
Novel Polyfermentor Intestinal Model (PolyFermS) for
Controlled Ecological Studies: Validation and Effect of pH
Annina Zihler Berner1, Susana Fuentes2, Alexandra Dostal1, Amanda N. Payne1, Pamela Vazquez

Gutierrez1, Christophe Chassard1, Franck Grattepanche1, Willem M. de Vos2,3, Christophe Lacroix1*

1 Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland, 2 Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands,

3 Department of Basic Veterinary Medicine, University of Helsinki, Finland

Abstract

In vitro gut fermentation modeling offers a useful platform for ecological studies of the intestinal microbiota. In this study
we describe a novel Polyfermentor Intestinal Model (PolyFermS) designed to compare the effects of different treatments on
the same complex gut microbiota. The model operated in conditions of the proximal colon is composed of a first reactor
containing fecal microbiota immobilized in gel beads, and used to continuously inoculate a set of parallel second-stage
reactors. The PolyFermS model was validated with three independent intestinal fermentations conducted for 38 days with
immobilized human fecal microbiota obtained from three child donors. The microbial diversity of reactor effluents was
compared to donor feces using the HITChip, a high-density phylogenetic microarray targeting small subunit rRNA
sequences of over 1100 phylotypes of the human gastrointestinal tract. Furthermore, the metabolic response to a decrease
of pH from 5.7 to 5.5, applied to balance the high fermentative activity in inoculum reactors, was studied. We observed a
reproducible development of stable intestinal communities representing major taxonomic bacterial groups at ratios similar
to these in feces of healthy donors, a high similarity of microbiota composition produced in second-stage reactors within a
model, and a high time stability of microbiota composition and metabolic activity over 38 day culture. For all tested models,
the pH-drop of 0.2 units in inoculum reactors enhanced butyrate production at the expense of acetate, but was
accompanied by a donor-specific reorganization of the reactor community, suggesting a concerted metabolic adaptation
and trigger of community-specific lactate or acetate cross-feeding pathways in response to varying pH. Our data showed
that the PolyFermS model allows the stable cultivation of complex intestinal microbiota akin to the fecal donor and can be
developed for the direct comparison of different experimental conditions in parallel reactors continuously inoculated with
the exact same microbiota.
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Introduction

The human colon is the most densely colonized part of the

digestive tract harboring a diverse, host-specific consortium of

microorganisms that accounts for approx. 2% of the body mass

[1]. It is home to 1011–1012 bacteria per gram of contents

belonging to an estimated 1800 genera and 159000–369000

different species as revealed by culture-independent metagenomic

surveys [2,3,4]. This microbial community decisively contributes

to morphological, immunological and nutritional functions of the

digestive tract and may be involved in many diseases [5,6], thus

directly acting on human health. Hence, there is considerable

interest in exploring the overwhelming enzymatic and metabolic

functions of the colonic microbiota that are directly linked to

commensal community structure and are highly influenced by

various exogenous factors (e.g. diet, drugs, chronic and acute

diseases). To unravel this complex interplay, system biology

approaches combining in vitro and in vivo models with high-

throughput molecular and state-of-the-art ‘-omics’ technologies

may be recommended [7].

In this context, in vitro gut fermentation models represent a

useful, yet host-uncoupled tool for compositional and functional

studies highly challenged in humans and animals owing to ethical

concerns and hindered accessibility of intestinal contents [8].

Different types of colonic in vitro models are currently in use,

ranging from simple batch [9,10] and more complex single-

[11,12] or multistage (SHIME, [13]) continuous or semi-contin-

uous cultures, to artificial models accounting for metabolite and

water absorption (TIM-2, [14]). Common to all models is the aim

of stable cultivation an intestinal microbiota for a defined period of

time while preserving the activities of the predominant microbial

groups. While batch models are limited to short-term fermentation

experiments, continuous systems can be operated for longer

periods of typically 2–4 weeks under pseudo-steady state

conditions. However, most in vitro fermentation models are

inoculated with a liquid fecal suspension resulting in a fragile

community establishment due to the lack of biofilm-associated

states of bacterial populations in conjunction with a continuous

wash-out of less competitive bacteria [15,16]. To address this issue,

an immobilization process for the entrapment of fecal microbiota
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in mixed xanthan-gellan gum gel beads was developed to maintain

the microbial diversity over long time continuous colonic

fermentations and reach similar high cell densities to the colon

[7,17]. The use of immobilized fecal microbiota allows creating

self-contained continuous fermentation systems characterized by

long-term functionality [18,19,20,21,22,23,24,25]. However, re-

producibility and functional stability of the microbiota in gut

fermentation models is often questioned but, together with true

biological replicates, constitute a prerequisite for generating robust

data. Furthermore, the comparison of the effect of treatments with

the same microbiota is difficult to achieve because the microbiota

is subject to temporal modification in continuous culture and large

inoculum quantities are needed for batch cultures which must also

be repeated [7].

In this study, a novel Polyfermentor Intestinal Model design

(PolyFermS) was developed aiming at circumventing problems of

reproducibility as well as biological replication, and allowing

testing in parallel the effects of different treatments on the same

complex gut microbiota. Effluents of the first-stage continuous

inoculum reactor (IR) containing immobilized fecal microbiota

and mimicking the upper proximal colon were used to continu-

ously feed a set of second-stage control (CR) and test (TR) reactors

operated in parallel with conditions of the proximal colon. To

compensate for initial metabolic imbalances observed in IR and to

more closely mimick conditions of high metabolic activity of the

upper proximal colon, the pH set-point in inoculum reactors was

decreased 0.2 units from 5.7 to 5.5 after 13 days. Three

independent replicates inoculated with feces from different child

donors were carried out (models A to C). Control reactors were

used to study microbial composition and metabolic stability of

models over time, while up to three test reactors were used to

assess intra-system reproducibility. The microbial diversity of fecal

inocula from the three donors was compared to reactor effluent

samples using the Human Intestinal Tract Chip (HITChip), a

high-density microarray that consists of over 59000 oligonucleotide

probes targeting 16S rRNA gene sequences of over 19100

phylotypes of the human gastrointestinal tract [26]. Our results

highlight the benefits of the novel PolyFermS model design

allowing a stable and reproducible cultivation of complex intestinal

communities in multiple reactors that can be used to simulta-

neously study the effects of several conditions (environmental

parameters, dietary compounds, drugs, added microbes, etc.)

compared to a control reactor.

Materials and methods

Ethics Statement
This work was approved by the Ethics Committee of ETH

Zurich, Zurich, Switzerland (EK 2009-N-01). Informed written

consent was obtained from parents of fecal donors and the

children assented to the study.

Fecal Sample Immobilization and Fecal Beads
Colonization

Fecal samples (ca. 5 g) collected from three healthy donors (A: 6

year-old, male; B: 10 year-old, female; C: 8 year-old, male)

receiving a fully diversified diet were transferred to a tube

containing 25 mL of sterile, pre-reduced peptone water (0.1%,

pH 7), placed in an anaerobic jar (Anaerojar, Oxoid, Hampshire,

England) and immediately delivered to the laboratory. None of the

children had been exposed to antibiotic treatment for three

months prior to experimentation. Immobilization in 1–2 mm

diameter gel beads composed of 2.5% gellan gum, 0.25% xanthan

gum and 0.2% sodium citrate (w/v, Sigma-Aldrich Chemie

GmbH, Buchs, Switzerland) was carried out as described

previously [24]. The entire process was performed in an anaerobic

chamber within 3 h after defecation and 60 ml fresh fecal gel

beads from each donor were immediately transferred to inoculum

reactors (IR, Sixfors, Infors, Bottmingen, Switzerland) of models

A, B and C (IRA IRB and IRC) containing 140 ml nutritive

medium (working volume: 200 ml). Beads were colonized for 48 h

during batch cultures with conditions of the child proximal colon

(T = 37uC; pH 5.7, control with addition of 2.5 N NaOH,

continuous flow of pure CO2 in the reactor headspace). The

fermented medium was replaced every 12 h with fresh nutritive

medium.

Nutritive Culture Medium
A complex culture medium mimicking the intestinal chyme of a

child was used. The medium was similar to that described by

Macfarlane et al. [27] modified for children by reducing the bile

salt concentration from 0.4 to 0.05 g/l [28]. A volume of 0.5 ml of

a filter-sterilized (Minisart, 0.2 mm pore-size, Sartious, Göttingen,

Germany) vitamin solution [29] was added to 1 l of the autoclaved

(15 min, 121uC) medium.

Operation Conditions of the PolyFermS Model
Continuous fermentation was started by respectively connecting

each inoculum reactors IRA, IRB and IRC to control reactors

(CRA, CRB and CRC) and from one to three test reactors (model

A: TRA1, TRA2, TRA3; model B: TRB; model C: TRC;

Figure 1) mounted in parallel and half-filled with sterile nutritive

medium (37uC). Fresh sterile nutritive medium (4uC) was pumped

continuously via peristaltic pumps (Reglo analog, Ismatec,

Glattbrugg, Switzerland) to IRA, IRB and IRC at a feed flow

rate of 80 ml/h (mean retention time of 2.5 h) and fermented

effluents were equally distributed in the second-stage CR and TR

of the model, with working volumes of 300 ml for a mean

retention time of 7.5 h. Fermented medium from all reactors was

pumped to an effluent receiving vessel. Operational parameters

were chosen to mimic physiological condition of the upper (IR)

and child proximal colon (CR and TR), with an overall retention

time of 10 h (Figure 1). The pH was automatically controlled at

5.7 by adding 2.5 N NaOH during the first 12 days and was

decreased thereafter to pH 5.5 in IR after 13 days to account for

initial metabolic imbalances and account for a likely lower pH in

this section of the colon with high microbial activity. All reactors of

models A, B and C were operated in parallel for a total of 38 days.

Control reactors served as intra-model control for assessing system

stability. Test reactors were used to study intra-system stability

until day 22 and were further operated for testing different

experimental conditions (data not reported).

Sampling
Effluent samples (10 ml) from all reactors were collected daily

and processed within 1 h for quantification of short-chain fatty

acids (SCFA: acetate, propionate and butyrate) by high-perfor-

mance liquid chromatography (HPLC). Effluent samples were also

taken on days 12/13 (t1) and 21/22 (t2) from all reactors, and on

days 29/30 (t3) and 37/38 (t4) from inoculum (IR) and control

reactors (CR) for phylogenetic profiling of bacterial communities

by HITChip analysis.

Metabolic Activity Analysis
Short-chain fatty acids (SCFA: acetate, propionate and buty-

rate) concentrations in effluent samples obtained from days 6 to 22

from all reactors and from days 23 to 38 from inoculum (IR) and

Polyfermentor Intestinal Model (PolyFermS)
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control (CR) reactors were determined in duplicate by high-

performance liquid chromatography (HPLC) analysis as described

previously [24].

HITChip Microarray Analysis
The HITChip phylogenetic microarray contained over 59000

specific oligonucleotide probes targeting the V1 and V6 hyper-

variable regions of the 16S rRNA gene obtained from .169000

human intestinal sequences, grouped into 27 order-like level-1,

131 genus-like level-2 and 19140 unique phylotypes level-3 groups

[26,30]. HITChip analyses were performed as described by

Rajilic-Stojanovic et al. [26] with samples obtained at four

consecutive time points during continuous fermentation: t1, days

12/13 (all reactors before IR pH-switch); t2, days 21/22 (all

reactors after IR pH-switch); t3, days 29/30 (IR and CR for time

stability); t4, days 37/38 (IR and CR for time stability) (Figure 1).

Briefly, genomic DNA was extracted from a 1:1 mix of 1.5 ml

effluent sample with the Fast DNA Spin Kit for Soil (MP

Biomedicals, Illkirch, France) according to the manufacturer’s

instructions with a final elution volume of 100 ml. The full-length

16S rRNA gene was amplified and PCR products were

transcribed into RNA before being labeled with Cy3 and Cy5,

fragmented and hybridized in duplicates on the microarray. The

microarrays were scanned with an Agilent DNA Microarray

Scanner. Data were extracted from images using the Agilent

Feature Extraction software version 10.7.3.1, normalized and

further analyzed using a set of R-based scripts (http:www.r-project.

org) in combination with a custom-designed database that runs

under MySQL management system as described elsewhere

[26,31].

Statistical Analysis
The similarity of microbial profiles obtained for fecal donor

samples and reactor effluents using the HITChip microarray was

assessed by calculating Pearson’s product-moment correlation

(Pearson’s correlation) and the Ward’s minimum variance method

was used for the generation of hierarchical clustering of probe

profiles [32]. The diversity of the microbiota in reactor effluents

and donor samples was calculated with the Simpson’s reciprocal

index of diversity (1/D), with a higher value corresponding to a

more diverse community. Intra-model reproducibility of metabolic

activity was assessed by calculating Pearson’s product-moment

correlation (Pearson’s correlation) coefficients for acetate, propi-

onate and butyrate ratios in CR and TR of the same model

measured from day 6 to 22. A Wilcoxon signed-rank test

performed (JMP 8.0 for Windows, SAS Institute Inc., Cary, NC,

Figure 1. Setup and design of the Polyfermentor Intestinal Model (PolyFermS). Control (CR) and test reactors (TR) were continuously
inoculated with effluents from inoculum reactors (IR) containing 30% (v/v) of fecal beads from donors A (model A), B (model B) and C (model C),
respectively. Metabolites were quantified daily by HPLC analysis. Community structure was studied by HITChip analyses at selected time points t1, t2,
t3 and t4. RT, mean retention time.
doi:10.1371/journal.pone.0077772.g001

Polyfermentor Intestinal Model (PolyFermS)
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USA) was used for evaluating the statistical significance of

observed differences between individual phylogenetic groups

measured by HITChip analyses of effluent samples collected from

all reactors of the same model before (t1; model A: n = 5, model B

and C: n = 3) and after (t2; model A: n = 5, model B and C: n = 3)

the pH-switch. The statistical significance of observed differences

between mean metabolite concentrations and ratios measured by

HPLC were evaluated for effluent samples collected from all

reactors of the same model before (day 12 and 13, model A:

n = 10, model B and C: n = 3) and after (day 21 and 22, model A:

n = 10, model B and C: n = 3) the pH- switch. Values were

considered significant at P,0.05.

Results

Metabolic Activity and Microbial Profiles for pH 5.7 in IR
For all three models, the mean metabolic activity in IR, CR and

TR of the PolyFermS model was very high during the first 13 days

of continuous culture when the pH in IR was set at 5.7 (total

SCFA concentration in model A: 199614 mM, model B:

188618 mM, model C: 174616 mM; Table 1). The molar

acetate/propionate/butyrate ratios in model A (77%/8%/15%,

Table 2) differed from model B (66%/20%/14%) and C (61%/

26%/14%). The microbiota composition in all models after days

12/13 (t1) showed differences with corresponding donors’ fecal

microbiota, with mean similarity indices of 0.7360.01, 0.6860.03

and 0.6560.02 for model A, B and C, respectively (Figure 2A).

Model-specific changes were detected for the most important

higher taxonomic groups (Table 2, Table S1, and Table S2). For

example, the mean relative abundance of Bacteroidetes was higher

in models A (32.6%) and B (32.5%) but equal in model C (37.4%)

compared to the corresponding fecal donor (A: 6.3%, B: 18.3%,

C: 36.7%). The abundance of Firmicutes in reactor effluents of

model A (50.6%) and B (62.1%) was slightly lower compared to

the fecal donors (A: 79.3%, B: 80.7%), with Clostridium cluster

XIVa and IV being most decreased in model A and B,

respectively. In model C, total Firmicutes established at similar

high levels (53.3%) to donor’s feces C (56.1%), but with intra-

group shifts. A decrease of Clostridium cluster IV from 19.0% to

4.7% and an increase of Clostridium cluster XIVa from 31.7% to

46.4% was observed from donor to model C. Levels of

Actinobacteria were similar for donor A (12.4%) and model A

(11.6%), but increased from 0.4% to 4.8% from donor to model B

and decreased from 6.2% to 2.4% from donor to model C. For all

models, the transfer from in vivo to in vitro conditions resulted in

higher levels of Proteobacteria in reactor effluents compared to

donor samples.

The diversity of the microbial community from donor samples

was more conserved in model A compared to models B and C

(Figure 2B). The Simpson’s index of diversity at t1 decreased from

146 (donor B) to 76611(for model B reactors at days 12/13) and

from 172 (donor C) to 5269 for model C, but unexpectedly

increased in model A from donor (143) to reactors at day 12/13

(160623).

Effects of Decreased pH in IR on Metabolic Activity and
Microbial Composition

Metabolic activity for all models was very high when pH in IR

was controlled at 5.7, with high reactor acetate concentrations and

imbalanced SCFA ratios. The pH in inoculum reactors (IR) of all

models was decreased by 0.2 units (from 5.7 to 5.5) from the 13th

day to decrease activity and more closely mimic low upper

proximal colon pH. In all models, the pH-drop resulted in

significantly lower acetate and higher butyrate molar ratios at t2

(days 21/22) compared to values recorded before the pH-change

(Table 1). Furthermore, the lower pH resulted in a pronounced

decrease of metabolic activity in all models, with total SCFA

concentrations dropping by approximately 10% after the pH was

decreased.

The microbial community was more complex in all reactors of

models B and C when pH in IR was controlled at 5.5, with an

increase of mean Simpson’s diversity index from 76611 (t1) to

9567 (t2) and from 5269 (t1) to 74617 (t2) for model B and C,

respectively, before and after the pH change (Figure 2B). In

contrast, the microbiota in model A became more similar to the

fecal donor sample A (Figure 2A) accompanied by a slight

diversity-drop, with mean Simpson’s diversity index decreasing

from 160623 (t1) to 140611 (t2, Figure 2B) and significant

changes observed for microbial profiles (Table 3). The mean

relative abundance of members belonging to the Bacteroidetes

group (e.g. Bacteroides fragilis et rel., Bacteroides intestinalis et rel. or

Bacteroides vulgatus et rel.) significantly decreased, while important

butyrate producers belonging to the Clostridium clusters XIVa (e.g.

Eubacterium rectale et rel. or Roseburia intestinalis et rel.) increased when

pH was decreased.

Correlation between Butyrate Metabolism and
Community Structure

A correlation between the butyrate ratio and the relative

abundance of predominant butyrate-producing bacteria, including

Faecalibacterium prausnitzii (Clostridium cluster IV), Eubacterium rectale

and Roseburia spp. (Clostridium cluster XIVa), was observed for all

reactors (IR, CR and TR) of models A and C as a response to the

pH-switch (Figure 3). The pH-drop was associated with a

significantly increased mean butyrate ratio from 15% to 42%

and from 14% to 24% for model A and C, respectively (Table 2),

correlating with increasing mean abundance of predominant

butyrate-producing bacteria increasing from 5.2% to 10.5% and

from 3.1% to 17.4%. In contrast, model B showed very limited

change for the abundance of butyrate producers and butyrate

production upon lower pH.

Reproducibility and Temporal Stability of the PolyFermS
Model

Metabolic activity was very stable in IR and CR from day 6

until the end of fermentation on day 38 (Figure S1, S2 and S3).

Pearson correlation coefficients calculated for acetate, propionate

and butyrate ratios between control (CR) and test (TR) reactors of

the same model were close to 1 (Figure 4), except for propionate in

model C (0.742). In addition, structural diversity was highly

reproducible in all models, as revealed by Simpson’s reciprocal

indices that were similar for all reactors (IR, CR and TR) of the

same model at day 21/22 (t2) and for CR and TR at day 28/29

(t3) and at day 37/38 (t4; Figure 2B). For all models, similarity

indices of HITChip fingerprints were high (.0.95) for IR and CR

and for all models at day 37/38 (t4) compared to day 28/29 (t3;

Figure 5). Metabolic profiles and ratios of Actinobacteria,

Proteobacteria, Bacteroidetes and Firmicutes were very stable in

IR and CR of all models after pH adjustment until the end of

fermentation (Figure S1, S2 and S3).

Discussion

Establishment of an Immobilized Fecal Microbiota in
in vitro Proximal Colon Conditions

The Human Intestinal Tract Chip (HITChip) used in this study

is a high-resolution phylogenetic microarray that was previously

Polyfermentor Intestinal Model (PolyFermS)
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used for an in-depth analysis of intestinal ecosystems to

characterize the intestinal community development in in vitro

gastrointestinal simulators (SHIME, TIM-2) [13,32]. Irrespective

of bacterial profiles in fecal donor samples, Actinobacteria/

Bacteroidetes/Firmicutes ratios measured in PolyFermS model of

the proximal colon (Table 1) were within the range usually

reported for fecal microbiota of healthy children and adults (8–17/

10–30/46–58%, respectively, [33,34]). In contrast, HITChip

fingerprints of samples obtained from the SHIME model [13]

showed low ratio of Actinobacteria (0.7%) and Firmicutes (13.2%)

Figure 2. Composition of intestinal microbiota produced in effluents of PolyFermS models. A. Similarity to the fecal donor. Open
circles and straight lines correspond to single and mean similarity indices, respectively, based on Pearson product-moment correlation coefficients for
HITChip fingerprints generated from fecal donor samples and PolyFermS model reactor effluents obtained from model A, B and C at time points t1
and t2 from all reactors and at t3 and t4 from IR and CR. B. Temporal diversity development. Open circles and lines correspond to single and
mean Simpson’s reciprocal indices of diversity, respectively, calculated for effluent samples obtained from model A, B and C at time points t1 and t2
from all reactors and at t3 and t4 from IR and CR. Dashed lines indicate the Simpson’s reciprocal index of the corresponding fecal donor sample. A
higher Simpson’s reciprocal index reflects a more diverse community, e.g. in terms of species richness and evenness.
doi:10.1371/journal.pone.0077772.g002

Table 1. Metabolite concentrations and molar ratios in reactor effluents of models A, B and C before (t1) and after (t2) the pH-
switch.

PolyFermS model A PolyFermS model B PolyFermS model C

t1 t2 t1 t2 t1 t2

Acetate (mM) 147 (69) 91 (622)* 111 (614) 99 (612) 98 (610) 74 (66)*

(%) 77 (61) 53* (62) 66 (64) 61* (61) 61 (61) 47* (61)

Propionate (mM) 15 (63) 10 (63)* 35 (68) 36 (65) 41 (64) 46 (64)

(%) 8 (61) 6* (61) 20 (63) 22 (61) 26 (61) 29* (61)

Butyrate (mM) 28 (61) 73 (616)* 24 (65) 30 (65) 22 (64) 39 (64)*

(%) 15 (61) 41* (63) 14 (61) 17* (61) 13 (61) 25* (61)

Total (mM) 199 (614) 173 (623) 188 (618) 171 (622) 174 (616) 160 (614)

All values are given as mean (6SD, for concentrations) calculated for all reactors of the same model before (t1, days 12 and 13; model A: n = 10, models B and C: n = 6)
and after (t2, days 21 and 22; model A: n = 10, models B and C: n = 6) the pH-switch.
*Means of concentrations or ratios, respectively, differ significantly (p,0.05) for the same metabolite between t1 and t2.
doi:10.1371/journal.pone.0077772.t001

Polyfermentor Intestinal Model (PolyFermS)
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and high ratio of Bacteroidetes (75.6%). Similar shifts were

reported for the TIM-2 model of the large intestine analyzed with

HITChip, with higher Bacteroidetes and lower Firmicutes ratios

compared to fecal inocula from various volunteers [32]. One

important characteristic of PolyFermS model is the use of

immobilized fecal microbiota to reproduce both, planktonic and

sessile states of bacterial populations in the colon and promote the

retention of slow growing microbes and microbial diversity. Gel

beads kept in the IR reactors create mucosal-like adhesion sites

which are important for prolonged and stable colonization, in a

protective, oxygen-depleted microenvironment [35]. The constant

release of intestinal bacteria growing within beads close to the

bead surface leads to stable colonization of the system [7,17].

The liquid phase communities and the absence of adhesion sites

were previously identified as important factors for decreased

Firmicutes and increased Bacteroidetes ratios compared to in vivo

intestinal environments [13,32]. Bacteroides spp. are less adhesive

than other members of the gut microbiota [36] and in vitro

environments where mucus adhesion is missing may therefore

provide a selective advantage to this group compared to highly

adhesive microbes [13]. Furthermore, Bacteroides spp. could be

favored in in vitro systems which could have a higher redox

potential exceeding normal physiological levels decreasing Firmi-

cutes. Our data showed that the use of immobilization circum-

vented shifts in Firmicutes and Bacteroidetes ratio often reported

in in vitro conditions, with only limited (model A and B) or no

change of ratios (model C) compared to fecal donors (Table 2).

Table 2. Mean relative abundance (%) of higher taxonomic groups in fecal samples of donors A, B and C and in reactor effluents of
corresponding PolyFermS models A, B and C before (t1) and after (t2) the pH-switch.

PolyFermS model A PolyFermS model B PolyFermS model C

Donor A t1 t2 Donor B t1 t2 Donor C t1 t2

Actinobacteria 12.4 11.6 (61.7) 10.7 (63.2) 0.4 4.8 (61.4) 3.5 (61.3) 6.2 2.4 (61.2) 2.2 (61.1)

Bacteroidetes 6.3 32.6 (67.9) 23.5 (68.4) 18.3 32.5 (64.1) 30.1 (62.9) 36.7 37.4 (64.6) 38.6 (65.0)

Firmicutes 79.3 50.6 (67.1) 58.8 (69.1) 80.7 62.1 (64.5) 55.3 (63.1) 56.1 53.3 (63.3) 52.7 (61.0)

Bacilli 1.1 1.6 (61.6) 2.9 (61.3) 0.5 0.3 (60.1) 0.4 (60.1) 0.7 0.5 (60.1) 0.8 (60.2)

Clostridium cluster I 0.2 ,0.05 ,0.05 0.1 ,0.05 ,0.05 0.7 1.1 (61.4) 0.1 (60.1)

Clostridium cluster III 0.7 ,0.05 ,0.05 0.7 0.3 (60.2) 0.4 (60.3) 0.2 ,0.05 ,0.05

Clostridium cluster IV 6.1 6.9 (60.8) 6.2 (62.9) 20.3 8.2 (64.3) 7.3 (64.0) 19.0 4.7 (61.5) 15.6 (61.6)

Clostridium cluster IX ,0.05 0.2 (60.1) 0.1 (60.1) 0.3 0.2 (60.1) 0.3 (60.0) 0.1 0.2 (60.1) 0.3 (60.1)

Clostridium cluster XI 3.2 0.7 (60.2) 0.5 (60.3) 0.6 0.4 (60.1) 0.6 (60.1) 2.7 0.2 (60.1) 0.1 (60.1)

Clostridium cluster XIVa 67.4 41.1 (67.6) 49.1 (66.1) 56.8 52.4 (60.4) 46.0 (61.0) 31.7 46.4 (63.1) 35.8 (61.6)

Clostridium cluster XVI ,0.05 ,0.05 ,0.05 ,0.05 ,0.05 ,0.05 ,0.05 ,0.05 ,0.05

Clostridium cluster XVIII 0.8 ,0.05 ,0.05 0.1 0.1 (60.0) 0.2 (60.1) 0.6 0.1 (60.0) ,0.05

Uncultured Clostridiales ,0.05 ,0.05 ,0.05 1.3 0.2 (60.1) 0.2 (60.2) 0.6 ,0.05 ,0.05

Proteobacteria 1.7 5.0 (60.9) 6.9 (62.0) 0.1 0.6 (60.4) 11.0 (64.1) 0.3 6.8 (60.7) 6.5 (63.2)

Values are given as mean (6SD) calculated for the relative abundances of higher taxonomic groups based on HITChip analysis of fecal samples of donors (n = 1) and of
reactor effluents obtained from all reactors of the same model before (t1, days 12/13; model A: n = 5, models B and C: n = 3) and after (t2; model A: n = 5, models B and C:
n = 3) the pH-switch.
doi:10.1371/journal.pone.0077772.t002

Table 3. Mean relative abundance of phylotypes that were highly affected by the pH-switch in PolyFermS model A.

Higher taxonomic group Phylotype t1 t2 corrected p value

Bacteroidetes Bacteroides fragilis et rel. 2.22 1.08* 0.037

Bacteroides intestinalis et rel. 1.88 1.40* 0.022

Bacteroides vulgatus et rel. 5.49 3.96* 0.022

Tannerella et rel. 1.05 0.54* 0.012

Clostridium cluster XIVa Clostridium nexile et rel. 2.30 3.26 0.060

Eubacterium rectale et rel. 2.05 4.13 0.060

Roseburia intestinalis et rel. 2.70 5.83 0.060

Proteobacteria Proteus et rel. 0.02 0.08* 0.037

Sutterella wadsworthia et rel. 3.36 1.89* 0.037

All values are given as mean relative abundances (%) of phylotypes based on HITChip analysis of reactor effluents obtained from all reactors of the PolyFermS model A
before (t1, day 12/13; n = 5) and after (t2, day 21/22; n = 5) the pH-switch. A comprehensive overview of the most abundant phylotypes detected before and after the
pH-switch is given in Table S3.
*Means with an asterisk differ significantly (p,0.05) for the same phylotype before and after the pH-switch.
doi:10.1371/journal.pone.0077772.t003
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Interestingly, adaptation of major groups within Firmicutes to the

in vitro environment was model-dependent (Table 2). Clostridium

Cluster IV was lower in models B and C than in corresponding

feces, but unaffected in model A, while Clostridium cluster XIVa

was lower in model A, stable in model B and increased in model C.

These different responses could reflect adaption to the new

environment (simulated proximal colon vs. feces) which depends

on conditions prevailing in the host at the time point of fecal

sampling. The lack of host-related factors (e.g. water and

metabolite absorption, intestinal cells) and the process of

immobilization itself may also influence microbiota development.

Relationship between Metabolic Activity and Microbiota
Composition

The colonic microbiota produces an estimated amount of 100–

450 mM of total SCFA daily through fermentation of unabsorbed

carbohydrates. SCFA can be absorbed by the colonic epithelium

and transported to peripheral tissues, with only 5–10% being

excreted in feces [37]. Acetate is the main SCFA produced in the

colon, followed by propionate and butyrate with molar ratios in

the range of 60–80: 14–22: 8–23 in healthy people [38]. These

weak acids impact gut microbiota composition and influence host

health, with butyrate representing the preferred energy source for

colonocytes [39]. Fermentative activity in inoculum reactors (IR)

of the PolyFermS model operated with a very short mean

retention time of only 2.5 h and high supply of nutritive medium

at pH 5.7 was very high and indicated a shift toward acetate

production for all models (Table 1). The abundant SCFA

production combined with lack of absorption may create a

restrictive environment for the growth of certain microbes most

affected by the inhibitory effects of SCFA which increase at low

pH. Clostridium clusters XIVa and IV contain important metabolic

clades of broad fermentation potential and represent dominant

SCFA producers of the gut microbiota. Differences between

Clostridium cluster XIVa and IV in adapting to the low pH (5.7)

suggest variable species-species adaptive capacities and a potential

struggle between intrinsic regulatory factors and nutrient avail-

ability in determining community growth and metabolic activity

[19].

Effects of pH on Microbiota Composition and Metabolic
Activity

The colonic pH plays an important role in controlling the gut

colonization. It is generally lower in the proximal (5.6–5.9)

compared to the distal (6.6–6.9) colon as a result of active

fermentation of dietary substrates and the production of SCFA

[37,40], and may fluctuate between hosts depending upon dietary

intake and physiological characteristics. Duncan et al. [12,41]

showed that large pH-shifts in continuous flow fermentor studies

highly influenced gut microbiota composition. Growth of Roseburia

spp. and Eubacterium rectale was promoted at pH 5.5 compared to

6.5 at the expense of Bacteroides spp. and associated with increased

Figure 3. Correlation between butyrate production and the
fraction of predominant butyrate-producing bacteria in the
total microbiota produced in effluents of PolyFermS models.
Open circles visualize the mean relative abundance (% of total flora) of
predominant butyrate-producing bacteria (Faecalibacterium prausnitzii,
Eubacterium rectale, Roseburia spp.) in IR, CR and TR of model A, B and C
and colored bars indicate mean model-specific molar metabolite ratios
(%) of acetate (in red), propionate (in green) and butyrate (in blue), with
IR pH at 5.7 (t1) and 5.5 (t2).
doi:10.1371/journal.pone.0077772.g003

Figure 4. Intra-model reproducibility of metabolic balance
measured in effluent samples of PolyFermS models. Molar
metabolite ratios (%) measured daily in control reactors (CRA, CRB and
CRB; x-axis) and test reactors (TRA, TRB and TRC; y-axis) from day 6 to
22. Mean daily ratios were calculated for TR1A, TR2A, TR3A (TRA).
Numbers in color indicate model-specific Pearson correlation coeffi-
cients calculated for acetate (in red), propionate (in green) and butyrate
(in blue).
doi:10.1371/journal.pone.0077772.g004
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butyrate formation, in agreement with our data. We showed that a

pH shift of only minus 0.2 pH-units induced a fast metabolic and

ecological response (Figure S1), with decreased Bacteroidetes and

increased Firmicutes ratios in model A, and enhanced butyrate at

the expense of acetate in model A and C. Clostridium clusters XIVa

(family Lachnospiraceae) and IV (family Ruminococcaceae) of Firmicutes

are known to harbor many different species of butyrate-producing

bacteria [42,43], with Roseburia spp., Eubacterium rectale (both cluster

XIVa) and Faecalibacterium prausnitzii-related bacteria (cluster IV)

being particularly abundant at levels of approx. 2–15% of the total

microbiota [44].

In vitro models allowed for a detailed assessment of pH effects

according to the individual microbiota. For model C, the less

pronounced pH response could be explained by differences in the

equilibrium of C3 (propionate)/C4 (butyrate) fermentation end

products, with molar ratios being more balanced in model C

(54%/46%) compared to model A (12%/88%). Indeed, in

addition to Clostridium cluster IX and Propionibacteria, the

Bacteroidetes population has a broad saccharolytic capacity and

is proficient at producing propionate from degradation of a wide

range of polysaccharides including starch [45]. Bacteroidetes

accounted for 38.6% of the total microbiota in model C but only

23.5% in model A, which may partly explain the higher

propionate production tested in model C. Many bacteria in the

colon survive by cross-feeding of breakdown products from

degradation of complex carbohydrates or fermentation end

products such as lactic acid [39]. Together with Eubacterium hallii,

Anaerostipes caccae is an important lactate-utilizing gut bacteria that

produce butyrate as a major fermentation product [46]. Indeed, a

decrease of A. caccae was observed in model C but not in model A

after the pH decrease, which may explain the higher production of

butyrate in model A. Furthermore, butyrate formation arising

from lactate cross-feeding pathways with Bifidobacterium adolescentis

(lactate producer) and E. hallii/A. caccae (lactate utilizers) or acetate

cross-feeding pathways with Roseburia and A. caccae are well

documented [47,48]. Bifidobacterium populations were much more

abundant in model A (representing 10.1% of total microbiota)

compared to model C (1.9%) after the pH-drop. It can therefore

be assumed that different butyrate production pathways, induced

by intermediate metabolite availability or small fluctuations in pH

known to affect the conversion of lactate by the human intestinal

microbiota [49] impacted on butyrate accumulation in different

models.

The growth of Gram-negative Proteobacteria is normally

inhibited under simulated gut conditions by reduced pH due to

amended inhibitory effects of SCFAs [50]. Unexpectedly, the pH-

decrease in model B resulted in a large increase of Proteobacteria

(from 0.6% to 11%), mainly limited to potentially pathogenic

serotypes of Escherichia coli, some of which possibly being more pH-

tolerant than others. On the other hand, acetate, detected at

higher concentrations in model B after the pH-drop compared to

the other models (Table 1), is known to exert a strong inhibitory

activity against Gram-negative bacteria [51]. With a pKa value of

4.76 however, it is highly deprotonated and weakly active at

pH 5.5. The large increase of E. coli et rel. after the pH-drop may

therefore be related to the absence of Lactobacillus plantarum et rel. in

model B compared to model A (representing 2.4% of total

microbiota) and C (0.4%), as many L. plantarum strains are known

to produce bacteriocins with a broad inhibitory activity against

Gram-positive and Gram-negative pathogenic bacteria including

E. coli [52]. Overall, our data showed a consistent general response

to pH for all three models inoculated with feces derived from

different donors. However, individual effects on microbiota

balance and activity related to a specific treatment tightens the

need of repeating in vitro intestinal fermentations inoculated with

feces from different donors, and of a throughout interpretation of

effects and mediated mechanisms.

Reproducibility and Temporal Stability of PolyFermS
The PolyFermS model enabled parallel operation of multiple

test reactors (TR) continuously inoculated with the same

microbiota produced in IR. This design allows parallel testing of

different treatments compared to a control reactor (CR) where no

treatment is applied [18] when ecological and metabolic

characteristics are reproducible and similar in control (CR) and

test (TR) reactors. In this study, metabolic steady-state-conditions

were reached after approx. 6 days of continuous culture in all

models. Remarkably high intra-model stability was observed

between t3 and t4 (mean intra-model Pearson correlation,

r = 0.97; standard deviation, 60.01) similar to the temporal

stability (,1 year) reported for the human intestinal microbiota of

healthy adults [53,54]. Furthermore, reproducibility of metabolic

activity and phylogenetic fingerprints were generally high

(Figure 5, Figure S1, S2 and S3), supporting this unique feature

of the PolyFermS model for comparison of different treatments.

The robustness of in vitro intestinal fermentation models highly

depends on the certainty that any observed responses of the

reactor community are only due to the applied experimental

treatment and not to adaption to the simulated environment [7].

Figure 5. Time stability of intestinal microbiota produced in effluents of PolyFermS models. Single (open circles) and mean (line)
similarity indices are based on Pearson product-moment correlation coefficients for HITChip fingerprints generated from PolyFermS reactor effluents
obtained from model A, B and C at time points t1 and t2 from all reactors and at t3 and t4 from IR and CR compared to corresponding previous time
points.
doi:10.1371/journal.pone.0077772.g005
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Conclusions
The present study describes the validation of a novel colonic

fermentation model design, PolyFermS, for ecological and

metabolic studies of the gut microbiota. Compared to other

intestinal fermentation models, this model is characterized by the

advantageous possibility to stably and reproducibly cultivate

complex intestinal communities in multiple reactors allowing

studying in parallel the impact of many different treatments

(environmental parameters, dietary compounds, drugs, added

microbes, etc.) compared to a control reactor. This set-up can be

extended to increase the number of second stage parallel reactors

and to attach multistage systems to IR to mimic different sections

of the colon in parallel systems seeded with the exact same

microbiota produced in IR [18]. Using PolyFermS model, we

could show a strong effect of pH on microbiota profiles and linked

metabolic activities which depended on the donor microbiota. Our

data support that individual microbiota derived from a single

donor should be used to inoculate in vitro models to gather reliable

data on whole ecosystem dynamics in response to a manipulated

factor.

Supporting Information

Figure S1 Microbiota composition and metabolic activ-
ity of the PolyFermS model A over time. Open circles

visualize daily concentrations (mM) of acetate (in red), propionate

(in blue) and butyrate (in green) in reactor effluents of IRA and

CRA. Colored bars correspond to ratios (%) of Firmicutes (in

green), Bacteroidetes (in red), Actinobacteria (in blue) and

Proteobacteria (in black) detected in donor sample A and reactor

effluents obtained at time points t1, t2, t3 and t4 from inoculum

reactor IRA and control reactor CRA.

(TIF)

Figure S2 Microbiota composition and metabolic activ-
ity of the PolyFermS model B over time. Open circles

visualize daily concentrations (mM) of acetate (in red), propionate

(in blue) and butyrate (in green) in reactor effluents of IRB and

CRB. Colored bars correspond to ratios (%) of Firmicutes (in

green), Bacteroidetes (in red), Actinobacteria (in blue) and

Proteobacteria (in black) detected in donor sample B and reactor

effluents obtained at time points t1, t2, t3 and t4 from inoculum

reactor IRB and control reactor CRB.

(TIF)

Figure S3 Microbiota composition and metabolic activ-
ity of the PolyFermS model C over time. Open circles

visualize daily concentrations (mM) of acetate (in red), propionate

(in blue) and butyrate (in green) in reactor effluents of IRC and

CRC. Colored bars correspond to ratios (%) of Firmicutes (in

green), Bacteroidetes (in red), Actinobacteria (in blue) and

Proteobacteria (in black) detected in donor sample C and reactor

effluents obtained at time points t1, t2, t3 and t4 from inoculum

reactor IRC and control reactor CRC.

(TIF)

Table S1 Normalized hybridization signal intensity for
all 129 Level 2 (genus-like) phylogenetic groups targeted
by the HITChip.

(XLS)

Table S2 Normalized hybridization signal for all 21
Level 1 (phylum-like) phylogenetic groups targeted by
the HITChip.

(XLS)

Table S3 Relative abundance of phylotypes in Poly-
FermS model A before (t1) and after (t2) the pH-switch.

(XLS)
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