
such that the system (1) and (2) is

written as (Cheng et al., 2009)

xk+1 = Akxk + Bkuk + F x
1,kf1,k + F x

2,kf2,k

+ Ex
kdk + wk, (4)

z1,k = H1,kxk + Σkf1,k + v1,k, (5)

z2,k = H2,kxk + v2,k, (6)

where

v1,k = T1,kvk, v2,k = T2,kvk,

z1,k = T1,kyk ∈ R
rk , z2,k = T2,kyk ∈ R

(m−rk),

F x
1,k = F x

k V1,k, F x
2,k = F x

k V2,k,

H1,k = T1,kHk, H2,k = T2,kHk,

with the assumption that

rank(H2,kF x
2,k−1) = rank(F x

2,k−1), (7a)

rank(H2,kEx
k−1) = rank(Ex

k−1). (7b)

Since [V1,k V2,k] is a unitary matrix, it follows that
the fault must be reconstructed through its two compo-
nents f1,k and f2,k according to

fk = V1,kf1,k + V2,kf2,k. (8)

The transformation matrix Tk is given by

Tk =

[
Irk

−UT
1,kRkU2,k

(
UT

2,kRkU2,k

)−1

0(m−rk)×rk
I(m−rk)

]

×
[
UT

1,k

UT
2,k

]
. (9)

Cheng et al. (2009) define R1,k and R2,k as the vari-
ance of v1,k and v2,k, respectively, and R12(k, i) as their

covariance. Then it follows that

R1,k = E [v1,kvT
1,k],

= UT
1,kRkU1,k − UT

1,kRkU2,k

× (
UT

2,kRkU2,k

)−1
UT

2,kRkU1,k,

R2,k = E [v2,kvT
2,k] = UT

2,kRkU2,k,

R12(k, k) = E [v1,kvT
2,k] = 0,

R12(k, i) = E [v1,kvT
2,i] = 0 for k �= i.

Moreover, Cheng et al. (2009) show the following
relations:

• cov [v1,k, wi] = 0 and cov [v2,k, wi] = 0 for k �= i.

• cov [v1,k, x0] = 0 and cov [v2,k, x0] = 0.

Under the system equations (4)–(6), we note that we
can estimate the second component of the fault not at the
step k but at the step k − 1, because f2,k−1 will be esti-
mated from the state. The proposed state and fault filter
has the following structure:

x̂k/k−1 = Ak−1x̂k−1/k−1 + Bk−1uk−1

+ F x
1,k−1f̂1,k−1, (10)

f̂2,k−1 = Kf2
k

(
z2,k − H2,kx̂k/k−1

)
, (11)

x̂∗
k/k−1 = x̂k/k−1 + F x

2,k−1f̂2,k−1

+ Kx∗
k (z2,k − H2,kx̂k/k−1), (12)

f̂1,k = Kf1
k

(
z1,k − H1,kx̂∗

k/k−1

)
, (13)

f̂k = V1,kf̂1,k + V2,kf̂2,k−1, (14)

x̂k/k = x̂∗
k/k−1 + Kx

k

(
z2,k − H2,kx̂∗

k/k−1

)
, (15)

where the gain matrices Kf1
k ∈ R

rk×rk , Kf2
k ∈

R
(p−rk)×(m−rk), Kx∗

k ∈ R
n×(m−rk) and Kx

k ∈
R

n×(m−rk) still have to be determined to satisfy the fol-
lowing criteria:

• Unbiasedness: The estimator must satisfy

E [f̃k] = E [fk − f̂k] = 0, (16)

E [x̃k/k] = E [xk − x̂k/k] = 0. (17)

• Minimum-variance: The estimator is determined
such that

– the mean square errors E [(f̃k)T f̃k] is mini-
mized subject to the constraint (16),

– trace
{
P x

k/k = E [x̃k/k(x̃k/k)T ]
}

is minimized

subject to the constraints (16) and (17).
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3. Filter design

In this section, the gain matrices Kf1
k , Kf2

k , Kx
k and Kx∗

k

will be determined so that the filter (10)–(15) yields ro-
bust estimates of fk and xk in spite of the presence of the
unknown disturbances dk. Next, the UMV fault and state
estimation will be demonstrated.

3.1. Fault estimation. The estimation errors of f1,k

and f2,k−1 are given by

f̃1,k = f1,k − f̂1,k

= (Irk
− Kf1

k Σk)f1,k − Kf1
k e1,k, (18)

f̃2,k−1 = f2,k−1 − f̂2,k−1

= (Ip−rk
− Kf2

k H2,kF x
2,k−1)f2,k−1

− Kf2
k H2,kEx

k−1dk−1 − Kf2
k e2,k, (19)

where

e1,k = H1,kx̃∗
k/k−1 + v1,k, (20)

x̃∗
k/k−1 = xk − x̂∗

k/k−1,

e2,k = H2,kx̃k/k−1 + v2,k, (21)

x̃k/k−1 = Ak−1x̃k−1/k−1

+ F x
1,k−1f̃1,k−1 + wk−1, (22)

x̃k/k = xk − x̂k/k.

Referring to (18) and (19), the estimator f̂k given by
(14) is unbiased if and only if Kf1

k and Kf2
k satisfy the

following constraints:

Kf1
k Σk = Irk

, (23)

Kf2
k Gk = Fk, (24)

where
Gk = [H2,kF x

2,k−1 H2,kEx
k−1]

and
Fk = [Ip−rk

0(p−rk)×q].

Let x̃∗
k/k−1, x̃k−1/k−1 and f̃1,k−1 be unbiased. The

covariance matrices of e1,k and e2,k are defined respec-
tively by

R̃1,k = E [
e1,keT

1,k

]

= H1,kP x∗
k/k−1H

T
1,k + R1,k, (25)

R̃2,k = E [
e2,keT

2,k

]

= H2,kP
x

k/k−1H
T
2,k + R2,k, (26)

where
P x∗

k/k−1 = E
[
x̃∗

k/k−1x̃
∗T
k/k−1

]

and
P

x

k/k−1 = E
[
x̃k/k−1x̃

T
k/k−1

]
.

Since neither e1,k, nor e2,k has unit variances, the
Least-Squares (LS) solutions do not have a minimum-
variance. For that, f1,k and f2,k can be obtained by
weighted least-squares estimation (Kailath et al., 2000;
Gillijns and Moor, 2007b) with two weighting matrices
R̃−1

1,k and R̃−1
2,k. Then, to have unbiased fault estimates,

the matrices gain Kf1
k and Kf2

k are obtained as follows:

Kf1
k =

(
ΣT

k R̃−1
1,kΣk

)−1

ΣT
k R̃−1

1,k, (27)

Kf2
k = FkG∗

k, (28)

where

G∗
k =

(
GT

k R̃−1
2,kGk

)+

GT
k R̃−1

2,k (29)

is the generalized inverse of the matrix Gk.
The variances of the WLS solutions (18) and (19) are

respectively given by

P f1
k = E

[
f̃1,k(f̃1,k)T

]
=

(
ΣT

k R̃−1
1,kΣk

)−1

, (30)

P f2
k = E

[
f̃2,k−1(f̃2,k−1)T

]
= Kf2

k R̃2,k(Kf2
k )T , (31)

Referring to Eqns. (8), (14), (18) and (19), the fault error
estimate f̃k has the following form:

f̃k =
[
V1,k V2,k

]
[
f̃1,k

f̃2,k

]
. (32)

Using (32), the covariance matrix P f
k is given by

P f
k =

[
V1,k V2,k

]
[
P f1

k P f12
k

P f21
k P f2

k

] [
V T

1,k

V T
2,k

]
, (33)

where

P f12
k = (P f21

k )T = E [f̃1,k f̃T
2,k−1] (34)

= Kf1
k H1,k

[
P̄ x

k/k−1H
T
2,k + S̃k

]
(Kf2

k )T

with

S̃k = E [x̃∗
k/k−1v

T
2,k] = −(F x

k−1K
f2
k + Kx∗

k )R̃2,k.

3.2. State estimation. Referring to Eqns. (1) and (12),
the state estimation error x̃∗

k/k−1 is defined as

x̃∗
k/k−1 = ˜̄xk/k−1 − (Kx∗

k + F x
2,k−1K

f2
k )e2,k

+ (Ex
k−1 − Kx∗

k H2,kEx
k−1)dk−1 (35)

− Kx∗
k H2,kF x

2,k−1f2,k−1.

The estimator x̂∗
k/k−1 (12) is unbiased if Kx∗

k satisfies
the following constraint to eliminate the terms f2,k−1 and
dk−1 from the error estimate (35):

Kx∗
k Gk = F∗

k , (36)
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where
Gk = [H2,kF x

2,k−1 H2,kEx
k−1]

and
F∗

k =
[
0n×(p−rk) Ex

k−1

]
.

Lemma 1. A necessary and sufficient condition for the
estimators (4) and (5) to be unbiased is that matrix Gk

has full column rank, i.e.,

rank(Gk) = rank(F x
2,k−1) + rank(Ex

k−1). (37)

Proof. Equations (24) and (36) can be written as
[
Kf2

k

Kx∗
k

]
Gk =

[Fk

F∗
k

]
. (38)

A necessary and sufficient condition for the existence
of the solution to (38) is

rank

⎡

⎣
Fk

F∗
k

Gk

⎤

⎦ = rank(Gk) (39)

We expand (39) and obtain

rank

⎡

⎣
Fk

F∗
k

Gk

⎤

⎦ = rank

⎡

⎣
Ip−rk

0(p−rk)×q

0n×(p−rk) Ex
k−1

H2,kF x
2,k−1 H2,kEx

k−1

⎤

⎦

= rank[H2,kF x
2,k−1 H2,kEx

k−1]

= rank(H2,kF x
2,k−1) + rank, (H2,kEx

k−1)

Finally, referring to the assumption (7), we will have

rank(Gk) = rank(F x
2,k−1) + rank(Ex

k−1).

However, this can be easily justified by considering that
the faults and the unknown disturbances have independent
influences. �

Referring to (35) and (36), the covariance matrix
P x∗

k/k−1 has the following form:

P x∗
k/k−1

= E
[
x̃∗

k/k−1(x̃
∗
k/k−1)

T
]

= (In − F x
2,k−1K

f2
k H2,k − Kx∗

k H2,k)P
x

k/k−1

× (In − F x
2,k−1K

f2
k H2,k − Kx∗

k H2,k)T

+ (F x
2,k−1K

f2
k + Kx∗

k )R2,k(F x
2,k−1K

f2
k + Kx∗

k )T .

The gain matrix Kx∗
k is determined by minimizing the

trace of the covariance matrix P x∗
k/k−1 (37) such that (36)

is satisfied. Using the Kitanidis method (Kitanidis, 1987),
we obtain

[
R̃2,k −Gk

GT
k 0

] [
(Kx∗

k )T

(Λ∗
k)T

]

=
[−R̃2,k(Kf2

k )T (F x
2,k−1)

T + H2,kP̄ x
k/k−1

F∗
k

]
, (40)

where Λ∗
k is the matrix of Lagrange multipliers.

Equation (38) will have a unique solution. Accord-
ingly, the gain matrix Kx∗

k is given by

Kx∗
k =

[
P̄ x

k/k−1H
T
2,k − F x

2,k−1K
f2
k R̃2,k

]

× R̃−1
2,k(I − GkG∗

k) + F∗
kG∗

k, (41)

where G∗
k was defined in (29).

Using (1) and (15), the state estimation error x̃k/k

has the following form:

x̃k/k = xk − x̂k/k

= (I − Kx
kH2,k)x̃∗

k/k−1 − Kx
kv2,k. (42)

Considering (40), the covariance matrix P x
k/k is deter-

mined as follows:

P x
k/k = E

[
x̃k/kx̃T

k/k

]
(43)

= P x∗
k/k−1 + Kx

kR∗
kKxT

k − V ∗
k KxT

k − Kx
k V ∗T

k ,

where

R∗
k = H2,kP x∗

k/k−1H
T
2,k + R2,k + H2,kS∗

k

+ (H2,kS∗
k)T , (44)

V ∗
k = P x∗

k/k−1(H2,k)T + S∗
k , (45)

S∗
k = E

[
x̃∗

k/k−1v
T
2,k

]

= −(F x
2,k−1K

f2
k + Kx∗

k )R2,k. (46)

In order to obtain a minimum-variance estimate, we have
to minimize the trace of (41). Thus, the gain matrix Kx

k is
given by

Kx
k = (P x∗

k/k−1H
T
2,k + S∗

k)αT
k (αkR∗

kαT
k )−1αk. (47)

where αk is an arbitrary matrix which has to be cho-
sen such that αkR∗

kαT
k has full rank (Gillijns and Moor,

2007a; Darouach et al., 2003).

3.3. Filter time update. From Eqn. (22), the covari-
ance matrix P

x

k/k−1 has the following form:

P
x

k+1/k = E [
x̃k+1/k(x̃k+1/k)T

]
(48)

=
[
Ak F x

1,k

]
[

P x
k/k P xf1

k

(P xf1
k )T P f1

k

][
AT

k

F xT
1,k

]
+ Qk,

where P xf1
k is calculated by using (18) and (40). Then,

we obtain

P xf1
k = E

[
x̃k/k(f̃1,k)T

]

= (Kx
k (V ∗

k )T − P x∗
k/k−1)(K

f1
k H1,k))T . (49)
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4. Applications

In this section, we propose the use of the resulting filter to
solve the problem of estimating simultaneous actuator and
sensor faults and to make a comparison with the existing
literature results, in particular the ones of Ben Hmida et al.
(2010).

4.1. Robust estimation of simultaneous actuator and
sensor faults. We consider the numerical example used
by Chen and Patton (1996; 1999). The linearized model
of a simplified longitudinal flight control system is the fol-
lowing:

xk+1 = (Ak + ΔAk)xk + (Bk + ΔBk)uk

+ F a
k fa

k + wk,

yk = Hkxk + F s
kfs

k + vk,

where the state variables are the pitch angle δz , the pitch
rate ωz and the normal velocity ηy . The control input uk

is the elevator control signal. F a
k and F s

k denote the ma-
trices defining the distribution of the actuator fault fa

k and
the sensor fault fs

k , respectively. The presented system
equations can be rewritten as follows:

xk+1 = Akxk + Bkuk + F x
k fk + Ex

kdk + wk,

yk = Hkxk + F y
k fk + vk,

where F x
k and F y

k represent the matrices defining the in-
jection of the faults vector in the state and measurement
equations:

F x
k = [F a

k 0] , F y
k = [0 F s

k ] .

The term Ex
kdk represents the parameter perturbation

in matrices the Ak and Bk:

Ex
kdk = ΔAkxk + ΔBkuk.

The system parameter matrices are

Ak =

⎡

⎣
0.9944 −0.1203 −0.4302
0.0017 0.9902 −0.0747

0 0.8187 0

⎤

⎦ ,

Bk =

⎡

⎣
0.4252
−0.0082
0.1813

⎤

⎦ ,

Hk = I3×3, xk = [ηy ωz δz]
T ,

Qk = diag
{
0.12, 0.12, 0.012

}
, Rk = 0.12I3×3

We inject simultaneously two faults in the system,
[
fa

k

fs
k

]
=

[
4us(k − 20) − 4us(k − 60)
−2us(k − 30) + 2us(k − 70)

]
,

where us(k) is the unit-step function. The first fault, fa
k ,

occurs in the actuator between time instants 20 and 60,

and the second fault, fs
k , occurs in the sensor for δz be-

tween time instants 30 and 70. Thus, we consider the
cases of single and multiples faults. The unknown dis-
turbance is given by

Ex
kdk = Ex

k

{
[Δa21 Δa22 Δa23] xk + Δb2uk

}
,

where Δaij and Δbi (i = 1andj = 1, 2, 3) are perturba-
tions in aerodynamic and control coefficients. The matri-
ces defining injection of the fault and the unknown distur-
bances are

Ex
k =

⎡

⎣
0
1
0

⎤

⎦ , F a
k =

⎡

⎣
0.4252
−0.0082
0.1813

⎤

⎦ , F s
k

⎡

⎣
0
0
1

⎤

⎦ .

In the simulation, the aerodynamic coefficients are per-
turbed by ±50%, i.e., Δaij = −0.5aij and Δbi = 0.5bi.
In addition, we set uk = 10, x0 = 0, P0 = 0.12I3×3.

In Fig. 1, the actual and estimated values of the state
vector xk = [ηy ωz δz]

T are displayed. Figure 2 presents
the actual and estimated values of the first element and
the second element of the fault vector fk = [fa

k fs
k ]T ,

respectively. In Table 1, the Root Mean Square Errors
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Fig. 1. Actual state xk and the estimated state x̂k.

(RMSEs) of the states xk = [ηy ωz δz ]
T and the faults

fk =
[
fa

k fs
k

]T
are given along with the traces of their

steady-input and state estimation error covariances. Ac-

Table 1. Performance of the proposed filter.
x1 x2 x3 fa fs

0.7467 0.1059 0.8966 1.1198 0.2159

cording to the simulation results (Figs. 1 and 2 and Table
1), it can be seen that the proposed filter produces better
estimates of the state and faults. We primarily focus on
simultaneous estimation of actuator and sensor faults in
spite of the presence of unknown disturbances.
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Fig. 2. Actual fault fk and the estimated fault f̂k.

4.2. Comparative study. We consider the numerical
example used by Ben Hmida et al. (2010). In this simula-
tion, three cases of F y

k will be studied:

(F y
k )1 =

⎡

⎣
2 1

0.6 0.3
0.2 0.1

⎤

⎦ , (F y
k )2 =

⎡

⎣
2 0

0.6 0
0.2 0

⎤

⎦ ,

(F y
k )3 =

⎡

⎣
0 1.4
0 0.3
0 1.6

⎤

⎦ ,

dealing with particular ranks of the matrix F y
k .

We assume that the fault and the disturbance are
given by

[
f1

k

f2
k

]
=

[
4us(k − 25)− 4us(k − 70)
5us(k − 30)− 5us(k − 65)

]
,

dk = 4us(k − 15) − 4us(k − 55),

where us(k) is the unit-step function.
Figures 3 and 4 present the actual and estimated val-

ues of the first and second elements of the fault vector
fk = [f1

k f2
k ]T , respectively. In Tables 2 and 3, the

RMSE value of the states xk = [x1
k x2

k x3
k] and the fault

fk = [f1
k f2

k ]T are given along with the traces of their
steady-fault and state estimation error covariance matri-
ces. According to the simulation results in Figs. 3 and 4
and Tables 2 and 3, we may conclude with the following
results:

1. In all cases, the EUMV filter (Ben Hmida et al.,
2010) and the proposed filter give the same values
of the RMSE of the state estimation error. On the
other hand, the proposed filter gives smaller RMSE
values of the fault estimation errors.
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Fig. 3. Actual fault f1
k and the estimated fault f̂1

k .
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Fig. 4. Actual fault f2
k and the estimated fault f̂2

k .

2. When referring to the traces of the steady-fault esti-
mation error covariance, it appears that

trace(P f (EUMV filter))

= trace(P f1(Proposed filter))

≤ trace(P f (Proposed filter)).

Clearly, the fault estimation obtained by the EUMV
filter is in fact only the first component estimate f̂1,k

in our proposed filter. Dealing with the other com-
ponent of the fault f2,k, our proposed filter improves
the overall performance, despite a superior trace of
the steady-fault estimation error covariance as, logi-
cally,
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Table 2. Evaluation of the RMSE values.

F y
k Filter x1

k x2
k x3

k f1
k f2

k

(F y
k )1

EUMV filter 0.5248 0.1346 0.1863 0.7577 1.5179
Proposed filter 0.5248 0.1346 0.1863 0.6588 1.0942

(F y
k )2

EUMV filter 0.6301 0.1542 0.2129 0.2565 2.9580
Proposed filter 0.6301 0.1542 0.2129 0.2565 1.0434

(F y
k )3

EUMV filter 0.3378 0.0938 0.3647 2.6833 0.2103
Proposed filter 0.3378 0.0938 0.3647 1.1992 0.2103

Table 3. Trace of steady fault and state estimation error covariances.

F y
k Filter trace(P x

k/k) trace(P f1
k/k) trace(P f2

k/k) trace(P f
k/k)

(F y
k )1

EUMV filter 0.2645 – – 0.0301
Proposed filter 0.2645 0.0301 0.8068 0.8370

(F y
k )2

EUMV filter 0.3732 – – 0.0525
Proposed filter 0.3732 0.0525 0.4361 0.4885

(F y
k )3

EUMV filter 0.1977 – – 0.0338
Proposed filter 0.1977 0.0338 0.8350 0.8688

trace(P f (Proposed filter))

= trace(P f (EUMV filter))

+ trace(P f2(Proposed filter)).

5. Conclusion

In this paper, the problem of joint state and fault estima-
tion for linear time-varying stochastic systems with un-
known disturbances was solved. To achieve this objective,
a new recursive optimal unbiased minimum-variance filter
was proposed when the direct feedthrough matrix of the
fault has arbitrary rank. The advantages of this filter are
especially important in the case when we do not have any
prior information about the fault and the unknown distur-
bances. This filter is applied efficiently to solve two prob-
lems. Firstly, it estimates the actuator and sensor faults
simultaneously. Secondly, it establishes a comparative
study with the existing literature results.
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