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Background

Coal seam gas (CSG), also known as coal-bed methane (CBM) is gas adsorbed onto 

underground coal seams and is composed mainly of methane, originating from biogenic, 

thermogenic and metamorphic sources (Nghiem et  al. 2011). In Australia, large CSG 

deposits are found in Bowen and Surat coal basins of QLD (Baker and Slater 2008). �e 

production of CSG is achieved by allowing methane gas to desorb from the coal seam 

and flow to the surface, which results in large volumes of co-produced water from the 

saturated coal seam. In addition, CSG recovery results in virtually no negative impact on 

future extractive mining of the coal deposits (Baker and Slater 2008). �e large volumes 
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of co-produced water in the CSG operation presents a significant challenge to manage, 

especially for future use. It is estimated that over the next 25 years the CSG industry will 

produce an average volume of 25 gigalitres (GL) of water per year in QLD’s gas fields 

(Hamawand et al. 2013).

CSG co-produced water has a geochemical signature characterised often by high levels 

of salinity, high concentrations of sodium ions and dissolved trace metals that cause var-

ious environmental problems if released to land or waters without treatment or incor-

rect management (Jackson and Reddy 2007; Jones et  al. 2014; Regan et  al. 2013). On 

the other hand, CSG co-produced water has the potential to be used for these benefi-

cial usages including: irrigation, feedlots watering, aquaculture and agricultural activities 

(Wang et al. 2012). However, the challenge, is that CSG water usually requires treatment 

or amendment prior to its beneficial usage.

CSG water quality varies between coal bed depths, coal formation profiles and basin 

types (Baker and Slater 2008). Typically, CSG water has a substantial total dissolved 

solid (TDS) value, with an elevated concentration of Na+ ions, but a low concentration 

of Ca2+ and Mg2+ (Taulis and Milke 2007). �e primary concerns for using CSG co-

produced water for irrigation include: high concentration of dissolved salts (that limit 

plant growth via osmotic drought effects) and an excessive Na+ ion concentration (that 

can cause soil dispersion due to low Ca2+ and Mg2+ concentration) thereby reducing soil 

tilth and soil water infiltration rates (Rengasamy and Marchuk 2011). �erefore, treat-

ment or amendment options for CSG waters often consider the reduction of Na+ ions.

Some of the more commonly used water treatment technologies used to manage CSG 

water are (Nghiem et al. 2011):

  • desalinisation process using membrane technology;

  • distillation;

  • electrodialysis and;

  • ion exchange resins.

In Australia, the commonly used reverse osmosis (RO) methods generate large vol-

umes of concentrated water (brine) that require additional disposal, resulting in 

increased capital and operating costs for a CSG well field. Furthermore, the membranes 

used in the RO system often lack of resistance to fouling (Chapman and Regan 2011), 

often reducing efficiency and driving up cost; thus making the overall cost for manag-

ing CSG waters and gas production unprofitable (Hamawand et al. 2013; Nghiem et al. 

2011). �erefore, there is a significant need in the CSG industry for a cost-effective alter-

native treatment that reduces Na+ concentrations on CSG water prior to any beneficial 

usage.

Natural exchangers such as zeolites are widely used in the treatment of industrial waste-

waters for removing contaminants such as Cu2+, Fe3+, Cr3+, Ni2+, Cd2+, Pb2+, NH4
+ 

amongst other metals (Argun 2008; Bektaş and Kara 2004; Cincotti et al. 2001; Ingleza-

kis et al. 2002; Nguyen and Tanner 1998; Stylianou et al. 2007; Weatherley and Miladi-

novic 2004). Some authors have also attempted to treat CSG produced waters using 

natural zeolites (Wang et al. 2012; Zhao et al. 2008, 2009). Natural zeolites are reported to 

remove sodium ions from solution by replacing them with calcium, thereby reducing Na+ 
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concentration. Zhao et al. (2009) suggest that natural exchangers could become a suitable 

cost effective technology for the treatment of high Na+ of CSG co-produced waters.

Zeolite minerals are natural ion exchangers with a crystalline, porous, three-dimen-

sional aluminosilicate alkali and alkaline metal structures capable of exchanging cati-

ons (Pabalan and Bertetti 2001). �e zeolite structure is based on a tetrahedral (SiAl)

O4 framework with four oxygen adjacent shared. �e negative surplus charge of the 

zeolites originates from the substitution of Si4+ with Al3+, which is then balanced with 

exchangeable cations such as sodium (Na+), potassium (K+), calcium (Ca2+) or mag-

nesium (Mg2+) (Townsend 1986). Natural zeolites have a high cation exchange capac-

ity and selectivity due to their high porosity and sieving properties (Zhao et al. 2008). 

Clinoptilolite and mordenite zeolite materials have a theoretical cation exchange capac-

ity (CEC) of 202 mEq/100 g (Pabalan and Bertetti 2001) (Fig. 1).

Natural ion exchangers can also be treated from their initial or natural state by sin-

gle or combined chemical adjustment using acids, bases and inorganic salts (Babak 

et  al. 2013; Günay et  al. 2007; Inglezakis et  al. 2001; Wang et  al. 2012). �ese chemi-

cal treatments result in cation migration from within the crystal framework, and cation 

replacement by the newly introduced cation species. �e chemical treatment removes 

ions on the exchanger for those that are more removable under ion exchange conditions. 

Treatment typically increases the presence of one cation on the exchanger converting 

it into a near homoionic condition (Inglezakis et al. 2004; Semmens and Martin 1988). 

�e homoionic form of the exchanger can improve the effective exchange capacity, 

enhancing the ion exchange process (Inglezakis et al. 2001; Inglezakis and Zorpas 2012; 

Vassileva and Voikova 2009; Wang and Peng 2010). Treatment with inorganic salts is 

recognised as an effective technique to improve natural ion exchangers overall cation 

exchange capacity (CEC) for water treatment applications.

�e present study aims at quantifying the characteristics and ability of Australian 

natural and treated zeolite for the removal of sodium ions present in co-produced coal 

seam gas water, as well as the efficacy of zeolite chemical treatment on the adsorption of 

Na+ rate and effective exchange capacity. �is work provides an effective and practical 

application for zeolite on the treatment of CSG waters for Australia and elsewhere.

Fig. 1 Zeolite three dimensional framework of (SiAl)O4 tetrahedral where all oxygen ions of the tetrahedron 
are shared with adjacent tetrahedral structures (Inglezakis and Zorpas 2012). The presence of Al3+ in place of 
Si4+ in the structure gives a negative charge that is balanced by cations. Zeolite material used in this study
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Methods

Material characterisation

�e zeolite used in this study had been identified for its suitability in CSG water treatment by 

another research project being conducted at CQUniversity, Australia (Kele 2015, Unpublished 

Dissertation). �is research project first identified the sodium exchange properties of natural 

zeolites at a recycled water test site in 2003 (Kele 2005). A variety of volcanic media was tested 

for sodium exchange properties with CSG water from wells in the Bowen and Surat basins 

(Kele 2015). �e zeolite media in this paper had the best results for sodium reduction in the 

Bowen basin CSG water (Kele 2015). Samples were crushed and sieved to a size range of 0.6–

0.3 mm for subsequent batch type experiments. �e natural zeolite was characterised using 

X-ray fluorescence (XRF) using an ARL SMS-Omega XRF instrument in order to determine 

its elemental composition, zeolite sample was ground to a pressed pellet for analysis. Charac-

terisation of the zeolite crystalline structure was examined on a XRD PANalytical X’Pert Pro 

diffractometer (40 kW and 40 mA, angular scanning range 5–80°, and angular speed 2θ/s). 

Mineral identification was undertaken using X’Pert HighScore search/match software, whilst 

quantitative analysis of the XRD data was performed using SIROQUANT™ V3. �e surface 

area of the natural zeolite was measured using the N2 gas adsorption method at −196 °C on 

the ASAP2390a from Micrometrics Instrument Corporation, and BET and single point meth-

ods were used to determine the specific surface area. Reported mineral characteristics of the 

material correspond to the mean of two replicates, which did not vary by more than 5 %.

Water samples

CSG co-produced water samples were collected from a CSG water treatment facility in 

a gas field in the southern Bowen basin in QLD, Australia, at monthly intervals over a 14 

month period. Chemical analyses of the CSG water samples were conducted at Lanfax 

Laboratories, a laboratory that has National Association of Testing Authorities (NATA) 

accreditation. Metal concentrations of experimental samples were analysed using an 

Agilent 720 Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES), 

every element was analysed in triplicate for every sample and used by the instrument 

to estimate relative standard deviation (RSD) automatically (<5 %). ICP multi-element 

standard solution Merck© was used for calibration purposes. Stock metal stand-

ard solutions and chemical reagents used were analytical grade (Chem-Supply). Stock 

solutions were prepared with Ultrapure Academic Milli-Q water (18.0  Ω). A portable 

multi-parameter sympHony (VWR) meter with �ermoFisher probes and calibrations 

solutions were used to determine conductivity (salinity) and pH.

Batch kinetic experiments and material treatment

�e kinetic adsorption of Na+ ions was measured for natural and four chemical treated 

zeolite samples. Natural zeolite was washed with Milli-Q water to remove dust and 

material impurities, then oven dried at 105 °C for 24 h and stored in sealed HDPE con-

tainers. A 40 g sample of natural zeolite was treated with 800 mL of either 1 M calcium 

chloride (CaCl2), 1 M hydrochloric acid (HCl), 1 M potassium chloride (KCl), and 1 M 

ammonium acetate (NH4C2H3O2). In each case, the treatment involved shaking the zeo-

lite samples in contact with the treatment solution for 24 h (incubator Bioline 8500 at 

25  °C), rinsing with Milli-Q water (until free of Cl− ions, using silver nitrate (AgNO3) 
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test and controlling washing solution salinity), filtration from supernatant (using a mixed 

cellulose ester membrane filter of 0.45 µm, Advantec®), and drying at 105 °C for 24 h.

Batch type kinetic experiments were conducted using 30 g of either natural or treated 

zeolite material and 600 mL of 0.1 M sodium chloride (NaCl) in a 1000 mL HDPE con-

tainer placed on an orbital shaker at 300  rpm at a constant temperature of 25  °C for 

720 min (incubator Bioline 8500 at 25 °C) (Lehto and Harjula 1995). Aliquots of 1 mL 

were withdrawn from each container at intervals, where the total sample volume was 

<2 % of the total volume of the solution (Inglezakis et al. 2004). Aliquots were diluted 

with HNO3 at 2 % for analytical ICP–OES analysis to determine total metal ion concen-

tration. To ensure experimental accuracy, experiments were repeated following the same 

methods and conditions.

Adsorption kinetics and di�usion modelling

�e concentration of Na+ ions transferred to the solid phase of the zeolite, q 

(mEq/100 g), was calculated using Eq. 1:

where C0 and Ct are the amount of initial and retained Na+ ions in the solution at time t 

(mEq/L), respectively, v is the solution volume (mL) and m is the weight of adsorbent (g) 

(Argun 2008; Kocaoba et al. 2007; Kumar and Jain 2013). Experimental results demonstrate 

chemical kinetic behaviour describing reaction pathway, time to reach equilibrium and rate 

of reaction. Determination of kinetic parameters is complex due to the heterogeneity of the 

adsorption mechanisms within the system (Bektaş and Kara 2004; Oren and Kaya 2006).

�e adsorption kinetic models have more than two adjustable parameters that may 

not be fitted to experimental data by linear regression, requiring a nonlinear least square 

analysis. For that reason, the sum of error squared (SSE) was used as the minimisation 

procedure to solve kinetic equations between experimental and predicted data using 

Matlab® R2012b by MathWorks®. Nonetheless, linear fitting was also used and the coef-

ficient of determination (R2) was calculated using the experimental and predicted data 

(Bektaş and Kara 2004; Du et al. 2005; Günay et al. 2007). �e experimental data was 

fitted with reaction kinetic models (Table 1) and diffusion models (Table 2) to estimate 

the adsorption kinetics parameters of the ion exchange system dynamics and diffusion 

processes under the experimental conditions.

�e pseudo-first order reaction kinetic model is based on a reversible reaction with an 

equilibrium state being reached on both liquid and solid phases (Argun 2008; Babak et al. 

2013) and it is expressed in Eq. 2. �e pseudo-second order kinetic equation is based on 

(1)q = (C0 − Ct) ×

v

m

Table 1 Reaction kinetic models

Model Non-linear equation Linear equation Model parameters

Pseudo-first order qt = qe(1 − e−k1t) log(qe − qt) = log(qe) − k1t qe , K1 Equation 2

Pseudo-second order qt =
q2e k2t

(1+qek2t)
t
qt

=
1

k2q2e
+

(

1

qe

)

t qe , K2 Equation 3

Elovich qt =

(

1

b

)

ln(abt + 1) qt =
ln(ab)
b

+
ln(t)
b

a, b Equation 4
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the adsorption equilibrium capacity of the solid phase to uptake ions and whose form is 

expressed in the form of Eq. 3 (Bektaş and Kara 2004; Kumar and Jain 2013). �e Elovich 

equation is widely used in adsorption kinetic studies to describe the chemical adsorption 

of ions and is written in the form of Eq. 4 (Cincotti et al. 2001; Du et al. 2005).

In Table  1, qt(mEq/100 g) is the amount of Na+ ions adsorbed at time t (min), 

qe(mEq/100 g) is equilibrium solid phase concentration, k1 is first order rate constant for 

adsorption (min−1), k2 is second order rate constant for adsorption (min−1), a is the ini-

tial adsorption rate (mEq/100 g min) and b is the Elovich constant (mEq/100 g).

Kinetics reaction models can describe the adsorption equilibrium, however, they can-

not identify the diffusion mechanism of the adsorption processes that is taken place. 

�erefore, kinetic results can be analysed by using the intraparticle, film and pore diffu-

sion models. Diffusion processes occur when the liquid forms a film layer surrounding 

the zeolite particle. When the film layer is formed, external diffusion or film diffusion 

occurs on the surface of the particle. When the liquid reaches the internal framework of 

the zeolite particle, it is considered an intraparticle diffusion or pore diffusion process 

(Babak et al. 2013; Karthikeyan et al. 2010).

�e examination of ion exchange system kinetics can reveal the adsorption mecha-

nism underlining the sorption processes which can be the product of film diffusion, 

pore diffusion or both. �ese two processes provide insight into whether diffusion is 

controlled by ion exchange or not. Ion exchange kinetics are considered to be a mass 

transfer process from the liquid phase to the zeolite to determine the time lapsed until 

equilibrium. When solution with Na+ ions is in contact with the natural zeolite, trans-

port of ions occurs from liquid to solid phase through diffusion processes. �e rate of 

adsorption is often limited by the diffusion process on the external surface of the zeolite 

particle and within the porous sites available in the zeolite (Argun 2008). Equations 5, 6 

and 7 (Table 2), determine the intra-particle, film and pore diffusion coefficients of the 

system.

Model parameters in Table  2, ki is the intraparticle diffusion rate constant 

(mEq/100 g min), C is the constant related with the boundary layer (Huang et al. 2010), 

Df  is the film diffusion coefficient (cm2/s), r0 is the radius of the particle (cm), δ is the 

film thickness (cm), t1/2 is the half time for the ion exchange process (min) and Dp is the 

pore diffusion coefficient (cm2/s) (Argun 2008; Karthikeyan et al. 2010).

E�ective sodium adsorption capacity of natural and treated zeolite material

Effective adsorption capacity is the amount of sodium ions that can be retained in a spe-

cific mass of zeolite material and that are exchangeable under specific experimental con-

ditions (Inglezakis 2005). Capacity studies were conducted on batch mode experiment 

Table 2 Di�usion models

Model Non-linear equation Model parameters

Intra-particle diffusion qt = ki t
1/2

+ C ki,C Equation 5

Film diffusion Df = 0.23
r0δqe
t1/2

Df Equation 6

Pore diffusion
Dp = 0.03

r2
0

t1/2

Dp Equation 7
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using 30 g of natural and chemical treated zeolite in a 1000 mL HDPE container with 

600 mL of NaCl at 0.1 M for 5 days until no further Na+ uptake from the zeolite was 

observed. To ensure experimental accuracy, experiments were repeated using identical 

conditions.

Results and discussion

Material characterisation

�e theoretical cation exchange capacity (TEC) of the natural zeolite resulted from the 

sum of exchangeable cations such as Na+, K+, Ca2+ and Mg2+ determined by the chemi-

cal composition, in Table 3, was found to be 154 mEq/100 g. Bektaş and Kara (2004) and 

Inglezakis et al. (2002) found that Turkish and Greek clinoptilolite have a TEC of 250 

and 264 mEq/100 g, respectively. �e Si:Al ratio for the natural zeolite is 5.29 (mol/mol) 

and the (Na+ + K+)/Ca2+ ratio is 1.61 (mol/mol). �e Si:Al ratio between 4 and 5.5 and 

are generally characteristic of clinoptilolite zeolite material (Alberti et al. 1997).

�e qualitative and quantitative XRD analysis for the mineral crystalline phases of 

the natural zeolite material determined that it is made clinoptilolite (41 %), mordenite 

(29 %) and quatrz (30 %). Both clinoptilolite and mordenite made 70 % of the natural 

zeolite material. �e surface area of the natural material measured using the single-point 

and Brauner–Emmett–Teller (BET) methods with nitrogen gas was 4.47 and 4.50 m2/g 

respectively. Zeolite samples from Vassileva and Voikova (2009) and Bektaş and Kara 

(2004) were composed of 80 % clinoptilolite and had surface areas of 26 and 15.36 m2/g, 

correspondenly. Furthermore, small amounts of impurities mainly quatz and clays block 

channels decreasing the estimation of the surface area (Sprynskyy et al. 2010). �erefore, 

surface are these channels may have a small contribution.

Characterisation of co-produced coal seam gas water

CSG co-produced water samples were collected from a CSG water treatment facility 

in the southern part of the Bowen Basin (QLD). �e chemical composition of 14 CSG 

water samples taken at monthly basis are shown in Table 4.

Table 3 Chemical composition of natural zeolite material used in the present study

a Detection limit (0.001)

b LOI determined gravimetrically

Element Na2O MgO Al2O3 SiO2 P2O5
a

SO2
a

K2O CaO TiO2 MnO Fe2O3 BaO LOIb

% (w/w) 1.83 0.88 11.7 72.84 0.04 0.006 1.08 2.85 0.18 0.03 1.34 0.13 7.14

Table 4 Chemical analysis of CSG water

Na+ Ca2+ Mg2+ Cl− HCO
−

3
SAR  
(

mEq/mEq1/2
)

EC (dS/cm) pH

X̄

 (mg/L) 1156.4 28.3 5.6 1993 618.1 104 6.02 8.34

 (mEq/L) 50.3 0.35 0.12 56.2 10.1

σ

 (mg/L) 241.6 38.5 2.8 759.9 140.7 20 1.48 0.58

 (mEq/L) 10.5 0.4 0.06 21.4 2.3
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�e CSG water chemical composition was dominated by sodium ions, which are 40 

times more concentrated when concentrations of Ca2+ and Mg2+ are compared. �e 

electrical conductivity value greater than 6 dS/cm, pH of 8.34, and the CSG water chem-

ical characterisation, co-produced water from Bowen Basin is classified as brackish alka-

line Na+–Cl−–HCO3
− water. CSG water chemical composition is consistent with values 

reported by Hamawand et al. (2013) and Kinnon et al. (2010) for CSG waters from the 

Bowen Basin, which presented an absence of sulphate, low concentrations of Ca2+ and 

Mg2+ and high concentrations of Na+, Cl− and HCO3
− ions.

Na+ adsorption kinetics

In order to determine the adsorption kinetics of Na+ onto natural and treated zeolite 

material, batch type experiments were conducted. Pseudo-first, pseudo-second and 

Elovich kinetic models were fitted to the experimental data to determine kinetic param-

eters. Diffusion model and coefficients were determine using intra-particle, film and 

pore diffusion from experimental data.

Adsorption kinetics modelling of Na+ using zeolite material

�e removal of Na+ ions by ion exchange and adsorption on to zeolite material increased 

with time and plateau attaining a maximum value as shown by the experimental data in 

Fig. 2.

Evidently, the adsorption process consisted of two main reaction stages; a fast adsorp-

tion followed by a slow adsorption. �e fast Na+ adsorption process by the natural and 

treated zeolite material occurred among the 100 min. �e rapid process is then followed 

by a slow adsorption that gradually decreased as contact time increased. After 480 min, 

the Na+ adsorption process almost reached the maximum adsorption capacity under 

the experimental conditions for natural and treated zeolite material. A similar behaviour 

was observed and reported by Argun (2008) and Bektaş and Kara (2004) for natural and 

treated clinoptilolite.

�e experimental data was used to determine kinetic constants and predict the kinetic 

curves of the ion exchange system using pseudo-first, pseudo-second order and Elovich 

as shown in Fig. 2. Table 5 reports the values obtained from experimental and modelled 

Na+ adsorption capacity of zeolite material, the adsorption rate, capacity, SSE and R2 

found between the experimental and modelled data.

�e experimental adsorption capacity of natural zeolite form after 720 min was qe = 

16.16  mEq/100  g, which is higher that the capacity determined by the kinetic models 

used (Fig. 2a–c). �e pseudo-second model, which is demonstrated to be a model that 

best describes the Na+ adsorption process for natural zeolite under experimental condi-

tions, (Fig. 2e), estimated the capacity after 720 min to be qe = 15.67 mEq/100 g and the 

adsorption rate of k2 = 0.002 mEq/100 g min using a NaCl concentration at 0.1 M. �e 

Elovich model showed a high correlation coefficient (Fig.  2f ) for natural zeolite form, 

describing a rapid initial adsorption of a = 2.54 mEq/100 g min and the number of sites 

available for adsorption of b = 0.39 mEq/100 g min. �e results obtained from natural 

zeolite kinetic modelling (Table 5) were comparable with values report for adsorption of 

Ni2+, Pb2+ and NH
+

4
 ions using clinoptilolite in terms of ion exchange adsorption behav-

iour reported by Argun (2008), Günay et al. (2007), and Nguyen and Tanner (1998).
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Natural zeolite was treated with a range of inorganic salts and acid solutions to modify 

its natural state. �ese treatments stages resulted in the migration of cations that were 

naturally contained in the zeolite framework for cations contained in the inorganic and 

acid treatments. Each treatment introduces only one type of cation that replaces the 

natural cations contained within the zeolite framework. �e treated form of zeolite is 

known as homoionic (Inglezakis and Zorpas 2012; Wang et al. 2012). Figure 2 shows the 

experimental adsorption behaviour of Na+ ions for different homoionic forms of treated 

zeolite, as well as the modelled kinetics. �e experimental data and kinetic constants 

obtained are shown in Table 5.

In Fig. 2, the Na+ adsorption behaviour for each zeolite treatment is shown. Zeolite 

material in Ca2+ and H+ form have an initial adsorption for the first 200 min of contact 
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time with the NaCl solution at 0.1 M. After the rapid initial adsorption, a reduction of 

the kinetic process is observed from the 300 min until 720 min when adsorption rate 

is low. In comparison, zeolites treated with KCl and NH4C2H3O2 showed a much more 

rapid adsorption during the first 100  min of contact time followed by a reduction in 

adsorption kinetic for the following 200 min. In addition, the final Na+ adsorption after 

720 min is greater for K+ and NH4
+ zeolite forms than those observed for Ca2+ and H+ 

zeolite forms (Table 5).

Moreover, the adsorption of Na+ for K+ and NH4
+ zeolite forms after the first 100 min 

increased by 2.5–3 fold throughout the treatment using KCl and NH4C2H3O2 at 1 M. 

�e experimental adsorption capacity of zeolite treated with CaCl2 and HCl solu-

tions were found to be qe = 15.52 mEq/100 g and qe = 20.40 mEq/100 g, after 720 min 

respectively. Treatments such as KCl and NH4C2H3O2 achieved an adsorption of 

qe = 34.68 mEq/100 g and qe = 36.67 mEq/100 g. �e adsorption capacity of Na+ ions 

by NH4
+ zeolite form after 720 min was increased 2.3 fold when compared with Ca2+ 

zeolite form.

�e kinetic models fitted the experimental data describing the ion exchange system for 

each treatment studied (Table 5; Fig. 2). �e model that better describes the experimen-

tal data for all treatments is the pseudo-second kinetic order and the linearized form 

of the kinetic is shown in Fig. 2e. �e pseudo-second order kinetic model was also the 

preferred model to describe the ion exchange and adsorption kinetics when clinoptilo-

lite was used to remove lead, nickel and ammonium ions from solutions (Kocaoba et al. 

2007; Nguyen and Tanner 1998; Vassileva and Voikova 2009).

�e zeolite treatments have shown an improvement on the ion exchange process for 

adsorption of Na+ ions for both adsorption rate and capacity values. �e homoionic 

NH4
+ zeolite form treated with NH4C2H3O2 has enhanced the Na+ adsorption process 

when compared with the natural zeolite. �e NH4
+ zeolite form has a Na+ adsorption 

capacity of qe =  36.67  mEq/100  g, while the Na+ adsorption capacity of natural zeo-

lite form is qe = 16.16 mEq/100 g. �e experimental Na+ adsorption for treated zeolite 

with 1 M NH4C2H3O2 2.3 folds the value determined for adsorption capacity on natu-

ral zeolite. �e pseudo-second order kinetic model describes the behaviour obtained 

experimentally with a coefficient determination of R2 =  0.98. �e linearized form for 

NH
+

4
 treated and natural zeolite are shown in Fig.  2e. �e Na+ adsorption rate deter-

mined by the pseudo-first order kinetic model and Elovich showed that is the highest 

among the natural and treated zeolite material with a value of k1 = 0.063 mEq/100 g min 

and a = 27.47 mEq/100 g min, respectively. Comparable results were reported by Wang 

et al. (2012), (Argun 2008) and Günay et al. (2007) for clinoptilolite material in which 

improvement in the adsorption of sodium, nickel and lead ions in solution was possible 

through the chemical treatment using acids and inorganic salts.

Di�usion modelling of Na+ using zeolite material

In order to determine the diffusion mechanism of the adsorption kinetics of Na+ ions by 

natural and treated zeolite material intra-particle model, film and pore diffusion equa-

tion were applied to the experimental data. In the ion exchange process, the adsorption 

of Na+ ions may indeed be controlled by one or more steps, such as film and/or pore dif-

fusion. Usually, film diffusion occurs quickly where ions migrate from the bulk solution 
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to the surface of the zeolite particle creating a liquid film and attaining equilibrium 

with the available sites on the surface. Film diffusion is followed by the pore diffusion 

which is a slower process. Intra-particle diffusion was explored in order to determine 

the intra-particle diffusion rate and the effect of the thickness of the boundary layer on 

the adsorption of Na+ ions for natural and treated zeolite materials (Table 6). �e diffu-

sion coefficients for film and pore were calculated to determine which diffusion process 

limited the kinetics of the ion exchange system for the adsorption of Na+ ions (Table 6).

Figure  3 shows the linear representation of the intra-particle diffusion model for 

natural and treated zeolite. When experimental data is plotted a straight line should 

be identified in order to assure that the adsorption process of Na+ ions is controlled by 

intra-particle diffusion only. However, experimental data shown in Fig. 3 exhibit multi-

linear plots, which indicates that the adsorption process is influenced by two or more 

steps. From Fig. 3, it is evidenced that the external adsorption is significant only in the 

early stages of Na+ adsorption represented by the first linear sharper portion. �e sec-

ond linear adsorption is the gradual adsorption controlling the intra-particle diffusion.

�e first straight portion of the plots in Fig. 3 are assumed to be related with macropore 

and mesopore diffusion. �e second portion represents the micropore diffusion. �e 

slope of the first segment correspond to the intra-particle diffusion constant rate (ki) and 

Table 6 Intra-particle di�usion model, �lm and pore di�usion values of Na+ ions for natu-

ral and treated zeolite material

Zeolite form Intra-particle di�usion Film di�usion Pore di�usion

ki (mEq/100 g*min1/2) C (mEq/100 g) R2 Df (cm2/s) Dp (cm2/s)

Natural 1.262 1.40 0.99 2.96 × 10−5 5.70 × 10−5

Ca2+ 0.43 4.23 0.82 2.66 × 10−5 5.70 × 10−5

H+ 0.75 6.14 0.98 3.73 × 10−5 5.70 × 10−5

K+ 1.792 7.69 0.93 4.23 × 10−5 3.80 × 10−5

NH4
+ 2.37 10.71 0.94 2.01 × 10−4 1.71 × 10−4
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Fig. 3 Intra-particle diffusion model of Na+ ions and experimental data for natural and treated zeolite materi-
als. Initial Na+ concentration 0.1 M at pH 7, shaking speed of 300 rpm at 25 °C and solid–liquid ratio 50 g/L. 
The symbols are as follows: (circles) Natural zeolite form, (triangle) Ca2+ form, (square) H+ form, (cross) K+ form, 
(diamond) NH4

+ form
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the intercept (C) of the first segment with the y-axis correspond to the measure of the 

boundary layer, which are reported in Table 6 for natural and treated zeolite. Nguyen 

et al. (2015) using Australian iron coated zeolite for adsorption of cadmium, chromium, 

copper, zinc and lead found that the intra-particle diffusion plot exhibit two linear plots. 

A fast step attributed to the external diffusion for the first 240 min (15 min1/2) followed 

by slow step endorsed to the intra-particle diffusion till 1500 min (38 min1/2) (Nguyen 

et al. 2015).

Film and pore diffusion coefficients for particles of natural zeolite (0.6–0.3  mm) for 

experimental conditions were calculated as 2.96 × 10−5 and 5.70 × 10−5 cm2/s, respec-

tively. Often, when film diffusion has a greater value and internal diffusion has lower 

values the process is believed to be governed by particle diffusion. If pore diffusion coef-

ficient results to be greater than film diffusion, the process is governed by film diffusion 

(Karthikeyan et al. 2010). Diffusion coefficients calculated for natural zeolite suggested 

that diffusion process is in some extent rate-limited by the film diffusion indicating 

the influence of the film diffusion. Film and pore diffusion coefficients were calculated 

through treatments detailed in Table 6. Film diffusion is not the single rate-limiting fac-

tor for treated zeolite. Although, film diffusion coefficients for K+ and NH4
+ zeolite 

forms were smaller than those coefficients found for pore diffusion, which is in accord-

ance with the intra-particle diffusion model.

Maximum level of sodium adsorption for natural and treated exchangers

Effective Na+ ion adsorption capacity was studied in batch mode until no metal adsorp-

tion was observed in the system using natural and treated zeolite materials and NaCl 

solutions at 0.1 M. Zeolite and the corresponding solution systems had reached equilib-

rium within the first 5 days of contact time. Figure 4 shows the effective Na+ adsorption 

for natural and treated zeolite as well as the overall percentage of Na+ adsorption.

�e natural zeolite material exhibited a capacity of Qe  =  22.04  mEq/100  g and 

10.4 % of Na+ removed from the NaCl solution at 0.1 M (Fig. 4). Zeolites in Ca2+ and 

H+ form, showed similar Na+ adsorption capacity observed on natural zeolite with 

values of Qe = 20.89 mEq/100 g and Qe = 26.41 mEq/100 g, correspondingly. K+ and 

NH4
+ zeolite forms were found to have higher adsorption capacity values for Na+ ions, 
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Qe =  34.79 mEq/100 g and Qe =  41.08 mEq/100 g, respectively. Removal of Na+ ions 

by the homoionic K+ zeolite form reached 17.4 %, whilst NH4
+ zeolite form achieved a 

removal of 22.3 %. Maximum adsorption level of Na+ ions using NH4
+ zeolite form was 

1.8 times higher than the observed for natural zeolite form.

�e results in Fig. 4 demonstrate that a zeolite material treated with K+ or NH4
+ ions 

substantially increased the affinity for adsorption of Na+ ions. All the results mentioned 

reveal that the capability of zeolite materials for the adsorption of Na+ ions was in 

accordance with the order NH4
+ > K+ > H+ > Ca2+ zeolite forms. Similar data have also 

been reported by Petrus and Warchoł (2003) whom confirmed that selectivity of clinop-

tilolite is weaker for divalent cations and predominantly determined by the hydrated 

radii of the cations that for NH4
+ ion is 3.3 Å, while Ca2+ ions is 4.2 Å.

Table 7 depicts the maximum Na+ exchange capacity for the zeolite material for the 

natural and treated forms. Zeolite treatment using NH4C2H3O2 improved the adsorp-

tion of Na+ ions when compared with the natural zeolite and achieved a 26.6 % of the 

estimated maximum exchangeable capacity for zeolite material (154 mEq/100 g). �ese 

reported values are comparable with other studies in which adsorption of Cu2+, Fe3+, 

Cr3+, Pb2+ ions were tested using zeolites (Inglezakis et al. 2002). In this study, the aver-

age maximum level of exchange for zeolite reached 19 % the total exchangeable capacity.

Conclusions

�e natural ion exchange material is composed of 70  % zeolite type minerals with a 

blend of 41  % clinoptilolite, 29  % mordenite and 30  % quartz. �e theoretical cation 

exchange capacity determined by the exchangeable cations held on the zeolite mate-

rial 154  mEq/100  g. �e maximum Na+ adsorption capacity observed for natural 

zeolite was 22.04  mEq/100  g, which represents 14.3  % of the exchangeable capacity 

determined XRF. �e capacity of the zeolite material enhanced through treatment using 

NH4C2H3O2 at 1 M concentration, attained a Na+ adsorption capacity of 41.08 mEq/g, 

which represents 26.6 % of the theoretical exchangeable capacity of zeolite material. �e 

adsorption of Na+ ions by natural zeolite reached a capacity of 14.34 mEq/100 g after 

720  min and an adsorption rate determined by a pseudo-second order kinetic model 

of k2 =  0.002  mEq/100  g  min. Overall, homoionic treatment of zeolite materials have 

improved the Na+ adsorption rate and capacity. NH4
+ zeolite form presented the largest 

sodium adsorption capacity and rate after 720 min, which was calculated using a pseudo-

second order kinetic model as qe = 38.28 mEq/100 g and k2 = 0.002 mEq/100 g min. �e 

Table 7 Maximum Na+ exchangeable capacity for natural and treated zeolite

Treatments Experimental % of exchangeable capacity

Qe (mEq 100 g−1) %

Exchangeable capacity 154 –

Natural 22.04 14.3

Ca2+ 20.89 13.5

H+ 26.41 17.1

K+ 34.79 22.5

NH4
+ 41.08 26.6
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higher Na+ adsorption by homoionic treated zeolite can be explained by the enrichment 

of cations on the natural material creating new available sites that may be accessible 

for incoming cations, hence higher efficiency in total adsorption is observed. Although 

homoionic treatment enhanced Na+ adsorption, the maximum adsorption capacity 

observed is a portion of the theoretical capacity of the material. �is could be explained 

by the existing impurities in the zeolite material that overestimate the theoretical capac-

ity based on the exchangeable cations.

Intra-particle diffusion model showed that both natural and treated zeolite did not 

exhibit only intra-particle diffusion mechanism. Furthermore, modelling showed that 

film and pore diffusion occurred during the Na+ adsorption process. Adsorption of Na+ 

ions onto natural and treated zeolite studied has shown that Na+ adsorption capability 

was in accord with the order of zeolites in NH4
+ > K+ > H+ > Ca2+ form.

�e treatment of zeolite material shows an increment on the Na+ adsorption when 

it is compared with its natural form. Results indicate that by implementing homoionic 

treatments higher adsorption rates of Na+ ions are achieved. �is indicates that Na+ 

ions contained in CSG waters can be removed from the co-produced water reducing the 

environmental concerns due to high concentrations of sodium ions.
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