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1. Introduction 

1.1. Electrospinning 

Due to one-dimentional nanostructures’ unique properties and their intriguing applications, 

there has being a great demanding on the technologies which are able to produce such 

structures. Among the applicable strategies, electrospinning seems to be the simplest approach 

to generate continues nanofibers with ultrathin and uniform diameters (Li & Xia, 2004). 

Electrospinning is a spin technology which involves the use of a high voltage, usually direct-

current, to trigger the formation of a liquid jet (Li & Xia, 2004; Greiner & Wendorff, 2007). 

1.1.1. The Mechanism of Electrospinning 

Briefly, the mechanism of electrospinning is often to be explained as the collaborative effects 

of electrostatic repulsion by the accumulated charges on the surface of polymer solution and 

the Coulombic force exerted by the external electric field (Li & Xia, 2004; Greiner & 

Wendorff, 2007). A illustrative figure may help the understanding of it. As can be seen in 

Figure 1, polymer solutions are added in a syringe with a metal spinneret connected on its 

tip. Driven by a syringe pump or gravity, the solution starts to flow out. When a high 

voltage (usually in the range from 1 to 30 kv), the pendent drop of the solution will be 

highly electrified. During this process, the liquid drop will be shaped into a cone-like object, 

as known as “Taylor Cone”. And the charges on the surface will repulse each other, 

overcome the surface tension of the solution until reaching a certain threshold. Then an 

ejection of solution is formed. Driven by the mighty electric field, the liquid jet undergoes a 

mighty stretching force, elongating the jet, thinning the diameter to a certain range. While 

during this period, the solvent evaporates intensively. Thus, the electrospun polymer fibers 

are formed. And a typical SEM photo of the electrospun fiber is illustrated in the insert of 
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Figure 1. Electrospinning is able to produce fibers whose diameters ranged from tens of 

nanos to a few microns. And a great amount of polymers are reported to be successfully 

spun into fibers via this technology. Based on the experimental data and 

electrohydrodynamic theories, several groups have built mathematical model to describe 

behaviors of electrospinning. Further information is not explained here, if interested, one 

can refer to these literatures: (Reneker, Yarin & Fong, et al., 2000; Yarin, Koombhongse & 

Reneker, 2001; Hohman, Shin & Rutledge, et al., 2001, etc.) 

 

Figure 1. An illustration of a typical electrospinning set and the formation of the liquid jet (in 

enlargement). The inserted is an SEM picture of nowoven PI mat prepared in our laboratory. 

1.1.2. A Brief History of Electrospinning 

The first patent that describe the operation of electrospinning appeared in 1934 (Formalas, 

1934), when Formalas disclosed an apparatus for producing polymer filaments by taking the 

advantage of electrostatic repulsions between surface charges. It has been almost 80 years 

since the patent but electrospinning existed only as a theory in people’s mind until 1990s. (Li 

& Xia, 2004) During that period, there were only few reports on ES. Its value was not fully 

attended so that no further development was made. But in the beginning of 1990s, by the 

efforts of several research groups, especially the ones leaded by Prof. D. H. Reneker and 

Prof. G.C. Rutledge, people demonstrated that ES was able to produce a great amount of 

polymer fibers. A large campaign of polymer ES researches was waged. (Wikipedia, Online) 

The timely demonstrations popularized the term “electrospining” in literatures that we see 

today. 

1.1.3. Development and Applications 

The diameters of polymer fibers produced by electrospinning were able to reach an 

incredible small range. Compared to traditional polymer fibers, ES fibers have greater 
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specific areas and aspect ratio (Li & Xia, 2004; Greiner & Wendorff, 2007). Electrospinning is 

a method to produce not only pure fiber structures, but also many other morphologies. By 

tuning electrospinning parameters (e.g. electric field strength, viscosity of spinning solution, 

solvents, etc.) and/or choosing different ES methods, controllable morphologies of ES 

products can be achieved. Owing to the world wide collaborative efforts, so far, people are 

able to electrospin pearl-necklace-like beaded fiber structures (Greiner & Wendorff, 2007), 

highly porous fiber structures (Bognitzki et al., 2001), grafted fiber structure (Hou H, 

Reneker D H, 2004; Chang Z, 2011), hollow interior micro tubes (Li, Wang & Xia, 2004; Zhao, 

Cao & Jiang, 2007), wire-in-tube structures (Greiner & Wendorff, 2007), What’s more, 

twisted fiber bundles, golfball-like micro particles and multi-chambered hollow spheres 

(Chen et al., 2008) are also able to be generated via this technique. These fibrous structures 

and particles obtained by electrospinning have some unmatchable properties, like the  

 

Figure 2. Morphologies of electrospun products: a) pear-necklace like fibers. Copyright © 2007 WILEY-

VCH, reused with permission; b) highly porous fibers. Copyright © 2001 WILEY-VCH, reused with 

permission; c) grafted fibers. Copyright © 2004 WILEY-VCH, reused with permission; d) a bundle of 

electrospun PI micro rope (Gong & Wu, unpublished work); e) wire-in-tube fibers. Copyright © 2007 

WILEY-VCH, reused with permission; f); aligned micro tubes. Copyright © 2004, American Chemical 

Society, reused with permission; g) multi-channel tubes. Copyright © 2007, American Chemical Society, 

reused with permission; h) golfball-like spheres (Gong & Wu, unpublished work); i)multi-chamber 

spheres. Copyright © 2008, American Chemical Society, reused with permission 
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extremely long length, high surface area, complex pore structure, alignment on the molecule 

level, etc. Such properties enable the electrospun materials possessing the potential values in 

applications and research fields, e.g. templates, filter and textile, catalysis and enzyme 

carriers, nanofiber reinforcement, medical applications, and surfaces with special 

wettability, etc. Due to the space constraints, detailed instances are not discussed here. The 

further introductions and examples, if one is interested, can be reffered to these literatures: 

(Li & Xia, 2004; Greiner & Wendorff, 2007; Lu, Wang & Wei, 2009) 

1.2. Polyimide (Ding, 2011) 

Polyimide (PI) is a polymeric material which contains imide rings in their molecule 

backbones. PI is mainly obtained through a two-step method: fragrant diamine and 

dianhydride undergo a condensational polymerization and then a thermal/chemical 

imidization, to afford PI, illustrated in Figure 3. The representative PI is Kapton®, developed 

and commercialized by Dupont™ in 1960 and 1965, respectively. This golden film presents 

good mechanical properties and high thermal stability. After 50 years, Kapton® is still a 

leading material in thermal tolerable materials. After Kapton®’s success, a series of fragrant 

polyimides were developed and accepted by the market. PI’s wide popularity is due to its 

comprehensive performances: wide applicable temperature range, good mechanical, 

electrical properties and bio-compatability. Besides, PI’s broad molecular designing window 

also guarantees its rapid development: by modifying molecular structures of diamine and 

dianhydride, different kinds of soluble and thermal shapeable PI were prepared. After a 

long term of research and developing state, PI is now extensively employed in the aerospace 

and aviation industries and in the microelectronic and electric fields as advanced packaging 

and insulating materials. With the rapid development of these advanced industry, novel PI 

materials with high performances and new functions are usually required. 
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Figure 3. A two-step PI synthetic route 
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1.3. Electrospun polyimide materials 

In 1996, Reneker referred that PI nano fibers are obtainable via electrospinning (Reneker & 

Chun, 1996). In 2003, Nah et al. described in details the method to produce PI nano fibers 

(Nah, Han & Lee, 2003), declared the successful preparation of ultra-thin PI fibers. The 

morphology of the PI fibers is shown in Figure 4. The successful preparation was a 

milestone that it was when a polymer with comprehensive high performances encountered 

a versatile and effective method for fiber producing. Their combination afforded a series of 

results with both scientific amd industrial values. Herein, this chapter summarized and 

categorized the works of electrospun PI materials since 2003. In the meantime, some 

outlooks of this research field were also given. 

    

Figure 4. Nah et al. obtained PI fibers by electrospinning for the first time, left: the electrospinning set; 

right: SEM of PI mat. Copyright © 2003 WILEY-VCH, reused with permission 

2. Carbon fiber precursors: the preparations of electrospun nano PI fibers 

Carbon fibers produced from traditional fibers possess high tensile strength and modulus of 

elasticity. People wish to be able to produce thinner carbon fibers from electrospun 

polymers after the electrospinning technique was born. Due to the ultra-thin diameter of the 

electrospun fibers, compared to the ordinary art of carbon fibers, the ultra-thin carbon fibers 

produced from electrospun fibers possess much higher specific area. Such property is in 

favor of super capacitors or the carrier of the catalyst (Li & Xia, 2004; Dong, 2009). The 

researchers also found that, interestingly, carbon fibers produced from electrospun PI fibers 

possess higher conductivity than some ordinary materials using the same method. As a 

result, ressearchers attempted to get carbonized products with higher performances from 

the electrospun PI fibers. Some have achieved initial results and they are introduced as 

follow. 

In 2003, Yang et al. first reported the method of carbon fiber preparation by carbonizing the 

electrospun PI fibers (Yang et al, 2003). They discussed the parameters for the PI 

electrospinning, pointing out the proper concentrations and viscosity of the solutions, as 

well as the voltage and electric field. Their job provided precious experience for the follow-

up works. In their work, 4,4'-oxydianiline (ODA) and pyromellitic dianhydride (PMDA) 
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underwent a condensational polymerization to form polyamic acid (PAA), the precursor of 

PI. Certain amount of PAA with certain concentration ( by weight) was added into the 

syringe to be electrospun into fiber samples with diameters ranged from 2 to 3μm. After 

thermal imidization, the diameters shrank to 1~2μm. After the final carbonizing, carbon 

fibers were obtained. Yang et al. discovered that the conductivity of the samples increased 

as the carbonizing temperature rose. The conductivity reached 2.5S/cm after carbonized 

under 1000°C, significantly higher than the one of which produced from PAN fibers 

(1.96S/cm) treated under the same conditions and procedures. An SEM photo of the 

carbonized mat is shown in Figure 5. 

 

Figure 5. SEM of PI nonwoven mat after carbonization. Copyright © 2003 Elsevier, reused with 

permission 

In 2004, Kim et al. reported the preparations of carbon fibrous electrode with high 

performance via electrospinning of PI (Kim et al, 2004). The nonwoven mat they prepared 

was made into electrode after carbonizing at 2200°C, the conductivity was as high as 

5.26S/cm, detected by the four-probe method. The specific capacity could reach 175F/g at 

most. Cyclic Voltammetry and Alternating Current Impedance Spectra both demonstrated 

its excellent performance. Due to the super thin diameters of each single fiber, a huge 

amount of micro and nano gaps were introduced into the body of the electrode. As a result, 

the specific area of the electrode is incredibly high, 1453M2/g (detected by BET test), which is 

unmatched by ordinary electrode. The high porosity, specific area and conductivity of the 

ultra-thin carbon fiber produced from electrospun PI, brought about high specific capacity 

and high reaction reversibility to such kind of electrodes, enabling its popularity in the 

preparations of high performance electrodes, super capacitor and energy storing. 

Chung et al. reported a new way to produce carbon fibers in 2005 (Chung et al, 2005). The 

soluble PI, Matrimid® 5218, was directly electrospun into nonwoven mat and then 

carbonized. In the electrospinning process, the authors added a certain amount of 

[CH3COCH=C(O-)CH3]3Fe as additives. In the following characterizations, XRD, Raman 

Spectra, SEM, TGA all demonstrated that [CH3COCH=C(O-)CH3]3Fe might promote the 

carbon yield, enlarge the crystal dimension, increase the thermal stability at the same time. 

In 2007, Xuyen et al. for the first time discussed how the electrospinning parameters would 

affect the PI fibers quantitatively (Xuyen et al., 2007), part of the data is illustrated in Figure 

6. Further they discussed the relationship between the diameters of PI fibers and the  
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Figure 6. The study of parameters on the PAA electrospun diameters. Left: fiber morphology affected 

by the amount of TEA while electrospinning, a) 0wt%, b) 1wt%, c) 3wt%, d) 5wt%; right: fiber diameters 

affected by concentrations of PAA solution. Copyright © 2007, American Chemical Society, reused with 

permission 

conductivity of their carbonized products. The parameters they referred included the amount 

of catalyst (triethyl aminde, TEA), the electric field and concentrations of the solution (wt%). 

This research revealed that: in some range, fiber diameter decreased when the amount of TEA 

increased; the fiber diameter increased while the concentration increased; the critical electric 

field was quadratic to the molar mass. According to the authors’ explanations, firstly, TEA 

promoted the polymerization of ODA and PMDA, leading to a high viscosity during the 

synthesis, which stabilized the Taylor Cone, inhibited the variation of the fiber diameter 

during electrospinning; Secondly, at the same feeding rate, while the concentration increased, 

the amount of PAA increased in the electrospun sample, leading to the expansion of the fiber 

diameters; At last, due to the quadratic relationship (Jones &Richards, 1999) between surface 

tension of the PAA solution and the molecule weight, while the critical electric field was 

directly linked to the surface tension (Taylor, 1969), as a result, the critical electric field and 

molecule weight could be described as follows: 

2 1.8
c

57178
563 [1 ( ) ]

n

E
M

    

where Ec is the critical electric field and Mn is the number-average molar mass. Experimental 

data fitted the equation well. During the research, by controlling the diameter of the fibers 

and the pressure during the carbonization, Xuyen et al. discovered that the conductivity 

increased when the diameter decreased and the pressure increased. The maximum value 

they obtained was as high as 16 S/cm, and the fiber diameter was only 80 nm. Compared to 

the formal reported ones (Yang et al, 2003; Kim et al, 2004), the fiber diameter was sharply 

reduced while the conductivity was greatly enhanced, demonstrating the great advantages 

of electrospinning in carbon fiber preparations. 

3. PI nanocomposites prepared via electrospinning 

During the beginning of electrospinning process, the solution jet bears huge shear force and 

stretching force, so that the fiber diameter reaches the nano range. Then three factors will 
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limit the agglomerations of the nano particles in electrospun nanocomposites. The three 

factors are: the constrain of the fiber diameter, mighty electric force and the surface tension 

of the polymer solution as well. In addition, during the end of the process, due to the fast 

evaporation of the solvents, the polymer fiber will be solidified rapidly as if the liquid was 

“frozen“. Once “frozen”, the reagglomerations of the nano particles will be greatly 

prohibited. These factors enable electrospinning a versatile and effective method for the 

dispersion of nano particles in the polymer body (Behler et al., 2009). There have been a 

great amount of reports on this technique about the dispersions of functional nano particles 

into polymer fibers, involving the functions of catalyst, thermal conductivity, light 

adsorption and bio characteristics, etc. Detailed examples are not discussed here. 

What’s more, PI is a intrinsically tough resin with comprehensive high performance as we 

introduced above. By electrospinning, we may be able to disperse a variety of functional 

particles into its body in order to prepare PI materials with high performance and certain 

functionalities. Such idea is worth of great scientific and industrial values because it might 

realize the functionalization of PI and in the meantime, expand PI’s applications. Several 

research groups are carrying out such works and a few results are mentioned as follow. 

Zhang et al. reported the successful preparation of nano Ag particles/PI fiber composite in 

2007 (Zhang et al., 2007). Due to the excellent optical, electrical, catalytic and anti-micro-

organism properties, nano Ag particles are widely applied in composite preparations. The 

Ag/PI composite that Zhang et al. prepared are potentially applicable in optics and catalysts. 

    

Figure 7. SEM (left) and TEM (right) of nano Ag/PI fiber composites. Copyright © 2007 Elsevier, reused 

with permission 

In 2009, Chen et al. reported the successful preparation of multi-wall carbon nanotubes 

(MWCNTs)/PI composite via electrospinning (Chen et al., 2009). The aim of the research was 

to add MWCNTs into PI fiber systems to enhance the mechanial properties of the composite. 

The key problem is to disperse the MWCNTs homogeneously. However, MWCNTs are not 

compatable with the PAA solution. To increase the compatibility of the nano filament with 

the polymer, MWCNTs were treated by high concentrations of nitrate, in order to introduce 

oxygen-contained groups onto their surfaces. Then after in-situ polymerization, the 

MWCNTs/PAA was then electrospun into nano fibers. During the ES process, a special set 

was used to introduce alignment into the fiber belt. After the final thermal imidization, the 
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mechanical properties of the aligned fibrous MWCNTs/PI composite were examined. 

Compared to the neat PI fiber belt, the mechanical performances of the composite were 

obviously more advantageous: the yield strength, tensile strength and tensile modulus were 

200.9 MPa, 239.7 MPa, 2.56 GPa, respectively. And the elongations at break could reach as 

high as 90.5%. At the same time, the thermal stability of the composite was greatly 

enhanced. The TEM demonstrated the well dispersion of the filament in PI matrix and the 

filament were well aligned along the fiber direction. The alignment of these filament might 

contributed to the shearing and stretching force of the mighty electric field. 

 

  

Figure 8. TEM of nano-carbon tubes/PI fiber composites (left) and its stress-strain curve (right). 

Copyright © 2007, American Chemical Society, reused with permission 

 

 

Figure 9. Images of PI-(hemicyanine dye) hybrid. The upper row are digital pictures of a): Pure PAA 

nonwoven mat, b):PAA-(hemicyanine dye) hybrid nonwoven mat, c): the hybrid mat after imidization; 

the lower row are the corresponding SEM images. Copyright © 2009 Elsevier, reused with permission 
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In 2010, the methodology of preparations of PI composite with magnetic effect was reported 

by Zhu et al (Zhu et al., 2010). In their work, Fe-FeO nano particles with core-shell structures 

were doped into soluble PI, Matrimid 5218®. The inorganic particles were well compatible 

with the PI matrix without further treatment. The research found out that the ES has no 

major negative effects on the saturation magnetization of the particles, while after the ES 

process, the coercivity was increased from 62.3 Oe (neat particles) to 188.2 Oe (composite), 

which meant the composite’s anti-magnetic ability was improved. Zhu et al. pointed out 

that such improvement was triggered by the uniform dispersion of the inorganic particles 

which would lead to the weakening of the dipolar interactions between each and every one. 

Moreover, there were other reports on the electrospun PI composite: Qin et al. reported the 

fluorescent performance of electrospun PI web mixed with hemicyanine dye (Figure 9), 

pointed out that the nano fiber structure were helpful to the fluorescence (Qin et al., 2009); 

Cheng et al. reported the preparation of nonwoven PI/silica hybrid fabrics by combining 

electrospinning and controlled in situ sol–gel techniques, their product had better 

mechanical and thermal properties than ordinary PI electrospun fabrics (Cheng et al., 2009). 

4. Novel light and tough electrospun PI fabrics 

Due to PI’s excellent mechanical properties, it is widely applied in military industry, 

engineering, aeronautices and astronautics. The most intriguing point is that electrospinning  

is able to improve PI’s mechanical properties. The molecule chains will be greatly 

constrained within the nanofibers. As a result, the crystallization area is increased, leading 

to the enhancement of the nanofiber’s mechanical property. Now that nano PI fibers are 

achievable via electrospinning and such fibrous PI materials with lighter weight and 

excellent performances are intriguing, we consider this research of great importance and 

several scientific outcome are shown below. 

In 2006, Huang et al. prepared PI nonwoven mat with considerable mechanical properties 

(Huang et al., 2006). 3,3',4,4'- biphenyl dianhydride (BPDA) and P-phenylenediamine (PDA) 

were polymerized into PAA with high molar mass. After ES and imidization, the mat’s 

tensile strength and Young’s modulus were detected as 210 MPa and 2.5 GPa. Compared to 

the formerly reported mats (Cheng et al., 2009; Kim et al., 2004; Yang et al., 2003), this 

product exhibited higher mechanical performances. In this work, they mentioned the high 

molar mass guaranteed the high performance. In the same year, they reported a new way 

(Huang et al., 2006) to fabricate PI mat with higher mechanical properties. In that work, a 

rotating wheel with a 8 mm wide edge was utilized to collect the electrospun PI fibers. The 

fibers in the as-prepared PI fiber belt were highly aligned and along the align direction, the 

tensile strength and Young’s modulus reached as high as 664 MPa and 15.3 GPa, 

respectively. 

In 2008, for the first time, the mechanical property of a single BPDA-PDA nano fiber was 

reported (Chen et al., 2008). The authors used a square frame to collect a few strands of PI 

fibers by waving across through the space between the spineret and collector rapidly several 

times. Then special care were taken to mount one single fiber into the micro tensile testing 



 
Novel Polyimide Materials Produced by Electrospinning 137 

machine. In the described details, the mechanical properties of both PAA and PI single 

fibers with diameters aroung 300nm were characterized: the data of PAA fiber was 

766±41MPa in tensile strength, 13±0.4GPa in tensile modulus, ~43% in elongation at break; 

the data for the PI fiber was 1.7±0.12GPa in tensile strength, 76±12GPa in tensile modulus, 

~3% in elongation at break. According to the authors, the excellent mechanical performance 

stemmed from the high alignment of the macromolecules in the fiber structure, which was 

confirmed by Wide-angle XRD. 

In this series of works, the PI matrix was synthesized from BPDA and PDA. In such kind of 

polymer chains, there are few flexible groups, which will make the material hard and brittle. 

This explains why those PI fiber belt possess low elongation at break and unsatisfactory 

toughness and flexibility. To improve the toughness and flexibility of the electrospun PI 

materials, in 2008, Chen et al. added 4,4'-oxydianiline (ODA) into the former system 

(BPDA+PDA), to form block copolymers (Chen et al., 2008). Similar to the methods that have 

been discussed before (Huang et al., 2006), the copolymers were also electrospun into 

aligned fiber belt but with ameliorated elongation properties. Due to the introduction of 

flexible groups, the elongation at break of the copolymer could reach ~20%, and the tensile 

strength and modulus were 1103±61MPa, 6.2±0.7GPa. Such a PI belt with 7.5 mm wide and 

1.5 μm thick could bear a 10 kg load, illustrated in Figure 10.  

In 2009, they reported a PI fibrous material with even higher stretching ability (Cheng et al., 

2010): the elongation at break could reach as high as 200%. This PI was synthesized from 

BPDA and 2-Bis[4-(4-Aminophenoxy)Phenyl] Hexafluoropropane (6FBAPP). 6FBAPP 

contains more flexible “-O-“ groups, so such PI materials are more pliable but not strong 

enough. The BPDA-6FBAPP exhibited 308±14 MPa in tensile strength and 2.08 ±0.25 GPa in 

tensile modulus. From the results of the series of researches, in summary, the molecule 

  

Figure 10. A photograph of the electrospun copolyimide nanofiber belt hanging a weight of 10 kg; the 

belt has 7.5 mm width and 12 μm thickness. Copyright © 2008 IOP Publishing Ltd, reused with 

permission 



 

High Performance Polymers – Polyimides Based – From Chemistry to Applications 138 

structures greatly affect the macroscopic property of electrospun PI materials. The molecule 

structures are summerized in Table 1. In addition, the molar mass and the aligment of fibers 

are also vital keys to such kind of material. 
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Table 1. A list of molecule structure of aromatic anhydrides and amines referred in Section 4 

The PI fabrics discussed above were only aligned in one certain direction, in other words, 

the mechanical property could only be presented anisotropically. So far, constrained by the 

development of patterning technology of electrospinning, there have been no reports on 

multi-directional aligned PI fabrics with isotropic high mechanical performances. However, 

in 2008, Carnell et al. reported a novel way to fabricate perpendicularly aligned PI fabrics 

(Carnell et al., 2008). They applied a needle-like auxillary electrode opposite to the 

spinneret, and used a metal roller to collect the fibers. The set for electrospinning the aligned 

fibers is shown in Figure 11. In their work, when negative high voltage was applied on the 

auxiliary electrode, because of the guide and confinement of the concentrated electric field 

lines, the instability of the spin jet was greatly suppressed, leading to fine alignment in one 

certain direction. What’s more, by re-place the collector, the aligned fibers can be vertically  

 

Figure 11. The set for electrospinning the aligned fibers. Copyright © 2008, American Chemical Society, 

reused with permission 
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staggered (shown in Figure 12), to form fabrics with double-directional alignment. Such 

technique could improve the continuity and yield of the aligned fibers, and especially it 

expanded the dimensions for the alignment of electrospun nano fibers. 

In 2010, Lee et al. reported a method to optimize the fiber morphology and mechanical 

property (Lee et al., 2010). During the ES process of co-Poly-(amide)-imide (PAI), the fibers 

were soaked in glycerine. And during the imidization, the fibers were stretched. After these 

procedures, the PAI fibers presented smoother sectional shapes, better alignment and as a 

result, as we have discussed above, the mechanical property should be improved but not 

discussed in that article. In fact, the stretching imidization is a critical step for enhancing the 

mechanical performance of PI material. So the stretching imidization is also expected to be 

one effective way to improve the characteristics of the electrospun PI fibers. 

 

 

Figure 12. Horizontally and vertically aligned PI nonwoven mat prepared through the way that 

reported by Carnell et al. Copyright © 2008, American Chemical Society, reused with permission 

 

 

Figure 13. SEM photos of the cross-sectional surfaces of continuous copolymer nanofiber bundles: 

imidized under tension after glycerol pre-treatment. Copyright © 2010 WILEY-VCH, reused with 

permission 
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5. Others 

In recent years, reports on other functional electrospun PI fibers thrived. Herein we have 

chosen some typical works to discuss. In 2007, Liu et al. reported a new way to produce PI 

material with ultralow dielectric constant (k) via electrospinning (Liu et al., 2007). The 

traditional k of a piece of PI film, e.g. Kapton○R , is about 3.5. However, the electropsun PI 

mat’s k could reach as low as 1.5 according to Liu et al. The theory could be explained as 

this: during the process of ES, due to the nano size of the fiber diameters, a great amount of 

mesoscopic gaps would be introduced into the body of the PI mat. As the fiber diameter 

decreased and/or the aspect ratio increased, the amount of gaps increased, making the inner 

space of the mat more and more similar to pure air, leading to the decrease of k of the PI 

mat. 

In 2008, Lv et al. reported that they used two kinds of diamines: diaminotetraphenylporphyrin 

and ODA, copolymerized with PMDA to form porphyrin modified PAA (Lv et al., 2008). 

Then it was electrospun and imidized into fluorescent nonwoven mat. The 

characterizations, including UV-vis spectra, fluorescence spectra, 1H NMR spectra, TGA, 

demonstrated that the concentration of porphyrin, the nanostructures were the main factors 

which would influence the quantum yield and the fluorescent property. The higher the 

concentration is and the thinner the fiber diameters are, the higher the quantum yield is and 

the stronger the fluorescence is. In addition, the existence of heavy metal ions, e.g. Hg2+, will 

lead to fluorescence quenching which can be detected by naked eye. So that this PI mat can 

be used as the sensor of heavy metal ions. 

In 2009, Chang et al. utilized the technique of “click chemistry” to successfully link alkynyl-

terminated polymethyl methacrylate (PMMA) onto the surfaces of the electrospun PI 

nanofibers (Chang et al., 2009). The route was illustrated in Figure 14. The extremely high 

specific areas of the nanofibers were the key to the success and Chang’s work was the first 

attempt to graft other polymers onto the PI surface, provided a novel idea to the surface 

modification of PI. 

 

Figure 14. Synthetic route for the “Click Chemistry” for preparing the grafted PI fibers. Copyright © 

2009, American Chemical Society, reused with permission 
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6. Conclusion  

In the past few years, researchers pave their way through the field of the preparations of 

electrospun PI materials. The combination of the facility and effectiveness of electrospinning 

and the high performance of PI give birth to a series of novel PI materials with hierarchical 

constructions and multi-functionalization. In the coming researches of PI materials, the 

electrospinning way is worthy of noting and will attract more and more research interest. 

And we hope that novel PI materials produced by electrospinning can be used in the field of 

civil engineering, electrics and aero&astronautics in the near future. 
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