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Abstract—This paper proposes a new prediction-based dy-
namic multi-objective optimization (PBDMO) method, which
combines a new prediction-based reaction mechanism and a
popular regularity model-based multi-objective estimation of
distribution algorithm (RM-MEDA) for solving dynamic multi-
objective optimization problems. Whenever a change is detect-
ed, PBDMO reacts effectively to it by generating three sub-
populations based on different strategies. The first sub-population
is created by moving non-dominated individuals using a simple
linear prediction model with different step sizes. The second
sub-population consists of some individuals generated by a
novel sampling strategy to improve population convergence as
well as distribution. The third sub-population comprises some
individuals generated using a shrinking strategy based on the
probability distribution of variables. These sub-populations are
tailored to form a population for the new environment. Experi-
mental results carried out on a variety of bi- and three-objective
benchmark functions demonstrate that the proposed technique
has competitive performance compared with some state-of-the
art algorithms.

Index Terms—Dynamic multi-objective optimization, probabil-
ity distribution, prediction-based reaction, non-dominated sorting

I. INTRODUCTION

MANY real-world optimization problems, such as

scheduling [38], planning [39], constrained optimiza-

tion [41], eletromagnetic micromirrors [47], dynamic subset

sum [49], weapon selection [50] and machine learning [42],

[43], require to be solved in dynamic or uncertain envi-

ronments [44]. This kind of problems are called dynamic

multi-objective optimization problems (DMOPs), which are
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characterized by some changes that may occur in the Pareo-

optimal set (POS) or Pareto-optimal front (POF), objective

functions, constraints or other parameters. Sometimes, the

changes between two consecutive moments are not significant

and have some similarities. It is not necessary to restart the

relevant programs. Therefore, the study on dynamic multi-

objective optimization problems is meaningful in solving

practical applications efficiently. Recently, DMOPs is one of

the hot topics that has attracted increasing attention in the field

of evolutionary computation.

Although there may exist different classes of dynamic opti-

mization problems according to [45], [46], this paper considers

the following mathematical form of DMOPs.

min
x∈Ω

F (x, t) = (f1(x, t), f2(x, t), ..., fm(x, t))T (1)

where Ω =
∏D

i=1
[Li, Ui] ⊂ RD is the feasible area of the

decision space, and F consists of m time-varying objective

functions. x = (x1, x2, ..., xD) defines the decision vector

involving D variables, and t is the time instant of the problem.

Li and Ui represent the lower and upper bounds of the ith
variable xi, respectively.

Different from single optimization problems (SOPs), multi-

objective optimization problems (MOPs) usually involves at

least two conflicting optimization objectives that need to be

optimized simultaneously. Due to multi-objectivity, the goal

of solving MOPs is not to find a single optimal solution but

to find a set of trade-off solutions. When an MOP involves

time-dependent components, it can be regarded as a DMOP.

Compared with stationary MOPs, DMOPs are more difficult

due to the nature of dynamics, which may cause the change

of POS in the decision space or POF in the objective space

over time. DMOPs are frequently reported in real-world ap-

plications like engineering [40] and water distribution systems

[48], and there is a great need of effective approaches to solve

them. Due to great importance and economic relevance, there

are an increasing number of research interests in dynamic

optimization [16], [36], [52].

To solve DMOPs, most of the existing dynamic multi-

objective evolutionary algorithms (DMOEAs) directly adopt

the techniques from static multi-objective evolutionary algo-

rithms (MOEAs), assuming that a DMOP can be divided into a

sequence of MOPs over time. That is, solving a DMOP can be

regarded as adopting MOEAs to solve a sequence of correlated

MOPs and obtain corresponding POSs or POFs [51]. However,

an efficient DMOEA should not only have a good MOEA, but

also have a good reaction mechanism, which is able to keep

a good balance between convergence and diversity over time
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Algorithm 1 The basic framework of DMOEA

1: Initialize time instance t = 0;
2: Generate an initial population Popt;
3: while The termination criterion is not satisfied do
4: Detect change;
5: if Change detected then
6: Optimize the population using DMOEA;
7: else
8: Optimize the population using MOEA;
9: end if

10: end while

[52]. Since the changes are unknown in advance, a DMOEA

may not have enough time for searching optimal solutions

before a change occurs. So, it is necessary for a DMOEA to

have the fast convergence performance. Meanwhile, whenever

a change occurs, previously obtained solutions may not remain

optimal for the new environment [54]. So, how to address

diversity loss is also important. In addition, change detection

techniques are needed since they can prevent the algorithm

from being misled in the optimization process.

Based on above considerations, this paper proposes a new

prediction-based DMOEA, called PBDMO, which combines

several strategies to generate a high-quality population for new

environments. Firstly, a new prediction strategy is proposed to

relocate non-dominated solutions of the previous environment

diversely around the estimated location of the new POF after a

change occurs. Secondly, a classification strategy is proposed

to classify decision variables into principal and non-principal

groups in order to effectively generate well-diversified solu-

tions. Thirdly, the probability distribution of decision variables

is used to generate another group of good solutions. Solutions

generated from these three strategies undergo non-dominated

sorting and then form a population for the new environment.

Experimental results indicate that PBDMO has promising

tracking ability for time-varying POFs or POSs. Overall, the

main contributions of this paper include

1) new strategies to relocate nondominated solutions for

previous environments well to the new POF;

2) classification-based sampling to enhance population di-

versity;

3) probability-based space shrinkage to generate high-

quality solutions;

4) systematic studies that demonstrate the effectiveness the

proposed strategies.

As a result, the proposed PBDMO has two main advantages

over the considered state of the art algorithms as demonstrated

by extensive empirical studies. Firstly, PBDMO is able to

generate a well-diversified and well-positioned population so

as to track the moving POF closely and with good solution

distribution. Secondly, PBDMO is more robust than the other

algorithms as its performance does not fluctuate widely across

a variety of problems with diverse dynamic characteristics.

The rest of this paper is outlined as follows. Section II

gives the basic framework and related work about DMOEAs.

Section III describes the proposed PBDMO algorithm in detail.

In Section IV, the performance of the proposed algorithm

is validated and analyzed based on a comprehensive set of

benchmark functions. Section V presents further analysis on

the proposed algorithm. Section VI concludes the paper.

II. RELATED WORK

In recent years, much effort has been devoted to designing

efficient DMOEAs. A widely used framework of DMOEAs

in the literature is shown in Algorithm 1. As shown in this

framework, the whole procedure of solving DMOPs contains

two main components: change detection and multi-objective

algorithms including DMOEAs and MOEAs.

1) Change Detection: Change detection is an important

part in dynamic optimization since it identifies whether the

change has appeared or not and determines whether a response

should be made [10]. Changes are detected by either re-

evaluating solutions [12], [13], [35] or checking population

statistical information [22]. Each method has its advantages

and disadvantages for different DMOPs. Most existing studies

focus on the former, which is easy to implement but likely

sensitive to noise. In contrast, the latter is robust to noise, but

it needs some additional parameters.

2) Dynamic multi-objective optimization algorithms: Due

to the frequency or severity of change, there may be limited

computational resources available for evolution before another

change arrives, and changes may occur in various forms.

This provides different levels of challenges. So, high-quality

algorithms are needed to cope with the change if detected. A

good dynamic multi-objective algorithm should consider two

important elements: diversity and convergence. The former

helps the algorithm avoid local optima whereas the latter

determines whether the algorithm tracks changes rapidly. How

to design an algorithm that can balance the diversity and

convergence for tracking the uncertain POF or POS closely

is always a formidable task. Most existing algorithms can be

categorized into the following four different classes: diversity

based algorithms, memory based algorithms, multi-population

based algorithms, and prediction based algorithms.

Diversity based algorithms aim to increase/maintain popu-

lation diversity in the event of environmental changes. Many

diversity maintenance methods have been proposed in recent

years. Hyper-mutation and random immigration are effective

approaches to maintain population and there have been applied

to the non-dominated sorting genetic algorithm II (NSGA-II)

[8], resulting in two dynamic variants, i.e., DNSGA-II-A and

DNSGA-II-B for DMOPs. However, these approaches seem

ineffective in complex dynamic environments, particularly

when changes are not predictable [30].

Memory based algorithms transfer knowledge of previous

environments to new environments. Generally, some promising

solutions are stored in memory and reused after a change

is detected. In [52], a co-evolutionary multi-objective algo-

rithm hybridizes competitive and cooperative mechanisms to

solve the DMOPs, and the out-of-date archived solutions are

replaced by an external population. Azzouz et al. proposed

an adaptive hybrid population management strategy using

memory, local search and random strategies [2]. The main

idea is that according to the change severity, the number

of memory and random solutions can be tuned when facing
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changing environments. In [46], Jiang and Yang used a steady-

state manner to respond to changes. The main feature of this

method is that when a change occurs, a portion of recorded

outdated solutions with good distribution are reused based on

the information collected from previous environments. The

memory based algorithms may perform effectively in problems

with periodical changing environments.

Multi-population based algorithms use several sub-

populations to explore different regions in the feasible s-

pace for diversity maintenance [19]. This type of algorithm

performs effectively in problems with multi-peak problems.

Goh and Tan introduced multi-population strategies to tackle

changes in multiobjective dynamic environments and observed

good performance [52].

Prediction-based algorithms refer to the reuse of information

collected from previous environments and POS/POF predic-

tion for future environments. Compared with other algorithms

mentioned before, prediction-based algorithms can accommo-

date the changes in advance, which may be the reason for

popularity in DMOEAs. For example, in [24], Kalman filter

is combined with evolutionary algorithms to solve DMOPs.

Population Prediction Strategy (PPS) [36] proposed by Zhou et

al. is used to predict the whole population. The univariate auto-

regression (AR) model was used to predict the next locations

of the centroid and manifold of the whole population based on

the information of previous environments. In [21], [26], [37],

other prediction techniques were proposed by combining some

special points obtained from previous environments, such as

knee points, center points, and boundary points, with certain

search methods so as to predict the new POS/POF accurately.
3) Multi-objective optimization algorithms: MOEAs are an

important part or the core of solving MOPs. Technically, any

existing MOEAs can be directly applied to evolve the pop-

ulation for the period that the environment stays unchanged.

Existing DMOEAs show promising performance in solving

different problems, but most of them are designed by consider-

ing different machine learning models [36], [24]. The internal

properties of decision variables are usually neglected, which

will affect the accuracy and quality of discovered solutions.

Motivated by this, this paper proposes three strategies that take

the distribution and classification of variables into account to

generate high-quality populations for new environments. The

proposed PBDMO algorithm is described in detail below.

III. PROPOSED PBDMO ALGORITHM

The basic framework of the PBDMO algorithm is presented

in Algorithm 2. As shown, the proposed algorithm consists of

three key strategies to obtain a new population in response

to changes. The main idea of this algorithm is to use history

information, variable relationship and variable probability dis-

tribution to generate a population that approximates the new

POS/POF as much as possible. Like other predicted algorithm-

s, our hypothesis is that there is sort of similarity between two

consecutive changes. These strategies are described as follows.

A. Predicting the non-dominated set

From the statistical point of view, the geometric center

is an important characteristic and can be used to represent

Algorithm 2 The overall framework of PBDMO

1: Initialize parameter settings for the algorithm;
2: Initialize and evaluate population (Pop0) and set Iter := 0;
3: while the termination criterion is not met do
4: if change detected then
5: Generate the first sub-population (SubPop1) resulting from

predicting a new non-dominated set;
6: Generate the second sub-population (SubPop2) by the

proposed sampling strategy;
7: Generate the third sub-population (SubPop3) according to

Algorithm 5;
8: Merge these sub-populations MixPop := SubPop1 ∪

SubPop2 ∪ SubPop3;
9: Obtain a population from MixPop by non-dominated

sorting;
10: else
11: Optimize the population using RM-MEDA;
12: end if
13: Iter := Iter + 1;
14: end while

the changing trend of population to some extent. Here, we

compute the moving direction of the center point of the last

two consecutive populations and use it to predict the position

of the non-dominated members of current population in the

new environment.

Suppose that Pct is the centroid of population (Popt) and

Post is the non-dominated set of Popt at the time t. Pct can

be calculated as follows:

Pct =

∑

xt∈Popt
xt

|Popt|
, (2)

where |Popt| is the population size, xt = (x1
t , x

2
t , ..., x

D
t )

denotes the decision vector of a solution at time t. The moving

direction (Dirt) of the center point at time t is calculated by:

Dirt = Pct − Pct−1. (3)

Then, the new position of members in Post at time t + 1
can be obtained by Dirt and Post according to the following

formula:

Post+1 = Post +Dirt × rs, (4)

where rs refers to the moving step-size along the moving

direction Dirt. Here, three different values of rs (i.e., 0.5,

1.0, and 1.5) can be used, which represents a small, medium

and large movement of Post, respectively. Fig. 1 illustrates

the prediction process.

As shown in Fig. 1, Pct and Pct−1 (black points) are

utilized to obtain Dirt. Post moves to three different regions

described by Pos1t+1, Pos2t+1 and Pos3t+1 using the suggested

rs values. A combination of these three solution predictions

is more likely to approximate the true POS of the population

(Postruet+1 ) at time t+ 1. Algorithm 3 provides the implemen-

tation of this prediction strategy.

However, two questions arise here — how many step-sizes

and how big the step-sizes should be used. The three step-

sizes and their values (0.5, 1.0, 1.5) are used due to two

reasons. Firstly, the three step-sizes classify possible changes

into three levels, which is a common practice in fuzzy systems

[25]. Here, rs = 1 suggests the use of the same step-size



4

Fig. 1: Illustration of predicting non-dominated solutions.

Algorithm 3 Predicting the Non-dominated Set

1: Retrieve the populations Popt and Popt−1 at time t and t− 1,
respectively;

2: Calculate the population centers according to Eq. (2);
3: Predict the moving direction according to Eq. (3);
4: Generate three sub-populations Pos1t+1, Pos2t+1 and Pos3t+1

using Eq. (4) with different rs values;
5: Save the sub-populations to SubPop1.

as for the previous environment, meaning that the change is

similar to the previous change (medium changes). rs = 0.5
and rs = 1.5 mean small and large changes, respectively, and

they are chosen not only for simplicity but also by sensitivity

analysis as will be detailed later. It is also possible to use

much smaller or bigger values for rs to represent small or large

changes, but this would betray our assumption that there exists

similarities between two consecutive changes. Secondly, three

levels of changes are considered for the sake of computational

efficiency, although we recognize that the prediction can be

improved with more detailed classification. The three step

sizes allow to predict a possible range of the new POS and

increase the probability of finding new solutions. Sensitivity

analysis of these rs values can be found later in Section V.

B. Novel sampling strategy

Introducing some sampling points from the search space

into the new population can potentially increase the population

diversity [52], [46]. However, the contribution of sampling

points to convergence is often uncertain. Here, we develop

a novel sampling strategy that potentially enhances the con-

vergence in addition to diversity.

To aid effective sampling, the decision vector is divided

into two sub-vectors: the principal and non-principal variables.

Non-principal variables can be assumed to depend on principal

ones. The assumption holds to some degree as, from the

mathematical point of view, objective functions present the

dependency between them even if there is no dependency

between variables.

The determination of principal variables is not difficult. To

ease the task, we just need to identify the most principal

variable and regard the others as non-principal variables.

Fig. 2: An illustration of the sampling strategy in the 2D space.

Algorithm 4 The Sampling Strategy

1: Sample uniformly points for the first variable according to
Eq. (5);

2: For each sampled value of the first variable, generate a set of
uniformly distributed points of the other variables according to
Eq. (5);

3: Evaluate these solutions and select the non-dominated solutions
using non-dominated sorting;

4: Save the non-dominated solutions to SubPop2.

The identification uses a very simple approach, that is, the

most principal variable is the one having the largest standard

deviation (the first encountered is chosen if there is a tie) in

the non-dominated set. Let xd be the identified most principal

variable, N1 evenly-spaced points are sampled for xd. For any

non-principal variable xk (k ∈ {1, . . . , D}\{d}), N2 sampling

points are obtained by

hxi
k = Lk + i×

Uk − Lk

N2

, (i = 1, . . . , N2), (5)

where Lk and Uk are the lower and upper bounds of xk,

respectively. This results in a total of N1×N2 sampling points

x̄ = (xi
d, hx

j
k), for i = 1, · · · , N1 and j = 1, · · · , N2.

After that, all the sampled points are evaluated and non-

dominated solutions are identified by non-dominated sort-

ing. These non-dominated solutions form the second sub-

population in response to the environmental change. Fig. 2

illustrates the proposed sampling strategy in the 2D space,

where four points are uniformly sampled from the principal

variable x1, nine points from the non-principal variable x2,

and non-dominated points are marked in red. Algorithm 4

shows the steps of creating a sub-population by the proposed

sampling strategy.

The setting of N1 and N2 is problem-specific. For example,

it is expected to use a large number of sampling points

for problems with a large number of variables and a small

number of sampling points for problems with a few variables.

Setting large values for them should help generate high-quality

sub-population but would lead to high computational costs.

Therefore, for simplicity, N2 is recommended to couple with

the number of variables, e.g., N2 = D, and N1 is set to a

value such that the total number of sampling points generated
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Fig. 3: An example of variable distribution and predicted

variable bounds.

from this strategy is less than half of the population, i.e.,

N1N2 = N1D ≤ N/2.

C. Shrinking strategy

The chance of generating high-quality solutions improves if

we can estimate to some extent where the optimal solutions

probably reside. Here, we propose a shrinking strategy to

refine the likely optimal range of variables, which is essentially

a reduction of the decision space, based on the probability

distribution of variables. The strategy is mainly applied to

non-principal variables mentioned in Section III-B as the

optimal range of principal variables is highly uncertain and an

inaccurate shrinkage may generate more negative impact on

principal variables than on non-principal variables. The range

shrinking strategy works for a given non-principal variable

xi as follows. Firstly, the maximum probable value of xi

at time t, denoted Dvt, is calculated using the probability

estimation strategy [18] on the corresponding non-dominated

set. Secondly, the maximum probable value of xi for a new

environment Dvt+1 at time t + 1 can be predicted by using

the last two consecutive Dvt−1 and Dvt as follows:

Dvt+1 = Dvt + (Dvt −Dvt−1) (6)

Then, the upper bound of xi at time t+ 1 is estimated as

Dvut+1 = Dvt+1 + (Dvt+1 −Dvt) (7)

For simplicity, the lower bound of xi, denoted Dvlt+1,

at time t + 1 is made identical to Dvt. Fig. 3 illustrates

the construction of a shrank range for non-principal variable

x2. At the end, the estimated range of xi for the new

environment is [Dvlt+1, Dvut+1]. Combining the estimated

range for all non-principal variables and the original range

of the principal variable, we have a shrank decision space

Ω = [L1, U1] ∪
∏D

i=2
[Dvlt+1, Dvut+1] ⊂ RD, from which

another sub-population (SubPop3) of solutions will be uni-

formly sampled. The implementation of this strategy is shown

in Algorithm 5.

IV. EXPERIMENTAL STUDY

A. Test instances

The performance of the proposed approach is examined

on a recently proposed DF test suite [16], which has nine

Algorithm 5 The Shrinking Strategy

1: Find the populations (Popt and Popt−1) at time t and t − 1,
respectively;

2: Compute the maximum probable value for each non-principal
variable xi at time t − 1 and t using the probability density
estimation strategy [18];

3: Estimate the new maximum probable value for each xi at time
t+ 1 by Eq. (6);

4: Calculate the bounds of xi by Eq. (7);
5: Create a sub-population SubPop3 by sampling from the shrank

decision space.

bi-objective and five tri-objective benchmark functions with

diverse properties, such as variable linkage, disconnectivity,

irregular POF shapes, and time-dependent geometries. The DF

test suite consists of functions taken from other test suites,

e.g., FDA [9], dMOP [52], ZJZ [35] and JY [14]. The time

instance t used in the test suite is given as t = (1/nt)⌊(τ/τt)⌋,

where nt, τ and τt are the severity of change, the number

of iterations, and the frequency of change, respectively. The

dimension (D) of benchmark functions is set to 10. The

definition of these test instances can be found in [16].

B. Performance indicators

Performance indicators play an important role in assessing

the performance of algorithms. In this work, we adopts the

following three performance indicators.

1) Mean Inverted Generational Distance (MIGD): The

MIGD, a widely adopted measure [32], [34], [36], is mainly

employed to measure the convergence and diversity of solu-

tions obtained by an algorithm. Suppose that POF ∗
t is a set

of uniformly distributed solutions in the true POF and POF ob
t

is a POF approximation, at time t, IGD can be calculated as:

IGD(POF ∗
t , POF ob

t ) =

∑

g∈POF∗

t

d(g, POF ob
t )

|POF ∗
t |

, (8)

where d(g, POF ob
t ) refers to the minimum Euclidian distance

between g and the points in POF ob
t , and |POF ∗

t | is the

number of solutions in POF ∗
t . Then, the MIGD can be

computed as

MIGD =

∑

t∈T IGD(POF ∗
t , POF ob

t )

|T |
, (9)

where T is a set of discrete time points and |T | is the total

number of changes in a run.

2) Mean Schott’s spacing metric (MSP): The Schott’s spac-

ing (SP) metric [52], [23], [27] aims to evaluate the distribution

of POF ob
t . The following gives the expression formula:

SP (POF ob
t ) =

√

√

√

√

1

|POF ob
t | − 1

(

|POF ob
t

|
∑

i=1

(Di −D)), (10)

where Di is the Euclidean distance between the ith point in

POF ob
t and its nearest point in POF ob

t . D represents the

average value of Di. The MSP can be defined as follows:

MSP =

∑

t∈T SP (POF ob
t )

|T |
. (11)
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3) Hypervolume metric: Hypervolume (HV) [36] is a wide-

ly used indicator in multi-objective optimization. The calcula-

tion of HV requires a reference point, which is usually defined

as a vector dominated by any points in the true POF. A larger

HV value indicates a better approximation. HV is defined as

follows:

HVt = HV (POF ob
t ), (12)

where HV (POF ob
t ) refers to the hypervolume [29] of set

POF ob
t . The reference point for the computation of hyper-

volume is (zj + 0.5, j = 1, ...,m), where zj is the maximum

value of the jth objective of true POF. The mean HV (MHV)

can be calculated as follows:

MHV =

∑

t∈T HVt

|T |
. (13)

C. Compared algorithms

In order to validate the performance of our proposed

method, several existing approaches are selected as the com-

parison algorithms. A brief description of these algorithms and

their parameter settings is given as follows.

1) Population prediction strategy (PPS): The main idea of

PPS is dividing the optimal solutions into two parts: population

center and manifold. An auto-regression (AR) model is adopt-

ed to predict the next population center based on a time series

of history population centers. Similarly, history manifolds are

also used to predict the new manifold. Then, a new population

will be generated based on the predicted population center and

manifold [36].

2) Dynamic version of NSGA-II (DNSGA-II): DNSGA-II

is a dynamic version of NSGA-II by making some changes

to the original NSGA-II. Two versions are available: NSGA-

II-A and NSGA-II-B. The former is formed by replacing a

small portion of the population with random solutions, and it

is suitable for solving dynamic problems with severe changes.

The latter is similar to the former except that the replacement

uses mutated solutions of existing individuals, and works well

in solving problems with small changes.Both of them are used

in this study [7].

3) First-order difference model-based MOEA/D (MOEA/D-

FD): MOEA/D-FD [5] utilizes history information to predict

the location of the new POS after a change is detected. The

new population is composed of two kinds of solutions: the old

solutions and the predicted ones. The movement of population

centroid defines a predicted direction. To make the new

population diversified, evenly-distributed individuals selected

from the previous population are used in the prediction.

D. Parameter settings

The parameters of the MOEAs considered in the experi-

ment were referenced from their original papers. Some key

parameters in these algorithms were set as follows.

1) Population size: The population size (N ) in all the

algorithms was set to 100. Around 1000 points were uniformly

sampled from the true POF for computing the performance

metrics in both bi- and three-objective cases.

2) Other parameters: All the parameters in the compared

algorithms used the same settings as in their original studies.

Parameters in PBDMO: the second sampling strategy ob-

tains N1N2 sampling points from L1 + {0.2, 0.4, 0.6, 0.8} ∗
(U1 − L1), and the size of SubPop3 was set to 0.3N .

3) Stopping criterion and the number of executions: Each

algorithm terminates after a pre-specified number of genera-

tions and should cover all possible changes. To minimize the

effect of static optimization, we gave 50 generations for each

algorithm before the first change occurs. The total number of

generations was set to 3ntτt+50, which ensures there are 3nt

changes during the evolution. Additionally, each algorithm was

executed 20 independent times on each test instance.

4) Change detection: For all the algorithms, a maximum

number of 10% population members are re-evaluated for

change detection.

E. Experimental results

To study the impact of the change frequency on algorithms’

ability in dynamic environments, the severity of change (nt)

was fixed to 10, and the frequency of change (τt) was set to

5, 10 and 20, respectively. The statistical results are presented

in Tables I-III, where the best values obtained by one of the

five algorithms are highlighted in bold face.

Table I lists the MIGD values of all the algorithms. It can

be seen that PBDMO obtains the best results on the majority

of fourteen test instances. For three functions, DF2, DF11 and

DF12, the difference between PBDMO and the best method

is very small. The considerably small IGD values of PBDMO

suggest the POF approximations are close to the true POF,

showing its excellent tracking ability. This demonstrates that

the proposed prediction technique can generate good popula-

tions for varying environments. Even if there exist different

levels of change severity, PBDMO can still achieve better

performance than other algorithms in these test instances.

The MHV values for the algorithms are presented in Table

II. One can see that the MHV results are highly consistent with

the MIGD ones. PBDMO has significantly better MHV values

than other algorithms in most of the problems, but it seems

slightly inefficient on DF2, DF10 and DF11. DNSGA-II-B has

a marginal advantage over the others on DF8 and DF13 with

slow changes. Nevertheless, the MHV metric further indicates

the ability of PBDMO to solve dynamic problems.

As indicated in Table III, PBDMO has the best solution

distribution on three bi-objective problems, i.e., DF1, DF5,

and DF7, but seems to have worse MSP values than the

others in a majority of the test cases, although the difference

is not significant. MOEA/D-FD is clearly the winner as it

obtains the best MSP values in most cases. We wonder why

MOEA/D-FD can obtain a good solution distribution where

the others can not, and we postulate that this is mainly

attributed to different distribution mechanisms used in these

algorithms. MOEA/D-FD is a decomposition-based algorithm

that converts a muti-objective problem into a number of single-

objective sub-problems. The weights used in aggregation func-

tions are generated evenly, and it has been widely reported

that the Tchebycheff approach is able to provide a good
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TABLE I: Mean and standard deviation values of MIGD obtained by five algorithms

Fun. (τt, nt) MOEA/D-FD DNSGA-II-A DNSGA-II-B PPS PBDMO

(5,10) 1.3377e-2(2.4536e-4) 1.2815e-1(1.0888e-2) 4.0948e-1(6.1782e-2) 6.9803e-1(1.4463e-1) 6.5907e-3(4.1274e-4)

DF1 (10,10) 9.5248e-3(1.5828e-4) 5.8375e-2(5.4323e-3) 8.0500e-2(7.9357e-3) 3.4628e-1(4.2348e-2) 5.5687e-3(2.1958e-4)

(20,10) 7.3724e-3(8.2575e-5) 1.4867e-2(5.9269e-4) 1.3998e-2(5.3880e-4) 1.3402e-1(2.0495e-2) 5.0667e-3(1.5401e-4)

(5,10) 1.9599e-2(7.3670e-4) 8.6463e-2(6.0977e-3) 3.2018e-1(3.6745e-2) 4.9000e-1(1.1130e-1) 7.8786e-2(5.7042e-3)

DF2 (10,10) 1.0959e-2(1.7838e-4) 4.3680e-2(8.1074e-3) 1.2025e-1(9.6012e-3) 2.2890e-1(3.7999e-2) 3.4739e-2(3.3543e-3)

(20,10) 7.5063e-3(8.4108e-5) 1.4701e-2(3.0683e-3) 3.9591e-2(6.1428e-3) 8.3623e-2(1.3538e-2) 1.1780e-2(1.1659e-3)

(5,10) 4.7593e-2(1.3488e-2) 3.9299e-1(4.4728e-2) 3.5008e-1(4.5990e-2) 4.4112e-1(1.5743e-1) 1.6751e-2(6.7187e-3)

DF3 (10,10) 3.3634e-2(1.1575e-3) 2.8130e-1(3.0150e-2) 2.8233e-1(3.0376e-2) 2.0300e-1(1.8595e-1) 1.1915e-2(5.9480e-3)

(20,10) 2.6130e-2(1.6133e-3) 2.3815e-1(2.1797e-2) 2.3486e-1(2.6841e-2) 9.4226e-2(1.2283e-1) 9.0913e-3(5.7123e-3)

(5,10) 1.1985e-1(2.1803e-3) 1.1382e-1(6.8154e-3) 1.0811e-1(6.3892e-3) 3.1145e-1(5.9685e-2) 7.4666e-2(3.8800e-3)

DF4 (10,10) 1.0672e-1(1.3873e-3) 7.6643e-2(3.2921e-3) 7.5365e-2(3.0515e-3) 1.1851e-1(1.0833e-2) 7.1674e-2(3.0848e-3)

(20,10) 9.9324e-2(1.4062e-3) 6.2710e-2(1.6365e-3) 6.2451e-2(1.3417e-3) 8.2339e-2(6.6108e-3) 7.0900e-2(2.9866e-3)

(5,10) 1.9425e-2(4.9644e-4) 2.6918e-1(3.6061e-2) 3.3045e-1(3.5508e-2) 1.2102e+0(2.3246e-1) 8.4182e-3(1.0122e-3)

DF5 (10,10) 1.4655e-2(2.4786e-4) 5.8123e-2(8.4188e-3) 5.1666e-2(3.9707e-3) 3.4648e-1(1.2439e-1) 6.5586e-3(7.7474e-4)

(20,10) 1.1270e-2(1.6130e-4) 1.3655e-2(3.8585e-4) 1.3388e-2(3.9506e-4) 7.4278e-2(2.0116e-2) 5.6538e-3(6.2324e-4)

(5,10) 5.2019e+0(6.2903e-1) 7.2179e+0(4.2587e-1) 1.4465e+1(6.6272e-1) 1.0649e+1(1.0992e+0) 5.8358e-1(3.7318e-2)

DF6 (10,10) 4.8674e+0(5.4767e-1) 3.4813e+0(2.2456e-1) 9.0723e+0(7.3310e-1) 7.1312e+0(8.8867e-1) 4.8638e-1(1.8615e-2)

(20,10) 4.8855e+0(6.8135e-1) 1.3120e+0(2.9491e-1) 5.9070e+0(8.5389e-1) 3.6264e+0(7.1611e-1) 4.0620e-1(2.5600e-2)

(5,10) 1.1113e-1(1.2668e-2) 2.7914e-1(5.3170e-2) 3.5985e-1(7.8006e-2) 1.7931e-1(7.6929e-2) 1.1882e-2(6.2114e-4)

DF7 (10,10) 9.8690e-2(1.3214e-2) 2.3844e-1(3.6387e-2) 2.9375e-1(7.4635e-2) 6.0637e-2(1.6953e-2) 9.6751e-3(3.2085e-4)

(20,10) 6.3632e-2(1.0840e-2) 1.9767e-1(3.6864e-2) 1.9669e-1(3.4827e-2) 2.2886e-2(6.0030e-3) 8.3712e-3(1.9506e-4)

(5,10) 3.5901e-2(2.1273e-3) 1.4797e-2(1.0676e-3) 1.6316e-2(3.5859e-3) 3.0128e-2(1.9313e-3) 7.6445e-3(5.4946e-4)

DF8 (10,10) 2.9565e-2(1.8211e-3) 1.1639e-2(7.7879e-4) 1.1367e-2(5.2164e-4) 1.5201e-2(1.3426e-3) 6.9286e-3(4.4440e-4)

(20,10) 2.5319e-2(1.6577e-3) 1.0156e-2(4.4830e-4) 9.8779e-3(3.1351e-4) 9.4965e-3(6.1726e-4) 6.1997e-3(2.2351e-4)

(5,10) 1.9072e-1(4.2276e-2) 6.1517e-1(6.7178e-2) 1.0992e+0(1.0106e-1) 1.1433e+0(1.7869e-1) 9.1211e-2(8.0318e-3)

DF9 (10,10) 8.9055e-2(1.3005e-2) 3.4057e-1(3.8154e-2) 7.1330e-1(6.4474e-2) 5.3145e-1(1.1461e-1) 5.7369e-2(5.3842e-3)

(20,10) 4.2832e-2(8.1064e-3) 1.9834e-1(3.4209e-2) 3.7067e-1(3.3289e-2) 1.8059e-1(6.8860e-2) 3.5463e-2(2.6413e-3)

(5,10) 1.8897e-1(3.8967e-2) 1.2030e-1(9.8663e-3) 1.2124e-1(1.1081e-2) 2.4241e-1(1.9645e-2) 9.4127e-2(6.5802e-3)

DF10 (10,10) 1.8135e-1(4.3232e-2) 1.1333e-1(7.8492e-3) 1.1381e-1(7.0951e-3) 1.8068e-1(8.8626e-3) 9.4208e-2(3.5294e-3)

(20,10) 1.5021e-1(3.0491e-2) 1.0559e-1(6.8413e-3) 1.0267e-1(4.0909e-3) 1.4429e-1(6.5544e-3) 9.6191e-2(3.8677e-3)

(5,10) 6.3920e-1(5.3081e-4) 6.6776e-1(1.8531e-3) 6.6716e-1(2.1127e-3) 6.6790e-1(3.3456e-3) 6.4447e-1(1.8045e-3)

DF11 (10,10) 6.3739e-1(3.0483e-4) 6.5708e-1(1.3716e-3) 6.5622e-1(1.2129e-3) 6.5537e-1(2.4397e-3) 6.4437e-1(1.2550e-3)

(20,10) 6.3606e-1(1.8611e-4) 6.4820e-1(1.0055e-3) 6.4791e-1(1.1038-3) 6.4848e-1(1.3920e-3) 6.4218e-1(1.1303e-3)

(5,10) 9.2972e-1(2.4916e-2) 5.5678e-1(3.0835e-2) 5.3806e-1(3.0700e-2) 3.2578e-1(2.3880e-2) 2.6127e-1(1.1686e-2)

DF12 (10,10) 9.4800e-1(2.3178e-2) 4.9613e-1(3.5419e-2) 4.7212e-1(2.9421e-2) 3.0639e-1(8.3670e-3) 3.1241e-1(8.9745e-3)

(20,10) 9.4829e-1(1.6749e-2) 4.2393e-1(1.4396e-2) 4.2978e-1(2.5053e-2) 3.2805e-1(7.4974e-3) 3.4361e-1(9.0832e-3)

(5,10) 2.4607e-1(4.8671e-2) 6.1352e-1(6.7508e-2) 9.4700e-1(8.5191e-2) 8.1252e-1(9.3628e-2) 1.3442e-1(5.0895e-3)

DF13 (10,10) 2.2604e-1(6.4744e-3) 3.1991e-1(2.1590e-2) 3.3640e-1(2.2135e-2) 4.1562e-1(3.9580e-2) 1.3735e-1(5.1994e-3)

(20,10) 2.3506e-1(5.7118e-2) 1.4396e-1(4.7138e-3) 1.4076e-1(5.5952e-3) 2.4416e-1(9.3604e-3) 1.4238e-1(4.3516e-3)

(5,10) 1.2430e-1(5.6420e-3) 2.9820e-1(5.3468e-2) 4.1963e-1(1.9996e-1) 4.0924e-1(8.3124e-2) 4.8251e-2(1.3401e-3)

DF14 (10,10) 1.2360e-1(3.8031e-3) 1.8185e-1(6.1739e-2) 1.7098e-1(1.2090e-1) 1.5354e-1(2.6930e-2) 4.8188e-2(1.3258e-3)

(20,10) 1.2265e-1(3.6703e-3) 8.6828e-2(2.8908e-2) 9.0886e-2(2.5838e-2) 7.4931e-2(5.1931e-3) 4.9236e-2(1.4073e-3)

distribution of solutions. In contrast, the other MOEAs do not

have this mechanism, and their environmental selection for

solution distribution maintenance may not be able to generate

solutions as well-organized as in MOEA/D. Keeping a well-

organized set of solutions is particularly more difficult for

these non-decomposition MOEAs in three-objectives problem-

s. Moreover, a good solution distribution does not necessarily

guarantee a good approximation to the POF. While MOEA/D-

FD wins on solution distribution, it loses to PBDMO on the

other two measures, i.e., MIGD and MHV, which are more

reliable to distinguish between algorithms in terms of the

overall performance.

It can also be observed from the three measures that the

frequency of change has a significant effect on algorithms’

performance, and the effect decreases when environmental

changes become slow. For three-objective problems, frequent

changes cause these algorithms poor POF approximations, as

indicated by their large MIGD and MHV values in Tables

I and II, respectively. Overall, PBDMO seems less sensitive

to the frequency of change, as can be seen from its gradual

improvement on the three measures when τt increases from 5

to 20. On the other hand, drastic changes with respect to the

measures for DNSGA-II-A, DNSGA-II-B, PPS and MOEA/D-

FD are observed in most of the test instances with the variation

of frequencies.

Apart from tabular presentation, we provide the evolution
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TABLE II: Mean and standard deviation values of MHV obtained by five algorithms

Fun. (τt, nt) MOEA/D-FD DNSGA-II-A DNSGA-II-B PPS PBDMO

(5,10) 1.6516e+0(6.5843e-4) 1.3696e+0(2.4852e-2) 9.1882e-1(6.4536e-2) 6.8631e-1(7.5822e-2) 1.6658e+0(1.7047e-3)

DF1 (10,10) 1.6611e+0(5.2987e-4) 1.5346e+0(1.3090e-2) 1.4842e+0(1.8139e-2) 9.8814e-1(6.3972e-2) 1.6697e+0(9.0635e-4)

(20,10) 1.6661e+0(2.4812e-4) 1.6452e+0(1.5474e-3) 1.6477e+0(1.5756e-3) 1.3672e+0(4.3413e-2) 1.6722e+0(5.5826e-4)

(5,10) 1.8708e+0(1.9581e-3) 1.7222e+0(1.2664e-2) 1.2547e+0(5.7322e-2) 1.0348e+0(1.2583e-1) 1.6923e+0(1.3314e-2)

DF2 (10,10) 1.8921e+0(6.0890e-4) 1.8225e+0(1.2896e-2) 1.6348e+0(1.7309e-2) 1.4193e+0(6.3314e-2) 1.8115e+0(9.9833e-3)

(20,10) 1.8995e+0(1.6125e-4) 1.8852e+0(4.6767e-3) 1.8196e+0(1.1975e-2) 1.7249e+0(2.8389e-2) 1.8867e+0(3.1529e-3)

(5,10) 1.5275e+0(4.6860e-2) 8.9547e-1(5.9539e-2) 9.5311e-1(5.2584e-2) 7.7731e-1(2.4483e-1) 1.5959e+0(1.5695e-2)

DF3 (10,10) 1.5607e+0(4.5365e-3) 1.0740e+0(3.0154e-2) 1.0751e+0(3.0565e-2) 1.2360e+0(2.9366e-1) 1.6119e+0(1.4275e-2)

(20,10) 1.5788e+0(9.6241e-3) 1.1298e+0(2.2927e-2) 1.1362e+0(2.7652e-2) 1.4436e+0(2.2044e-1) 1.6217e+0(1.2137e-2)

(5,10) 7.3076e+0(9.6274e-3) 7.1814e+0(3.5696e-2) 7.2088e+0(3.6012e-2) 6.1180e+0(2.6430e-2) 7.5365e+0(2.5637e-2)

DF4 (10,10) 7.3990e+0(7.2713e-3) 7.4117e+0(1.7434e-2) 7.4162e+0(1.8028e-2) 7.2172e+0(7.9157e-2) 7.5843e+0(1.7300e-2)

(20,10) 7.4611e+0(2.8467e-3) 7.5463e+0(6.0602e-3) 7.5452e+0(4.5830e-3) 7.5133e+0(3.7989e-2) 7.5991e+0(1.4942e-2)

(5,10) 1.7112e+0(9.7075e-4) 1.1864e+0(6.7654e-2) 1.0833e+0(6.2101e-2) 5.4753e-1(7.8645e-2) 1.7307e+0(2.2870e-3)

DF5 (10,10) 1.7189e+0(5.0967e-4) 1.6400e+0(1.6283e-2) 1.6524e+0(7.5657e-3) 1.1029e+0(1.5098e-1) 1.7351e+0(1.4837e-3)

(20,10) 1.7258e+0(3.9364e-4) 1.7229e+0(6.9872e-4) 1.7234e+0(7.1480e-4) 1.5988e+0(4.0938e-2) 1.7373e+0(1.1746e-3)

(5,10) 1.1390e+0(1.7883e-2) 2.9137e-1(5.4332e-2) 2.7458e-1(6.2074e-2) 4.3247e-3(6.0419e-3) 1.1778e+0(1.1648e-2)

DF6 (10,10) 1.2269e+0(1.0211e-2) 5.2056e-1(2.6817e-2) 5.3018e-1(3.9555e-2) 3.6533e-2(3.6828e-2) 1.2654e+0(1.3376e-2)

(20,10) 1.2913e+0(2.7400e-2) 1.0085e+0(2.1741e-2) 1.0105e+0(2.0603e-2) 2.3910e-1(1.3016e-1) 1.3303e+0(1.5288e-2)

(5,10) 3.3392e+0(1.0704e-2) 2.8390e+0(9.8682e-2) 2.6654e+0(1.9815e-1) 2.9273e+0(1.8053e-1) 3.4573e+0(2.9521e-3)

DF7 (10,10) 3.3653e+0(1.2781e-2) 2.9564e+0(9.2309e-2) 2.8426e+0(1.6107e-1) 3.2852e+0(5.1348e-2) 3.4663e+0(1.6305e-3)

(20,10) 3.4092e+0(8.0006e-3) 3.0963e+0(6.1092e-2) 3.0983e+0(5.0842e-2) 3.4167e+0(1.8423e-2) 3.4723e+0(1.7622e-3)

(5,10) 1.7669e+0(1.1943e-3) 1.7554e+0(1.0993e-2) 1.7596e+0(1.6025e-2) 1.7061e+0(7.2741e-3) 1.7675e+0(2.4454e-3)

DF8 (10,10) 1.7738e+0(5.4330e-4) 1.7750e+0(9.9699e-3) 1.7784e+0(5.8430e-3) 1.7529e+0(5.0560e-3) 1.7737e+0(2.8306e-3)

(20,10) 1.7780e+0(4.1528e-4) 1.7832e+0(5.6077e-3) 1.7843e+0(4.6002e-3) 1.7730e+0(2.5959e-3) 1.7778e+0(2.6290e-3)

(5,10) 1.3914e+0(4.9198e-2) 6.9188e-1(5.3580e-2) 5.3459e-1(6.5295e-2) 4.1101e-1(8.2987e-2) 1.5126e+0(1.9448e-2)

DF9 (10,10) 1.5458e+0(2.3001e-2) 1.1163e+0(3.7140e-2) 1.0127e+0(2.9063e-2) 8.4195e-1(1.2188e-1) 1.5906e+0(1.3155e-2)

(20,10) 1.6225e+0(1.7026e-2) 1.3676e+0(4.3861e-2) 1.2423e+0(1.7356e-2) 1.3623e+0(8.9762e-2) 1.6412e+0(7.3492e-3)

(5,10) 1.3154e+0(4.2911e-2) 1.5009e+0(8.1129e-3) 1.4997e+0(7.9058e-3) 9.1583e-1(4.5043e-2) 1.2803e+0(2.1705e-2)

DF10 (10,10) 1.3573e+0(1.2131e-2) 1.5146e+0(5.3260e-3) 1.5135e+0(7.5550e-3) 1.0907e+0(2.3924e-2) 1.3261e+0(1.7679e-2)

(20,10) 1.3720e+0(1.3164e-2) 1.5244e+0(4.3825e-3) 1.5240e+0(6.2009e-3) 1.2220e+0(2.2523e-2) 1.3495e+0(1.0716e-2)

(5,10) 3.0723e-1(1.4172e-3) 3.6714e-1(1.5235e-3) 3.6656e-1(1.9629e-3) 3.2919e-1(9.5921e-3) 3.6852e-1(1.9356e-3)

DF11 (10,10) 3.0959e-1(1.4227e-3) 3.7202e-1(1.3716e-3) 3.7310e-1(1.4625e-3) 3.4979e-1(5.1911e-3) 3.7023e-1(3.2374e-3)

(20,10) 3.1158e-1(1.1737e-3) 3.7812e-1(1.2551e-3) 3.7810e-1(1.2905e-3) 3.6147e-1(2.8344e-3) 3.7400e-1(1.8596e-3)

(5,10) 3.3943e+0(1.3892e-2) 3.3787e+0(3.6948e-2) 3.4122e+0(2.1612e-2) 2.8107e+0(1.2448e-1) 3.4573e+0(2.7184e-2)

DF12 (10,10) 3.4085e+0(3.7436e-2) 3.4463e+0(2.1655e-2) 3.4559e+0(1.7019e-2) 3.1837e+0(4.5101e-2) 3.4687e+0(2.4142e-2)

(20,10) 3.4354e+0(9.2232e-3) 3.4883e+0(8.2943e-3) 3.4879e+0(1.1489e-2) 3.3608e+0(1.8850e-2) 3.4920e+0(2.1832e-2)

(5,10) 6.5504e+0(3.6332e-2) 4.5769e+0(2.8836e-1) 3.5882e+0(1.4940e-1) 3.2579e+0(3.3401e-1) 7.1577e+0(2.9770e-2)

DF13 (10,10) 6.6744e+0(1.0012e-2) 6.1246e+0(1.1789e-1) 6.0397e+0(1.2553e-1) 5.5350e+0(2.6095e-1) 7.1296e+0(2.5025e-2)

(20,10) 6.7295e+0(4.7829e-2) 7.1971e+0(2.7990e-2) 7.2175e+0(2.8750e-2) 6.5402e+0(6.1670e-2) 7.0894e+0(3.4532e-2)

(5,10) 9.1267e-1(6.8322e-3) 6.7574e-1(7.3178e-2) 6.1144e-1(7.0561e-2) 4.7579e-1(6.6427e-2) 1.0794e+0(2.0743e-3)

DF14 (10,10) 9.1551e-1(5.5030e-3) 8.7668e-1(9.3532e-2) 9.2252e-1(1.0947e-1) 8.7833e-1(5.1356e-2) 1.0807e+0(1.6116e-3)

(20,10) 9.1749e-1(4.9592e-3) 1.0262e+0(4.5703e-2) 1.0198e+0(4.2483e-2) 1.0320e+0(9.6874e-3) 1.0798e+0(1.7808e-3)

curves of the average IGD values for most of the test instances

in Fig. 4. It can be clearly seen that, compared with other

algorithms, PBDMO responds to changes more stably and

recovers faster for most of the test problems, thereby obtaining

higher convergence performance. The only exception is DF10,

where PBDMO performs slightly worse for the first half

of time points, but it is the best for the second half. On

DF8, the overall performance of PBDMO is better than the

others, although no noticeable difference can be seen for some

changes.

Another observation is that the IGD values for the algo-

rithms fluctuate widely on most problems, such as DF1, DF7,

DF13 and DF14. Despite that, PBDMO performs steadier

compared with other algorithms. For a graphical view of

these algorithms’ tracking ability, we also plot their POF

approximations for DF3, DF5, DF7 and DF8 in Fig. 5. It

evidently shows that PBDMO is vary capable of tacking

environmental changes, but may have convergence issues for

boundary individuals. The less converged boundary solutions

in PBDMO may affect the performance indicators.

Computational time for all the algorithms is reported in

the supplementary material due to page limit. It is found

that PBDMO requires longer computational time than all the

other algorithms except PPS. This is acceptable given the fact

PBDMO generally obtains better results as mentioned above.
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TABLE III: Mean and standard deviation values of MSP obtained by five algorithms

Fun. (τt, nt) MOEA/D-FD DNSGA-II-A DNSGA-II-B PPS PBDMO

(5,10) 9.4029e-3(1.2133e-4) 1.7703e-2(1.7181e-3) 2.0796e-2(1.5152e-3) 1.8140e-1(6.3630e-2) 5.6170e-3(1.7735e-3)

DF1 (10,10) 8.2100e-3(1.0882e-4) 1.1334e-2(5.3655e-4) 1.2189e-2(6.2419e-4) 1.0821e-1(4.0601e-2) 6.3333e-3(5.1830e-3)

(20,10) 6.7905e-3(7.4139e-5) 6.9871e-3(2.6810e-4) 6.6445e-3(1.8039e-4) 4.1261e-2(1.2272e-2) 5.4449e-3(2.5565e-3)

(5,10) 1.2244e-2(3.3624e-4) 2.1784e-2(2.3646e-3) 1.8267e-2(1.1643e-3) 2.0255e-1(1.2132e-1) 1.0268e-1(1.6850e-2)

DF2 (10,10) 1.1602e-2(1.7518e-4) 1.0616e-2(1.3175e-3) 1.0573e-2(8.3015e-4) 6.9423e-2(2.3812e-2) 1.4402e-1(2.1345e-2)

(20,10) 1.0556e-2(1.1006e-4) 5.7611e-3(4.6626e-4) 7.0121e-3(7.9818e-4) 4.1121e-2(1.1214e-2) 1.6359e-1(2.4889e-2)

(5,10) 1.4426e-2(1.1430e-3) 2.4481e-2(2.7895e-3) 2.4954e-2(3.5040e-3) 1.8456e+0(1.2621e+0) 2.8983e-2(1.3026e-2)

DF3 (10,10) 1.1976e-2(4.4941e-4) 1.3914e-2(2.2553e-3) 1.2964e-2(3.1566e-3) 4.1912e-1(2.1708e-1) 1.8212e-2(1.1031e-2)

(20,10) 1.1856e-2(3.7984e-4) 1.0616e-2(2.2160e-3) 1.1350e-2(3.7708e-3) 2.4571e-1(2.5992e-1) 1.5371e-2(1.1000e-2)

(5,10) 1.0157e-1(1.4191e-2) 7.4020e-2(2.0187e-2) 5.7903e-2(1.1662e-2) 2.6126e+0(2.1431e+0) 9.0780e-2(6.7615e-2)

DF4 (10,10) 9.3139e-2(1.1817e-2) 6.2118e-2(2.6318e-2) 5.0066e-2(1.0350e-2) 3.1168e-1(2.4894e-1) 5.6830e-2(4.7220e-2)

(20,10) 8.2449e-2(4.5007e-3) 3.5093e-2(1.0986e-2) 3.8985e-2(1.3480e-2) 8.8500e-2(4.9333e-2) 3.5199e-2(2.3189e-2)

(5,10) 1.1198e-2(1.8037e-4) 3.4964e-2(4.2185e-3) 3.6819e-2(3.9059e-3) 1.1687e+0(5.6705e-1) 1.0467e-2(4.3650e-3)

DF5 (10,10) 1.0239e-2(1.2387e-4) 1.4127e-2(1.2385e-3) 1.3429e-2(1.5939e-3) 3.2706e-1(1.9465e-1) 9.2734e-3(5.2298e-3)

(20,10) 9.2490e-3(8.5697e-5) 7.6441e-3(5.9021e-4) 7.4691e-3(3.4571e-4) 7.7818e-2(2.5240e-2) 6.5864e-3(3.5960e-3)

(5,10) 2.6212e-1(5.3312e-2) 1.1787e+0(1.0268e-1) 1.3071e+0(7.5035e-2) 1.3386e+2(4.9621e+1) 2.2673e+0(4.3123e-1)

DF6 (10,10) 1.6089e-1(2.4948e-2) 5.5187e-1(5.1233e-2) 7.2333e-1(4.4059e-2) 6.2461e+1(3.1967e+1) 1.4760e+0(3.5868e-1)

(20,10) 1.4070e-1(1.5598e-2) 1.5202e-1(2.1032e-2) 2.5682e-1(2.6554e-2) 3.6419e+1(4.9424e+1) 5.7453e-1(1.7213e-1)

(5,10) 2.7018e-2(1.0289e-3) 2.9406e-2(7.0437e-3) 2.0716e-2(1.3698e-2) 2.7441e-2(4.1252e-3) 9.3158e-3(4.8611e-4)

DF7 (10,10) 2.7250e-2(1.0137e-3) 2.2504e-2(6.8737e-3) 1.7675e-2(5.7338e-3) 1.7617e-2(2.5212e-3) 7.5165e-3(2.1666e-4)

(20,10) 2.9657e-2(8.1921e-4) 1.9081e-2(4.2596e-3) 1.8154e-2(4.4887e-3) 1.0236e-2(9.0154e-4) 6.9462e-3(1.1344e-4)

(5,10) 1.9365e-2(1.6946e-3) 3.2735e-2(9.4409e-3) 2.4851e-2(7.4129e-3) 1.2316e-1(3.4514e-2) 4.1530e-2(7.9194e-3)

DF8 (10,10) 1.9045e-2(8.0073e-4) 1.8928e-2(4.8021e-3) 1.5466e-2(4.5403e-3) 8.6782e-2(3.8698e-2) 3.5292e-2(7.7929e-3)

(20,10) 1.8939e-2(7.6444e-4) 1.0759e-2(2.7644e-3) 1.0098e-2(2.6119e-3) 5.5292e-2(3.1136e-2) 2.3675e-2(7.5871e-3)

(5,10) 1.8427e-2(3.8016e-3) 8.9926e-2(1.5814e-2) 8.4824e-2(7.9560e-3) 1.3426e+0(4.3716e-1) 1.2553e-1(2.9933e-2)

DF9 (10,10) 1.2072e-2(1.3294e-3) 4.5782e-2(8.2607e-3) 4.7653e-2(5.1128e-3) 5.3145e-1(1.1461e-1) 7.6180e-2(2.2360e-2)

(20,10) 1.0017e-2(5.4045e-4) 2.6050e-2(5.4019e-3) 2.9432e-2(4.8425e-3) 2.5234e-1(1.0440e-1) 4.5956e-2(1.3125e-2)

(5,10) 3.5061e-2(1.5860e-2) 8.8583e-2(1.8228e-2) 9.3216e-2(1.5020e-2) 1.2555e+0(3.4768e-1) 3.1673e-1(4.4141e-2)

DF10 (10,10) 3.8637e-2(1.7612e-2) 8.2117e-2(9.3678e-3) 8.4987e-2(1.5811e-2) 8.7872e-1(2.1905e-1) 3.1638e-1(4.2849e-2)

(20,10) 3.2465e-2(1.1605e-2) 7.8996e-2(1.1703e-2) 7.9783e-2(1.3565e-2) 8.1298e-1(3.8463e-1) 3.2513e-1(3.6829e-2)

(5,10) 2.5439e-2(5.4454e-4) 5.6303e-2(9.8620e-4) 5.6371e-2(1.1788e-3) 6.1775e-2(5.4680e-3) 5.2637e-2(2.5637e-3)

DF11 (10,10) 2.4045e-2(4.0488e-4) 5.3544e-2(1.0143e-3) 5.3701e-2(9.8587e-4) 5.4945e-2(3.4220e-3) 5.1533e-2(2.6103e-3)

(20,10) 2.2054e-2(3.0127e-4) 5.2136e-2(8.3359e-4) 5.2020e-2(1.0533e-3) 5.2460e-2(2.4097e-3) 5.1727e-2(3.4494e-3)

(5,10) 1.4776e-2(7.6499e-3) 8.6057e-2(7.8278e-3) 9.3901e-2(1.0390e-2) 1.1784e+0(2.3349e-1) 4.3098e-1(4.4652e-2)

DF12 (10,10) 1.3523e-2(1.0268e-2) 9.5582e-2(9.2223e-3) 9.3844e-2(1.0187e-2) 8.0796e-1(1.6230e-1) 3.9178e-1(3.2336e-2)

(20,10) 1.3224e-2(5.8471e-3) 9.7327e-2(1.3674e-2) 9.1248e-2(1.4752e-2) 5.8093e-1(9.6952e-2) 3.7705e-1(3.7903e-3)

(5,10) 1.3927e-1(5.5487e-3) 2.4586e-1(2.0846e-2) 2.8807e-1(1.8919e-2) 4.5108e+0(1.0008e+0) 1.9493e-1(6.0771e-2)

DF13 (10,10) 1.5208e-1(3.2609e-3) 1.6352e-1(7.8961e-3) 1.6093e-1(6.8360e-3) 2.5276e+0(9.1521e-1) 1.6532e-1(1.8369e-2)

(20,10) 1.5664e-1(2.1860e-3) 1.1088e-1(3.7440e-3) 1.1143e-1(2.6600e-3) 8.6459e-1(3.4169e-1) 1.7024e-1(1.8961e-2)

(5,10) 1.6250e-2(7.4238e-4) 9.6528e-2(2.3475e-2) 1.1271e-1(4.5214e-2) 8.7825e-1(2.7034e-1) 4.5133e-2(5.4089e-3)

DF14 (10,10) 1.6416e-2(4.3668e-4) 1.4251e-1(7.0052e-2) 1.0148e-1(5.4245e-2) 3.1317e-1(1.2279e-1) 4.3046e-2(4.1334e-3)

(20,10) 1.6048e-2(4.4702e-4) 1.2831e-1(8.1860e-2) 1.5916e-1(9.1897e-2) 1.1005e-1(1.7845e-2) 4.0813e-2(3.1191e-3)

V. MORE EXPERIMENTAL ANALYSIS

A. Component Analysis

The proposed method has three key components. However,

the role that each component plays in handling dynamics

remains unclear. Here, we modify PBDMO to study each

component separately. Specifically, a one-step-size prediction

strategy replaces the three-step-size strategy in PBDMO for

predicting the non-dominated set. That is, a single step-size

value (rs = 1) is used, and this variant is called PBDMOV1.

In other words, PBDMOV1 uses a very common prediction

strategy similar to most existing prediction-based algorithms.

A comparison between PBDMO and PBDMOV1 should illus-

trate the unique advantage of the three step-size strategy. The

sampling strategy is switched off to study its importance to

PBDMO, and this variant is named PBDMOV2. Similarly, we

also deactivate the shrinking strategy to study the role it plays

in PBDMO, resulting in another variant called PBDMOV3.

These three variants are all compared with the original

PBDMO, and their MHV values are presented in Table IV.

The corresponding MIGD and MSP values can be found in

the supplemental material. The following details the influence

of each component.

1) Predicting Non-dominated Set: It is not difficult to see

that PBDMO performs better than PBDMOV1 on bi-objective

cases, but it is outperformed by PBDMOV1 on three-objective
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Fig. 4: Mean IGD curves for different problems with nt=10 and τt=10.

TABLE IV: Performance comparison of different PBDMO variants on HV

Fun. (nt, τt) PBDMO-V1 PBDMO-V2 PBDMO-V3 PBDMO

DF1 (10,10) 1.6682e+0(1.2132e-3) 1.6160e+0(2.8525e-2) 1.6695e+0(1.0817e-3) 1.6697e+0(9.0635e-4)

DF2 (10,10) 1.8016e+0(1.0739e-2) 1.7817e+0(9.9569e-3) 1.8568e+0(6.8272e-3) 1.8115e+0(9.9833e-3)

DF3 (10,10) 1.6044e+0(1.9625e-2) 1.5918e+0(4.8685e-2) 1.5987e+0(2.4591e-2) 1.1915e-2(5.9480e-3)

DF4 (10,10) 7.5725e+0(2.1481e-2) 7.5833e+0(1.1889e-2) 7.5733e+0(1.4687e-2) 7.5843e+0(1.7300e-2)

DF5 (10,10) 1.7344e+0(1.1335e-3) 1.6980e+0(2.0602e-2) 1.7347e+0(1.6068e-3) 1.7351e+0(1.4837e-3)

DF6 (10,10) 1.2028e+0(2.6215e-2) 1.0249e+0(7.2468e-2) 1.1642e+0(4.6191e-2) 1.4760e+0(3.5868e-1)

DF7 (10,10) 3.4648e+0(2.6535e-3) 3.3476e+0(8.2642e-3) 3.4650e+0(2.4352e-3) 3.4663e+0(1.6305e-3)

DF8 (10,10) 1.7726e+0(3.3650e-3) 1.7721e+0(2.8138e-3) 1.7724e+0(2.8019e-3) 1.7737e+0(2.8306e-3)

DF9 (10,10) 1.5739e+0(1.1293e-2) 1.5111e+0(3.6460e-2) 1.5778e+0(1.3413e-2) 1.5906e+0(1.3155e-2)

DF10 (10,10) 1.3018e+0(1.6169e-2) 1.3178e+0(1.6352e-2) 1.3076e+0(1.2369e-2) 1.3261e+0(1.7679e-2)

DF11 (10,10) 3.7281e-1(2.1821e-3) 3.6782e-1(3.0625e-3) 3.6999e-1(2.8957e-3) 3.7023e-1(3.2374e-3)

DF12 (10,10) 3.4503e+0(2.3129e-2) 3.4322e+0(2.3948e-2) 3.3718e+0(2.2646e-2) 3.4687e+0(2.4142e-2)

DF13 (10,10) 7.1564e+0(2.8673e-2) 7.0159e+0(4.3686e-2) 7.0947e+0(3.6120e-2) 7.1296e+0(2.5025e-2)

DF14 (10,10) 1.0812e+0(2.0968e-3) 1.0769e+0(1.7892e-3) 1.0801e+0(2.0273e-3) 1.0807e+0(1.6116e-3)

problems according the MIGD, MHV and MSP values. The

reason may be due to the fact that the three-step-size strategy

in PBDMO would generate more boundary individuals than

the one-step-size strategy in PBDMOV1. Boundary individuals

are more likely to be non-dominated solutions than intermedi-

ate individuals. Too much non-dominated boundary solutions

is not good for population diversity. Despite that, the three-

step-size strategy brings more benefits than the one-step-size

strategy for the majority of the problems.

2) The Sampling Strategy: All three measures show that

PBDMO performs significantly better than PBDMOV2 on

almost all test cases, although PBDMOV2 has slightly better

solution distribution on DF2, DF8, DF10 and DF12 than

PBDMO as suggested by the MSP measure. Thus, the pro-

posed sampling strategy clearly enhances the initial population

for each new environment, and can efficiently improve the

performance of the algorithm (see Figs. 2 and 3 of the

supplementary material).

3) The Shrinking Strategy: It can be observed from the

results of the three indicators that PBDMO is better than

PBDMOV3 in almost all the problems. This demonstrates the

use of space shrinkage indeed helps improve the prediction of

population for changing environments. This is not surprising

because shrinking the decision space based on the probability

distribution of variables improves the chance of creating

promising solutions, which in return improves the quality of

the initial population for each new environment.

The comparison between the three variants and the original

PBDMO shows that each component is indispensable for the

high performance of PBDMO. Removing any of them causes

somewhat performance degradation in general. Thus, it is a

good way to combine them in one algorithm, as done by

PBDMO.

B. Influence of rs Values

The three-step-size strategy for predicting non-dominated

set uses three different step-sizes, and they are set to (0.5,

1, 1.5) in PBDMO. Here, we wonder whether other rs values

will enable PBDMO significantly better performance than (0.5,
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Fig. 5: POF approximations of five algorithms for different problems with nt=10 and τt=10.

1, 1.5), particularly when changing the value for the small

or large step-size. Thus, we carried out experiments on two

groups of rs settings. The first group (S) uses different values

for the small step-size whereas the second group (L) has

several values for the large step-size. The influence of the

medium step-size is not investigated as we assume it is for

moderate cases where two consecutive environmental changes

are similar. A step-size of 1 is a very common setting for

moderate cases in many prediction-based algorithms. Table V

details these two groups of settings.

The experimental results are shown in Table VI for groups

S and L. It is seen from the S group comparison that the

optimal value for the small step-size is problem dependent:

small values favour some problems while slightly large values

favour others. A comparison between PBDMO and each S

column of Table VI demonstrates that the setting (0.5,1,1.5)

TABLE V: PBDMO with different step-size values

S L

PBDMO-S1(0.1,1,1.5) PBDMO-L1(0.5,1,1.1)

PBDMO-S2(0.3,1,1.5) PBDMO-L2(0.5,1,1.3)

PBDMO (0.5,1,1.5) PBDMO (0.5,1,1.5)

PBDMO-S3(0.7,1,1.5) PBDMO-L3 (0.5,1,1.7)

helps PBDMO to win slightly more competitions. A similar

observation can be made for the L group from Table VI. Thus,

this experiment supports the decision made on choosing a step-

size vector of (0.5,1,1.5).

C. Influence of Subpop3 Size

The size of Subpop3 is another important parameter that

can affect the performance of PBDMO. So, it is varied with

an increment of 0.1 from 0.1 to 0.5 times of the population
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TABLE VI: Performance comparison of PBDMO variants on MIGD for (nt, τt)=(10,10)

Fun. PBDMO-S1 PBDMO-S2 PBDMO-S3 PBDMO-L1 PBDMO-L2 PBDMO-L3 PBDMO

DF1 5.6079e-3(2.4725e-4) 5.5702e-3(2.0919e-4) 5.6000e-3(2.7930e-4) 5.5808e-3(2.5028e-4) 5.5468e-3(2.5822e-4) 5.6625e-3(2.6767e-4) 5.5687e-3(2.1958e-4)

DF2 3.4915e-2(2.9066e-3) 3.4334e-2(2.6436e-3) 3.5540e-2(3.7890e-3) 3.6489e-2(2.6309e-3) 3.5532e-2(3.3191e-3) 3.5437e-2(3.2281e-3) 3.4739e-2(3.3543e-3)

DF3 1.2290e-2(5.8988e-3) 1.5808e-2(8.7778e-3) 1.0472e-2(4.2792e-3) 1.1792e-2(5.9125e-3) 1.3886e-2(5.9125e-3) 1.4803e-2(7.7206e-3) 1.1915e-2(5.9480e-3)

DF4 7.1063e-2(2.9154e-3) 7.1892e-2(3.0600e-3) 7.2797e-2(2.0516e-3) 7.1668e-2(2.8895e-3) 7.2264e-2(2.7956e-3) 7.2878e-2(3.8344e-3) 7.1674e-2(3.0848e-3)

DF5 6.9555e-3(6.1395e-4) 6.6668e-3(7.5173e-4) 6.0804e-3(4.5956e-4) 6.5099e-3(7.2399e-4) 6.6233e-3(6.2820e-4) 6.8986e-3(8.2222e-4) 6.5586e-3(7.7474e-4)

DF6 5.0504e-1(3.2438e-2) 4.8624e-1(3.0402e-2) 4.8618e-1(3.1674e-2) 4.7871e-1(2.5561e-2) 4.8658e-1(2.5979e-2) 4.9288e-1(2.6383e-2) 4.8638e-1(1.8615e-2)

DF7 9.5643e-3(3.5670e-4) 9.4518e-3(3.8272e-4) 1.0010e-2(4.5394e-4) 9.8773e-3(3.9498e-4) 9.8305e-3(3.4775e-4) 9.5416e-3(4.3798e-4) 9.6751e-3(3.2085e-4)

DF8 6.9131e-3(3.7459e-4) 6.9973e-3(4.2898e-4) 6.9241e-3(4.3819e-4) 6.9457e-3(3.5700e-4) 6.8571e-3(4.0086e-4) 6.9004e-3(4.1787e-4) 6.9286e-3(4.4440e-4)

DF9 6.3067e-2(5.1197e-3) 5.8210e-2(3.9409e-3) 5.7400e-2(4.8239e-3) 5.8596e-2(4.5538e-3) 5.9777e-2(2.4007e-3) 5.7012e-2(5.3177e-3) 5.7369e-2(5.3842e-3)

‡/†/≀ 5/4/0 6/3/0 5/4/0 5/4/0 7/2/0 5/4/0 -
‡, † and ≀ indicate that the performance of PBDMO is better than, worse than and similar to that of the corresponding algorithm, respectively.

TABLE VII: Performance comparison of PBDMO with different sizes of Subpop3 on MIGD

Fun. (nt, τt) 0.1N 0.2N 0.3N 0.4N 0.5N

DF1 (10,10) 5.5492e-3(2.1402e-4) 5.5196e-3(1.7355e-4) 5.5687e-3(2.1958e-4) 5.4825e-3(2.4577e-4) 5.5309e-3(2.3957e-4)

DF2 (10,10) 3.5695e-2(3.0669e-3) 3.8211e-2(4.9469e-3) 3.4739e-2(3.3543e-3) 3.4793e-2(5.0706e-3) 3.4334e-2(2.7482e-3)

DF3 (10,10) 1.3438e-2(8.5500e-3) 1.2753e-2(8.8312e-3) 1.1915e-2(5.9480e-3) 1.4692e-2(8.1973e-3) 1.4423e-2(7.6144e-3)

DF4 (10,10) 7.1355e-2(2.2803e-3) 7.1857e-2(3.9415e-3) 7.1674e-2(3.0848e-3) 7.4075e-2(2.9373e-3) 7.2064e-2(3.3974e-3)

DF5 (10,10) 6.9264e-3(6.7986e-4) 6.5961e-3(7.1678e-4) 6.5586e-3(7.7474e-4) 6.7354e-3(6.8402e-4) 6.6764e-3(5.7173e-4)

DF6 (10,10) 4.7630e-1(2.1540e-2) 4.9751e-1(2.0212e-2) 4.8638e-1(1.8615e-2) 4.8249e-1(2.4461e-2) 4.8560e-1(3.0765e-2)

DF7 (10,10) 9.7227e-3(3.4707e-4) 9.6342e-3(3.6384e-4) 9.6751e-3(3.2085e-4) 9.7179e-3(4.1769e-4) 9.6443e-3(4.2604e-4)

DF8 (10,10) 7.0284e-3(3.4306e-4) 6.9530e-3(3.4787e-4) 6.9286e-3(4.4440e-4) 6.9241e-3(3.9296e-4) 7.0286e-3(3.2845e-4)

DF9 (10,10) 5.7761e-2(4.0234e-3) 5.8695e-2(5.5071e-3) 5.7369e-2(5.3842e-3) 5.7467e-2(4.2334e-3) 5.8601e-2(3.7503e-3)

size, to study its potential influences. Other parameters are

kept the same as in the previous section. The results are given

in Table VII. It is clear that no single optimal Subpop3 size

exists for all the problems but instead the optimal Subpop3
sizes are quite divergent. While some problems (e.g., DF1)

are not very sensitive to the size of Subpop3, other problems

(e.g., DF2 and DF3) show widely fluctuated performance over

the tested sizes and obtained the best performance when the

size of Subpop3 is around 0.3N . It is also clear that although

PBDMO with 0.3N is not the best on some cases, it is very

close to the best ones. Therefore, 0.3N is the most preferred

sub-population size for Subpop3 in PBDMO.

D. Influence of the severity of change nt

To study whether different change severity levels bring

significant influence to the performance of the algorithm,

experiments were carried out with τt fixed to 10, and nt set

to 5, 10 and 20. The simulation results can be found in the

supplementary material. We observe that all algorithms are

sensitive to nt. Although various nt bring different difficulties

to the problem, the PBDMO can still obtain promising results

with respective other compared algorithms. In total, PBDMO

has more robust performance in solving problems with differ-

ent changing levels.

E. Comparison with state of the arts

A transfer learning based DMOEA (TrDMOEA) has been

recently developed and shown promising performance on

DMOPs [53]. Here, we compare PBDMO with this state

of the art to demonstrate the effectiveness of the proposed

strategies. Table VIII shows the MIGD values of the two

algorithms for some selected problems, and more results

can be found in the supplementary material. It is clear that

PBDMO is more effective than TrDMOEA for DF problems,

TABLE VIII: Performance comparison between PBDMO and

TrDMOEA for selected problems on MIGD.

Fun. (nt, τt) TrDMOEA PBDMO

DF1 (10,10) 1.1933e-1(5.6046e-2) 5.5687e-3(2.1958e-4)

DF3 (10,10) 4.9757e-2(3.5121e-2) 1.1915e-2(5.9480e-3)

DF5 (10,10) 2.3408e-2(2.9032e-3) 6.5586e-3(7.7474e-4)

DF7 (10,10) 4.0571e-2(3.4438e-3) 9.6751e-3(3.2085e-4)

DF9 (10,10) 5.9994e-2(6.9909e-3) 5.7369e-2(5.3842e-3)

showing complex learning models do not necessarily guarantee

high performance. Note that, PBDMO is also computationally

cheaper than TrDMOEA.

VI. DISCUSSION

We would like to have more discussion here about the

advantages and limitations of the three components of the

proposed PBDMO method. Firstly, the three-step-size strategy

for predicting non-dominated solutions increases the popula-

tion diversity, which allows the population to explore widely

for the new environment and helps to improve the search

performance of dynamic multi-objective algorithms. However,

the improvement comes at the expense of complexity increase

because it generates more solutions than an one-step-size

strategy does. Besides, it is likely to generate too many near-

boundary individuals, as shown in the experimental results,

which may not be beneficial to global search if most of these

near-boundary individuals are non-dominated. Therefore, this

strategy could be improved by controlling the number of near-

boundary members effectively.

Secondly, the sampling technique generates solutions by

classifying decision variables into two groups, which can be

very helpful for generating well-distributed solutions in the

population. The sub-population from this strategy additionally

has convergence advantages as the solutions have been filtered
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by non-dominated sorting. This provides us a new way of

efficient sampling in dynamic environments. However, the

strategy heavily depends on the classification. The current

work assumes there is a single most principal variable, and

this assumption may not hold for generalization. The sampling

strategy needs improvements on the classification and robust-

ness when the principal variable is misidentified or there are

many principal variables.

Thirdly, the shrinking strategy aids efficient sampling, there-

by improving the quality of the initial population for each new

environment. However, it sometimes fails to work effectively,

particularly when facing cases where two consecutive POSs

has low similarities. This results in poor estimate of the range

of non-principal variables. The failure has been observed for

DF11 and DF12, for which the POS is very unpredictable.

Therefore, further improvement should be made on this strat-

egy to shrink the decision space more effectively.

VII. CONCLUSION

In this paper, a new dynamism handling algorithm, called

PBDMO, is proposed for solving multi-objective problems

with time-varying characteristics. This approach consists of

three main components, that is, a three step-size strategy

for predicting the non-dominated set, a sampling strategy,

and a shrinking strategy. These components are important for

creating a good initial population, enhancing either diversity

or convergence, when a change occurs in the environment.

A recent test suite of 14 benchmark functions with dif-

ferent characteristics is employed to assess the performance

of our algorithm. Experimental comparisons indicate that

the proposed method performs much better than the other

algorithms considered in this paper on most of the test

problems. This demonstrates PBDMO has a good tracking

ability and responds fast to environmental changes. Besides,

the role that each component of the proposed algorithm plays

in handling dynamics is also investigated properly, showing

that the combination of these components indeed is better than

using each only.

Although PBDMO has shown a good tracking ability and

search performance on the tested functions, there are still

several relevant issues to be addressed in the future. For

example, developing prediction strategies that can better deal

with near boundary solutions is an important future work.

It is also important to develop more efficient strategies that

can adaptively classify principle and non-principal decision

variables according to the characteristics of the problem being

handled. How to improve the shrinking strategy in PBDMO

is also an interesting future work.
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