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Jeszenszki · Ágnes Szabados
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Abstract Orthogonalization with the prerequisite of keeping several vectors

fixed is examined. Explicit formulae are derived both for orthogonal and

biorthogonal vector sets. Calculation of the inverse or square root of the entire

overlap matrix is eliminated, allowing computational time reduction. In this
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special situation it is found sufficient to evaluate functions of matrices of the

dimension matching the number of fixed vectors.

The (bi)orthogonal sets find direct application in extending multiconfigu-

rational perturbation theory to deal with multiple reference vectors.

Keywords overlap · orthogonalisation · biorthogonal sets ·multiconfiguration

perturbation theory · multistate theory

1 Introduction

There are two different, equivalent approaches for treating nonorthogonality of

a nonredundant vector set in a linear algebraic problem. One way is creating

biorthogonal vectors to the overlapping set, the other more common way is

orthogonalising the basis set. Let us assume that
{
ci
}N

i=1
is a nonredundant,

nonorthogonal set of N -dimensional vectors. Arranging vectors ci as columns

in matrix C, the overlap matrix

S = C†C

is a positive definite, nonunit matrix. Orthonormalization implies a linear

transformation B = CLo, obeying

B†B = L†
oSLo = I . (1)

Vector set
{
c̃i
}N

i=1
, biorthonormal to

{
ci
}N

i=1
is obtained by the transformation

C̃ = CLbo, fulfilling

C̃†C = L†
boS = I , (2)
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where C̃ contains vectors c̃i in columns. In contrast to orthonormalization, the

task of biorthonormal or reciprocal set construction has the uniquely defined

solution

Lbo = S−1

as a direct consequence of Eq.(2).

Of the possible orthonormalization procedures, Löwdin’s symmetric scheme[1,

2], operating with Lo = S−1/2 is widely exploited in quantum chemistry. Gram-

Schmidt orthogonalization is a popular, less costly alternative that lacks the

symmetry conservation and resemblance[2–4] properties of Löwdin’s symmet-

ric treatment. Gram-Schmidt orthogonalization is known to depend on the

ordering of vectors ci, which is not necessarily a shortcoming. It is a deliber-

ate advantage e.g. if one, selected vector is meant to be fixed.

This situation may be met when aiming to describe dynamic electron cor-

relation starting from a single, multideterminantal reference vector. Correc-

tion schemes based on perturbation theory (PT) have been applying succes-

sive Gram-Schmidt orthogonalization in such circumstances[5–7], occasionally

combined with Löwdin’s symmetrical[8] or canonical procedure[9,10]. Biorthog-

onal treatment of the overlap when correcting a single, multideterminantal

reference has been advocated and investigated extensively in the laboratory of

Péter Surján[11–13]. The framework termed multiconfigurational PT (MCPT)

collects several approaches differing in the treatment of overlap and choice for

the zero-order Hamiltonian (see Ref.[14] for an elaboration on the perturba-
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tive partitioning). Focusing on the handling of overlap, options exploited so

far, given a single reference vector are

1. orthogonal projection to the reference (first step of a Gram-Schmidt pro-

cedure)

(a) biorthonormal set construction in the (N − 1)-dimensional space

(b) Löwdin-orthogonalization in the (N − 1)-dimensional space

2. omit orthogonal projection to the reference

(a) biorthonormal set construction in the N -dimensional space

A notable feature of all three strategies is that the (bi)orthonormal set can

be given explicitly, eliminating the need of numerical overlap treatment. Op-

tion 2b is lucidly missing from the above list just for the reason that no close

form of the underlying inverse square root of the overlap could be constructed.

Notation 2a is hence somewhat superfluous, which we however keep to stress

analogy with 1a. The procedure of option 1b is equivalent to the Jacobi ro-

tations’ inspired orthogonalisation, designed by István Mayer[15,16]. For ap-

plications of the above (bi)orthogonal schemes in PT strategies alternative to

MCPT see Refs.[17,18].

In the present work we extend the above overlap treatments for the case

of multiple reference vectors. This involves derivation of explicit formulae for

the (bi)orthonormal sets in cases analogous to 1a, 1b and 2a above, with

reference vectors, m > 1 in number. Construction of S−1 and S−1/2 in case 1

for the (N −m) × (N −m) overlap matrix and S−1 in case 2 for the N ×N

overlap matrix is presented in Section 2. These results facilitate a multistate
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extension of the MCPT framework. The pertinent formulae are given in Section

3, followed by an illustrative numerical study in Section 4.

2 (Bi)orthogonal vector sets

Let {ei}Ni=1 be the set of unit vectors and let us replace the first m vectors

with the orthonormal set1 of vectors {ci}mi=1 . The new N -dimensional set,

{ci}mi=1 ∪ {ei}Ni=m+1 is not orthogonal as its subsets {ci}mi=1 and {ei}Ni=m+1

overlap.

Let us assume that coefficients Cji of the expansion

ci =

N∑
j=1

ej Cji

are arranged in matrix C, of dimension N × m. We now introduce notation

C1 for the upper m×m block of C, and C2 for the lower (N −m)×m block.

This allows to write

C =

C1

C2

 . (3)

Orthonormality of vectors ci is reflected by

Im = C†
1C1 + C†

2C2 = A+ C†
2C2 , (4)

where Im denotes the m-dimensional unit matrix and shorthand A is intro-

duced for subsequent use. We note here, that the union of sets {ci}mi=1 and

{ei}Ni=m+1 being N -dimensional relies on the tacit assumption that matrix A

is positive definite.

1 Orthonormality of vectors ci is assumed since orthonormalising m vectors is relatively

cheap for m << N .
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To extend option 1, projector P corresponding to the vector set {ci}mi=1 is

formulated as

P = CC† =

C1C
†
1 C1C

†
2

C2C
†
1 C2C

†
2

 .

As the next step, vectors {ei}Ni=m+1, arranged as the last N − m columns

of unit matrix IN , are projected orthogonal to {ci}mi=1 to generate the set

{ei′}Ni=m+1. Denoting the corresponding matrix D′, we get

D′ = (IN −P)

 0

IN−m

 =

 − C1C
†
2

IN−m −C2C
†
2

 , (5)

with obvious notation for IN−m. Overlap of vectors ei′ can be expressed as

D′†D′ = IN−m − C2C
†
2 , (6)

using Eqs.(4) and (5). MatrixD′†D′ represents the nontrivial part of theN×N

overlap matrix

S =

 Im

D′†D′

 (7)

of the set {ci}mi=1 ∪ {ei′}Ni=m+1 .

In the following paragraphs the inverse and inverse square root of the

overlap matrix of Eq.(7) is constructed. Clearly, it suffices to focus on D′†D′

of Eq.(6). We approach the problem in a general manner, by expressing any

analytic function, f : (0, 1] → R of matrix S. Matrix function f(S) is defined

via Taylor-expansion, written as

f
(
IN−m −C2C

†
2

)
=

∞∑
n=0

dn

(
C2C

†
2

)n

, (8)
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with dn = (−1)nf (n)(1)/n! . Since ||C2C
†
2|| < 1 (taking e.g. the 2-norm of

the matrix), the Taylor-series is convergent if the coefficients dn are bounded.

Explicit form of the Taylor-coefficients dn is not necessary for further deriva-

tion, all we need to know is that they are indeed bounded for the inverse and

inverse square root function.

We now recognize the following recursion for the powers of C2C
†
2

(
C2C

†
2

)n

= C2 (Im −A)
n−1

C†
2 (9)

that is easy to prove by induction. While the n = 1 case is trivial, case n = 2

is obtained as

(
C2C

†
2

)2

= C2C
†
2C2C

†
2 = C2(Im −A)C†

2 ,

an obvious consequence of Eq.(4) . To take the induction step, let us suppose

that statement (9) holds for n− 1 and examine the case n > 2. We find

(
C2C

†
2

)n

= C2(Im −A)n−2C†
2C2C

†
2

= C2(Im −A)n−2(Im −A)C†
2

= C2(Im −A)n−1C†
2

,

which completes the proof.
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Let us now substitute Eq.(9) into the Taylor-expansion of Eq.(8) and utilize

d0 = f(1). We obtain

f
(
IN−m −C2C

†
2

)
= f(1)IN−m + C2

[ ∞∑
n=1

dn(Im −A)n

]
(Im −A)−1C†

2

= f(1)IN−m

+ C2

{[ ∞∑
n=0

dn(Im −A)n

]
− f(1)Im

}
(Im −A)−1C†

2

= f(1)IN−m + C2 (f(A)− f(1)Im) (Im −A)−1C†
2 .

(10)

In the case Im = A the second term of the expression above is zero. The role

of the analytical treatment can be clearly pointed out at this step. Instead of

evaluating function f of an (N−m)×(N−m) matrix, it is sufficient to calculate

the inverse and the same function f of m×m matrices. As long as m << N ,

much can be gained in computational time, the eventual speedup depending

on the structure of A and the nature of f . As m → N , the computational

advantage evidently disappears.

2.1 Extended option 1a

Let us now work out the general formula of Eq.(10) for our two functions of

interest. Starting with the inverse function we obtain:

(
IN−m −C2C

†
2

)−1

=

IN−m +C2

(
A−1 − Im

)
(Im −A)−1︸ ︷︷ ︸

A−1

C†
2
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The inverse of the overlap matrix of Eq.(7) therefore reads

S−1 =



Im

IN−m +C2

(
C†

1C1

)−1

C†
2


.

Evaluating the biorthogonal counterpart of vectors ei′ one obtains

D̃′ = D′
(
IN−m +C2A

−1C†
2

)
=

−C1A
−1C†

2

IN−m

 ,

having utilized Eqs.(4) and (5). Noting, that C1A
−1 = C†−1

1 , the special case

of m = 1 is recovered as

ẽi′ = ei − c∗i
c∗1

e1 , i = 2, . . . , N , (11)

ci denoting the components of the single column vector C of Eq.(3). While the

biorthonogal vectors of Eq.(11) were introduced in Ref.[11], Eq.(3) of Ref.[12]

allows for a more transparent comparison.

2.2 Extended option 1b

Let us step now to the inverse square root of Eq.(7). Based on the general

result of Eq.(10) we obtain

(
IN−m −C2C

†
2

)−1/2

= IN−m +C2

(
A−1/2 − Im

)
(Im −A)−1︸ ︷︷ ︸

[(Im+A1/2)A1/2]
−1

C†
2 . (12)
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The −1/2 power of the overlap matrix of Eq.(7) hence becomes

S−1/2 =



Im

IN−m +C2

[(
Im +

(
C†

1C1

)1/2
)(

C†
1C1

)1/2
]−1

C†
2


.

The special case of m = 1, derived in Ref.[16] is obtained as

(S− 1
2 )ij = δij +

cic
∗
j

|c1|(1 + |c1|)
, i, j > 1 ,

utilizing that C of Eq.(3) is composed of a single column.

Matrix S−1/2 above facilitates to construct the Löwdin-orthogonalized

counterpart of vectors ei′ as

D′L = D′
(
IN−m +C2

(
A−1/2 − Im

)
(Im −A)−1C†

2

)

=

 −C1A
−1/2C†

2

IN−m −C2

(
Im +A1/2

)−1
C†

2

 ,

having made use of Eqs.(4), (5) and (12).

2.3 Extended option 2a

Let us finally consider the almost trivial case of reciprocal set construction to

the set {ci}mi=1 ∪ {ei}Ni=m+1 . Note, that the orthogonal projection of Eq.(5) is



Novel orthogonalization and biorthogonalization algorithms 11

now omitted. The N ×N overlap matrix of this set reads

S =



Im C†
2

C2 IN−m


.

Partitioning S−1 into the same structure as S and solving for the individual

blocks, the inverse overlap is readily found to be

S−1 =



A−1 −A−1C†
2

−C2A
−1 IN−m +C2A

−1C†
2


. (13)

The N ×m matrix C̃ and N × (N −m) matrix D̃ collecting reciprocal column

vectors are obtained as

(
C̃ D̃

)
=

C1 0

C2 IN−m

S−1 ,

their explicit form reading as

C̃ =

C1A
−1

0

 ,

and

D̃ =

−C1A
−1C†

2

IN−m

 .

Similarly to Eq.(10), the most demanding computational task (inversion of A)

is connected to an m×m matrix, instead of the entire, N ×N overlap matrix.
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It is interesting to observe, that the reciprocal vectors D̃′ of extended

option 1a and D̃ of extended option 2a match explicitly. In the special case of

m = 1, the first reciprocal vector reads ẽ1 = c∗−1
1 e1, while ẽi are the same as

ẽi′ of Eq.(11) for i > 1, in accordance with [12].

3 Multistate extension of MCPT

Electronic structure description often reaches its target in two successive steps.

A first, qualitative approximation is corrected in a second shot to incorporate

the so-called dynamic correlation. Situations where a single vector – even if

multiconfigurational in character – does not represent an adequate first approx-

imation, call for two or more reference vectors. Targeting more states of the

system at a time is another example where multiple reference vectors are nec-

essary. Many correction schemes have a version designed for such situations,

assuming multiple reference states that form a so-called model space (MS).

Equations of Rayleigh-Schrödinger PT[19,20] for instance can be regarded as

a special case of the Bloch-equation[21], corresponding to a one-dimensional

model space.

Bloch-equation based multistate PT formulations, termed quasidegenerate

PT (QDPT)[22] largely assume an orthonormal set of vectors in the config-

uration interaction (CI) space, that is partitioned for a model space and its

complement. This restricts applicability to model spaces easily separable from

the rest, e.g. formed by simple determinants. While determinants facilitate a

transparent derivation of many-body QDPT formulae[23,24], identifying the
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determinants that need to be included in the model space is not always trivial.

Though complete active space (CAS) appears a simple way out, CAS based

QDPT is unfortunately prone to the so-called intruder problem, especially for

large active spaces.

The idea of picking multiconfigurational vectors to span the model space is

appealing for two reasons. On one hand the dimension of the space is reduced

as compared to the case of using determinants. On the other hand it may

have a beneficial effect on intruder sensitivity, due to the internally coupled

nature of reference vectors. Such an approach is however hard to find for the

simple reason, that the orthogonal complement of multiple multiconfiguration

vectors is not easy to construct. It is at this point, where the overlap treatments

elaborated in Section 2 can be relied upon. Detailed derivation of the multistate

extension of the MCPT framework is out of the scope of the present report.

In what follows we confine ourselves to the key formulae necessary for the

illustrative application of Section 4.

Multiconfigurational reference functions, m > 1 in number, constitute the

starting point of our approximation. Vectors {ci}mi=1 of Section 2 are associ-

ated with these reference functions, Cji denoting the jth component in the

determinantal expansion of reference ci . In accordance with the generally ap-

plicable philosophy of MCPT, we do not assume any special structure of the

reference functions, apart from being orthonormal. Unit vectors {ei}Ni=1 of Sec-

tion 2 now represent determinants spanning the CI space. The first m among
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determinants, ei are selected based on their projection to the model space. In

particular, rows j for which
∑

i C
2
ji are the largest, constitute C1 .

The central quantity of PT approaches, the zero-order Hamiltonian is for-

mulated in MCPT via its spectral resolution. Extended overlap treatment

options 1a and 2a both imply a nonsymmetrical operator, 1b works with a

symmetrical expression. The zero-order Hamiltonian of option 1a, introduced

in projected MCPT (pMCPT)[11,13], can be extended as

H
(0)
MS-pMCPT = CE

(0)
P C† + D′ E

(0)
P⊥ D̃′ † ,

MS standing for ’multistate’. Overlap treatment option 1b, applied e.g. in

Ref.[16], can be extended for multiple reference vectors as

H
(0)
MS-pLMCPT = CE

(0)
P C† + D′L E

(0)
P⊥ D′L † .

Finally, the complete biorthogonal treatment of option 2a, termed originally

SC2-MCPT or unprojected MCPT (uMCPT)[12,13] can be extended to the

multistate case as

H
(0)
MS-uMCPT = CE

(0)
P C̃† + DE

(0)
P⊥ D̃† .

Diagonal matrices E
(0)
P and E

(0)
P⊥ above contain zero-order energies correspond-

ing to the model space and its complement, respectively. Zero-order energies

in the Epstein-Nesbet (EN) partitioning[25,26] are collected in Table 1 for

completeness.

Energy corrections are calculated in MS theories as eigenvalues of an effec-

tive Hamiltonian, obtained relying on the Bloch-equation and the zero-order
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operator. Matrix elements for the MS-pLMCPT variant at order 2 read as(
H

eff(2)
MS-pLMCPT

)
ij

= δijE
(0)
P,i −

N∑
k=m+1

⟨ci|H|ek′L⟩⟨ek′L|H|cj⟩
E

(0)
P⊥,k −E

(0)
P,j

. (14)

Corrected energies, E(2) and reference functions, ci(2) arise as

∑
j

H
eff(2)
ij d

(2)
jk = E

(2)
k d

(2)
ik ,

and

ci(2) =
∑
j

cjd
(2)
ji ,

respectively.

Closing this Section let us note, that the MS-MCPT variants would merit

a detailed formal and numerical examination respecting e.g. size-consistency,

intruder sensitivity or dependence on the zero-order eigenvalues. We inten-

tionally withdraw from such a study presently, as MS-MCPT merely serves an

illustration purpose here.

4 Numerical illustration

Choosing suitable reference function(s) is a persisting challenge for multiref-

erence theories. Geminal based approaches, continuously cultivated by Péter

Surján are promising in this respect[27–29] as they are more economic than

CAS, still they often reflect the multiconfigurational nature of the target func-

tion correctly. Obviously, geminal wavefunctions have their own shortcomings.

We focus here on one of these, the process of switching between two Lewis-

structures of the same molecule. A simple case study is provided by the rect-

angular to square distortion of the H4 system. Antysimmetrized Product of
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Strongly Orthogonal Geminals (APSG) produces a cusp on the energy curve

of this system at square geometry, as reflected by Fig. 1. The problem is con-

nected to the fact, that geminals (assigned to bonds) are reordered at the

switching point, thereby capturing the correct, dominant Lewis-structure at

both rectangular arrangements.

There exist solutions to this problem[30–32], APSG based PT is hovewer

notably not among them, since a qualitative defect of the reference can not

be cured by PT. This is reflected by the MCPT curve in Fig. 1. If wishing

to proceed by PT, it appears straightforward to construct two reference func-

tions, corresponding to either of the Lewis-structures and follow a MS-MCPT

strategy with two-dimensional model space. The energy profile obtained by

such a procedure is shown for the MS-pLMCPT variant in Fig. 1. Multistate

theory apparently results a smooth energy curve with a correct, zero deriva-

tive at 90 o. One can also observe in Fig. 1 a characteristic overshooting of EN

partitioning at order 2.

Due to the small system size, the example of Fig. 1 can not illustrate the

gain in computational time, brought about by the results of Section 2. To give

an impression in this line, let us consider the ground state of p-benzyne. De-

scription by a geminal based MS-MCPT approach necessitates three reference

vectors, corresponding to the three dominant Lewis-structures. Value for N of

Section 2 is given by the length of the determinantal expansion of the reference

vectors. Depending on the geminal scheme chosen, N may range from a couple

of hundreds (in case of a minimalistic APSG) to astronomical dimensions. The
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all pair coupled cluster doubles wavefunction, a geminal type function[33] e.g.

includes deteminants on the order of 1016, in a double zeta, polarized basis

set, cores assumed frozen. Accordingly, analytic handling of overlap allows for

dealing with 3×3 matrices instead of the numerical treatment of the N × N

overlap matrix, with the above values for N .
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Table 1 Zero-order eigenvalues within the Epstein-Nesbet partitioning in multistate

MCPT variants. Subscript P refers to the model space, P ⊥ stands for the complemen-

tary space. See text for further notations.

MS-pMCPT MS-pLMCPT MS-uMCPT

E
(0)
P,i ⟨ci|H|ci⟩ ⟨ci|H|ci⟩ ⟨c̃i|H|ci⟩

E
(0)
P⊥,i ⟨ẽi ′|H|ei ′⟩ ⟨ei ′L|H|ei ′L⟩ ⟨ẽi|H|ei⟩

−1.97

−1.96

−1.95

−1.94

−1.93

−1.92

−1.91

−1.9

−1.89

−1.88

−1.87

−1.86

 86  88  90  92  94

E
 [

E
h
]

H−X−H angle [º]

APSG
MCPT

MS−pLMCPT
FCI

Fig. 1 Total energy for H4, in STO-3G basis set. The four hydrogen atoms are confined to

a circle with a radius of
√
2 bohr. Angle of two neighboring hydrogen atoms (H) and the

center of mass (X) is labeled angle(H-X-H). The APSG wavefunction, involving 2 geminals,

with two orbitals assigned to each represents one of the reference states. The other reference

function is generated by (i) localising orbitals to atoms within the Arai subspaces; (ii)

assigning these orbitals to geminals representing the the longer HH bonds, instead of the

shorter; (iii) optimizing geminal coefficients but not the orbitals. The MS-pLMCPT energy

is obtained as the the lower lying root of the effective Hamiltonian of Eq.(14). The curve

MCPT is obtained in EN partitioning following the APSG based PT strategy of Ref.[11].

Full CI is shown for comparison.


