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1GSK, Research and Development Center, Siena, Italy, 2Linköping University, Linköping, Sweden, 3DTU Nanotech, Technical 
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Despite advancements in immunotherapeutic approaches, in�uenza continues to cause 

severe illness, particularly among immunocompromised individuals, young children, and 

elderly adults. Vaccination is the most effective way to reduce rates of morbidity and 

mortality caused by in�uenza viruses. Frequent genetic shift and drift among in�uenza- 

virus strains with the resultant disparity between circulating and vaccine virus strains 

limits the effectiveness of the available conventional in�uenza vaccines. One approach 

to overcome this limitation is to develop a universal in�uenza vaccine that could provide 

protection against all subtypes of in�uenza viruses. Moreover, the development of a 

novel or improved universal in�uenza vaccines may be greatly facilitated by new techno-

logies including virus-like particles, T-cell-inducing peptides and recombinant proteins, 

synthetic viruses, broadly neutralizing antibodies, and nucleic acid-based vaccines. 

This review discusses recent scienti�c advances in the development of next-generation 

universal in�uenza vaccines.

Keywords: in�uenza, hemagglutinin, virus-like particles, universal �u vaccine, neutralizing antibodies, vaccination 

strategies, functional antibody responses

INTRODUCTION

Seasonal in�uenza viruses circulate worldwide, spread easily from person to person, and result in 
the hospitalization of three to �ve million individuals worldwide each year (1, 2). �ese infections 
are responsible for 250,000–500,000 deaths, mainly among those with immature or compromised 
immunity, e.g., young children, elderly adults, and critically ill patients (2). However, all age groups 
can be a�ected, and the impact can increase signi�cantly with an emergent human in�uenza-virus 
strain during a pandemic (3). In�uenza viruses are constantly evolving through genome mutation 
and reassortment. During the past 100 years, new emergent in�uenza-virus strains have regularly 
appeared in human populations (“Spanish �u” in 1918 caused by the H1N1 subtype, “Asian �u” in 
1957 by H2N2, “Hong Kong �u” in 1968 by H3N2, “Russian �u” in 1977 by H1N1, and “swine �u” 
in 2009 by H1N1). In addition, limited outbreaks of avian in�uenza strains in humans threaten the 
evolution of one or more of these viruses to the point of sustained human-to-human transmission, 
for example, H5N1 (“bird �u”), H7N9, H5N6 as well as virus variants transmitted from pigs to 
human (H1N1v, H1N2v, and H3N2v) (4–8). Pandemic in�uenza has claimed millions of lives glob-
ally; the 1918–1920 H1N1 pandemic alone claimed 50–100 million lives (4, 9).

�e genome of the in�uenza virus consists of 8 single-stranded RNA segments encoding 11 pro-
teins, including the surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). �e human 
in�uenza virus is classi�ed into three distinct types A, B, and C, on the basis of major antigenic 
di�erences. In�uenza A and B viruses are responsible for annual human epidemics, whereas the 
in�uenza C virus is known to infect both humans and pigs and causes very mild upper respiratory 
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tract disease in humans (10, 11). �e in�uenza A virus is clas-
si�ed into 18 HA (H1–H18) and 11 NA (N1–N11) subtypes on 
the basis of HA and NA glycoproteins (3, 9, 12). On the basis 
of antigenic properties and structural features, in�uenza A virus 
HA subtypes can be further classi�ed into groups 1 (H1, H2, 
H5, H6, H8, H9, H11, H12, H13, H16, H17, and H18) and 2  
(H3, H4, H7, H10, H14, and H15), which comprise di�erent clades  
(A clade is a group of in�uenza viruses share homologous features 
and evolved from a common ancestor) (13, 14). Only a single 
subtype of in�uenza B virus has been identi�ed, and this sub-
type comprises two distinct antigenic lineages (B/Victoria and  
B/Yamagata) that diverged more than 40 years ago and co-circulate  
at variable levels in humans (3, 15).

Vaccination is an e�ective approach for the control and pre-
vention of in�uenza. Currently, trivalent inactivated-virus (TIV) 
vaccines against seasonal in�uenza viruses are the most frequently 
used in�uenza vaccines with a steady migration to tetravalent or 
quadrivalent vaccines (QIV). TIV vaccines are composed of three 
in�uenza-virus strains (2 A subtypes, H3N2, H1N1, and 1 B type) 
selected primarily on the basis of forecasted prevalence during 
the targeted in�uenza season. QIV vaccines include the second B 
lineage (16). TIV vaccines come in three di�erent formulations; 
the whole virus, split virus, and subunit. Whole-virus vaccines 
are prepared from embryonated chicken eggs, inoculated with 
virus, followed by chemical inactivation and puri�cation steps. 
Split-virus vaccines are prepared by treatment of in�uenza-virus 
particles by diethyl ether or detergent (e.g., ammonium deoxy-
cholate), which dissociates the viral lipid envelope exposing all 
viral proteins (17, 18). Subunit vaccines contain HA and NA 
proteins and are prepared by applying further puri�cation steps 
with detergents or diethyl ether (19, 20). A recombinant HA 
(rHA)-based subunit vaccine has been approved recently; and 
this vaccine showed higher seroconversion rates in healthy adults 
including elderly adults, compared with a non-recombinant TIV 
vaccine (21).

Inactivated vaccines primarily induce protective antibodies 
against epitopes on HA. Split and subunit formulations are used 
more frequently than the other formulations and both induce 
comparable immunity. Whole-virus formulation has been less 
preferred because of a potential association with increased reac-
togenicity (22). In the USA, inactivated vaccines are approved 
from 6 months of age, and rHA formulations are approved for 
those 18 years of age and older.

Live-attenuated in�uenza vaccines (LAIV) mimic aspects of 
natural in�uenza-virus infection, but without virus pathogenic-
ity, and induce both humoral and cell-mediated immunity (23). 
Intranasal administration of LAIV induces local mucosal immu-
nity (24) by inducing the secretion of IgA. LAIV is approved in the 
USA for use in children and adults between 2 and 49 years old (23). 
However, recently, the Center for Disease Control and Prevention 
(CDC) Advisory Committee on Immunization Practices (ACIP) 
recommended that LAIV should not be used during 2017–2018 
�u season (25). �e ACIP committee made this recommendation 
because of the lower e�cacy of LAIV against A(H1N1)pdm09 
viruses during the 2013–2014 and 2015–2016 seasons. Small and 
Cronin (26) argued that the decision of ACIP was based on Test 
Negative Case Controlled (TNCC) study design which measures 

direct rather than indirect protection and just an observational 
approach (25, 27). Potential causes of reduced e�ectiveness of 
A(H1N1)pdm09 in LAIV are evidenced by lower replication in 
alveolar cell lines and reduced binding to sialic acid receptors 
(receptors for in�uenza-virus binding) (28).

�e bene�ts of QIV over TIV are encouraging, and an increas-
ing proportion of in�uenza vaccination programs are using QIV 
(29). Nevertheless, both TIV and QIV vaccines require reformu-
lation with new in�uenza strains each in�uenza season, and their 
e�ectiveness is not guaranteed because it is primarily dependent 
on the match between the forecasted strains in the vaccines and 
the actual prevalent strains in circulation.

IS THERE A NEED FOR A UNIVERSAL 

INFLUENZA VACCINE?

�e leading challenge in in�uenza prevention and treatment is 
identifying e�ective strategies to deal with the rapidity in which 
the virus can evolve to evade its host’s immune system or develop 
resistance to drug treatments. In�uenza-virus evolution is typi-
cally considered in terms of antigenic dri�—the occurrence of 
minor changes in the virus genotype within the same virus type—
and antigenic shi�—emergence of new and potentially pandemic 
strains by the reassortment of viral genomes (13, 30, 31).

Seasonal antigenic dri�s usually consist of minor amino acid 
mutations in the HA globular head domain that may result in 
some changes to the pattern of glycosylation in this domain  
(32, 33). �ese changes in the HA-glycosylation pattern a�ect the 
infectivity of the virus and its ability to escape from antibodies 
elicited by previous strains or vaccines (33). As a result, current 
in�uenza vaccines, which provide antibody-dominated subtype-
speci�c protection against in�uenza viruses, need to be updated 
and produced every year before each in�uenza season (fall 
to winter period in the northern hemisphere) because of mis-
matches between the vaccine strains and the prevalent circulating 
virus subtypes.

�e adult human population has some levels of cross-protective  
antibodies against circulating seasonal in�uenza strains due to 
previous virus exposures or vaccinations, therefore, developing 
only mild disease symptoms upon infection (34, 35). By contrast, 
the absence of preexisting immunity to an emerging pandemic 
strain can lead to severe pulmonary infections and death. Infants 
are particularly at risk as they are immunologically naïve to 
in�uenza and may develop serious symptoms even from seasonal 
strains, as soon as the protection from maternal antibody wanes.

Adjuvants are formulated with the antigenic component of 
the vaccine to increase immunogenicity. Seasonal and pandemic 
in�uenza vaccines adjuvanted with oil-in-water emulsions AS03 
or MF59, in comparison with non-adjuvanted vaccines, elicit 
higher titers of neutralizing antibodies with higher a�nities 
and broader cross-reactive speci�cities to other in�uenza types 
and promote the persistence of long-lasting memory B cells in 
subjects from varied age groups (36–39).

Compared with existing cell-derived and recombinant in�u-
enza vaccines, conventional egg-based in�uenza vaccines are 
usually e�ective and have some limitations: a complex and slow 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


3

Kumar et al. Universal In�uenza Vaccine Development Technologies

Frontiers in Immunology | www.frontiersin.org March 2018 | Volume 9 | Article 600

production system, limitations in production capacity (produc-
tion of single dose needed two eggs), allergic responses to egg 
components in some individuals, and weak cross-reactivity to 
other in�uenza subtypes (40–43). Studies have shown that cul-
tivation of in�uenza virus in fertilized chicken eggs o�en results 
in adapting mutations in HA and that can alter virus antigenic-
ity and may sometimes decrease e�cacy of in�uenza vaccines 
(44–46). Mammalian cell-derived in�uenza vaccine provide 
several advantages over egg-based vaccines including in�uenza 
virus propagated in mammalian cell culture system remain 
unchanged, provide better or comparable protection, fast produc-
tion and does not require extensive advance planning, availability 
of controlled production system involving bio-reactors, higher 
yield, faster production cycle and production can be easily scaled 
up by adding bioreactors (43, 47, 48). A recent study has shown 
comparable yield of virus from 1,000-l bioreactor, 12,000 roller 
bottles or 30,800 chicken eggs (47). �ese collective advantages 
increase cost-e�ectiveness of cell-based in�uenza vaccines. 
Despite several bene�ts, cell culture system also have some limita-
tions including, scaling-up di�erent cell lines is biggest challenge, 
obligation of expensive new facilities and extensive adventitious 
virus testing required (43, 49). �ese collective constraints call 
for new design and development of unique universal in�uenza 
vaccines that could provide long-lasting immunity against all 
subtypes of in�uenza viruses, and signi�cantly reduce the disease 
burden associated with in�uenza-virus infections.

PROPERTIES OF TARGET ANTIGENS FOR 

VACCINE DEVELOPMENT

Antibodies that neutralize in�uenza-virus entry into host epi-
thelial cells typically target HA, the main surface glycoprotein of 
the virion. HA is composed of globular and stalk domains and 
is expressed as a trimer at the surface of the virion. At the initial 
stage of infection, when in�uenza virus enters the respiratory 
tract, HA binds to sialic acid residues present on the surface of 
epithelial cells and allows the virus to be engulfed by the cells 
(50). �e globular domain is highly variable across subtypes, 
whereas the stalk domain is much more conserved. Hence, 
the stalk domain is a potential target for the development of a 
universal in�uenza vaccine (51, 52). However, HA-head-speci�c 
antibodies have a greater neutralizing capacity than cross-
reactive HA-stalk-speci�c antibodies, which are found at very 
low frequency (53, 54).

Neuraminidase is a tetrameric glycoprotein present on the 
surface of in�uenza viruses (55, 56). NA is important at the 
pre-infection, post-infection, and re-infections stages. NA is 
involved in the release of newly produced viruses from host 
cells and prevents the aggregation of virus particles by cleav-
age of sialic acids from respiratory tract mucins (57–59). NA 
may also participate in the fusion of viral and cell membranes 
(60) and facilitates budding of new virions by restricting their 
aggregation (60). NA is generally less immunogenic and lacking 
monodominant properties and therefore a less attractive target 
than HA (61). Despite this, NA has been used as a vaccine can-
didate in various vaccine formulations and as a target of various 

antiviral drugs, because of a lower rate of antigenic dri� than 
HA (57, 59, 62–65).

Apart from HA and NA surface glycoproteins, the matrix 
proteins 1 and 2 (M1 and M2, respectively), are encoded by 
in�uenza-virus genes with partially overlapping reading frames 
(66, 67). M1 is a major constituent of the viral capsids and M2 
functions as a proton channel in viral envelope. Studies suggest 
that the amino acid sequence of M2 extracellular domain (M2e) is 
conserved in in�uenza A viruses (IAV) and is, therefore, a target 
for the development of a universal in�uenza vaccine (68, 69). 
M2e-containing vaccines have shown encouraging results in ani-
mal models (68–71). Antibody responses to M2e protein provide 
protection by (1) binding to virus-infected cells and mediating 
e�ectors functions by antibody-dependent cell cytotoxicity,  
(2) killing infected cells by activating a complement cascade or 
by recruiting cells of the innate immune system, (3) preventing 
the release of virus particles by binding to the cell surface, and 
(4) phagocytosis of viral particles via Fcγ receptors (66, 70, 71).

Nucleoprotein (NP) is an in�uenza-virus protein that is 
associates with viral RNA and essential for viral assembly (3). NP 
is highly conserved across in�uenza subtypes and is a potential 
antigen for a universal in�uenza vaccine (72). A�er infection, NP 
is the main antigen recognized by in�uenza-speci�c cytotoxic 
CD8+ T lymphocytes (CTLs) that have the potential to kill virus-
infected cells (73).

VIRUS-LIKE PARTICLES (VLPs)

Virus-like particles are non-infectious particles of protein 
multimers and are devoid of genetic material (Figure 1A). VLPs 
mimic certain aspects of the conformational, structural and anti-
genic properties of native in�uenza viruses, making VLPs a useful 
platform for vaccine development (74, 75). �e development 
of certain universal in�uenza vaccines have utilized the VLP 
platform because VLPs have self-assembly properties, VLPs can 
comprise more than one protein or protein chimeras (cVLPs) and 
produced in a heterologous expression system, and VLPs can be 
formulated with adjuvants (74, 76). VLPs activate innate immu-
nity by stimulating antigen presenting cells and this can lead to 
the induction of e�ective B- and T-cell immunity speci�c to those 
antigens present in the VLP (75, 77–79). It is reported that highly 
organized and repetitive protein epitopes can directly activate 
B-cells by cross-linking B-cell receptors (80). Furthermore, VLPs 
have also been shown to provoke CD8+ T-cells mediated immune 
responses through cross-presentation mechanism (81).

Virus-like particles have been used in strategies for presenting 
epitopes from numerous di�erent virus subtypes and engineered 
epitopes derived from conserved regions of viral proteins (82–85). 
Most VLP-based vaccines are formulated with individual VLPs 
containing HA, NA, or matrix proteins, or a combination of these 
proteins (82, 86, 87). However, VLPs containing both HA and NA 
tend to predominantly induce HA-speci�c antibodies (41) due to 
the characteristic immunodominance associated with HA (88). In 
a recent mouse study, Schwartzman et al. evaluated a vaccine con-
sisting of a mixture of HA-derived VLPs, from in�uenza subtypes 
H1 (H1N1; A/South Carolina/1/1918), H3 (H3N8; A/pintail/
Ohio/339/1987), H5 (H5N1; A/mallard/Maryland/802/2007), 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FIGURE 1 | Approaches for universal in�uenza vaccine development. (A) VLP platform: VLPs produced by cloning of HA, NA, and M1 gene sequences of in�uenza 

virus into the expression vector followed by transfection in to insect cells. Co-expression of HA, NA, and M1 proteins allows self-assembly of VLPs. (B) Synthetic-virus 

platform: MDCK cells are transfected with plasmid DNA encoding in�uenza-virus backbone genes and error-free HA and NA gene segments, synthesized by an 

enzymatic and cell-free assembly technique. After transfection, vaccine viruses are rescued from MDCK cells. (C) DNA-vaccine platform: in�uenza genes encoding 

antigenic proteins are inserted into a DNA plasmid and delivered to the host cells, where DNA vaccines express antigenic protein. (D) RNA-vaccine platform: 

self-amplifying RNA expressed from an alphavirus genome in which structural genes are replaced by genes supporting the ampli�cation of the RNA and the gene 

encoding the antigen. Self-amplifying mRNA (SAM) composed of a 5′ cap, genes encoding non-structural genes (NSP 1–4), a subgenomic promoter, the antigen-

encoding gene, and a 3′ poly(A) tail. Diagrammatic representation of a lipid nanoparticle (LNP) encapsulating SAM. (E) Viral-vector platform: viral vector-based in�uenza 

vaccine uses a non-in�uenza “carrier” virus to express antigenic protein. In�uenza genes encoding HA protein are placed in to the carrier virus vector to express HA 

protein on the virus surface. Abbreviations: HA, hemagglutinin; NA, neuraminidase; M1, matrix protein 1; VLP, virus-like particle; MDCK, Madin–Darby kidney cells.
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and H7 (H7N3; A/Environment/Maryland/261/2006) (82). 
A�er intranasal vaccination, mice were protected against lethal 
in�uenza-virus challenge from homologous (same strains as 
in the vaccine; H1N1 and H7N1), intrasubtypic (antigenically 
di�erent strains of the same subtypes; H5N1 and H7N9), and 
heterosubtypic (subtypes not included in the vaccine; H2N1, 
H6N1, H10N1, and H11N1) (82). Hence these results suggested 
that this approach was suitable for developing an e�ective 
clinical vaccine against currently circulating in�uenza strains 
and potential pandemic in�uenza strains. In other studies, the 
highly conserved HA-stalk domain was used in VLPs to induce 
broadly cross-reactive protective immunity (84, 88, 89). In one 
study, VLP formation was aided by co-expression of the HA-stalk 
domain with the HIV gag protein in mammalian cells (84). VLPs 
composed of M1 and NA from A/Puerto Rico/8/1934 (H1N1) 
induced cross-reactive antibody responses to an H3N2 subtype 
and substantial levels of protection against homologous and het-
erologous A subtypes, although loss of body weight was observed 
a�er lethal challenge with H3N2 (65).

Although viral-surface-protein-based VLPs have appeared 
promising tool for developing universal vaccine, some of the 
strategies have also included M2e protein. M2e is a very promising 
target for universal vaccine development because of the conserved 
nature of the protein. M2e has been included in VLPs as a geneti-
cally engineered fusion protein (e.g., with the hepatitis B virus 
core particle (HBc), phage derived VLPs, or with human papil-
lomavirus L1), and vaccines from these VLPs have been shown to 
induce high levels of M2e-speci�c antibodies in mice (69, 90, 91). 
M2e has also been included in VLPs as a tandem repeat of �ve M2e 
variants from human, swine and avian IAV (the M2e5x vaccine) 
(85, 92). In mice, M2e5x protected against a lethal challenge from 
distinct IAV (H3N2 or H5N1) (92). Finally, in a recent study, a 
vaccine containing a combination of three M2e, NP, and HBc 
VLPs induced potent humoral and cell-mediated immunity (5).

Although the abovementioned VLP strategies have shown 
promise in animal models, some of the vaccine formulations 
have required adjuvants to enhance VLP immunogenicity. Some 
of these adjuvants have been based on toll-like receptor (TLR) 
ligands. TLRs are structurally conserved molecules that recog-
nize ligands of microbial origins. Engagement of TLRs on innate 
cells results in the production of pro-in�ammatory cytokines and 
chemokines, and an enhanced ability to eliminate the pathogens 
(93). Wang et al. developed chimeric VLPs containing A/Puerto 
Rico/8/1934 in�uenza virus HA and M1 and a modi�ed �agellin 
protein of Salmonella that engages TLR5 (94). Compared with 
VLPs containing only HA and M1 protein, cVLPs containing 
TLR5 ligand �agellin was more immunogenic and protected 67% 
mice against lethal challenge with a heterosubtypic A/Philippines 
(H3N2) in�uenza-virus strain (94).

�e advantages of VLP-based vaccines are that the immune 
system of the host recognizes VLPs in a similar way to the original 
virus particles, and chimeric VLPs induce highly e�ective cross-
reactive heterosubtypic immune responses (94). �e existence of 
several licensed prophylactic VLP-based vaccines (e.g., for HBV 
and for HPV) (95), further suggest that a VLP-based approach is a 
promising approach for the development of a universal in�uenza 
vaccine.

BROADLY REACTIVE ANTIBODY- AND 

T-CELL-INDUCING STRATEGIES

Antibody- and T-cell-mediated immune responses are the keys 
components of adaptive immune system. B cells are the source of 
antibodies and antibody-based immunotherapy is a very e�cient 
approach in the treatment of various diseases caused by microbial 
infections (96). Most current seasonal and pandemic in�uenza 
vaccines induce high-titers of functional and neutralizing anti-
bodies against HA and NA proteins.

Because the HA-head domain tends to contain epitopes that 
are immunodominant over those in the stalk, Krammer et  al. 
investigated a strategy in which three chimeric antigens compris-
ing a stalk domain from H1 fused with a head domain from 
three di�erent subtypes, respectively, were injected sequentially 
in mice (97). �e �rst vaccination with cH6/1 HA (combination 
of H6 head and H1 stalk) induced a very week response against 
the head and stalk domains, whereas a second vaccination with 
cH5/1 HA (combination of H5 head and H1 stalk) boosted the 
antibody responses against the stalk domain and induced only 
primary responses against the head domain (97, 98). A third vac-
cination with cH8/1 HA (combination of H8 head and H1 stalk) 
again boosted the intensity of the immune response against the 
stalk domain and induced a primary response against the head 
domain. Repeated vaccinations with chimeric HA constructs 
containing the same stalk domain but di�erent heads, induced 
stalk-directed antibodies that mediated heterotypic immunity 
(98). �ese initial results with IAV group 1 stalk chimeric HA vac-
cines have since been replicated with IAV group 2 and B chimeric 
HA vaccines (99, 100). In addition, an inactivated split-virion 
vaccine adjuvanted with AS03 derived from a recombinant virus 
expressing an IAV group 1 chimeric HA has been evaluated in 
mice and shown to induce protective H1 stalk-reactive antibodies 
(101). Ferrets are excellent experimental animal models for the 
investigation of in�uenza-virus pathogenicity and immunobio-
logy because of their susceptibility to in�uenza-virus infection 
and ability to develop disease symptoms similar to humans 
(102–104). Sequential immunization studies with chimeric HA 
(generated by exchanging head domains and retaining same 
HA-stalk domain), successfully induced broadly reactive anti-
body responses in ferrets (104–106).

An alternative strategy based on broadly reactive monoclo-
nal antibodies could confer cross-protective and long-lasting 
immunity against in�uenza-virus infections. Studies on mono-
clonal antibodies have shown that conserved regions exist 
within the HA head domain. Whittle et  al. isolated a human 
monoclonal antibody, CH65, directed against the globular head 
region that was able to neutralize the infectivity of about 30 
H1N1 strains (107). Lee et al. demonstrated that an antibody 
fragment, derived from the S139/1 monoclonal IgG antibody, 
targets highly conserved residues in the receptor binding site 
of the head domain. �is antibody fragment neutralized H1N1 
and H3N2 strains. However, the parental antibody neutralized 
many more strains from H1, H2, H13, and H16 subtypes sug-
gesting that the avidity associated with bivalent interactions 
of the antibody and HA molecules contributed to enhancing 
cross-reactivity (108).
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As discussed earlier, the stalk region of HA is highly conserved 
and stalk-speci�c neutralizing antibodies cross-react with di�er-
ent virus subtypes. Okuno et al. isolated a monoclonal antibody, 
C179, from A/Okuda/1957 (H2N2)-immunized mice (51). C179 
inhibited the fusion activity of HA and neutralized in�uenza 
subtypes H1, H2, H5, and H6 (51, 52). �rosby et  al. isolated 
a monoclonal antibody, CR6261, from human IgM+ memory 
B cells that neutralized antigenically diverse H1, H5, H6, H8, and 
H9 in�uenza subtypes (109). Corti et al. isolated a monoclonal 
antibody, F16, by screening human plasma cells from peripheral 
blood. �is monoclonal antibody was able to recognize HA of all 
16 subtypes of in�uenza virus and e�ciently neutralized groups 
1 and 2 viruses (110). Recently, Dreyfus et  al. isolated from a 
phage display library, a monoclonal antibody—CR9114—that 
recognized the HA-stalk domain of antigenically distinct in�u-
enza A and B viruses (111). �is antibody protected against lethal 
challenge from both in�uenza A and B viruses (111). In most of 
the broadly cross-reactive stalk antibodies identi�ed, the VH1-69 
gene of the heavy-chain variable region is responsible for binding 
to the HA stalk. Recently, Pappas et  al. identi�ed the pathway 
for the generation of VH1-69 antibody and developed broadly 
neutralizing antibodies by mutation (112).

Innovative approaches based on optimal antigen design, have 
been implemented for the induction of cross-protective antibod-
ies. In these approaches, antigens contain only cross-protective 
epitopes. Recently, Giles et  al. designed vaccine antigens based 
on HA of H5N1 subtype by a computational approach, compu-
tational optimized broadly reactive antigen, and these antigens 
induced broadly reactive antibodies in mice and ferrets a�er 
challenge with H5N1 (113, 114). In another approach, mutations 
were incorporated in HA2 (HA1 and HA2 are subunits of HA, 
enzymatic cleavage product of HA0 precursor protein) of HA 
antigen and expressed in Escherichia coli. �e resulting protein 
was highly immunogenic and protected mice against a lethal 
challenge by homologous and intrasubtypic viral strains (115).

�ese promising studies may be helpful for the development 
of an antibody-based �rst line of defense in the case of an emerg-
ing pandemic.

Historically, the induction of neutralizing antibodies has 
been the main focus in the development of in�uenza vaccines. 
However, recent data suggest that the induction of T cells with 
cross-reactive properties is highly important (116–118). �ese 
T cells are accountable for providing heterosubtypic immunity, 
wherein memory T cells generated against conserved epitopes of 
previous in�uenza virus can cross-react against multiple in�u-
enza subtypes. Both CD4+ and CD8+ T cells induce heterotypic 
immunity against internal and surface proteins (119–125). CTLs 
are the main e�ector cells that take part in antiviral immunity. 
Numerous studies have shown that CTLs orchestrate hetero-
subtypic e�ector functions against in�uenza virus infected cells 
by direct cytotoxic inhibitory mechanisms (101–105). A recent 
study by Sridhar et al. demonstrated a signi�cant role of cross-
protective CD8+ T  cells, speci�c for conserved core protein 
epitopes, in individuals lacking cross-neutralizing antibodies 
(126). A signi�cant positive correlation was found between 
higher frequencies of preexisting CD8+ T  cells to conserved 
epitopes and the low grade of clinical illness among healthy 

individuals lacking protective antibodies against pH1N1 virus 
(126). �ese observations may help in the development of a uni-
versal in�uenza vaccine either by improving currently available 
vaccines or by designing T-cell epitopes targeting all subtypes of 
in�uenza viruses (126).

CD8+ T lymphocytes speci�c for conserved in�uenza epitopes 
has been identi�ed in several studies (121–123). Kreijtz et  al. 
showed that in humans, CTLs speci�c for H3N2 in�uenza virus 
display cross-reactivity with H5N1 in�uenza virus suggesting 
that a certain number of common epitopes are present in both 
viruses (121). Furthermore, liposomes containing full-length 
recombinant H5N1 NP and M2 antigens induced CTLs and 
showed high e�cacy in mice (122). Another promising adjuvant 
is ISCOMATRIX (IMX), which immunomodulates humoral and 
cellular immune responses by inducing cytokines, enhancing 
antigen presentation by dendritic cells, inducing innate immune 
responses and cross-presentation of exogenous antigens to CD8+ 
T cells (123, 127, 128).

�e role of CD4+ T-cells in mediating heterosubtypic immu-
nity is less well understood. CD4+ T cells confer cross-protection 
by cytolytic functions (perforin-mediated) or helping B or T cells 
(129, 130). It has been shown that M1- and NP-speci�c memory 
CD4+ and CD8+ T cells generated by seasonal in�uenza A virus 
infection in humans could cross-react with an avian H5N1 
strain (120). HA2 (stem domain) subunit is very conserved 
across the di�erent in�uenza HA subtypes and also a promising 
vaccine candidate (131, 132). Some cross-reactive CD4+ T cell 
epitopes have been identi�ed in this subunit (124, 131). Lee at 
al generated a recombinant HA2 polypeptide from in�uenza 
A/EM/Korea/W149/06 (H5N1) and reported homologous and 
heterologous CD4+ T cell responses in mice, immunized with 
HA2 protein (132).

As published reports suggested that the majority of T  cell-
based vaccines focus on conserved T-cell epitopes in NP and 
M proteins and are helpful in reducing disease progression 
and mortality against heterologous virus infections (133, 134). 
Furthermore, T-cell inducing approaches are unable to prevent 
infections. �erefore, a combination of antibody and CTL-
inducing strategies may be required for an e�ective universal 
in�uenza vaccine development (133). Ongoing clinical trials 
based on coadministration of seasonal in�uenza vaccine with 
MVA-NP + M1 (viral vectored vaccine based on modi�ed vac-
cinia virus Ankara expressing in�uenza NP and M1 proteins) 
and prime-boost strategies induced both T-cells and antibody 
responses (133, 135, 136).

SYNTHETIC INFLUENZA-VIRUS 

PLATFORM

A recent technology platform that utilizes reverse genetics 
technology for the development of synthetic vaccine viruses was 
set up a�er the 2009 H1N1 pandemic (137). Dormitzer et  al. 
developed an error-free gene assembly system for the synthesis 
of in�uenza-virus vaccine strains (137). In the �rst step, accurate 
and error-free HA and NA gene sequences are synthesized with 
the help of an enzymatic cell-free gene assembly technique with 
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enzymatic error correction, followed by transfection in to the 
Madin–Darby canine kidney (MDCK) cells along with plasmid 
DNA coding viral backbone genes (137) (Figure 1B). In the �nal 
step, viruses for use in vaccines were rescued from MDCK cells.  
It was possible with this method to maintain HA and NA 
sequences identical to the original viruses (137, 138). As a 
proof-of-concept, arti�cially synthesized and wild-type H7N9 
viruses were used and showed comparable immunogenicity 
(137). �is breakthrough technology avoids the use of millions 
of eggs needed for virus propagation and prevents the mutations 
usually occurring during this step. Presently, the synthetic-virus 
technology is limited to the preparation of viruses for vaccine 
manufacturing (139). However, by applying this technology, 
error-free universal vaccines could be produced in a very short 
period of time in the future.

NUCLEIC ACID PLATFORM

�e feasibility of developing vaccines based on nucleic acids has 
been investigated for a long time. Nucleic acid vaccines have 
attributes for being safe and e�ective, and combine the positive 
attributes of live-attenuated and subunit vaccines. Nucleic acid 
vaccines are composed of DNA or RNA sequences encoding the 
antigen. �ese vaccines are delivered by viral particles competent 
for entry in host cell, by formulation with lipids or emulsions, or 
by means of electroporation (140).

DNA Platform
DNA vaccination is a technology developed about two decades 
ago (119–121) (Figure  1C). �e ease of production in a very 
short period of time, stability and a very cost-e�ective production 
process makes this technology attractive for vaccine development 
(141). DNA vaccines are non-infectious, non-replicating, and do 
not induce vector-speci�c immunity (141). However, no DNA 
vaccine has been approved for human use to date.

DNA vaccines are delivered by various methods including 
the gene-gun approach and electroporation. �e gene-gun 
approach involves the intracellular delivery of DNA in epi-
dermal cells by bombarding the skin with DNA coated gold 
particles (142). �is approach has not been explored for human 
use. In the electroporation method, DNA molecules are deliv-
ered by combined electric pulses that transiently permeabilize 
the cell membrane and promote DNA movement toward the 
membrane (143). Efforts are ongoing to deliver DNA vacci-
nes efficiently, e.g., needle-free delivery and mucosal delivery  
(144, 145). Although DNA vaccines induce potent immune 
responses in animal models, they have appeared ine�ective in 
humans because of suboptimal immunogenicity (145). �ere 
are other drawbacks of DNA vaccines including the degradation 
of DNA by host enzymes, the requirement for the DNA to enter 
the nucleus, and the possible risk of DNA integration into the 
vaccine recipient’s DNA (145).

�e immunogenicity of various in�uenza virus DNA-vaccine 
candidates has been assessed in animal and human models 
(146–148). Smith et  al. conducted a phase 1 study with an H5 
HA-based DNA vaccine adjuvanted with Vaxfectin, and the 
results showed protective responses to the vaccine in about 67% 

of the recipients (147). A polyvalent DNA vaccine, also expressing 
H5 HA antigens (genes from H5N1 viruses A/Hongkong/156/97, 
A/Vietnam/1203/04, A/Anhui/1/2005, and A/Indonesia/5/2005) 
has been evaluated in rabbits and induced cross-protective 
antibodies against di�erent clades (149). Results from this study 
in mice suggested that plasmid DNAs encoding NA from H3N2 
virus provided cross-protection against lethal challenge with 
antigenically di�erent viruses within the same subtype, but not 
against a di�erent, H1N1, subtype (150). DNA vaccines express-
ing conserved NP and M1 antigens, or the expression of fusion 
proteins (HA and NA; or NP and M1) have been evaluated in 
mouse models of in�uenza-challenge (122, 128, 129). �ese 
strategies conferred broad protection against homologous and 
dri�ed viruses (151).

Although DNA is a �exible platform that has shown cross-
protective e�cacy in preclinical challenge models, it has yet to 
show potency in human clinical trials (152). Improvements are in 
progress for a broadly protective vaccine including the implemen-
tation of heterologous prime/boost strategies, where the second 
encounter with the heterologous in�uenza strain (boost) also 
induces cross-protective immunity by expansion of a preexist-
ing pool of memory cells against conserved epitopes of the viral 
proteins (153). In an experimental setup, the sequential immu-
nization of BALB/c mice with DNA coding for HA from H3N2 
viruses arising approximately 10  years apart (prime: A/Hong  
Kong/1/1968, A/Alabama/1/1981 and A/Beijing/47/1992, and 
boost A/Wyoming/3/2003) elicited the production of antibodies 
with broad cross-reactivity against multiple H3N2 viruses (34).

RNA Platform
RNA-based vaccines are the most recent version of nucleic 
acid-based vaccines and possesses several bene�ts over DNA 
vaccines. In 1990, Wol� et al. (154) demonstrated that the direct 
injection of messenger RNA (mRNA) intramuscularly resulted 
in the expression of the encoded protein in a mouse model. In 
contrast to DNA vaccines, which function by DNA entering the 
nucleus of the vaccine recipient’s cell, mRNA vaccines function by 
the translation of mRNA in the cytoplasm (140, 155). Currently, 
there are two kinds of mRNA-based vaccines being developed: 
(1) conventional non-amplifying mRNA and (2) self-amplifying 
mRNA (SAM)-based vaccines (156).

�e ease of construction, the small size (about 2–3 kb), and 
the absence of additional protein-encoded sequences are quali-
ties of non-amplifying mRNA vaccines, although a shorter half-
life and low protein expression make non-amplifying mRNA 
less attractive over SAM vaccines (157). However, nucleotide 
optimization may increase the potency and stability of the non-
amplifying mRNA vaccines (158). E�cient delivery of mRNA 
in to the cytoplasm of the cell is the key challenge. Various 
delivery technologies have been explored for conventional non-
amplifying mRNA, including administration of naked mRNA 
by injection through di�erent routes (intradermal, intranodal, 
subcutaneous, and intramuscular) (159–162), or administration 
mRNA premixed with liposomes or lipopolyplexes (163, 164). 
Lipid–mRNA complexes have been shown to enhance the immu-
nogenicity of various mRNA vaccines (165, 166). Preclinical and 
clinical studies suggest that non-amplifying mRNA vaccines are 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


TABLE 1 | Current development stage of the in�uenza vaccines based on novel platforms.

Platform Development stage Reference

Preclinical Phase 1 Phase 2 Phase 3 Licensed

Virus-like particles ✓ ✓ ✓   (188–190)

Broadly reactive antibodies and T-cell inducing strategies ✓ ✓ ✓   (136, 191–194)

Synthetic virus ✓     (137)

Nucleic acid

• DNA

• RNA

• Viral vector

✓

✓

✓

✓

✓

✓





✓













(147, 195, 196)

(103, 167, 170)

(134, 197, 198)

8

Kumar et al. Universal In�uenza Vaccine Development Technologies

Frontiers in Immunology | www.frontiersin.org March 2018 | Volume 9 | Article 600

e�ective in mice, non-human primates and humans (159, 167). 
Recently, Moderna �erapeutics published the results of a phase 
1 clinical trial study of a modi�ed mRNA vaccine encoding 
HA protein of avian H10N8 formulated in lipid nanoparticles 
(LNPs) and demonstrated robust immunogenicity in humans 
(167). Furthermore, an HA-encoded mRNA vaccine conferred 
protection in new born and old BALB/c mice (18  months of 
age), suggesting that mRNA vaccine are capable of reducing 
in�uenza disease burden at the extremes of age (159). �is latter 
aspect is relevant because the disease burden of in�uenza virus 
is greater in children and the elderly. Cross-protective T-cell 
responses to heterologous virus strains were also evident when 
mice were immunized with an NP-encoded mRNA vaccine. 
�e combination of multiple antigens may be more e�ective to 
induce broadly protective immune responses, as reported with 
VLP-based vaccines.

Self-amplifying mRNA vaccines of sizes around 9–10  kb, 
have been generated using alphavirus genome as a vector, where 
alphavirus genes encoding structural proteins were replaced 
by the gene(s) of interest, therefore disabling the production 
of infectious viral particles (157, 168) (Figure 1D). Delivery of 
mRNA into the cell cytoplasm allows the translation of open 
reading frames encoding for non-structural proteins (nsP 1–4), 
which function as RNA-dependent RNA polymerase (RDRP) 
and produce a negative-sense copy of the genome (157). With 
the help of RDRP, this negative-sense RNA serves as template 
for positive-strand genomic mRNA and shorter subgenomic 
mRNA. �e subgenomic mRNA is transcribed at a very high copy 
number resulting in high level of protein-antigen expression. �e 
auto-ampli�cation properties of SAM vaccines allow high-level 
protein expression of the vaccine antigen(s).

�e e�ective delivery of mRNA vaccines, within acceptable 
limits of tolerability, is a key aspect for improving the vaccine 
e�cacy. LNPs and cationic nano-emulsions synthetic non-viral 
delivery systems were used successfully with SAM in recent 
studies (103, 168–171). Geall et  al. evaluated a synthetic LNP 
formulation of SAM as a way to increase the e�ciency of antigen 
production and immunogenicity in  vivo without the need of a 
competent viral delivery system (169). �is novel vaccine tech-
nology was found to elicit broad, potent and protective immunity 
that was comparable to viral delivery, but without the inherent 
limitations of viral vectors.

Self-amplifying mRNA (HA) vaccines induce potent 
functional immune responses in mice and ferrets, compara-
ble to those elicited by a licensed influenza subunit vaccine 

preparation (168). In mice, SAM (HA) derived from in�uenza 
A/California/7/2009 (H1N1) strain protected from a lethal chal-
lenge with a heterologous in�uenza strain A/Puerto Rico/8/1934 
(H1N1) (103). �is cross-protection may have been mediated by 
CD4+ and CD8+ T cells, because A/Puerto Rico/8/1934-speci�c 
CD4+ and CD8+ T  cells were induced by the vaccine but not 
A/Puerto Rico/8/1934-speci�c antibodies (103). Recently, SAM 
vaccines encoding NP and M1 antigens, separately or in com-
bination, delivered with LNP induced CTLs in mice (170). �e 
expansion of central memory and e�ector memory CD4+ and 
CD8+ T-cell populations was also observed. �e coadministra-
tion of monovalent inactivated in�uenza vaccine (MIIV) along 
with SAM vaccine also enhanced MIIV e�cacy against heter-
ologous challenge and enhanced the frequency of HA-speci�c 
T-cells (170).

In epidemics or disease outbreaks, the rapid development of 
vaccines is essential, and this is potentially feasible with SAM 
technology. Within 7  days, SAM (HA) vaccine against H7N9  
(A/Shanghai/2/2013) was developed (168). �e SAM vaccine 
technology is still in a preclinical development; nevertheless, 
present data suggest that the SAM technology has the potential 
to provide a platform for rapid and cost-e�ective vaccines.

Viral Vectors
Viral vectors with the capability of replication within the cells of 
the vaccine recipient are being evaluated as vaccines in the form 
of viral delivery of nucleic acids encoding the gene of interest 
(Figure 1E). �e viral vector is non-infectious for the host but can 
express the antigen over a certain period of time.

Viral-vector-based in�uenza vaccines have been evaluated 
using double-stranded DNA (adenovirus and poxvirus) and 
single-stranded RNA (alphavirus, parain�uenza virus 5) viruses 
(172–175). Recently, by exploiting MVA vector and in  silico 
mosaic approach, a recombinant vaccine construct, MVA-H5M 
(HA of H5N1), was developed (176). Mosaic technology allows 
the selection of potential epitopes by using a genetic algorithm 
(177). Immunization of BALB/c mice, MVA-H5M induced 
broadly protective neutralizing antibodies against clade 0–2 
(avian in�uenza) and highly pathogenic A/Puerto Rico/8/1934 
(H1N1) virus and induced cellular immunity (176). An 
adenovirus vector expressing NP and M2 proteins conferred 
protection from highly virulent H5N1, H1N1, and H3N2 in�u-
enza viruses (178) as well as reduced viral transmission from 
vaccinated and infected mice to unvaccinated mice (178, 179).  
Furthermore, Kim et al. employed a novel approach to inducing 
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cross-reactive immune responses against HA protein by gen-
erating recombinant human adenovirus 5 vector encoding 
full length HA (from H5N1) and four tendem copies of M2e 
domain (rAdH5/M2e) (180). Adenovirus vaccine induced anti-
body-mediated cross-protection against heterosubtypic viruses  
in mice (180).

Viral-vector-based vaccines possess several advantages includ-
ing the capability of inducing both humoral- and cell-mediated 
immunity, a high level of protein expression and long-term 
stability (181–184). Some of these viral-vector systems can mimic 
aspects of natural in�uenza-virus infection because of their direct 
delivery to the mucosa (3). Vector-based vaccines also possess 
several limitations including reduced immunogenicity in the 
presence of preexisting immunity (185) and risks of pathogenesis 
in certain individuals (186).

CONCLUSION

An optimal universal in�uenza vaccine should provide cross-
protection against all subtypes of in�uenza viruses, particularly 
historic and circulating strains. Many of the universal in�uenza 
vaccines in development target conserved domains of surface and 
internal proteins. Numerous approaches are being applied for 
the development of universal �u vaccines. Proof-of-concept and 

initial results support the promise of these approaches (168, 187). 
Novel platforms focused on in�uenza vaccine development are 
currently in preclinical and early clinical development (Table 1). 
Applying these novel platforms may o�er additional bene�ts for 
the development of a universal in�uenza vaccine.
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