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Abstract

We introduce The Novel Probes Project, an initiative to advance the field of astrophysical
tests of the dark sector by creating a forum that connects observers and theorists. This review
focuses on tests of gravity and is intended to be of use primarily to observers, as well as
theorists with interest in the development of experimental tests. It is twinned with a separate
review on the dark matter arm (Adhikari et al., in prep.).

Our focus is on astrophysical tests of gravity in the weak-field regime, ranging from stars
to quasilinear cosmological scales. This regime is complementary to both strong-field tests of
gravity and background and linear probes in cosmology. In particular, the nonlinear screening
mechanisms which are an integral part of viable modified gravity models lead to characteristic
signatures specifically on astrophysical scales. The potential of these probes is not limited by
cosmic variance, but comes with the challenge of building robust theoretical models of the
nonlinear dynamics of stars, galaxies, and large scale structure.

In this review we lay the groundwork for a thorough exploration of the weak-field, non-
linear regime, with an eye to using the current and next generation of observations for tests
of gravity. We begin by setting the scene for how gravitational theories beyond GR are ex-
pected to behave, focusing primarily on screening mechanisms. We describe the analytic and
numerical techniques for exploring the relevant astrophysical regime, as well as the pertinent
observational signals. With these in hand we present a range of astrophysical tests of gravity,
and discuss prospects for future measurements and theoretical developments.
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1 The Novel Probes Project

The Novel Probes Project aims to bring together theorists and experimentalists to address ques-
tions about the dark sector of the universe by means of astrophysical observables. At its heart is
a Slack™-hosted discussion forum intended to foster collaboration between groups with differing
expertise, and provide a platform on which to ask questions to experts. This forum may be ac-
cessed through the project website – https://www.novelprobes.org – and we welcome
the participation of interested researchers, regardless of expertise in the field of astrophysical tests
of gravity. The present document outlines the topics we intend the forum to cover, and will be “liv-
ing” in the sense that it will be regularly updated as theories develop and observational constraints
improve.

The forum will be partitioned into the following eight channels, each monitored by 4-5 experts
in the field:

(i) Theory, including cosmic acceleration and screening mechanisms (Secs. 3 and 4 of this re-
view)

(ii) The use of galaxy surveys (Sec. 5)

(iii) Analytic methods for the nonlinear regime, including degeneracies with other types of physics
(e.g. baryons; Sec. 6)

(iv) The use of simulations (Sec. 7)

(v) Cosmological probes (Sec. 8)

(vi) General astrophysical tests of modified gravity and screening mechanisms (Secs. 9.1–9.4)

(vii) Specific tests of thin-shell screening (e.g. chameleons & symmetrons; Sec. 9.5)

(viii) Specific tests of Vainshtein screening (Sec. 9.6 and Sec. 9.7)
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2 Introduction

Modern instruments and methods for probing gravity have inaugurated a second golden age of
General Relativity (GR). The first results from the Laser Interferometer Gravitational Wave Ob-
servatory (LIGO) have not only allowed us to confirm some of the most fundamental predictions
of GR – gravitational waves and black holes – but have also led to the first constraints on gravity
in the strong-field regime. The exquisite timing of millisecond pulsars is allowing us to dramati-
cally increase the precision with which we can measure a number of fundamental parameters that
characterize deviations from GR in the transition from the weak- to strong-field regime. And, for
the first time, we have obtained images of the event horizon of the black hole at the centre of M87
using radio interferometric measurements from the consortium of telescopes known as the Event
Horizon Telescope. Sagittarius A*, the black hole at the centre of our own galaxy, will be similarly
imaged in the future, and these images will be backed up by detailed measurements of stellar orbits
using the Gravity programme run by the European Southern Observatory (ESO). With these new
observations we have every reason to expect our understanding of gravity to drastically improve.

Observations of the large-scale structure of the universe – from maps of the Cosmic Microwave
Background (CMB) to surveys of galaxies and measurements of weak gravitational lensing –
have revolutionized cosmology. It is now possible to find accurate constraints on fundamental
parameters such as the curvature of space, the fractional density of dark matter and dark energy,
and the mass of the neutrino. Such has been the success of these observational programmes that
a slew of new observatories and satellites have been planned, and are under construction, that
will substantially improve the amount and quality of data available to map out the structure of
space-time on the largest scales.

A key goal of this research is to test the fundamental assumptions that underpin our current
model of cosmology. Given that GR plays such a crucial role, there have been a number of propos-
als for testing deviations from its predictions on these previously unexplored scales. The resultant
constraints would be complementary to those obtained on smaller scales (for example, in the So-
lar System, or with millisecond pulsars) and in strong-field regimes. These test different aspects
of GR in very different gravitational environments, and involve almost orthogonal measurement
techniques and systematics.

The success of GR – and the cosmological Λ cold dark matter (ΛCDM) model that it sup-
ports – begs the question: why ought we devote significant effort to testing it? There are many
reasons. GR is notoriously resistant to incorporation into a quantum theory of gravity, so that
small and large scale phenomena are currently described by qualitatively different frameworks.
There is some hope that a modified theory of gravity could be more commensurable with quan-
tum mechanics. Phenomenologically, GR requires the addition of dark matter and dark energy to
explain astrophysical and cosmological observations, neither of which have non-gravitational sup-
port. This raises the possibility that these phenomena may be artifacts arising from the application
of an incorrect theory of gravity, and many of the theories that we discuss in this review were mo-
tivated explicitly by the hope of cosmic self-acceleration. Finally, from an effective theory point
of view there is no reason to expect a rank-2 tensor to be the only gravitational degree of freedom
operative at large scales, and UV-complete theories such as string theory naturally produce addi-
tional scalars, vectors and tensors. The programme of testing GR may therefore be viewed as the
search for more general low-energy degrees of freedom in the universe, which may in turn provide
clues to quantum gravity at the Planck scale.

While much of the success of modern cosmology in testing GR and ΛCDM has relied on the
accuracy and ease with which one can calculate predictions in linear theory, there are limitations to
this approach. In particular, relying on large-scale modes of both the gravitational and matter fields
introduces a cosmic variance limit: there is a finite amount of information one can access, limited
by our cosmic horizon, which translates into clear limits on the potential strength of constraints.
It makes sense, therefore, to start exploring smaller scales where nonlinear gravitational collapse
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plays a major role. By looking at “astrophysical” structures – from clusters of galaxies all the
way down to stars – it should be possible to probe the weak-field regime of gravity in a range of
environments far more varied than those accessed on either very large or very small scales.

Figs. 1 and 2 show a two-dimensional representation of this range of environments, quantified
according to two ‘yardsticks’: the typical Newtonian gravitational potential of a system (in units
where c ≡ 1), and a measure of its spacetime curvature (see Ref. [1] for full details). Fig. 1
indicates that cosmological observables such as the matter power spectrum (denoted P (k)) and
angular power spectrum of the CMB anisotropies probe low-curvature regimes, whilst the Solar
System probes a curvature regime intermediate between that of cosmology and compact objects.
Note that there is a discernible ‘desert’ in our observations shown in Fig. 2, spanning curvatures
∼ 10−52 − 10−38cm−2. Fig. 1 shows that this region is inhabited only by galaxies, for which
we have few reliable probes of gravitational physics. This raises the possibility that some kind of
transition scale resides in this desert, and the question of whether we can identify astrophysical
tests that could reveal its presence.
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Figure 1: The landscape of gravitational environments probed by known systems. The x-axis
indicates the characteristic gravitational potential of the system, and the y-axis approximately
quantifies the typical spacetime curvature probed by that system (note that the y-axis quantity is
not exactly the Ricci curvature, as this vanishes for vacuum systems). For full details of this figure
and its implications, see Ref. [1].

Programs for testing gravity using astrophysical objects in the cosmological, weak field regime
are poorly developed. The large sample sizes they afford can only be exploited if the great com-
plexity of relevant physical processes can be modelled or controlled for. The fact that such objects
necessarily involve mildly to strongly nonlinear gravitational collapse (albeit in the weak-field
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regime) is problematic, as the numerical and semi-analytic methods that have been developed to
study this collapse tend to have poorer control over systematics than models for both large (linear)
or small (Solar System and laboratory) scales. Only recently have these methods begun to be ap-
plied to tests of gravity and fundamental physics, besides “galaxy formation” physics in ΛCDM.
Furthermore, non-gravitational physics can play a significant role in the formation and resulting
morphology of astrophysical structures. The interaction of gas, plasma and radiation leads to a
slew of baryonic effects capable of either suppressing or enhancing the gravitational collapse that
one would expect from N-body dynamics alone. If one adds to this the effect of feedback from en-
ergetic astrophysical phenomena such as supernovae or active galactic nuclei (AGN), it becomes
very difficult to extract purely gravitational information from observations of collapsed objects.
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Figure 2: As per Fig.1, but with experimental or observational tests corresponding to each region.

Gravitational theory in the nonlinear regime is typically intricately connected with the phe-
nomenon of “screening”. In a number of extensions of GR with (typically scalar) extra degrees of
freedom, nonlinear corrections will suppress modifications close to sources or in high density en-
vironments. Thus, deviations from GR are masked (and may become negligible) in regions where
gravity is stronger. There are a few different types of screening mechanisms, and while there are
attempts to create a unified framework, no approach has proved satisfactory in all respects. This
complicates the program of extracting information from this regime in a controlled manner, but at
the same time offers the prospect of testing a great range of modified gravity theories by means of
just a few screening mechanisms.

Given the complications that arise when testing gravity in the nonlinear regime, it is not sur-
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prising that it has yet to be targeted systematically. This makes this regime ripe for exploration,
both theoretically and observationally. Given the abundance of present and upcoming measure-
ments, it behooves us to create and fully develop frameworks for extracting the gravitational in-
formation. On the one hand, this might involve adapting some of the tried and tested statistical
methods that are used to study the large-scale structure of the universe: correlation functions of
various orders in both configuration and Fourier space contain some of the primary information.
But one ought also to consider statistical methods which could tease out information beyond the
moments of the correlation function, or deviations from GR in particular environments such as
clusters, dwarf galaxies or voids. The morphology and dynamics of these objects may be acutely
sensitive to gravitational features below the resolution limit of – or washed out in – conventional
statistical methods.

In this review we will lay the groundwork for a thorough exploration of the weak-field, non-
linear regime of gravitational collapse (with a clear emphasis on cosmological scales) with an eye
to exploiting the current and next generation of cosmological surveys. Our review should be seen
as complementary to current reviews on constraining gravity with gravitational waves, compact
objects and black holes, more focused on the strong field regime. We begin with a summary
of the impact of the recent LIGO detection of a neutron star merger and gamma-ray counterpart
(GW170817 and GRB 170817A), which restricts – but does not eliminate – the viable parameter
space of modified gravity, and comment on the prospect of a dynamical origin to the acceleration
of the universe’s expansion in light of this (Sec. 3). We then introduce and explain the screening
mechanisms used to hide novel effects within the Solar System (Sec. 4). We describe the cur-
rent and planned surveys providing useful information on gravity in the nonlinear regime (Sec. 5),
before discussing the features of this regime more generally (Sec. 6), including the degeneracy
between gravitational and “galaxy formation” physics and the estimators that have been devised
to overcome it. In Sec. 7 we present simulations with modified gravity on both cosmological and
smaller scales, and in Sec. 8 we discuss observational tests on cosmological scales. The bulk of
the review is contained in Sec. 9, where we present a suite of astrophysical tests that target screen-
ing. We split these by the type of screening mechanism covered, and include probes from the
scale of stars to galaxy clusters. Finally, in Sec. 10 we discuss future theoretical and observational
prospects.

This review primarily targets observers seeking novel applications of their data to tests of
fundamental physics (although it is also intended to be useful to theorists). We therefore keep
theoretical complexity to a minimum, and exclude aspects of the models that are of purely for-
mal or theoretical interest. We will update the review regularly as new ideas are developed and
proposed tests carried out, and couple it with a discussion forum hosted by Slack (see https:
//www.novelprobes.org) where the authors will answer questions from, and collaborate
with, interested parties.

A note on scope: We consider “astrophysical” probes to be those pertaining to scales in the
universe that are not currently linear, i.e. r . O(102) Mpc. We include galaxy surveys within
this class, as well as galaxy clusters and voids. We restrict ourselves to the weak-field regime
in order to focus on physics that is relevant cosmologically; we therefore discuss the physics
of compact objects only insofar as they are relevant for cosmological modified gravity theories.
We further exclude tests of gravity within the Solar System and on Earth, which involve very
different techniques and observables to those on larger scales as well as probing objects which
most viable modified gravity objects would consider screened. We consider a probe “novel” if
it is not well established as a principal science target of current surveys or experiments. Finally,
we exclude modified gravity theories such as Modified Newtonian Dynamics (MOND) which do
not fit comfortably into modern field-theoretic frameworks and have limited domains of validity;
MOND itself is extensively reviewed in Ref. [2].
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3 Modified gravity after GW170817

3.1 Bounds on the speed of gravitational waves

The first direct detection of gravitational waves (GWs) from a binary neutron star (BNS) merger
was made by the LIGO-Virgo Collaboration on 17th August 2017, and announced publicly on
16th October 2017 [3]. A multi-wavelength electromagnetic follow-up campaign captured the
electromagnetic counterpart of the merger, as the kilonova emission rapidly brightened and faded
over the next tens of days [4].

This event, GW170817, presented a unique opportunity to place bounds on the speed of gravi-
tational waves. In General Relativity gravitational waves travel at the speed of light but, as we will
detail below, many modified gravity theories alter this prediction. A common model-independent
parameterisation used to describe the speed of GWs is [5]:

c2T = c2 [1 + αT (t)] (1)

where cT is the propagation speed of tensor modes, and t is physical time. The function αT (t)
can adopt both positive and negative values in principle, although negative values were bounded
even prior to GW170817 by the lack of observed gravi-Cerenkov radiation from ultra high-energy
cosmic rays (∼ 1010 GeV) [6, 7]. Note that the energy scale of these bounds is much higher than
that relevant to our discussion here.

For our purposes, the crucial feature of GW170817 was that the first electromagnetic signals of
the merger, gamma-rays, arrived at Earth 1.74 seconds after the arrival time of GWs corresponding
to the merger. Because the source was comparatively local in cosmological terms, located at a
physical distance d = 40 Mpc (z ∼ 0.01), a simple Euclidean treatment of distances is sufficient.
Then we can write the difference in the arrival times of the photons and gravitational waves as
[8–13]:

∆t = tint + δt = tint + tγ − tGW

= tint +
d

c
− d

cT

= tint +
d

c

(

1− 1√
1 + αT

)

≃ tint +
d

c

αT

2
(2)

Here tγ and tGW are the times taken for the photons and GWs to travel distance d, respectively.
tint is an intrinsic time delay between the emission of the two signals, i.e. a delay occurring at

the source. According to current modelling of BNS mergers, this intrinsic delay could be up to
∼ 10s in duration for short GRB (sGRB) associations, and potentially up to hour timescales for
long GRB associations [14–16]. In principle it could be of either sign, i.e. it is possible that
the photons could be emitted before the GWs. Of the time intervals above, the only one we can
measure is ∆t = 1.74s, indicating that these events are consistent with a BNS-sGRB association.

Rearranging the above expression, we finally obtain:

αT ≃ 2c

d
(∆t− tint) (3)

If we assume the GW and photon emission to be exactly simultaneous, setting tint = 0, this results
in a bound of αT . 10−15. If we allow for a hundred seconds of intrinsic delay in either direction,
this weakens the bound to |αT | . 10−13. Note that really we are only bounding the value of the
αT (t) function at t ≃ 0, which in principle does not rule out non-trivial evolution in the past.
Prior to GW170817, the most stringent LIGO/Virgo bounds on the propagation speed of GWs
was 0.55 < cT < 1.42, which was found by [17] using Bayesian methods applied to the first
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three binary black hole merger detections. Clearly, GW170817 improved these by several orders
of magnitude.

Even when adopting the most conservative bound above, this result remains an impressively
stringent constraint on a key deviation from GR. The straightforward interpretation of this result
is that any viable theory of gravity must possess tensor modes that propagate at the speed of light
exactly (and that tint ≃ 1.74s for this event); this has general implications for the structure of
gravity theories, as we will detail in the next subsection. However, a loophole remains: it is
theoretically possible for a gravity theory to be structured such that 0 < αT < 10−13. Without
some physical principle or symmetry to enforce such a near cancellation, this would seem to
require a significant degree of fine-tuning of the theory.

It was pointed out in Ref. [18] that, by coincidence, the frequency of the binary neutron star
merger lies close to a generic strong coupling frequency of low energy effective field theories
(EFTs) of modified gravity [19–22]. Recall that an EFT utilises an expansion in low energy scales
to keep only the most relevant Lagrangian operators of a theory. However, the coefficients of
these operators can run with energy scale; when they reach of order unity, the theory is said to
be strongly coupled. It is then no longer safe to assume that operators originally neglected in the
low-energy theory are irrelevant. They must be accounted for, which is frequently not possible
(since the UV completion of a theory is often unknown). As a result, the low-energy EFT has
broken down and can no longer be used.

The authors of Ref. [18] argued that, when a dark energy EFT has typical parameter values
needed to give it interesting dynamics on cosmological scales, the energy scale of GW170817 lies
potentially within its strongly coupled regime. This calls into question the validity of straight-
forwardly applying the time delay results above to Horndeski gravity (introduced below) or the
associated low-energy effective theories. Furthermore, the authors argue that if a low-energy ef-
fective theory is to admit a Lorentz-invariant completion, one would actually expect the action of
operators above the strong coupling scale to return the speed of tensor modes to c. This argument
ultimately depends on the specifics of a particular gravity model. Hence in what follows, we will
present the results of a straightforward application of the binary neutron star constraints to mod-
ified gravity theories, assuming no strong coupling scales come into play. However, one should
carefully check whether future theoretical models are subject to this caveat.

3.2 Consequences for existing theories

Scalar–tensor theories

To understand the implications of the above bounds, it is helpful to study the deviations cT 6= c in
some example models. One of the most useful to pursue is Horndeski gravity, which is the most
general theory of a gravitational metric and a scalar field φ that propagates three (one scalar and
two tensor) degrees of freedom [23–25]. The Horndeski Lagrangian is equivalent to that obtained
when applying the EFT approach referenced above to a theory of a metric and a scalar field1. The
original formulation of Horndeski gravity is constructed as a sum of four Lagrangian terms

S =

∫

d4x
√−g

{

5
∑

i=2

Li[φ, gµν ]

}

, (4)

1Though the EFT approach also permits extension to include higher-derivative ‘Beyond Horndeski’ operators,
whose higher derivatives cancel in the field equations. These operators are not present in the original formulation
of the Honrndeski Lagrangian shown in eqs.(4-8).
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where

L2 = K(φ,X) (5)

L3 = −G3(φ,X)�φ (6)

L4 = G4(φ,X)R+G4,X

{

(�φ)2 −∇µ∇νφ∇µ∇νφ
}

, (7)

L5 = G5(φ,X)Gµν∇µ∇νφ− 1

6
G5,X

{

(∇φ)3 − 3∇µ∇νφ∇µ∇νφ�φ

+ 2∇ν∇µφ∇α∇νφ∇µ∇αφ
}

, (8)

and X ≡ −∇νφ∇νφ/2. Here K and Gi are four functions that control the contribution from each
sub-Lagrangian. Note that the derivatives of G4 and G5 are also relevant; we have suppressed the
arguments of these differentiated functions (G4,X and G5,X ) for clarity. A linearised calculation
shows that the function αT introduced in eq.(1) is related to G4 and G5 by [5, 10–13, 25]:

αT ≡ 2X

M2
∗

[

2G4,X − 2G5,φ −
(

φ̈− φ̇H
)

G5,X

]

(9)

where M2
∗ ≡ 2

(

G4 − 2XG4,X +XG5,φ − φ̇HXG5,X

)

. When combined with the bound

αT

∣

∣

z=0
. 10−13 derived in the previous subsection, eq.(9) has strong implications for theories

within the broad Horndeski family. As mentioned above, there are two broad routes to interpret
eq.(9). In the next subsection we will enumerate methods to render αT

∣

∣

z=0
small but non-zero. In

this subsection we discuss the implications of requiring αT = 0 identically.
The simplest way to ensure that eq.(9) vanishes is to set each of the function derivatives G4,X ,

G5,X and G5,φ to zero individually. Feeding this information back into eq.(4) reduces L4 to
a conformal coupling (i.e. a simple function G4(φ)) to the Ricci scalar [26, 27]. The remaining
piece of the L5 Lagrangian can be eliminated entirely by integrating by parts, and using the Bianchi
identity (∇µGµν = 0).

After this exercise we are left with the following template for scalar-tensor theories:

S =

∫

d4x
√−g {G4(φ)R+K(φ,X)−G3(φ,X)�φ}+ SM , (10)

where SM is the matter Lagrangian. Some examples of theories which fit onto this template
– and hence produce cT = c – are f(R) gravity, the cubic galileon, Kinetic Gravity Braiding
(‘KGB’) and the scalar-tensor limit of the non-self-accelerating branch of the Dvali-Gabadadze-
Porrati braneworld model (nDGP) [28–31]. For example, f(R) gravity corresponds to the choices
G4 = φ ≡ df(R)/dR = fR, K = f(R) − RfR and G3 = 0; f(R) models are strongly
constrained (but not eliminated) by electromagnetic data sets [32]. The cubic galileon is recovered
from the Horndeski action by setting G4 = 1, K = −c2X and G3 = c3X/M3, where c3 and
M are free parameters of the galileon model2; the cubic galileon was powerfully constrained in
Ref. [33] by galaxy-ISW cross-correlation. KGB and nDGP remain viable [34–36], although the
latter requires some form of dark energy to produce accelerated expansion. In contrast, other
models such as the quartic and quintic galileons, which invoke the full complexity of the L4 and
L5, are now ruled out – at least, in this straightforward interpretation of the results.

Of course, there are other ways to make eq.(9) vanish identically. One would be to posit that
all its three component terms are finely balanced such as to cancel one another out. However,
it would seem difficult to enforce such a cancellation for all redshifts, given the appearance of
the background-dependent quantities H and φ̇. Hence observations of a second, similar binary
neutron star merger at higher redshift should be able to easily confirm or refute this hypothesis. It
is also highly likely that inhomogeneities will spoil these tunings.

2All parameters in the galileon field equations appear as ratios with c2. It is common practice to fix c2 = −1 and
constrain the remaining free parameters under this choice.
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Several other ways of evading the bound on |αT | within Horndeski theory have been explored.
Through careful analysis, the authors of [37] found a subtle loophole in the derivation of the GW
propagation speed that allows for special choices of the quartic and quintic Horndeski Lagrangians
to persist. With these special forms, the deviation of the GW speed from unity vanishes dynam-

ically on cosmological backgrounds, when the scalar equation of motion is used. Unfortunately
this trick of rescuing a particular class of theories only works on a homogeneous cosmological
background; the anomalous GW speed contribution reappears at an unviable when cosmological
perturbations are taken into account.

Another possibility would be to require G5,X = 0, but G4,X = G5,φ, i.e. insist upon a specific
connection between the functional forms appearing in L4 and L5. Further relations of this kind are
possible in extensions of Horndeski gravity, namely Beyond Horndeski gravity and Degenerate
Higher-Order Scalar-Tensor (DHOST); see Refs. [21, 38–48] for further details. However, the
Beyond Horndeski extension itself is now effectively ruled out by analyses revealing that it permits
GWs to decay into fluctuations of the dark energy scalar field [49, 50]. Such a process would
likely occur rapidly and prevent any detectable GWs from reaching Earth, rendering the theory
non-viable. Weaker bounds on the remaining parameter space of Horndeski gravity from related
considerations were recently presented in [51].

Vector–tensor and tensor–tensor theories

A calculation analogous to the one above can be repeated for general vector-tensor theories. The
most general Lorentz-invariant, second-order vector-tensor theory currently known is the (Be-
yond) Generalised Proca theory [52, 53], which has a structure of derivative interactions similar
to Horndeski gravity (note that the vector field must be massive for this to be possible). However,
unlike Horndeski theory, it has not yet been shown that Beyond Generalised Proca contains all

possible terms resulting in second-order equations of motion. The final result of the Generalised
Proca calculation has the same structure as eq.(10), except that the equivalent of G4 is fixed to be
a constant, and the equivalent K and G3 are functions of X = −1/2AµA

µ only. Further details
can be found in Ref. [54].

Analogous to the DHOST extensions of Horndeski described above, there exists a DHOST-
like extension of Generalised Proca [55]. This family of models contains members which are
consistent with the bounds from GW170817 [56].

A related, but distinct, branch of work pursues Lorentz-violating vector-tensor theories, in
which the vector defines a preferred direction in the cosmological background. One example is
Einstein-Aether gravity, in which the preferred direction (which must be time-like to preserve
spatial isotropy) is enforced via a Lagrange multiplier. Of the four ci parameters defining the
Einstein-Aether action, the GW speed is controlled by two of them as c2T = c2/(1 − c1 − c3)
(note that these are not the same ci defining galileon theories – the repeated use of notation is
unfortunate). The results from event GW170817 imply the bound |c1+ c3| < 10−15, see Ref. [57]
for further details.

Another example is Hor̆ava-Lifschitz gravity (a small family containing a few subcases [58–
60]): here, local Lorentz invariance is recovered as an approximate symmetry at low energies, but
broken at (extremely) high energies. The impact of GW170817 on Hor̆ava-Liftschitz theories was
detailed in Ref. [61]; in short, the constraint on |αT | maps directly into a tight constraint on the
parameter β that appears in the low-energy limit of the Hor̆ava-Lifschitz action.

The logical continuation of these results is to ask what the implications are for tensor-tensor
theories, i.e. bigravity. Here, the GW timings can be more physically interpreted as bounding
the massive graviton mode. The constraint from GW170817 results in a bound mg . 10−22eV,
where mg is the graviton mass. Although this may initially seem restrictive, the bound is already
surpassed by existing tests of gravity in the Solar System, which imply mg . 10−30eV [62]. In
essence, the status of massive graviton theories has been unaffected by the results of GW170817.

Finally, we note that the multifield tensor-vector-scalar theory, TeVeS, was closely scrutinized
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in the light of the measurements of GW speed. Whilst the original formulation of TeVeS is ruled
out by the GW170817 results [63–65], the authors of [66] found a class of extended TeVeS-like
theories that yield cT = c, and hence are consistent with the GW bounds.

3.3 Other survivors

As we have detailed above, a straightforward interpretation of the GW170817 observations puts
firm restrictions on the form of viable, cosmologically-relevant scalar-tensor and vector-tensor
theories of gravity. However, there remain some more subtle ways to maintain consistency with
the GW results. We will enumerate here the ones we are aware of at present:

• Tuned cancellations. As explained in the previous section, if the Lagrangian functions ap-
pearing in either the (Beyond) Horndeski or Generalised Proca models are related in specific
ways, a suppression of the value of αT

∣

∣

z=0
can be arranged. The most finely-tuned models

of this kind can be ruled out by a second set of BNS merger observations at a higher redshift
than GW170817. From a theoretical perspective, such models are highly fine-tuned and are
radiatively-unstable unless there is some symmetry enforcing an infinite set of tunings. We
are aware of no such symmetries.

• DHOST-like extensions of both scalar-tensor and vector-tensor theories. These are
higher-derivative extensions of Horndeski and Generalised Proca, which include the Be-
yond Horndeski and Beyond Generalised Proca models as sub-cases. In the original DHOST
family (extensions of Horndeski), all three terms in eq.(7) have independent amplitudes, and
new terms containing more than three copies of the field are present. This enhanced flex-
ibility allows the constraint αT = 0 to be satisfied by ‘using up’ fewer functions; hence
more of the full Lagrangian survives. The disadvantage is that the theory is defined by more
functions, and hence more challenging to constrain observationally. This extended class
of theories has received much attention since the GW results [42, 44, 48]. The equivalent
results for DHOST-like extensions of Generalised Proca can be found in Ref. [56].

Recently, the authors of Ref. [49, 50] studied the decay of GWs into fluctuations of a dark
energy field. Decay of GWs is usually forbidden in GR by Lorentz invariance, but the pres-
ence of a dark energy field effectively acts as a ‘medium’ through which the GWs propagate,
spontaneously breaking Lorentz variance. Decays of the form γ → ππ and γ → γπ are
then possible in some theories, where γ is a graviton and π is a fluctuation of the scalar dark
energy field. Such decays were found to occur in Beyond Horndeski and DHOST theories.
They can also occur in the original Horndeski theory, but are controlled by the G4,X opera-
tor and derivatives of the G5 operator that are already constrained by GW170817; hence the
surviving sector of Horndeski shown in eq.(10) does not suffer from graviton decay effects.

The fact that GWs have been observed to reach Earth, clearly without having decayed en-
tirely into the dark energy field, imposes further constraints on DHOST and Beyond Horn-
deski theories.

• Mass Scales. Note that the numerator of eq.(9) contains only derivatives of functions, whilst
the denominator further contains an undifferentiated instance of G4. Consider a toy model
where G4 has the form3:

G4(φ,X) = M2 +
X

m2
(11)

Here m is a mass scale. Note that G4 and XG4,X = X/m2 now differ by a constant factor
of M2. Depending on the hierarchy of M , m and the mass of the scalar field, it is possible
that G4 ≫ XG4,X (for example, if M were to be the Planck mass and m ≫ H). In this

3Note that this example is for demonstratory purposes only; it is not intended to represent a viable gravity theory.
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case, the denominator of eq.(9) dominates the numerator, leading to a suppression of αT .
Depending on the precise mass scales involved, this kind of gravity theory may lead to fifth
force signatures on sub-Hubble scales, of the kind constrained in Refs. [67–72].

• Scale suppression. In a similar vein to the point above, the authors of Ref. [73] highlight
that the modes associated with GW170817 and the modes typically associated with cosmic
acceleration are separated by some nineteen orders of magnitude. In the ‘Equation of State’
dark sector parameterization [74, 75] (a title not to be confused with general usage of the
words ‘equation of state’) this factor of 1019 can act to suppress corrections to GR in the
observables probed by GW170817 (such as the gravitational wave group velocity), even
though the model possesses significant effects on cosmological scales.

• Frozen background fields. Note that the numerator of eq.(9) is multiplied by the kinetic
term of the scalar field, X = φ̇2/2 (on an FRW background). Therefore, if the scalar field
sits at the minimum of its potential (say), X ≪ 1 and the entire RHS of eq.(9) is suppressed.
A quintessence or k-essence model with an appropriately tuned potential could display this
behavior [76].

• Non-universal couplings. The near-simultaneous arrival of GWs and photons indicates that
the standard model matter sector is coupled to the same metric that constitutes the Einstein-
Hilbert part of the gravitational action. However, it is still possible that dark matter could be
non-minimally coupled to this particular metric (effectively, it couples to a different metric
conformally or disformally related to one featuring in the Ricci scalar R). Hence, dark
energy models with non-minimal coupling to dark matter could still have significant effects
on large-scale structure whilst maintaining consistency with the GW results, provided that
cT = c in the Einstein frame. Examples of these kinds of models – which violate the Weak
Equivalence Principle – can be found in Refs. [77–79].

3.4 Producing cosmic acceleration through gravity

The constraints on the gravitational wave propagation speed narrow down the landscape of mod-
ified gravity models, but leave untouched a subset that can be targeted with future cosmological
experiments. The majority of the models we discuss in this review were originally motivated as
possible explanations of cosmic acceleration. The hope was that either new fundamental fields
or infrared corrections to GR on cosmological scales could naturally drive the expansion of the
universe at late times, thereby removing the need for a finely-tuned small cosmological constant.

This hope has not been realized for most models in the current literature. Often this is due to
the competing demands of fitting observations probing both the ‘background’ and ‘perturbative’
universe. The region of parameter space that allows a model to yield viable acceleration will often
not overlap with the parameter region allowed by measures of large-scale structure or the CMB.
For instance, the minimal modification of gravity required in Horndeski scalar-tensor theories to
provide a cosmic acceleration that is genuinely different from that of a potential or kinetic dark
energy contribution and satisfies cT = 1 has been shown to provide a 3σ worse fit to cosmological
data than a cosmological constant [80].

Because of this incompatibility, some modified gravity models still require a cosmological
constant identical to that of ΛCDM to fit observations. In other families of theories, the cosmo-
logical constant may find an alternative, more subtle presentation, e.g. consider an f(R) model
where f(R) → const. for small R, e.g. Ref. [81]. Ultimately, the theory still contains a constant
that must be fine-tuned to the observed value. Another example is that of bigravity theories [82],
where the structure of the interaction potential for the two tensor fields contains two constants4.
One of these acts like a cosmological constant for the regular spacetime metric (to which matter

4This arises because the potential is constructed from a set of symmetric polynomials, the lowest-order of which is
a constant.
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couples), whilst the second is effectively a cosmological constant for the second dynamical metric
metric (which does not couple explicitly to matter).

At times there has been an even grander hope, that corrections to GR might – as well as
explaining cosmic acceleration – additionally alleviate the need for dark matter to explain obser-
vations. Such an idea originally found footing with the success of MOND in explaining galactic
rotation curves without dark matter. A significant step forward was the construction of a fully co-
variant gravity theory, TeVeS, that contains a MOND limit [83] (see [84] for a review). However,
MOND was found to struggle to reproduce this success for larger systems such as galaxy clusters
[85], whilst TeVeS is constrained by Planck measurements of the CMB [86] and the EG statistic5

[88]. Both MOND6 and some variants of TeVeS are in significant tension with the recent gravi-
tational wave detections [63–65], though surviving models remain, e.g. the special TeVeS theory
of [66], and the bimetric and non-local formulations of MOND [89, 90]. A related vector-tensor
model, Einstein-Aether gravity, likewise produces unacceptably large modifications to the matter
power spectrum when required to act as a dark matter candidate; it has more success (though still
constrained) when acting purely as a dark energy candidate [57, 91]. Other ideas for a unified
dark sector, such as entropic gravity and Chaplygin gases [92–95], likewise seem to generally
fare worse, not better, than models requiring a standard cold dark matter component (though see
Ref. [96] for an interesting new development).

Although the original goal of cosmological modified gravity has not so far been met, this
certainly does not remove the need to test alternatives to GR. Cosmology operates on distance
scales 16 orders of magnitude larger than those on which GR has been stringently tested using
Solar System experiments and binary pulsars. In order to test this extreme extrapolation of GR to
large scales, we need sensible and consistent mathematical alternatives to compare against. The
theories we discuss here provide a description of perturbation dynamics that modify the standard
GR relations between our four main cosmological probes (background expansion rate, the growth
of structure, the deflection of light, propagation speed of gravitational waves) in a testable way.

The construction of such models has also greatly deepened our understanding of the theoretical
underpinnings of gravity. For example, we have learned how to build a full, nonlinear theory of two
coupled tensors – something previously thought impossible [97]. Likewise, we have found theories
whose effects are strongly enhanced or suppressed by their environments (screening, detailed in
the next section); again, it was not known beforehand that such theories existed. Finally, some of
the techniques and theories developed have found fruitful applications to other areas of cosmology
[98–100].

In cosmology, there is a fundamental degeneracy in describing physics beyond GR with a
cosmological constant, since any modification of the Einstein equation (“modified gravity”) could
be moved to the right-hand side and be called a novel form of stress-energy (“dark energy”). In
this review, we will focus on theories that qualify as “modified gravity” under the classification
proposed in Ref. [101]: that is, they violate the strong equivalence principle. In the vast majority of
cases, the phenomenology of these theories is characterized by a universally coupled, scalar field-
mediated fifth force (and because black holes do not have scalar hair, this force violates the strong
equivalence principle). We will not consider theories that violate the weak equivalence principle
(WEP) at the level of the Lagrangian, such as theories involving a light scalar field which only
couples to dark matter.

Thus, the main focus of this review will be on tests for the presence of fifth forces, in cosmol-
ogy and on cluster, galactic and stellar scales; an attempt to visually compare these experiments is

5The EG statistic is a ratio constructed from galaxy clustering observables, galaxy-galaxy lensing, and galaxy
velocities extracted from redshift space distortions. The combination of observables is designed such that EG is, in
principle, insensitive to galaxy bias (though see [87] for a reality-check of this). In ΛCDM EG ≃ 0.4 on all scales; in
most modified gravity models this prediction is altered by non-equality of the two metric potentials in eq.(12) below,
and scale-dependent growth of structure.

6Whilst MOND is not a relativistic framework, [63] tested it within a class of ‘dark matter emulator’ models, which
predict that GWs and photons/neutrinos move on different geodesics.
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given in Refs. [1, 71, 72].

4 Screening mechanisms

Most current theories for cosmic acceleration are theories of modified gravity, and hence a ubiq-
uitous prediction is the presence of fifth forces on astrophysical scales. Existing solar system and
laboratory constraints on these theories [71] require one to tune the new parameters to small val-
ues, essentially ruling them out as dark energy models. The idea behind screening mechanisms is
to find theories that include a dynamical suppression of fifth forces i.e. they are naturally small
on astrophysical scales as a consequence of their equation of motion rather than parameter tun-
ing. With few exceptions (e.g. [102]), the majority of viable dark energy models are either highly
fine-tuned or include screening mechanisms. This is why the study of such mechanisms is so
important.

After the bounds imposed by GW170817, a very general theory that is viable is given in
equation (10). Additionally, some sectors of DHOST theories (see e.g. [42, 47, 103]) and beyond
Horndeski theories (see e.g. [13, 104]) remain viable. The screening mechanisms discussed in
this theory all fall into one or more of these theories. In particular, chameleon, K-mouflage, and
Vainshtein screening all fit into (10) and Vainshtein breaking is exhibited by beyond Horndeski
and DHOST theories.

4.1 Principles of screening

In order to motivate screening, we begin by considering what happens when we have a theory
of gravity that does not screen. In the Newtonian, sub-horizon limit of GR, the dynamics of any
system are described by

ds2 = −(1 + 2Φ)dt2 + (1− 2Ψ)δijdx
idxj , (12)

where Φ is the Newtonian potential and Ψ+Φ governs the motion of light. In GR, Φ = Ψ and the
fields sourced by non-relativistic matter obey the Poisson equation ∇2Φ = 4πGρ. The solution
for a single source object of mass M is Φ = Ψ = −GM/r. The equations of motion give the
gravitational acceleration of a body:

~agrav = −~∇Φ = −GM

r2
r̂. (13)

Now let us modify GR by considering a scalar φ coupled to matter such that it mediates an ad-
ditional or fifth force. If the field is massless then one generically expects the Poisson equation7

∇2φ = 8παGρ, which we have parameterized by a dimensionless O(1) parameter α. This is
solved by φ = −2αGM/r, i.e. a factor of 2α larger than the GR solution. The scalar generates
an additional acceleration

~a5 = −α~∇φ = −2α2GM

r2
r̂. (14)

Thus the scalar mediates a force that is a factor 2α2 larger than the force of gravity. This causes
problems observationally. Since the field mediates a 1/r2 force between two bodies, the metric
can be put into the parameterised post-Newtonian (PPN) form (note that signs differ from the
conventional signs [105, 106] due to our conventions in Eq. (12))

ds2 =

(

1− 2
GM

r

)

dt2 +

(

1− 2γ
GM

r

)

δijdx
idxj (15)

7A massless scalar field has the Lagrangian −∂µφ∂
µφ/2, which gives rise to the Laplacian operator in static situa-

tions. The α parameterization is based on the commonly studied Weyl coupling to matter via the metric A2(φ)gµν . One
has α(φ) = d lnA/dφ, which is not necessarily constant, although we take it to be so here for illustrative purposes.
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with Eddington light-bending parameter γ = (1 − 2α2)/(1 + 2α2). This has been constrained
to the 10−5 level by the Cassini satellite by means of the frequency shift of radio waves to and
from the satellite as they passed near the sun [107]. This requires 2α2 < 10−5. To see that this
forces the scalar into a cosmologically uninteresting region of parameter space, consider the Klein-
Gordon equation φ̈+ 3Hφ̇+ αGρ = 0, where H is the Hubble parameter. The contribution from
modified gravity is the final term, which must then be subdominant to the GR contribution by a
factor O(10−3) and therefore any cosmic evolution of the scalar cannot be driven by modifications
of gravity. Any cosmic acceleration is therefore due to the scalar field’s potential and not modified
gravity. One could add a cosmological constant (or quintessence) to drive the cosmic acceleration
and look for deviations from GR on smaller scales, although in this case the acceleration would
not be driven by modified gravity. At the level of linear cosmological perturbations the growth of
dark matter is governed by the equation

δ̈DM + 2δ̈DM − 3

2
ΩDM(a)

(

1 + 2α2
)

= 0, (16)

where δDM is the dark matter overdensity, ΩDM is the cosmic DM density relative to ρcrit and a is
the cosmic scale factor. Hence, even in this case the modifications are negligible once the Cassini
bound is imposed.

Besides tuning α to small values, one could attempt to avoid this conclusion by introducing a
mass for the scalar, so that it satisfies ∇2φ+m2φ = 8παGρ, with solution φ = −2α(GM/r)e−mr.
This implies that φ mediates a Yukawa force with range m−1. If this range is <

∼ 9 AU (the
Sun-Saturn distance) then the Cassini bound can be satisfied. Such forces are however heavily
constrained by other means. For O(1) matter couplings, which are needed for cosmological rel-
evance, lunar laser ranging (LLR) constrains the inverse-mass to be less than the Earth-Moon
distance [108, 109], and Earth-based torsion balance experiments, in particular the Eöt-Wash ex-
periment, constrains the range of the force to be sub-micron [110–112]. Cosmologically, however,
the force range should be at least inverse-Hubble to play a role in the background evolution of
the field. Indeed, the Klein-Gordon equation is now φ̈ + 3Hφ̇ +m2φ + αGρ = 0, and one thus
requires m ∼ H for the field not to be over-damped at the present time. At the level of perturba-
tions, the modifications of gravity are only relevant on scales smaller than m−1 = λC (i.e. inside
the Compton wavelength) [113] and they are therefore irrelevant for structure formation too.

The argument above assumes that the dark energy scalar is coupled universally to all matter
species. It is possible to couple only to dark matter and leave the visible sector untouched. Such
models are often called coupled quintessence or coupled dark energy in general [76, 114]. In these
cases, there are no fifth forces in the visible sector but there is between dark matter particles. Many
of the tests described in this review do not apply to these models with the exception of tests of the
equivalence principle between dark matter and visible matter. These models are less theoretically
well-motivated because there is no symmetry that prevents the scalar coupling to visible matter
and so the absence of any coupling is tantamount to fine-tuning. As mentioned above, we do not
consider them here.

Tuning either α or m fails to simultaneously produce interesting cosmology and satisfy solar
system tests precisely because those parameters are universal. Screening mechanisms solve this
problem by dynamically suppressing the modifications of GR in the Solar System without the need
to tune any parameter to small values. This leaves them free to assume values with significance
for cosmology. In particular, the issue with the approaches above stems from the fact that the
equations of motion for the scalar are both linear and Poisson-like. Thus they are superfluous
copies of the Poisson equation for the metric potentials of GR, which is sufficient by itself to
explain solar system observations. The essence of screening is to alter the structure of the Poisson
equation, either by introducing a nonlinear generalization of the Laplacian operator or by adding
a nonlinear potential for the field. One can write a generalized Poisson equation

Zij(φ0)∂iφ∂jφ+m2
eff(φ0)φ = 8πα(φ0)Gρ, (17)
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where we have included a nonlinear kinetic term for φ and have allowed this, the effective mass
meff, and the coupling to matter α to depend on the background field value φ0 i.e. we have
expanded the total field as φ → φ0 + φ with φ0 being the field sourced by the surrounding
environment e.g. the cosmological or galactic scalar (precisely which depends on the situation
being considered). The schematic solution is

φ ∼ α(φ0)
GM

|Z(φ0)|r
e−meff(φ0)r. (18)

Screening works by adjusting φ0 so that one of the following three conditions is satisfied in the
Solar System:

1. The effective mass for the field mR ≪ 1 so that the field is short-range.

2. The coupling to matter α(φ0) ≪ 1 so that the fifth force is weak.

3. The kinetic factor Zij ≫ 1 so that the fifth force is suppressed.

Importantly, since the background field may depend on environment, it is possible to satisfy any
of these conditions without tuning any model parameter to small values. The density on Earth
differs from that in the cosmological background by 29 orders of magnitude, and this makes it
easy to construct screened theories that are relevant cosmologically but naturally suppressed in
the Solar System. In the cases described above, the screening mechanism is called chameleon
screening [115, 116], symmetron [117] and dilaton screening [118], and kinetic screening [29,
119] respectively. Chameleon, symmetron, and dilaton screening are qualitatively similar8, so in
this review we will refer to them collectively as thin-shell screening. Similarly, kinetic screening

can be subdivided into Vainshtein and K-mouflage theories. We now describe each screening
mechanism in turn.

4.2 Thin-shell screening

4.2.1 Chameleon screening

The equation of motion for the chameleon is [115, 116]

∇2φ = −nΛ4+n

φn+1
+ 8παGρ, (19)

for constant n, which describes a scalar coupled to matter with constant coupling α and a nonlinear
scalar potential V (φ) = Λ4+nφ−n. The dynamics of the scalar can be thought of as arising from
a density-dependent effective potential

Veff(φ) =
Λ4+n

φn
+ 8παφρ, (20)

which is illustrated schematically for low and high densities in Fig. 3 for positive n. One can see
that there is a density-dependent minimum given by

φmin =

(

nΛ4+n

αMn
plρ

)
1

n+1

, (21)

and the effective mass for fluctuations about this minimum is

meff = V ′′
eff(φ) = n(n+ 1)Λn+4

(

α
ρ

nMplΛn+4

)
n+2

n+1

. (22)

8Astrophysical tests are not particularly sensitive to the specific mechanism [120]. Laboratory tests are more model-
dependent [71].
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It is both the density-dependent minimum and mass that make chameleon screening possible. One
can see from equation (22) or Fig. 3 that the mass is an increasing function of the density, so that
the force can be made dynamically short-range within the Galaxy (high density) but long-range
cosmologically (low density).

Figure 3: The chameleon effective potential for both low (left panel) and high (right panel) density
environments. The bare potential V (φ) is shown by the dotted black line and the contribution
from the matter coupling by the black dashed line. The effective potential is the sum of these
contributions, and is shown in solid black.

The screening mechanism is illustrated qualitatively in Fig. 4. Consider a spherical object
of high density (a star or dark matter halo for example) immersed in a larger medium of lower
ambient density (a galaxy or the cosmic background for example). If the object is big enough
(to be quantified shortly), the scalar will minimize its effective potential within the object and the
equation of motion (19) is ∇2φ = 0, i.e. the field is unsourced. Since the mass at the minimum
is high, we expect this to remain the case as we move out from the center until the density falls to
a point where the field can begin to roll to its asymptotic value φ0, which is the minimum of the
effective potential in the background. We will refer to the radius where the field begins to roll as
the screening radius rs. Outside this, the mass of the field is small (meffR ≪ 1, where R is the
radius of the star), so the scalar field’s motion is set by the density: ∇2φ = 8παGρ. Integrating
from rs to R then yields a fifth-force acceleration

a5 = 2α2GM(r)

r2

[

1− M(rs)

M(r)

]

rs < r < R. (23)

Outside the object, one has ∇2φ +m2
eff(φ0)φ = 8παGρ, a massive Klein-Gordon equation with

boundary condition at the object’s surface altered by the screening radius. This gives

a5 = 2α2GM

r2

[

1− M(rs)

M

]

e−meff(φ0)r r > R. (24)

One can see that the force is suppressed by a factor 1 − M(rs)/M without the need to tune α
to small values. The size of the screening radius determines whether or not the fifth force is
screened. If rs ≪ R then this factor is of O(1) and the force is unscreened, whereas if rs ≈ R the
field profile is sourced only by the mass inside a thin shell and the force is screened. The essence
of chameleon screening, therefore, is that nonlinearities in the field conspire to remove the scalar
charge of the source over much of the object’s volume (this is often referred to as the thin shell

effect). For a spherical object, one can find rs by solving [72, 121, 122]

χ ≡ φ0

2αMpl
= 4πG

∫ R

rs

r′ρ(r′). (25)

If this equation has no solutions then rs = 0 and the object is fully unscreened. This will be the
case when

χ >
GM

R
= |Φ| (unscreened). (26)
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Hence, the Newtonian potential determines whether an isolated object is screened or not. For this
reason, χ is often called the self-screening parameter.

Figure 4: Thin shell screening. The field minimizes its effective potential inside the screening
radius but begins to roll to the minimum in the low-density background outside. Only the mass
outside the screening radius contributes to the fifth force.

One popular model that exhibits the chameleon mechanism is Hu-Sawicki f(R) gravity [81],
where one replaces the Ricci scalar in the Einstein-Hilbert action with

f(R) = R− a
m2

1 + (R/m2)−b
. (27)

This function is chosen such that in low curvature regimes such as the Solar System (R ≪ m) one
has f(R) ≈ R+O(Rb/m2b) so that deviations from GR are suppressed, whereas in cosmological
regimes f(R) ≈ R − am2(1 − (R/m2)−b) so that the theory looks like a cosmological constant
and small perturbations. Typically, one tunes a and m to match the ΛCDM background evolution
and the additional terms are seen as causing deviations from ΛCDM at the linear and nonlinear
levels. In terms of chameleons, one has n = −b/(1 + b) [72] so that −1 < n < −1/2 and
α = 1/

√
6. The only free parameter is the present-day cosmological background field value

fR0 = df/dR|z=0. This controls the level of screening and sets χ via fR0 = 2χ/3.

4.2.2 Symmetron screening

The symmetron [117] screens in similar manner to chameleons. Its equation of motion is also the
derivative of an effective potential

∇2φ =
dVeff

dφ
with Veff = −µ2

2

(

1− ρ

M2
s µ

2

)

φ2 +
λ

4
φ4, (28)

and the coupling to matter is α(φ) = Mplφ/M
2
s . There are then three free parameters, a quartic

self-coupling λ and two new mass scales µ, the field’s bare mass and Ms, which parameterizes
the coupling to matter. This effective potential can have two different shapes depending on the
density, as shown in Fig. 5. When ρ < µ2M2

s there are two degenerate minima located at

φ± ≈ µ√
λ

(29)
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so that the coupling to matter is |α(φ±)| = µMpl/λM
2
s , which can be O(1). Conversely, when

ρ > µ2M2
s there is a single minimum at φ = 0 so that α = 0 and the field does not couple to

matter. Inside rs one has φ = 0 (provided the object is dense enough, ρ > µ2M2
s ) so that the field

is unsourced. Outside rs, the field begins to roll to φ± where there is a non-zero matter coupling
α(φ±). As in the chameleon case, the fifth force is then sourced by the mass inside the shell
only. In particular, equations (23) and (24) hold with meff(φ0) → µ and α → α(φ0). The main
difference between the two mechanisms is that chameleons suppress the fifth force by having a
large mass in dense environments and α ∼ O(1) on all scales, while symmetrons have a low mass
on all scales and a small coupling to matter in dense environments. Another novel feature of the
symmetron is the possibility of having domain wall solutions where the boundary conditions are
such that the asymptotic field on different sides of a dense object can reside in different minima
[123, 124].

There are several variants of the symmetron including generalized symmetrons [125, 126]
and radiatively stable symmetrons [127, 128]. Another variant, which is less-well studied, is the
environment-dependent dilaton [118]. These theories screen in a similar manner to symmetrons
except that the suppression of the coupling to matter in dense environment is not due to a symmetry
breaking transition.

●

●

Figure 5: The symmetron effective potential. The red line is for ρ < µ2M2
s and the blue line is for

ρ > µ2M2
s .

4.3 Kinetic screening

4.3.1 Vainshtein screening

Vainshtein screening [119] works in a qualitatively different way to thin-shell screening: instead of
adding a scalar potential it changes the Laplacian structure of the Poisson equation. The Vainshtein
mechanism is very generic in modified gravity theories [129–132], and arises in DGP models,
generic Horndeski (and extensions) theories, and massive gravity (and extensions to multi-metric
gravity). The quintessential example is the scalar field theory known as the “galileon" because they
are invariant under the galilean transformation φ → φ + c + bµx

µ [29]. The two most common
examples of galileon theories are the cubic galileon, with equation of motion

∇2φ+
r2c
3

[

(∇2φ)2 −∇i∇jφ∇i∇jφ
]

= 8παGρ, (30)

and the quartic galileon with equation of motion

∇2φ+
r4c
4

[

(∇2φ)3 −∇2φ∇i∇jφ∇i∇jφ+ 2∇i∇jφ∇j∇kφ∇k∇iφ
]

= 8παGρ. (31)
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These contain familiar terms from the Poisson equation, the Laplacian and the matter sourcing,
and also a new kinetic term parameterized by the crossover scale rc

9. The screening is illustrated
in Fig. 6. There are two regimes of interest. When the new kinetic terms are negligible, one is left
with the Poisson equation and hence a fifth force that is a factor of 2α2 larger than the Newtonian
force. The difference arises when the Laplacian is negligible, in which case one finds that the fifth
force is given by

a5 = 2α2GM

r2

(

r

rV

)q

, (32)

where q = 3/2 for the cubic galileon and q = 2 for the quartic. The new scale

r3V =

{

4
3αGMr2c , cubic galileon√
2αGMr2c , quartic galileon

(33)

is the Vainshtein radius, which determines which of the two kinetic terms are dominant. If r < rV
then the galileon terms dominate and the fifth force is therefore suppressed by a factor of (r/rV)q.
The Vainshtein radius of the Sun (for theoretically interesting values of rc) is O(100 pc), showing
that the region outside massive bodies is screened to large distance. Far beyond rV, the fifth force
is again a factor of 2α2 larger than the Newtonian force and the theory can have cosmological
consequences.

Screened Unscreened

Figure 6: Vainshtein screening due to a point mass located at r = 0. The red curve shows the ratio
of the fifth- to Newtonian force outside the object.

The Vainshtein mechanism is not as efficient inside extended mass distributions. This is be-
cause equations (30) and (31) are total derivatives for spherically symmetric mass distributions
and so one has a nonlinear generalization of Gauss’ law. This means that only the mass inside the
radius r contributes to the field profile and so one has a radially-varying Vainshtein radius that is
smaller than the Vainshtein radius found using the total mass [133]. For extended distributions,
the galileon force profile is given by a5 = 2α2GM(r)/r2g(r/r∗(r)), where r∗(r)

3 = Cαr2cGM
with C = 16/3,

√

3/2 for the cubic and quartic galileon models respectively. The function g is
given by

g(ξ) =







2ξ3
(

√

1 + ξ−3 − 1
)

, Cubic galileon

ξ3 sinh
[

1
3 arcsinh

(

3
ξ3

)]

, Quartic galileon,
(34)

and is chosen so that the fifth force approaches the asymptotic solution a5 = −2α2GM/r2 at
large distances.

4.3.2 Vainshtein breaking: beyond Horndeski and DHOST

Theories in the beyond Horndeski and DHOST classes exhibit a breaking of the Vainshtein mech-
anism: it operates perfectly outside of extended objects, but inside the Newtonian and lensing

9Galileons have their roots in higher-dimensional brane world models where rc parameterises the scale at which
higher-dimensional effects are important, hence its name.
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potentials are determined by modified equations of the form [42, 46, 47, 103, 131]

dΨ

dr
= −GM

r2
− Υ1G

4

d2M(r)

dr2
(35)

dΦ

dr
= −GM

r2
+

5Υ2G

4r

dM(r)

dr
−Υ3G

d2M(r)

dr2
, (36)

where M(r) is the mass enclosed within radius r. The dimensionless parameters Υi characterize
the strength of the modifications and are very important from a cosmological point of view because
they are related to the αi parameters appearing in the effective description of dark energy [5, 21,
134]. In particular, one has

Υ1 = 4
(αH + (1 + αT )β1)

2

(1 + αT )(1 + αV − 4β1)− αH − 1
(37)

Υ2 = −4

5

αH (αH − αV + 2β1(2 + αT )) + β1αT (1 + (1 + αT )β1)

(1 + αT )(1 + αV − 4β1)− αH − 1
(38)

Υ3 = − β1 (αH + (1 + αT )β1)

(1 + αT )(1 + αV − 4β1)− αH − 1
, (39)

and so constraints on Υi directly constrain the cosmology of these theories10. Since beyond Horn-
deski theories and DHOST theories in particular can survive the GW170817 bounds on αT (de-
pending on the choices of free functions) there has been a recent interest in constraining these
parameters. Equations (35) implies that constraints could be placed using non-relativistic objects
(stars, galaxies, clusters) and equation (36) implies that lensing can also be used. One can effec-
tively set αT = 0 in equations (37)–(39) to apply astrophysical bounds to constrain the remaining
parameters [11] or impose more relations between the parameters by demanding that αT = 0
identically at the level of the functions appearing in the action [42, 47, 103].

It is possible to impose further restrictions on the class of DHOST theories to ensure that both
gravitational waves travel luminally over cosmological distances, and that gravitons do not decay
into dark energy (this requirement is highly constraining [49, 50]). In these cases, and further
restricting to theories that are stable and allow for the existence of Newtonian stars one finds a
different kind of Vainshtein breaking to that described above [135, 136]. Indeed, inside matter one
has

dΨ

dr
= −Gin

ΨM(r)

r2
,

dΦ

dr
= −Gin

ΦM(r)

r2
(40)

while outside matter, they become

dΨ

dr
= −Gout

Ψ M(r)

r2
,

dΦ

dr
= −Gout

Φ M(r)

r2
, (41)

where G
in/out
Ψ/Φ are again related to G and the parameters appearing in the effective description of

dark energy. In these theories, the Vainshtein mechanism is broken both inside and outside of
matter. Presently, the strongest bounds on the new parameters do not come from the astrophysical
probes considered in this work, instead they come from either solar system tests of post-Newtonian
gravity and the rate of the orbital decay of the Hulse-Taylor pulsar. For this reason, we will not
discuss them in what follows. Devising novel astrophysical probes of these theories that could
compete with other probes is certainly worthwhile, especially since, by design, they are able to
evade the stringent bounds on DHOST theories.

10Note that this assumes that the effects of the local environment on the field profile are negligible. This is typically a
good approximation because the radius of these objects is much smaller than the wavelength of the large scale galileon
field sourced by the local dark matter e.g. halos and filaments implying that the galileon’s field gradient is approximately
linear. The galileon symmetry (φ → φ + bµx

µ + c) ensures that adding a linear gradient to the solution leaves the
physics unaltered and so the field due to the local environment does not diminish the sensitivity to the cosmological
parameters.
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4.3.3 K-mouflage

One variant on the Vainshtein mechanism that has attracted attention recently is K-mouflage mod-
els [137, 138]. These are distinct from Vainshtein screening in that their equation of motion is a
non-linear analog of Gauss’ law. The simplest example is

∇i

(

∇iφ+ rc∇jφ∇jφ∇iφ
)

= 8παGρ, (42)

where rc is the analog of the crossover scale for Vainshtein screening. For a spherically-symmetric
source, the screening is very similar to Vainshtein screening (Fig. 6) in that there is a K-mouflage
radius rK inside of which the fifth-force is suppressed and outside of which the fifth-force is
unscreened and one has a5 = −2α2GM/r2. For example, inside the K-mouflage radius the
model in Eq. (42) gives [138]

a5 = 2α2GM

r2

(

r

rK

)
4

3

; r2K = 2αrcGM. (43)

One particularly interesting model that falls into the K-mouflage class is the DBIon [139].
K-mouflage screening models are less well explored than thin-shell and Vainshtein screening,

although there has been some recent work over the last few years studying their viability [140] and
their cosmology [141, 142], as well as some steps towards identifying cosmological probes and
placing constraints. These include linear probes [143], galaxy clusters [144], large scale structure
[145], and effects on non-linear scales [146]. We will not review novel probes of these models at
the present time, but we anticipate that future revisions will include such discussions as the study
of K-mouflage screening develops to the same stage as thin-shell and Vainshtein screening.

4.4 Observational signatures

4.4.1 Equivalence principle violations

Perhaps the most important difference between Vainshtein and thin-shell screening is that they vio-
late different equivalence principles. In particular, chameleons/symmetrons violate both the weak
and strong equivalence principle, for macroscopic objects, whereas Vainshtein-screened theories
violate only the strong equivalence principle [147–149].

The weak equivalence principle (WEP) is the statement that all weakly gravitating bodies
(whose mass does not receive significant contribution from gravitational binding energy) fall at
the same rate in an externally applied field regardless of their internal structure and composition.
Formally, one can consider a non-relativistic object at position ~x placed in an external gravitational
field Φext and scalar field φext. Its equation of motion is MI ~̈x = −MG

~∇Φext − QMG
~∇φext,

where MI is the object’s inertial mass and MG its gravitational mass, which can be thought of as
a “gravitational charge” that describes how it responds to an external gravitational field. Similarly,
we have defined a scalar charge-to-mass ratio Q that parameterizes the response of the object to an
external scalar field. In GR Q = 0 since the scalar is absent, and MI = MG = M . In scalar-tensor
theories one still has MI = MG, but now Q 6= 0. For the screening mechanisms above, one has,
in the limit that the object is a test mass,

Q =

{

α
[

1− M(rs)
M

]

, thin-shell screening

α, galileons, K-mouflage
. (44)

Galileons and K-mouflage models therefore satisfy the WEP11 whereas chameleons/symmetrons
violate it since the scalar charge depends on the screening radius, which in turn depends on the

11Note that this is only the case for a single isolated test mass interacting with a galileon field whose wavelength is
larger than the body’s extent. Two-body systems can violate the WEP due to the highly nonlinear nature of the equation
of motion [150–152]. Interestingly, the authors of [150] also find a 4% enhancement of the galileon force compared
with the one-body case. The WEP is also broken in more general Vainshtein-screened theories. Further investigation
of these effects may yield new novel probes.
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structure and composition of the object. It is worth emphasizing that all theories considered here
preserve the WEP at the level of the action. The WEP violation in chameleon and symmetron
theories arises because macroscopic screened objects lead to a strong distortion of the scalar field
profile, despite being in the weak-gravity regime.

The strong equivalence principle (SEP) is the statement that any two objects will fall at the
same rate in an externally applied gravitational field even if their self-gravity is considerable.
There are very few theories apart from GR that satisfy the SEP and scalar-tensor theories are
no exception. The violation of the SEP has its origin in the fact that the scalar couples to the
trace of the energy-momentum tensor (rather than the energy-momentum pseudo-tensor) so that
only non-relativistic matter contributes to the coupling and not the gravitational binding energy.
Another way of seeing this is that there is a powerful no-hair theorem [148] (see Refs. [153–155]
for exceptions) for black holes in generic scalar-tensor theories. The lack of scalar hair implies
that the scalar charge is zero.

4.4.2 Searching for screening

Having elucidated the properties of and differences between the screening mechanisms, we now
explain how to identify astrophysical objects in which to search for them. We begin with chameleon
and symmetron screening and then move onto Vainshtein screening.

As the level of thin-shell self-screening is set by an object’s Newtonian potential |Φ| = GM/R
(the object is unscreened for self-screening parameter χ > GM/R), identifying unscreened ob-
jects subject to fifth forces is tantamount to seeking those with low Newtonian potentials. Some
commonly used object are listed in Table 1 along with their characteristic Newtonian potentials.
On the face of it, the Earth and Moon should remain unscreened for very low background field
values, making them excellent probes of modified gravity. It is important to note however that
Φ receives an additional contribution from surrounding mass, and hence objects may be environ-

mentally- as well as self-screened. The Milky Way has a characteristic potential of O(10−6), and
hence environmentally screens the Earth and Moon for typical field values.

Some of the most useful objects for testing thin-shell screening are post-main-sequence stars
and dwarf galaxies. Post-main-sequence stars have masses of order their progenitor star’s mass
but radii 10 to 100 times larger, lowering their potential to 10−7 or less. In the case of galaxies,
the virial theorem relates circular velocity to Newtonian potential:

v2c ∼ GM

R
. (45)

Spiral galaxies have vc ∼ 200 km/s, giving GM/R ∼ 10−6, but dwarf galaxies have vc ∼ 50 km/s
so that GM/R ∼ 10−8. The strategy for searching for thin-shell screening effects is therefore to
seek dwarf galaxies that are not environmentally screened, i.e. that reside in voids. These galaxies
or their constituent post-main-sequence stars then serve as probes of screening. (We discuss the
observational determination of environmental screening in Sec. 9.4.) No astrophysical objects
have Φ . 10−8 (we are ignoring planets and smaller objects, which are typically screened by their
environment and not useful for constraining these theories), and hence only laboratory tests can
probe smaller values of χ [72]. Current bounds on χ imply that the these theories cannot act as
dark energy [156] but they may have effects on smaller scales. Indeed the effective mass in the
cosmological background is [126]

m2
eff ≈ H2

0

χ
, (46)

so taking χ <
∼ 10−7 (commensurate with current bounds; see Sec. 9) corresponds to a Compton

wavenumber k ≃ (0.1 Mpc)−1: the fifth force would only be operative on smaller scales i.e.
scales smaller than 0.1Mpc.

Galileons are harder to test on astrophysical scales due to their highly efficient screening and
nonlinear equations of motion. These make computing observables difficult. Indeed, the strongest
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Object Newtonian Potential Φ
Earth 10−9

Moon 10−11

Main-sequence star (Sun-like) 10−6

Post-main-sequence star (M = 1–10M⊙, R = 10–100R⊙) 10−7–10−8

Spiral galaxy (Milky Way-like, vc ∼ 200 km/s) 10−6

Dwarf galaxy (vc ∼ 50 km/s) 10−8

Table 1: Objects commonly considered as probes of thin-shell screening. The second column
shows surface Newtonian potential |Φ| = GM/R.

bounds until recently came from lunar laser ranging (LLR), which restricts fractional deviations
in the inverse-square law to 10−11 at the Earth–Moon distance [108, 109, 157, 158], allowing
deviations of the form of Eq. (32) to be constrained directly [159].

One promising test utilizes the violations of the strong equivalence principle discussed above,
which lead to interesting novel effects detailed in Sec. 9.6.2. Any system composed of both non-
relativistic and strongly gravitating objects (for example, a galaxy comprising a central super-
massive black hole as well as non-relativistic stars and gas) has the potential to exhibit violations of
the SEP. In some theories, in particular, beyond Horndeski and DHOST (Sec. 4.3.2), it is possible
that the Vainshtein mechanism is broken inside objects [46, 131, 160], which allows for additional
tests [132, 161–164] that we discuss in Sec. 9.7.

5 Surveys

In this section we describe the types of survey useful for constraining modified gravity, and list
future surveys that will be particularly important in this regard. The surveys are summarised in
Table 2, while the timeline for upcoming surveys is shown in Fig. 7.

5.1 Types of survey and available datasets

Several types of cosmological surveys are currently being carried out, which can roughly be di-
vided into the following categories:

• spectroscopic galaxy redshift surveys: Spectroscopic galaxy redshift sur-
veys probe the three-dimensional matter density field by measuring angular galaxy positions
and redshifts using spectroscopic methods. These redshifts are measured to high precision
(∆z/z . O(10−3)), as spectroscopy allows the identification of specific atomic transition
lines in galaxy spectra. Assuming a cosmological model to relate redshifts to distances,
these surveys can be used to measure the statistical properties of the galaxy density field.
The main applications include inference of the distance-redshift relation through measure-
ments of the Baryonic Acoustic Oscillations (BAOs) peak and measurement of the growth
rate of structure through the anisotropy imprinted on the 2-point function by redshift space
distortions (RSDs). BAOs are fluctuations in the matter density caused by acoustic waves
in the pre-recombination plasma, which show up as an enhancement in galaxy clustering
at a scale ∼ 150 Mpc today and allow constraints to be placed on the components of the
universe’s density budget that determine its expansion history (see e.g. Ref [165]). RSDs
are discussed further in Sec. 9.1. Other applications of spectroscopic surveys include the
study of cosmic voids or peculiar galaxy velocities. Current examples of these types of
surveys include the Baryonic Oscillation Spectroscopic Survey (BOSS) [166, 167] and its
extension (eBOSS) [168, 169], and WiggleZ [170, 171]. As measuring galaxy spectra is
time-consuming, spectroscopic samples typically consist on the order of millions of objects.
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• photometric galaxy redshift surveys: Photometric surveys infer galaxy red-
shifts from measurements of their fluxes in several wavebands, resulting in samples of hun-
dreds of millions of objects or more. Photometric redshift fitting codes usually rely on
representative spectroscopic training samples, which allow the measured redshifts to reach
accuracies of ∆z/z & O(10−2). Photometric galaxy redshift surveys can be used for galaxy
clustering, weak lensing and cluster clustering measurements, amongst others. Due to the
increased redshift uncertainties, these analyses are usually performed in 2D but some 3D
information can be retrieved through tomographic techniques. Examples for current and
completed photometric surveys include the Dark Energy Survey (DES) [172, 173], the Kilo
Degree Survey (KiDS) [174, 175], the Canada-France-Hawaii Telescope Legacy Survey
(CFHTLS) [176, 177], and surveys with the Hyper Suprime Cam (HSC) [178–180] on Sub-
aru.

• Cosmic microwave background surveys: Cosmic microwave background (CMB)
experiments measure the fluctuations in the temperature and polarization of the CMB. The
ratio of CMB to foreground emission peaks at frequencies between 40 and 100 GHz but
measurements are typically conducted in a range of frequencies between 10 and 300 GHz
(or higher, in some cases) in order to separate the CMB from Galactic and extragalac-
tic foregrounds. The primary CMB anisotropies probe the matter distribution at the last-
scattering surface, but the observed anisotropies also receive contributions from the inte-
grated Sachs-Wolfe (ISW) effect, gravitational lensing and the Sunyaev-Zel’dovich (SZ)
effect which probe the low-redshift universe. Examples of current and completed CMB ex-
periments include the Wilkinson Microwave Anisotropy Probe (WMAP) [181, 182], Planck
[183, 184], the Atacama Cosmology Telescope (ACT) [185–187], the South Pole Telescope
(SPT) [188–190], POLARBEAR [191] and BICEP/Keck [192].

• Intensity mapping surveys: Intensity mapping experiments forego identifying
individual objects and, instead, measure the intensity of radiation of a particular frequency
as a function of angular position, typically with emphasis on a particular atomic line. These
surveys are therefore sensitive to all sources of emission in some frequency range (galax-
ies, IGM, etc.) and by using the redshift of the line as a proxy for distance it is possible
to trace the three-dimensional structure of the universe to great distance. Current efforts
mainly focus on mapping the Hydrogen 21 cm line (HI) but other possibilities like CO or
CII are also considered. For instance, the Canadian Hydrogen Intensity Mapping Experi-
ment [193], based at the Dominion Radio Astrophysical Observatory in British Columbia,
Canada, is undertaking an HI intensity mapping survey in the frequency range 400 − 800
MHz, corresponding to 1 ≤ z ≤ 3, covering approximately 25, 000 deg2. The field of
line-intensity mapping is in its infancy but recently HI, CO, CII and Lyman-α line-emission
have been detected in cross-correlation using, amongst others, data from the Green Bank
Telescope [194].

5.2 Upcoming surveys

We are living in a golden age of survey science. An abundance of observational programs have
been proposed that will substantially increase the amount and quality of data with which we can
explore the various aspects of gravity discussed in this review. In what follows we will briefly
summarize the key surveys which, hopefully, will be rolled out in the next decade or so.

• DESI: The Dark Energy Spectroscopic Instrument [195, 196], based at Kitt Peak in Ari-
zona, will be used to perform a spectroscopic survey of over 30 million objects (lumi-
nous red galaxies, OII emitting galaxies, quasars and "bright" galaxies) out to a redshift
of z ∼ 3.5. The survey will cover about 14, 000 deg2.
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Survey Duration
Area

[sq.deg.]
z-range Survey properties Main probes

BOSS [166, 167] 2008 - 2014 10, 000 0− 0.7 nobj ∼ 1.5× 106 GCa, QSOsb

eBOSS
[168, 169]

2014 - 2020 7500 0.6− 3.5 nobj ∼ 1× 106 GC, QSOs, Ly-α

WiggleZ
[170, 171]

2006 - 2011 1000 < 1.0 nobj ∼ 2× 105 GC

DES [172, 173] 2013 - 2019 5000 0− 1.4
mlim,r = 24

nobj ∼ 3× 108
WLc, GC, clusters,

SNe Ia

KiDS [174, 175] 2013 - 2019 1500 z̄ ∼ 0.7
mlim,r = 24.9
nobj ∼ 3× 107

WL

HSC [178–180] 2014 - 2020 1400 z̄ ∼ 1
mlim,r = 26.1
nobj ∼ 1× 108

WL, GC, clusters,
SNe Ia,

WMAP
[181, 182]

2001 - 2010 full sky 1, 100
res. < 0.3◦

sens. ∼ 60µK arcmin
Td, Pd

Planck [183, 184] 2009 - 2013 full sky 1, 100
res. < 10 arcmin

sens. ∼ 45µK arcmin
T, P

ACT/AdvACT
[185–187]

2013 - 2019 1000/18, 0001, 100
res. ∼ 1 arcmin

sens. ∼ 30µK arcmin
T, P

SPT/SPT3G
[188–190]

2013 - 2023 500/2500 1, 100
res. ∼ 1 arcmin

sens. ∼ 17µK arcmin
T, P

DESI [195, 196] 2019 - 2024 14,000 0− 3.5 nobj ∼ 3× 107 GC, QSOs, Ly-α

PFS [197, 198] early 2020’s 2000 0.8− 2.4 nobj ∼ 1× 107
near-field cosm.,

GC, Ly-α

LSST [199–201] 2023 - 2033 20, 000 z̄ ∼ 1.2
mlim,r ∼ 27

nobj ∼ 2× 1010
WL, GC, SLe,

clusters, SNe Ia

WFIRST
[202, 203]

mid-2020’s 2000 1− 3
mlim,J ∼ 26.9

nobj ∼ 5× 108/
2× 107

WL, GC, SNe Ia

Euclid [204, 205] 2022 - 2028 15, 000 0.7− 2.1
nobj ∼ 5× 107/

1× 109
GC, WL

Simons
Observatory
[206, 207]

2021 - 2026 15, 000 1, 100
res. ∼ 1.5 arcmin

sens. ∼ 5µ K
T, P

CMB S-4
[208, 209]

mid-2020’s 8000 1, 100
res. ∼ 3 arcminf

sens. ∼ 1µ K arcminf T, P

SKA [210, 211] mid-2020’s 15, 000 < 2 nobj ∼ 1× 109 HI IMg, HI GC
HIRAX

[212, 213]
2020 - 2024 15, 000 0.8− 2.5 res. ∼ 5− 10 arcmin HI IM

CHIME [193] 2017 - 2023 25, 000 1− 3 res. ∼ 15− 30 arcmin HI IM
a GC: galaxy clustering.
b QSOs: quasars.
c WL: weak lensing.
d T: temperature, P: polarization (CMB).
e SL: strong lensing.
f According to Science Book specifications.
g IM: intensity mapping.

Table 2: Properties of a selection of past and current (above dashed line) and planned (below
dashed line) surveys.
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• PFS: The Subaru Prime Focus Spectrograph [197, 198] will construct a spectroscopic red-
shift survey of emission line (OII) galaxies in the redshift range, 0.8 ≤ z ≤ 2.4 covering
approximately 2, 000 deg2 down to apparent magnitude r ∼ 26.

• LSST: The Large Synoptic Survey Telescope [199–201], based in Chile, will undertake
a deep (reaching an r-band magnitude limit of r ∼ 27) and wide (20, 000 deg2) imaging
survey of the southern sky over 10 years. It will use photo-z for radial information and will
provide information on tomographic galaxy clustering and cosmic shear, strong lensing,
galaxy cluster counts and type Ia supernovae.

• WFIRST: The Wide-Field InfraRed Survey Telescope [202, 203] is a planned satellite mis-
sion that will carry out an imaging and a spectroscopic survey of 2, 000 deg2 (reaching a
J-band magnitude limit of J ∼ 27). This will result in an imaging catalogue of 500 million
galaxies and spectra of 20 million galaxies in the redshift range 1 ≤ z ≤ 3.

• Euclid: Euclid [204, 205] is a satellite mission to be launched in the early 2020s, which is
going to cover 15, 000 deg2 on the sky. It will determine the redshifts of 5× 107 galaxies in
the range 0.7 < z < 1.8 using an infrared spectrograph. It will further conduct a photomet-
ric survey of 109 galaxies in the redshift range 0 < z < 2. The spectroscopic data will be
used mostly for galaxy clustering, baryon acoustic oscillation and redshift space distortion
measurements, while the imaging data will be used to measure cosmic shear.

• SKA: The Square Kilometre Array [210, 211] is a partially-funded radio facility which will
be based in two sites – the Karoo region in South Africa and the Murchinson region in
Western Australia – and will consist of three instruments: SKA1-MID, consisting of 254
single pixel dishes covering 350 − 1760 MHz, SKA1-SUR, an array of 96 dishes with 36
beam-phased aperture arrays covering a similar frequency range, and SKA1-LOW, a set of
911 aperture array stations covering 50− 350 MHz. The SKA can be used for HI intensity
mapping and for measuring spectroscopic redshifts and the galaxy continuum.

• HIRAX: The Hydrogen Intensity and Real-time Analysis eXperiment [212, 213], based in
South Africa, is an HI intensity mapping survey covering a redshift range 0.8 ≤ z ≤ 2.5
with a sky coverage of 15, 000 deg2.

• Simons Observatory: The Simons Observatory [206, 207] is a CMB experiment cov-
ering 15, 000 deg2, at a resolution of 1− 2 arcmin with a sensitivity of approximately 5µK.
It will cover the multipole range 50 < ℓ < 3000 in temperature.

• Stage 4 CMB observatory (S4): Current ground-based CMB facilities will be
superseded by a coordinated, multi-site experiment [208, 209]. The aim is that the combined
instruments will map 40% of the sky with an rms noise sensitivity of ∼ 1µK arcmin in
temperature and beams with a ∼ 3 arcmin FWHM. This means that the S4 will effectively
cover the multipole range 30 < ℓ < 3000 in temperature and 30 < ℓ < 5000 in polarization.
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Figure 7: Timeline for future surveys.

6 Nonlinear structure formation: (semi-)analytic approaches

6.1 Nonlinear structure in GR vs. modified gravity

As structures in the Universe grow, the density fluctuations become larger than unity on small
scales and the structure formation enters in the non-linear regime. At large scales, density per-
turbations remain small and linear perturbation theory is applicable. However, these scales are
prone to cosmic variance and the bulk of information is available on non-linear scales in future
surveys. Thus, it is important to describe non-linear structure formation accurately in order to
distinguish modified gravity models from GR. Although cosmic variance becomes small on small
scales, there are increasing uncertainties from baryonic physics. Understanding of baryonic effects
is even more important in modified gravity models as they can be degenerate with the effects of
modified gravity. Screening mechanisms also play a role at small scales and it make it harder to
distinguish modified gravity models from GR.

In this section we summarise analytic and semi-analytic methods for describing the nonlinear
regime of structure in GR, and their extensions to modified gravity, discuss the impact of baryonic
physics on small scale structure and its degeneracy with the behaviour of gravity, and describe
estimators that have recently been developed for maximising sensitivity to deviations from GR.

6.1.1 (Semi-)Analytic approaches in GR

A key ingredient for predicting several important cosmological observables is the nonlinear matter
power spectrum. On quasi-linear scales, Eulerian Standard Perturbation Theory (SPT) provides a
way to predict the onset of nonlinearity (see [214] for details and references therein). The dark
matter particle number density in phase space obeys the Vlasov equation, which describes phase-
space conservation of the number density. In Eulerian perturbation theory, the Vlasov equation
is first approximated by the continuity and Euler equations by taking the first two moments of
the phase space density of dark matter particles and neglecting the stress tensor. These equations
describe the evolution of the density perturbation and velocity divergence. In SPT, these nonlinear
equations are solved perturbatively assuming smallness of these quantities. In order to obtain
the leading order correction to the linear power spectrum, the 1-loop power spectrum, solutions
for these quantities need to be obtained up to the third order in perturbations. The maximum
wavenumber kmax below which the SPT prediction for the matter power spectrum at 1-loop order
agrees with N-body simulation results is empirically determined by the following formula [215]:

k2max

6π2

∫ kmax

0
PL(q, z)dq < C, (47)

where PL(q, z) is the linear power spectrum at redshift z. The constant value C was calibrated
from N-body simulations in a ΛCDM model as C = 0.18 by imposing that the 1-loop SPT pre-
diction agrees with N-body results within 1% at k < kmax [215] (note that this value depends on
cosmological parameters, in particular on the amplitude of the linear power spectrum). Although
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this condition was calibrated in GR simulations, it gives a useful indication for the validity of the
perturbation theory even in modified gravity models such as f(R) and DGP models [216].

SPT is known to suffer from several problems, which can be traced back to the fact that it does
not consistently capture the effect of small-scale nonlinear perturbations on large-scale perturba-
tions. To overcome these problems, various improvements have been proposed. The 1-loop power
spectrum has the form

P (k) = G(k, z)2Pi(k) + PMC(k, z), (48)

where Pi is the initial power spectrum, G(k, z) is the propagator, which reduces to the growth
function D(z) at linear order, and the second term describes the mode coupling between different
k modes. The higher order loop corrections to the propagator can be resummed and the propagator
is modified to

G(z, k) = exp

(

−k2D2σ2
v

2

)

D(z), (49)

where σv is the linear velocity dispersion. Renormalised Perturbation Theory (RPT) approaches
are based on this resummation of the propagator [217]. Recently there has been a debate on
the validity of this resummation. It was pointed out that this exponential damping disappears if a
similar resummation is performed for the mode coupling term [218, 219]. Also the resummation of
the propagator breaks the Galilean symmetry of the original equations [220]. The Effective Field
Theory (EFT) of Large Scale Structure takes a different approach [221, 222]. In this approach,
only the effect of large-scale modes on the BAO feature is resummed. This leads to the damping
of the BAO feature, leaving the smooth part of the power spectrum untouched. The effect of
ultraviolet (UV) modes is included in the form of the counter term and this counter term needs to
be calibrated using simulations or observations.

On fully nonlinear scales, the halo model [223] gives an intuitive understanding of how the
nonlinear power spectrum should look like. It assumes all matter in the Universe to be located
in virialized structures, or halos. This allows one to compute the statistics of the matter density
field such as the power spectrum from the spatial distribution and density profiles of halos. In
order to fit simulations, however, the halo model approach needs to be tweaked by introducing
several free parameters. The most widely used approach is the one proposed by Ref. [224]. In
this approach, there are seven parameters that need to be calibrated by simulations. The key
input in this approach is the variance of the linear density perturbations smoothed on a comoving
scale R. Another approach is to provide a mapping between the linear power spectrum PL(k)
and the nonlinear power spectrum. The halofit model provides fitting formulae for this mapping
calibrated from a suite of N-body simulations [225]. The fitting formula was revised by Ref. [226]
and this is now widely used to predict the nonlinear power spectrum for a given linear power
spectrum computed by the linear Einstein-Boltzmann code such as CAMB and CLASS. Finally,
there are attempts to create emulators for nonlinear power spectra using a carefully chosen sample
set of cosmological simulations and provide accurate predictions over the wide parameter space
[227, 228].

6.1.2 (Semi-)Analytic approaches in modified gravity

The approaches developed for GR can be extended to compute nonlinear power spectra in mod-
ified gravity. The main complication comes from the screening mechanism. Screening modifies
the Poisson equation so that the relation between the Newton potential and density becomes non-
linear. In the perturbation-theory approach, this nonlinear Poisson equation can be expanded in
terms of the density field and the 1-loop power spectrum can be computed [216, 232]. Another
complication arises in chameleon screening. In this case, due to the mass of the scalar field, the
linear growth function becomes scale dependent and the higher order solutions in SPT need to be
computed numerically [233, 234]. The regime of validity of perturbation theory is then expected
to be a function of the field mass. An EFT approach has been applied to DGP models in Ref. [235].
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Figure 8: A comparison of the ratios of power spectra for f(R) models compared to an equivalent
LCDM model for |fR0| = 10−4 (top), 10−5 (middle) and 10−6 (bottom) at z = 0 (left-hand
column) and 1 (right-hand column). We show the power spectrum from the simulations of Li et
al. ([229]; blue points) together with that from two versions of the halo model; that of Mead et
al. ([224], short-dashed; black) and Mead et al.([230] solid; black). The former does not take into
account chameleon screening and thus over-estimates the deviation from GR. We also show the
MG-HALOFIT model of Zhao ([231]; long-dashed; red) that was fitted to the same simulation
data as shown (amongst others) and provides a better fit. From Ref. [230].

The halo model or halofit model predicts the nonlinear power spectrum for a given linear
power spectrum. Since these models were developed in GR, screening mechanisms are not taken
into account. As a consequence, a naive use of these approaches by just replacing the linear power
spectrum by the one in modified gravity over-predicts deviations from GR because it does not
account for the suppression of the fifth force due to screening [236, 237]. Thus these approaches
need to be modified in the presence of screening. For an f(R) gravity model, an extension of
halofit was developed in Ref. [231]. The halo model has also been extended to include the effect
of screening through the modification of spherical collapse model parameters [238–240]. Fig. 8
shows the comparison of these approaches for the ratios of power spectra for f(R) models com-
pared to ΛCDM [230]. Ref. [241] proposed a method to use the reaction of a ΛCDM matter power
spectrum to the physics of an extended cosmological parameter space by adopting the halo model
and nonlinear perturbation theory. Emulators of the deviation from ΛCDM matter power spectrum
in Hu-Sawicki f(R) models were presented in Ref. [242].

On linear scales, there is a well-defined connection between the statistics of galaxies and that
of matter (see Ref. [243] for a review), known as bias. It is important to take into account that, if the
growth in the model is scale-dependent, then the bias relation also becomes scale-dependent [244].
A particularly interesting target is the cross-correlation of two galaxy populations differing in bias
or screening properties, which leads to parity breaking in the relativistic correlation function that
enhances sensitivity to fifth forces [245]. Note however that in many viable models, these effects
only appear on scales that are already moderately nonlinear (see Fig. 8), so that nonlinear effects
(including nonlinear galaxy bias and velocity bias) present in GR need to be taken into account
carefully. The modification to the Euler equation leads to the appearance of new terms in the
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spherical harmonic expansion of the correlation function, which may be observable with present
and upcoming spectroscopic surveys such as DESI [246, 247]. The octopole in particular may
provide a relatively clean probe of screening per se (especially at higher z), as opposed simply to
the modified growth rate in the cosmological background which shows up predominantly in the
dipole [248].

Finally, it is worth noting that statistics beyond the power spectrum may be useful for breaking
degeneracies between the parameters of ΛCDM and modified gravity. For example, the conver-
gence power spectrum is degenerate between fR0 and σ8 and Ωm. This degeneracy can however
be broken with information from the bispectrum and/or clustering statistics based on peak counts
[249].

6.2 Baryonic effects and small scale structure

Any effect that impacts nonlinear scales is a potential systematic for tests of modified gravity. A
notable example is the effect of baryons, which is able to alter appreciably the distribution of total
matter on small scales, and consequently lead to biased cosmological constraints if not properly
accounted for (e.g. [250, 251]). We begin this section with a general discussion of the effects of
baryons on the clustering of matter, before going on to discuss methods to incorporate them in
modified gravity predictions, and some degeneracies that arise.

The fact that baryons are subject to pressure forces which become relevant below their Jeans
scale immediately implies modifications to the distribution of total matter, compared to a case in
which structure formation takes place only under the influence of gravity. For example, gas loses
energy via radiative cooling as it falls into gravitational potential wells, which makes it easier
to trigger the formation of high-density structures such as gas and stellar disks. As baryons fall
towards the centre of potential wells they drag dark matter gravitationally, via a process known
as adiabatic contraction [252–254]. Both these effects enhance the clustering power on scales
k > few × h/Mpc (ℓ & 3000− 5000 in weak-lensing spectra) [255, 256].

There are however also baryonic processes that work to suppress the amplitude of the matter
power spectrum. First, beyond galactic scales, the hot gas found in the intra-cluster medium (ICM)
is more diffuse than dark matter in clusters, which reduces power relative to N-body predictions on
scales below a few Mpc [259]. Second, and perhaps most importantly for weak-lensing applica-
tions, the violent ejections of matter from both supernova (SNe) and active galactic nuclei (AGN)
can redistribute matter out to scales of the halo virial radius. SNe are the primary cause of mass
loss below the knee in the galaxy stellar mass function (M∗ ≈ 1011M⊙), and AGN the primary
cause above. For example, the OWLS simulation suite [260] includes nine baryonic physics mod-
els, differing in the description of AGN, SNe, gas cooling and stellar initial mass function (IMF).
These models were intended to span a range of a priori plausible possibilities for baryonic physics,
making them a useful reference point for the impact of baryons as well as a testbench for empirical
and semi-analytic parametrisations. Current state-of-the-art cosmological hydrodynamical simu-
lations, such as EAGLE [261, 262], Illustris and IllustrisTNG [263–265], MassiveBlack [266] and
Horizon [267, 268], all include prescriptions for AGN feedback which is thought to be a crucial
ingredient to bring the results of these simulations closer to observations. The baryonic impact on
the power spectrum measured from these simulations is shown in the left panel of Fig. 9. Current
simulations agree qualitatively on the main changes to the power spectrum, namely a suppression
of power on scales k & 1h/Mpc due to AGN feedback and a turnaround on scales k ≈ 10 h/Mpc
due to adiabatic cooling. A point to stress however is that these simulations disagree on the exact
magnitude of the effects, which can be traced back to differences in the physical implementa-
tion of baryonic physical processes on scales below the resolution scale of these simulations (the
so-called sub-grid physics). This uncertainty is a considerable hurdle for constraining additional
parameters beyond ΛCDM, e.g. those of modified gravity.

Refs. [258, 269, 270] have recently made progress on understanding the interplay between
modified gravity and baryonic effects by presenting the results of a first set of full modified gravity
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(a) (b)

Figure 9: (a) The change in power spectrum due to baryonic effects as a function of scale,
compared between the Horizon, OWLS, Illustris and EAGLE simulations. Reproduced from
Ref. [257]. (b) Competition between baryonic and modified gravity effects: on scales k &

2 h/Mpc, baryonic effects can noticeably suppress (solid green and blue) the enhancement in
clustering power due to the fifth force (dashed green and blue) in f(R) models. Reproduced from
Ref. [258].

(f(R)) galaxy formation simulations (see Sec. 7 below for a discussion on N -body methods in
modified gravity). These are shown to produce a number of baryonic observables that are in broad
agreement with observations, including the formation of disk galaxies similar to our Milky Way.
One of the key findings is that for weaker modified gravity (e.g. Hu-Sawicki |fR0| = 10−6), the
effects of baryons and modified gravity are separable and additive, while for stronger models such
as |fR0| = 10−5 the two effects are coupled which require full simulations to reproduce. Fig. 9b
shows the impact on the total matter power spectrum; the competing effects between the fifth force
and AGN feedback are apparent, but the scale-dependence is different so the degeneracy is not
perfect. The work of Refs. [258, 269, 270] also shows that the properties of baryonic matter, such
as stars, gas, neutral hydrogen and black holes, can be significantly affected by modified gravity
in a way that is not captured in detail by simple analytic models. While simulations are required
to track the full impact of baryons on matter clustering, they are computationally expensive to
run. This makes it infeasible to marginalise over baryonic effects to constrain physics such as
modified gravity by simulating the full range of possible baryonic and gravitational models. Effort
is therefore being devoted to the development of empirical or semi-analytic models that capture the
effects of baryons with some free parameters that can be marginalized over in real data analyses.
A convenient framework for this is the halo model, in which the impact of baryons can be captured
by modifications to the assumed density profile of dark matter haloes [224, 250, 271–273]. For
example, Ref. [224] proposed an augmented halo model that includes two parameters that govern
the inner halo structure and which is able to describe the power spectrum in each of the OWLS
simulation variants at the . 5% level. In Ref. [230] this halo model is further extended to account
for the effects of chameleon and Vainshtein screening, enabling the degeneracies between modified
gravity and baryonic effects to be investigated. They find that while baryons mostly affect internal
halo structure, modified gravity effects impact also the halo distribution, thereby making their
effects potentially distinguishable (this is in line with Fig. 9b from modified gravity simulations
of galaxy formation).
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Other methods besides halo model modifications have been developed for the purpose of deter-
mining and accounting for the effect of baryons on the power spectrum. One is based on principal
component analyses (PCA), where one possible goal is to identify and discard the PCA compo-
nents of the data vectors that are most contaminated by baryonic effects, which yields less de-
graded parameter constraints compared to simply discarding the small-scale elements of the data
vectors [274–276]. Other approaches are built on perturbation theory [277], or more straightfor-
wardly on fitting empirical functions to hydrodynamical simulation results [278]. Absent precise
knowledge of baryonic effects, a combination of approaches will likely be necessary to maximise
the scientific return of future surveys aimed at extending lensing power spectra to quasi- and non-
linear scales. This is especially important for the case of tests of gravity given the degeneracies
that may arise.

6.3 Novel estimators for the nonlinear regime

The screening effects of modified gravity models suppress deviations from general relativity in
high-density regions. These regions, however, contribute most to the matter power power spec-
trum in the nonlinear regime on small scales, which renders a detection of a potential modification
of gravity more difficult. In Refs. [279–284], it was therefore proposed that the up-weighting of
low-density, unscreened, regions in the calculation of the 2-point statistics would enhance the de-
tectability of a modification. Moreover, by considering different weights, one could more readily
discriminate gravitational modifications from baryonic effects or new fundamental physics that
can yield degenerate contributions in the power spectrum. Density-weighting has been studied for
marked correlation functions [280], density transformations [285], and clipping [286, 287].

The truncated density field in clipping [286, 287] is given by

δ̃ = δc(~x) =

{

δ0 , δ(~x) > δ0 ,
δ(~x) , δ(~x) ≤ δ0 ,

(50)

for an overdensity δ(~x) at position ~x. The transformation was applied in Ref. [279, 282] to f(R)
and more general chameleon models as well as nDGP gravity. A percent-level measurement of
the clipped power spectrum at k < 0.3 h/Mpc would improve constraints on f(R) gravity to
|fR0| . 2× 10−7 [279].

Motivated by the observation that the nonlinearly evolved density field is well described by a
lognormal distribution even though the initial density field is nearly Gaussian, Ref. [285] proposed
the logarithmic transformation of the density field

δ̃ = ln(δ + 1) . (51)

The transformation in Eq. (51) also reduces the relative weights of high-density regions in the
calculation of 2-point statistics. The transformation was applied to f(R) gravity in Ref. [279,
281, 282] and symmetron models in Ref. [281, 282]. A generalization and optimization for testing
modifications of gravity with Eq. (51) was proposed in Ref. [281]. Finally, Ref. [280] proposed
marked correlation functions [288] to re-weight the density field. An analytic function of this
transformation is given by [282]

δ̃ =

(

ρ∗ + 1

ρ∗ + ρ̄(δ + 1)

)p

, (52)

with free parameters ρ∗ and p.
Ref. [282] compared the performance of the density transformations, Eqs. (50), (51), and (52),

in enhancing the signal-to-noise, finding that the marked transformation performs best for scales
k < 2 h/Mpc whereas clipping performs better when including smaller scales k > 2 h/Mpc.

The above studies considered the ideal cases of upweighting certain regions of the dark matter
density field, which is not directly observable. In observations, weak lensing tomography can be
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used to reconstruct the 3D large-scale distribution of matter, but the current data quality is still not
sufficient for applying the above density weighting schemes to test gravity. An alternative way is
to apply similar weighting schemes but to the 2D cosmic shear or weak lensing peak fields instead
of the 3D matter density field. Finally, the density-weighting schemes can be applied to 3D tracer
fields of the large-scale structure, such as galaxies, galaxy clusters or quasars, of which the most
interesting one is the galaxy field, for which one can have high tracer number density and probe
low redshift (where modified gravity effects are stronger). The practical challenge, however, is the
lack of a reliable model to predict how galaxies populate the dark matter field from first principles,
in particular in modified gravity models. In particular, the (unknown) physics of galaxy forma-
tion could have degenerate effects on the 2-point statistics with those of density weighting (see
Sec. 6.2). No matter which gravity model is the correct one it must produce a galaxy distribution
that is in agreement with real observations. Following this logic, Refs. [283, 284] produced mock
galaxy catalogs for different f(R) scenarios, by tuning an empirical galaxy populating model in
each of them individually, which have the same projected 2-point correlation function. They found
that this greatly reduces the difference in the marked correlation functions of these models for var-
ious marks including the one described in Eq. (52). This is hardly surprising given that the marks
are defined using the galaxy field itself, which has been fixed against observations for the different
gravity models. Refs. [283, 284] proposed to include additional information in the marks, e.g., the
masses or gravitational potentials of the host haloes of the galaxies, and found that this increases
the differences in the marked correlation functions. The challenge then becomes how to find such
additional information that can be reliably measured from observations (see also Sec. 9.4).

7 Cosmological simulations

N-body simulation codes are currently the most reliable tool to predict the distribution and evolu-
tion of matter in the nonlinear regime of structure formation. This is true for any theory of gravity,
but for the case of theories with screening the importance of N-body simulations is even stronger.
This is because they are currently the only means to accurately investigate the types of signatures
that the screening mechanisms – which are themselves nonlinear phenomena – leave on large scale
structure. Being numerically expensive, these simulations cannot (at least yet) be used in thorough
explorations of theory space, nor for running Monte Carlo constraints on the parameter space of
specific theories. However, by focusing on a small number of representative models, N-body sim-
ulations of modified gravity have taught us a great deal about the types of signatures predicted for
the nonlinear regime of structure formation and what observational tests can be designed to detect
those signatures.

The first simulations of the Hu-Sawicki f(R) model were performed in Ref. [236] on a fixed-
resolution (i.e., no mesh refinement) grid using the Newton Gauss-Seidel relaxation method. This
code was subsequently adapted for simulations of the DGP model in [289, 290]. The latter model
was also simulated using a fixed grid, but with a different (the so-called FFT-relaxation) algorithm
[291]. Shortly afterwards, adaptive mesh refinement (AMR) simulations for a range of modified
gravity models [237, 292–297] were developed by modifying the N-body code MLAPM [298];
these were however serial simulations with limited efficiency.

The field of modified gravity simulations took a significant step forward with the development
of parallel AMR codes, which allow for computationally affordable investigations of matter clus-
tering on scales that would be difficult to be resolved with fixed grid or serial AMR codes. These
include the ECOSMOG code [299], which is built on RAMSES [300]; the MG-GADGET code [301],
which is a modified version of GADGET3 [302]; the ISIS code [303], also a modified version of
RAMSES; and a modified version [258] of the moving mesh N-body and hydro code AREPO [304].
Some of these codes (together with the DGP code of Refs. [289, 290]) were compared in a code
comparison paper [305]. At the time of writing, these codes are not all able to simulate the same
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classes of models12.
In this section, we briefly review the main features of modified gravity N-body algorithms and

recent developments in the validation and optimization of these methods13. The code comparison
paper [305] is also a useful first read about these simulations, and a more thorough discussion of
simulation techniques in modified gravity models is given in [308].

7.1 The algorithm: relaxations with multigrid acceleration

In gravity-only N-body simulations, the nonlinear evolution of the total matter density in the uni-
verse is followed by sampling it with N-body tracer particles, with positions and velocities deter-
mined by the total force they experience at a given time step. In modified gravity simulations,
under the so-called weak-field (WFA) and quasi-static (QSA) approximations (see Sec. 7.2 be-
low), this force is given by −∇Φ, with the gravitational potential Φ obeying a modified Poisson
equation of the form

∇2Φ = 4πGδρ+ f(φ,∇φ,∇2φ, · · · ), (53)

where the density perturbation δρ is determined by the particle distribution in a given time step and
f is some model-specific function of a scalar field and/or its (usually spatial) derivatives. The first
term in the RHS of Eq. (53) is given by the standard Poisson equation in Newtonian gravity. The
scalar field φ obeys a nonlinear Klein-Gordon equation, which in the weak-field and quasi-static
approximations can be cast in the following generic form:

L [φ; δρ] = S (δρ) , (54)

in which L is a model-specific nonlinear derivative operator acting on φ (which can depend on
the density perturbation δρ) and S is a function of δρ that sources the scalar field. The simulation
particles are evolved according to

ẍ+ 2Hẋ = −~∇Φ, (55)

which is as in standard Newtonian simulations14, just with a modified dynamical potential, Φ. The
main objective of the modified gravity algorithms is to solve Eq. (54) to then be able to construct
the extra term f(· · · ) in the modified Poisson equation Eq. (53). Once this correction is found, the
N-body calculation proceeds as in standard Newtonian simulation codes.

Since the scalar field φ obeys a nonlinear field equation, it is in general not possible to solve for
the modified forces using pairwise force summation, as done in the tree algorithm for Newtonian
N-body simulations. Instead, Eq. (54) is solved using the finite-difference method on a grid. The
current state-of-the-art modified gravity N-body codes solve Eq. (54) with AMR, which makes use
of a suite of grids that refine in high matter density. This ensures sufficiently high force resolution
where it is needed, while saving computational time in regions of fewer particles, where the force
resolution can be lower. The algorithm consists of taking a discretized version of Eq. (54) defined

12Also, none of these codes is currently publicly available, though interested readers could write to their authors to
request copies of some of them.

13In accordance with the scope of this review, in this section we only focus on cosmological simulations that probe
phenomena on scales that are relevant to cosmological/astrophysical tests, and therefore do not review the numerical
simulation methods for strong field applications such as stellar collapse, black-hole mergers, etc. (see, e.g., Ref. [306]
for a review). Furthermore, a remark should made that all the modified gravity simulation codes mentioned here work
for the Newtonian limit; indeed, there has been recent progress towards simulating modified gravity in the general
relativistic regime, e.g. with the advent of the fRevolution code [307].

14Throughout this section, we use the terminology ‘Newtonian simulations’ rather than ‘GR simulations’ for usual
simulations of the ΛCDM model, to avoid potential confusion with ‘general relativistic simulations’, which aim to solve
Einstein equations beyond the Newtonian-type Poisson equation.
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on the AMR grid and updating the values of φ in grid cells using some relaxation arrangement
until convergence is reached. Effectively, the algorithm solves the equation

T ℓ
ijk ≡ L

[

φℓ
ijk

]

− Sℓ
ijk = 0, (56)

where {ijk} is the cell index and ℓ is the refinement level. The iterations can be carried out with
the Newton-Gauss-Seidel (NGS) method, in which the value of the scalar field is updated as

φnew,ℓ
ijk = φold,ℓ

ijk −
T ℓ
ijk

∂T ℓ
ijk/∂φ

old,ℓ
ijk

, (57)

in which the evaluation of T ℓ
ijk often involves the values of φ in neighbouring cells. The iterations

proceed until a sufficiently good solution to Eq. (56) is obtained which, in practice, is achieved
by checking if certain statistics of T ℓ

ijk over the whole AMR structure, s(T ) (e.g., the root-mean-
squared, the mean of the modules or the maximum of the modules of Tijk in all cells) drops below
some pre-specified threshold, or if the estimated error in the solution is already much smaller than
the truncation error from discretizating the continuous equations on a grid.

During the first few Gauss-Seidel iterations, the value of s(T ) usually decays quickly, showing
that the numerical solution is converging towards the true solution. But the convergence becomes
slower afterwards, because the Fourier modes of the error with wavelengths larger than the grid
size are slow to reduce. To circumvent this problem, and hence improve the performance of the al-
gorithm, most codes make use of multigrid acceleration (see, e.g., Ref. [309] for an introduction),
in which a hierarchy of coarser grids is used to help reduce the long-wavelength Fourier models
of the error and speed up the convergence. In practice, the operation goes as follows. Once the
convergence becomes too slow on a level ℓ, the equation is interpolated to a coarser grid labelled
as ℓ−1, where the larger grid cell size helps to reduce longer-wavelength modes of the error. This
process can continue for several coarser levels ℓ − 2, ℓ − 3, · · · . The coarser-level solutions are
subsequently interpolated back to level ℓ where the solutions to φℓ

ijk are corrected. If convergence
has still not been reached (i.e., s(T ) is still not small enough), then the process – called a multigrid
cycle – is repeated. There are different ways to arrange the multigrid cycle, such as V-cycles and
W-cycles.

Eq. (57) is analogous to using the Newton Raphson method to solving a nonlinear algebraic
equation. This ‘Newton’ part is an approximation to the nonlinear algebraic equation which causes
additional error in the solution φℓ

ijk; this additional error actually accounts for a substantial fraction
of the time spent on NGS relaxations, because the highly nonlinear nature of the equation makes
it hard to reduce. However, in certain cases it is possible to make a field redefinition, φijk → uijk,
so that uijk satisfies a different nonlinear algebraic equation, usually up to cubic or quartic order,
that can be solved analytically. This enables one to solve Eq. (57) directly without having to resort
to the Newton approximation, therefore greatly improving the performance of the algorithm. An
application of this trick to the Hu-Sawicki f(R) model is given in Refs. [258, 310], but it should
be noted that although this method can be applied to a wide variety of modified gravity models of
interest, it does not work in general cases. Still, a lesson from this is that, if a field redefinition can
make the equation less nonlinear, then the performance can be greatly improved.

Another way to improve the performance of these simulations is to first manipulate the target
equations – in particular those involving nonlinear terms of the partial derivatives of φ – analyti-
cally and try to recast them into a more numerically stable form. For instance, the first simulations
of DGP gravity [289, 290] iterate an equation which, due to φijk appearing in not only the operator
L but also the source term S in Eq. (54), was numerically unstable and suffered from slow conver-
gence. Ref. [311] subsequently demonstrated that, after using an operator-splitting trick [291] to
rewrite Eq. (54) and get rid of φijk from S , it was possible to make the relaxation iterations stable
and fast to converge. The operator splitting method was generalized and implemented in simula-
tions of more complicated Vainshtein screening models, like Quartic Galileon, in Ref. [312].
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The general algorithm outlined above applies to virtually all simulations of modified gravity
models with screening. The details of the discretisation and implementation of the field equations,
however, differ in models with different screening mechanisms.

7.2 The validity of the quasi-static approximation

To date, the majority of simulations of modified gravity models have been performed in the weak
field and quasi-static approximations. The WFA essentially states that the amplitudes of the scalar
field perturbations (δφ/MPl) and gravitational potentials are much smaller than the speed of light
squared, so that we are far away from relativistic strong-field regimes, which is true on cosmolog-
ical scales. On the other hand, the QSA amounts to a special treatment of terms involving time
derivatives of the scalar field perturbation ( ˙δφ = φ̇− ˙̄φ), by assuming that it can be neglected when

compared with terms which involve spatial gradients of φ, i.e.,

δ̈φ ∼ H( ˙δφ) ∼ H2φ ≪ ∇2φ = ∇2(δφ) . (58)

A number of studies exist which addressed the validity of the QSA. For example, focusing on
f(R) models and working in linear perturbation theory, Ref. [313] confirmed that the use of the
quasi-static approximation on sub-horizon scales is not a worry if certain observational viability
conditions are met (which are the case for the models that would be simulated anyway). Ref. [314]
included time derivatives in N -body simulations of the Hu-Sawicki f(R) using an implicit method
(i.e., the time derivative of the scalar is evaluated with a backward finite difference using the value
at the previous time step), and found virtually the same probability distribution function of the den-
sity field and power spectrum of density and velocity fields, compared to simulations run under
the quasi-static approximation. For Vainshtein screening models, the linear small-scale limit was
found to be independent of the time derivatives in the Galileon models [315] and for Horndeski
theories in general [316]. Ref. [289] demonstrated the validity of the quasi-static approximation
in simulations of DGP gravity with self-consistency tests, and Ref. [317] demonstrated explicitly
that the quasi-static approximation works well by studying the evolution of spherically symmetric
structures in the DGP and Cubic Galileon models (see also Ref. [318]). To our knowledge, there
has been no explicit check of the validity of the QSA in simulations of more complicated theories
such as Quartic & Quintic Galileon and beyond Horndeski models to date. These can be partic-
ularly interesting since their field equations can contain terms such as ∇2φ̇ = ∇2 ˙δφ ∼ H∇2δφ,
that are not necessarily negligible compared with other terms, and must therefore be treated care-
fully.

There are, on the other hand, models for which we do know the QSA is not a good approxi-
mation. One example is the symmetron model [117], in which the scalar field φ stays at its true
vacuum with φ = 0 in high-density regions and early times, but develops two possible vacuua with
±|φ∗| (where φ∗ depends on the model parameters) in low-density regions and late times. Dis-
connected spatial regions can relax to either of the two vacuua, and a domain wall forms at their
boundaries. Consider, for example, a bubble where φ = −|φ∗| that is surrounded by much larger
regions where φ = |φ∗|: as structure formation proceeds, it may be energetically more favourable
for the bubble to take φ = |φ∗| as well, and there can be a fast transition of φ = −|φ∗| → |φ∗|
which means that the time derivative of δφ can be non-negligible. A non-quasi-static code that ex-
plicitly evolves the scalar field in time with a leap-frog method was developed in Ref. [303, 319].
Using this code, in Ref. [320], the authors ran N-body simulations of the symmetron model in and
without the QSA to conclude that the impact on standard matter statistics is negligible, despite
the formation of interesting domain wall effects in the distribution of the scalar field in the non-
quasi-static cases. Furthermore, Refs. [321, 322] studied the impact that propagating scalar waves
in the symmetron model (which arise from the full non-QSA equations) have on the screening
efficiency in the Solar System. The conclusion was that for realistic directions of propagation of
the incident scalar waves, the effects of scalar waves are negligible, i.e., the QSA remains a valid
approximation.
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In general, the QSA approximation is expected to fail on scales comparable or larger than the
scalar field horizon, which is set by the propagation speed of its fluctuations [323]. However, most
N-body simulations of modified gravity to date probe scales that are well within the corresponding
scalar field horizons, which is the justification behind the adoption of the QSA. Various recent
works have thus concluded that the QSA for the evolution of φ is not a source of concern in N-
body simulations of modified gravity. We note however that the tests have so far been focused on
existing classes of screened modified-gravity theories (such as f(R), Vainshtein and symmetron
models), and that similar tests will need to be performed as new theories are developed.

7.3 Approximate speed-up methods

The simulations of modified gravity are notoriously slow compared to their standard gravity coun-
terparts even with parallelization. This is because of the numerically demanding relaxation itera-
tions that take place when solving Eq. (54). On the other hand, the exploitation of the data from
future surveys would benefit greatly if analysis pipelines can be validated and calibrated using
mock catalogues constructed from simulations of different theories of gravity. The construction of
these mocks with the resolution and volumes required for these surveys therefore motivated efforts
to improve the performance of modified gravity simulation algorithms. We have mentioned above
that field redefinition to make the equations less nonlinear is one way to achieve this, but there are
various other possibilities, mostly involving some approximations (see Ref. [324] for a recent re-
view). Being approximate methods, these are less accurate than full simulations; nevertheless, the
idea is that they can still be tremendously helpful in certain applications and/or regimes, provided
that we understand their limitations and possible implications.

An example of such efforts is that undertaken by Ref. [325] (inspired by Ref. [326]), in which
instead of solving Eq. (54) numerically, one solves a linearised version of it with an analytic
screening factor derived by assuming spherical symmetry. Concretely, Eq. (54) becomes ∇2φ =
Sscreen (δρ) with Sscreen being some nonlinear function of the density that takes screening into
account and that recovers the linear theory result if δρ ≪ ρ̄. This way, the scalar field equation
can be solved with the same fast methods used for the standard Poisson equation, effectively only
doubling the computational cost of the gravity calculation in the N-body code. In their simulations,
the authors demonstrate that they can recover the power spectrum of the full simulations to better
than 3% accuracy up to k . 1 h/Mpc (the agreement improves with decreasing k). The predicted
mass functions also agree relatively well with the results from full simulations, but it would be
interesting to extend the comparison to other statistics, namely those associated with the lowest
density regions like void counts and void profiles.

In the standard algorithm, the iterations of Eq. (54) need to be performed for (i) every simula-
tion time step; (ii) all cells on a given AMR level; and (iii) for every AMR level. Every time the
code enters a new refinement level, the time step is halved and the number of time steps doubled
to ensure numerical accuracy. Therefore, while a simulation generally consists of a few hundred
coarse time steps on the non-AMR level, there can be tens of thousands of fine time steps and the
scalar field needs to be solved at each of them. For the case of Vainshtein screening models, there
is a way to speed up the algorithm significantly by relaxing condition (iii), for a negligible sacri-
fice in accuracy. As explained in Ref. [327], the speed-up trick is implemented by not iterating the
scalar field explicitly above a given refinement level liter., and instead just taking its value by inter-
polation from some lower refinement level where the iterations took place. Naturally, skipping the
iterations of Eq. (54) on levels l > liter. speeds up the code, but at the cost of a large error on the
calculation of the fifth force. The key point to note here, however, is that in highly refined regions,
the fifth force is a small fraction of the total force, and hence, an error on its evaluation constitutes
only a small and affordable error on the much larger (GR dominated) total force. In Ref. [327],
with simulations of the nDGP model, the authors have demonstrated that it is possible to speed up
the performance of the algorithm by factors of 10, with very little loss in accuracy in the matter
power spectrum for k . 5 h/Mpc; halo properties such as their abundance, mass, density profiles
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and peculiar velocity were also virtually unaffected by the speed-up trick. Note that this method
relies on the correlation between highly-refined regions and screening efficiency, which exists in
Vainshtein screening models but not in chameleon models. This hinders the applicability of the
same idea to simulations of chameleon models, as demonstrated in the appendix of Ref. [310].
One can also relax condition (i), as done in Ref. [328], by choosing not to solve the scalar field on
every fine time step, in the expectation that the field values do not change substantially between
neighbouring fine time steps; a more detailed test of how this affects the accuracy is yet to be
carried out for general setups.

It is also worth noting the recent generalisations of the COLA (COmoving Lagrangian Accel-
eration) method [329] to theories of modified gravity with screening and scale-dependent growth
[330, 331]. This approximate method can prove very useful in the fast generation of a large num-
ber of halo/galaxy catalogues for various theories of modified gravity, even if the detailed mass
distribution on very small scales is less accurate due to the approximations made in the method.

To summarize, over the last couple of years, a variety of developments took place that brought
the performance of N-body simulations of modified gravity to a level nearly comparable to stan-
dard simulations of ΛCDM. The simulation codes developed are finally able to reach the resolution
and volume specifications required for the planning of future large scale structure surveys.

8 Cosmological tests

This section provides an overview on modified gravity constraints which come from probes of the
expansion history of the universe and observations of the structure on very large scales. Naturally,
there is a smooth transition of these latter probes to the astrophysical tests described in the next
section. Our goal is not to provide a precise division here, but to work from the largest scales
towards successively smaller scales.

8.1 Parametrized vs. model-by-model approaches

Cosmological constraints studies on modified gravity can be broadly divided into constraints on
parametrized frameworks and constraints on concrete theories. The parametrized approach [332–
334] introduces a few parameters or functions that describe departures from the fiducial GR case,
and which can be constrained with large-scale structure observations. For example, on sub-horizon
scales, the potentials Φ and Ψ appearing in the line element (where τ is conformal time)

ds2 = a2
[

− (1 + 2Ψ) dτ2 + (1− 2Φ) dx2
]

(59)

can be parametrized by introducing two independent free functions of time and wavenumber:

−k2Φ ≡ 4πGa2Q(a, k)ρ, (60)

−k2Ψ ≡ 4πGa2µ(a, k)ρ,

−k2(Φ + Ψ) ≡ 8πGa2Σ(a, k)ρ,

η(a, k) ≡ Φ/Ψ.

For example, the function Q describes an effective gravitational constant that non-relativistic par-
ticles are sensitive to. Relativistic particles such as photons in lensing observations would instead
be sensitive to the function Σ = (Q+ µ) /2; note that only two of the four functions Q,µ,Σ, η
are strictly needed/independent. In GR, they are all equal to unity, and hence, if the data prefers
a departure from this result (either in time or in space), then this would signal a need to go be-
yond GR. The current constraints from Planck+BAO+RSD+SNe+WL on µ and η (at z = 0 and
assumed scale-independent) are shown in the left-hand panel of Fig. 10.

Another popular way to parametrize modified gravity effects is via the so-called Effective
Field Theory of Dark Energy (EFTofDE) [19, 20, 337–339], in which the parametrization is done
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Figure 10: (a) Constraints on parameters µ and η (Eq. 60) describing deviations of the gravitational
potentials from their expected values in GR. The ΛCDM prediction is at the intersection of the
dashed lines. Reproduced from Ref. [335]. (b) Constraints on EG (Eq. 69) from CMB and galaxy-
galaxy lensing compared to ΛCDM expectations of varying Ωm. Reproduced from Ref. [336].

at the level of the linearized action of Horndeski (and beyond) models. In the EFTofDE approach,
the evolution of linear perturbations is completely encoded by five functions of time, plus a speci-
fication of the Hubble rate H(a).

An appealing aspect of parametrized frameworks is that they allow for systematic and fairly
model-independent constraints on modified gravity (e.g. [340, 341]). A main disadvantage lies in
its limited regime of applicability, which encompasses only linear scales. The EFTofDE cannot
be used to study nonlinear structure formation because the formalism builds on top of a linearized
Lagrangian (see however Refs. [232, 342] for recent work on how to go beyond this limitation).
In other parametrized frameworks, the corresponding free functions would become too general
to be satisfactorily constrained by the data (see, however, Refs. [125, 126, 343, 344] for a few
attempts to parameterize chameleon/symmetron/dilaton theories and screening mechanisms more
generally [345] in the nonlinear regime). One can also translate model-indepdendent parameter
constraints onto any theory that falls within the parameterized framework, though the results are
generally weaker than if one had directly analyzed the model of interest.

In the model-by-model approach, by focusing only on one model at a time, one can afford
detailed investigations in the nonlinear regime of structure formation, typically based on N-body
simulations. A disadvantage of this approach is that it is harder to generalize the conclusions
obtained from one model onto the rest of the theory space. To make progress nonetheless, the
philosophy adopted by the community has been that of “electing” a model that is representative
of some type of phenomenology (e.g. f(R) for chameleon or DGP/Galileons for Vainshtein),
which is then used to place benchmark constraints on the size of the deviations from GR that are
supported by a given dataset. The body of work developed for models such as f(R), DGP and
Galileon gravity has already taught the community a great deal about the most promising ways
to test gravity in cosmology. The analysis pipelines that have been developed for such models
should in principle be adaptable to other theories such that, as new models are developed, work on
constraining them can take place straightaway.

8.2 Main cosmological datasets and observational signatures

We now summarize the main cosmological observables that can be used to test modified gravity.
The line that separates astrophysical from cosmological datasets is not always clear; in what fol-
lows, we limit ourselves to probes that are sensitive to the expansion rate of the universe or to
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structure formation on linear to quasi-linear scales (with the exception perhaps of weak-lensing
cosmological analyses that extend into the nonlinear regime). It is also worth noting that the
datasets outlined below are most powerful when used in combination, rather than on their own.

• Expansion history from CMB, BAO and SNIa

Data from CMB, BAO and SNIa are amongst the most robust datasets in cosmology to
probe the expansion rate H(z) of the universe. The agreement between GR-based ΛCDM
and these data is sometimes misinterpreted as a requirement on modified gravity models
to possess a ΛCDM background limit, i.e., some choice of parameters that very closely
reproduces a cosmological constant. This is a confusion that is worth clarifying: a model in
which H(z) differs from ΛCDM can still stand a chance at being compatible with CMB,
BAO and SNIa data. Such compatibility, if it exists, would occur for cosmological parameter
values (e.g. H0, Ωm, ΩK , neutrino masses, etc.) that are different from those obtained in
constraint analyses that assume ΛCDM. The assessment of observational viability rests
however on whether or not the full model yields acceptable fits. The adoption of ΛCDM-
inspired cosmological parameters in analyses of self-accelerating models without a ΛCDM
limit may thus result in biased conclusions. An illustrative case is that of the Galileon
model which displays nearly the same goodness-of-fit to CMB data as ΛCDM, albeit with
very different H0 and Σmν values [346, 347] (note, however, that the Galileon is ruled out
when ISW data (see ISW discussion below) and constraints on the propagation speed of
gravitational waves (cf. Sec. 3) are considered).

In addition to the sensitivity to the expansion history, the CMB temperature power spectrum
is also sensitive to late-time structure formation via the ISW effect, which affects the low-ℓ
part of the spectrum. Despite being limited by cosmic variance, this probe is nonetheless
stringent enough to rule out drastic scenarios such as the self-accelerating branch of the DGP
model [348] and a large portion of the Galileon model parameter space [315, 347, 349]. The
power spectrum of the reconstructed CMB lensing potential is sensitive to late-time structure
formation over a wider range of scales. CMB lensing measurements from Planck and other
surveys have become a useful dataset for tests of modified gravity as well [350]. We refer the
interested reader to Ref. [351] for a Boltzmann-Einstein code comparison project in various
modified gravity cosmologies, with comparisons made at the level of the CMB temperature,
polarization and lensing power spectra, as well as the linear matter power spectrum.

• ISW-galaxy cross-correlation

The cross-spectrum of CMB temperature maps and foreground galaxy distributions can be
written as

CTg(ℓ) = 4π

∫

dk

k
∆ISW(ℓ, k)∆g(ℓ, k)PR(k) (61)

where PR(k) is the power spectrum of curvature fluctuations and ∆g(ℓ, k) is a galaxy dis-
tribution kernel that depends on the bias and redshift distribution of the galaxy sample at
hand. The ISW kernel is given by

∆ISW(ℓ, k) =

∫ τ0

τrec

dτ
d (Φ(k, τ) + Ψ(k, τ))

dτ
jℓ(k(τ − τ0)), (62)

which shows that these data [352–354] can be used to constraint Σ in Eqs. (60). The fact
that CTg(ℓ) is sensitive to whether the potentials become deeper or shallower with time
(i.e., the sign of d (Φ + Ψ) /dτ , where τ is the conformal time) plays a crucial role in
cosmological constraints of Galileon gravity. For instance, the best-fitting Cubic Galileon
model to the CMB data displays only a modest increase in the amplitude of the low-ℓ part of
the CMB temperature power spectrum, but its predicted cross-correlation with galaxies from
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Figure 11: (a) ISW-galaxy cross-correlation from the WISE survey [354] together with predictions
from a number of parameter choices in the Covariant Galileon model. The dashed-red curve is
the best-fitting Cubic Galileon model to the data, which illustrates the high degree of tension
plaguing this model. The figure in panel (a) is reproduced from Ref. [33]. (b) Time-evolution
of fσ8 for ΛCDM, nDGP and two values of growth-index γ. From left to right, the data points
shown correspond, respectively, to the analyses of the 6DFGS survey [358], Luminous Red Galaxy
sample from SDSS-DR7 [359], BOSS DR12 [360] and Vipers surveys [361], as labeled.

the WISE survey (z ≈ 0.3) is negative (dashed red line in the left panel of Fig. 11), indicative
that the potentials are getting deeper (more negative) with time. Data from the ISW effect
(both from CMB temperature [315, 347, 349] and its cross-correlation with galaxies [33])
is in fact what sets some of the tightest constraints on the Covariant Galileon model because
of its modifications to Σ(a, k); the few corners of the parameter space that survive the ISW
tests end up being ruled out by their anomalous speed of gravitational waves.

Examples of other models that have been constrained with ISW-galaxy cross-correlations
include the DGP model [35], f(R) [355, 356], massive gravity [357] and a kinetic grav-
ity braiding toy-model that interpolates between ΛCDM and Cubic Galileon limits [34].
Analyses of the ISW effect are typically restricted to the largest observable scales where
linear theory is valid, and hence screening mechanisms are not a source of complication.
A complication that arises is that the bias of the foreground galaxies is degenerate with
the amplitude of the signal. The bias can be estimated by cross-correlating CMB lensing
maps with the galaxy sample (e.g. Ref. [354]); the resulting values are in general different
in different models by virtue of different dark matter clustering [33].

• Redshift Space Distortions and Growth rate

The rate at which structure grows in the universe offers a natural and powerful way to test
gravity in cosmology (see also Sec. 9.1 on RSD below). This growth rate is usually quoted
in terms of the parameter fσ8, where f is the logarithmic derivative of the growth factor
w.r.t. the scale factor: f = dlnD/dlna and σ8 the root-mean-squared of the linear density
field at redshift z = 0 on scales of 8Mpc/h. The parameter σ8 is a measure of the amplitude
of the linear matter power spectrum, and the combination fσ8 it what can be constrained
with RSD data [362]. The growth factor is governed by the equation (dots are physical time
derivatives)

D̈ + 2HḊ − 3

2
Q(a, k)ΩmH2

0a
−3D = 0, (63)

where Q(a, k) is defined in Eqs. (60). In GR, the growth rate is to a good approximation
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given by f(a) = Ωm(a)γ , with γ ≈ 0.55 (γ is called the growth-index [363, 364]). This
has made it popular to use fσ8 data to place constraints on γ to look for eventual deviations
from its GR value.

Observationally, fσ8 can be inferred from the anisotropic clustering of galaxies on large
scales in redshift space (cf. Sec. 9.1; see also Ref. [360] for the latest analysis of the BOSS
survey). Specifically, fσ8 enters as one of the parameters of theoretical models of the galaxy
power spectrum in redshift space that are fitted to the data. The ingredients of these models
include modeling of RSD, galaxy bias [365], as well as a prescription for the nonlinear
clustering of matter (galaxy clustering studies are restricted to large enough scales on which
baryonic feedback effects on the power spectrum are not a concern). Carrying out such
analyses for galaxy samples at different redshifts leads to constraints on fσ8 as a function
of time. Different theories of gravity in general make different predictions for the time-
dependence of fσ8, thereby allowing to distinguish between competing models (cf. right
panel of Fig. 11).

The validity of the galaxy clustering models must be checked first using mock galaxy sam-
ples constructed using N-body simulations. These validation steps have been carried out
almost entirely for mocks in ΛCDM cosmologies [360, 366]; only a few such validations
analyses exist in modified gravity. For example, Ref. [36] validated the use of the BOSS
clustering wedges analyses pipelines [366] using nDGP mocks (see also Ref. [367] for a
similar study), and Ref. [368] conducted a comparative study for both nDGP and f(R) mod-
els. For chameleon screening models with scale-dependent linear growth [369], Ref. [370]
found that GR-based models of galaxy clustering can fail to recover the correct value of
fσ8 when applied to Hu-Sawicki f(R) simulations. For future data with higher statistical
precision, this modeling systematic must be addressed with detailed simulations.

The tightest cosmological constraints on the nDGP model (with a ΛCDM background)
to date come from the fσ8 determinations of the BOSS DR12 release (performed with
appropriate validation steps [36]), which demonstrates the central role these data can play
in tests of gravity. Ref. [371] uses a compilation of fσ8 data to constrain the growth index
γ, as well as the free functions in Eqs. (60). See also Ref. [372] for a forecast study of the
constraining power of fσ8 data from SKA and Euclid.

The EG statistic described below in Sec. 9.1 has also been estimated using RSD and lensing
data [336, 373–375]; the right panel of Fig. 10 displays a recent compilation. None of the
data published to date revealed any need for modifications of GR, but the current level of
precision of this statistic is relatively poor compared to other probes of gravity.

• Weak-lensing

Weak gravitational lensing (see e.g. Refs. [376, 377] for reviews) provides a direct probe of
the distribution of matter in the late-time universe. That is, it is not subject to galaxy bias or
RSD, although intrinsic alignments are a systematic contaminant that needs to be carefully
controlled for. Lensing thus offers complementary information to test gravity in cosmol-
ogy [378–381]. The angular power spectrum of the lensing convergence κ can be written
as (adopting the Limber approximation and a single lensing source redshift at comoving
distance χS)

Cκ(ℓ) =

∫ χS

0

(

g(χ)

χ

)2 [

Σ

(

z(χ),
ℓ

χ

)]2

Pm

(

ℓ

χ
, z(χ)

)

, (64)

where g(χ) = (3H2
0Ωm/2/c)(1+z)(χS −χ)χ/χS is called the lensing kernel. If modified

gravity enhances structure formation (Q > 1 in Eqs. (60)), then this boosts the amplitude
of the three-dimensional matter power spectrum Pm, and consequently, Cκ(ℓ). Modified
gravity models that have Σ 6= 1 will display additional effects.
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Weak lensing analyses can be carried out to smaller length scales compared to galaxy clus-
tering analysis, for which modeling uncertainties associated with galaxy bias preclude the
use of data on scales k & 0.2 h/Mpc. On these smaller scales, however, baryonic feed-
back effects can alter appreciably the amplitude of the total clustering of matter [265, 382].
These effects are relatively poorly understood and remain a source of theoretical systemat-
ics in real constraint analyses (see Sec. 6.2). Similarly, massive neutrinos can also have a
non-negligible impact on the small-scale matter power spectrum, and with degenerate ef-
fects with modified gravity. These are all complications that are present in standard GR
analyses, but that gain further importance in modified gravity because of the degeneracies
that can be at play between these effects and the effects of fifth forces [383–385]. Finally,
on such small scales, it becomes imperative to appropriately take into account screening
effects. The difficulty of parameterizing the impact of screening on the small-scale matter
power spectrum is currently hindering the use of small-scale weak-lensing shear data in tests
of gravity. For instance, Refs. [386, 387] place constraints on modified gravity parametriza-
tions using lensing data from KiDS, but with small-scale data removed (see e.g. Fig. 13
of Ref. [386] to appreciate the loss in constraining power). In constraints of the Galileon
model, Ref. [388] also considers only sufficiently large scales in their lensing dataset. The
development of tools to accurately predict small-scale clustering in modified gravity cos-
mologies (cf. Sec. 6.1.2) will therefore prove extremely valuable to the analyses of future
weak-lensing surveys (see e.g. Ref. [389] for cosmic shear forecasts for Euclid in the con-
text of modified gravity). We note also that the adequacy of current models of intrinsic
alignment should also be re-evaluated in the context of modified gravity models.

To conclude this discussion, we comment on which types of theories are susceptible to be most
tightly constrained by cosmological probes, compared to astrophysical ones. For self-accelerating
models with non-ΛCDM expansion histories, cosmological constraints using CMB, BAO and
SNIa data should represent the first line of testing to determine which cosmological parameters
yield acceptable fits to these data (if any) and which are therefore worthy of more dedicated and
lengthier studies (e.g., involving N-body simulations). The usefulness of cosmological data in
tests of gravity is also dependent on the screening mechanism. For instance, we will see in the
next section that astrophysical tests have a stronger potential to constrain chameleon-like theories
due to the environmental dependence of the screening efficiency, compared to cosmological ones.
On the other hand, Vainshtein screening models tend to have stronger signatures on cosmological
observables: the tight constraints on the nDGP model using fσ8 data [36] and on Galileons using
ISW-galaxy cross-correlations [390] are illustrative of this point.

9 Astrophysical tests

We now turn to the main focus of the review: astrophysical probes of modified gravity. We begin
by discussing tests that are applicable to modified gravity in general without dependence on the
screening mechanism (associated with galaxy velocities 9.1, dark matter halos 9.2 and voids 9.3),
then we present probes of thin-shell and Vainshtein screening specifically. We preface this with
a discussion of the “screening maps” that are necessary to identify regions of the universe, and
hence galaxies, that are unscreened. Where such results exist, we provide quantitative detail on the
constraints achieved, and those achievable using future data with the characteristics we describe.
The reader interested in more in-depth discussions and technical derivations on some of the topics
presented here are are referred to Ref. [391].

9.1 Galaxy velocities and redshift space distortions

The matter velocity field is particularly sensitive to modifications of gravity. This is because
velocities are determined by a single time integral over the acceleration, and hence they typically
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display stronger signatures of modified gravitational forces, compared to the matter density field
(which is determined by two time integrals). A way to probe these statistics directly is via galaxy
velocities, which are an unbiased tracer of the matter velocity field on large scales, by way of the
equivalence principle.

On quasi-linear scales, the matter velocity field is governed by the Euler equation

∂

∂τ
~v + (~v · ~∇)~v +H~v = −~∇Φ−Q~∇φ . (65)

The quantity Q is the cosmological analog of the scalar charge-to-mass ratio Q introduced in Sec.
4.4.1 (with factors of α suitably scaled) and represents the strength of the coupling of a given test
object to the scalar field. Any modifications to gravity which affect the time-time component of
the metric will contribute directly to changes in the velocity field. In GR, the equivalence principle
guarantees that any difference between the velocity field ~vg of galaxies and matter has to be due
to non-gravitational forces such as baryonic pressure. On scales much larger than the Jeans length
of the gas, this pressure is negligible, and hence there is no velocity bias. Note however that
in frameworks such as the Effective Field Theory of Large Scale Structure the Euler equation is
expected to be only a first order approximation to the behaviour of dark matter. Higher-order
corrections may be partially degenerate with with modified-gravity effects if the gradient of the
scalar field ~∇φ is suppressed on large scales, for example due to a finite mass of the field.

In modified gravity theories, however, there can be violations of the equivalence principle,
which can be used in observational tests (cf. Sec. 4.4.1). For example, in thin-shell screening
models the scalar charge of a screened object, say some sufficiently massive galaxy, is strongly
reduced: Q ≪ 1. The velocity of this galaxy will effectively only be sourced by ~∇Φ, and would
thus fall at a slower rate compared to a less massive, unscreened galaxy with Q = 1 [147]. Similar
lines of reasoning hold for black holes in Vainshtein screening theories, which carry no scalar
charge Q = 0, and thus fall at different rates than the gas and stars in the same galaxy [149]
(cf. Sec. 9.6.2).

On large scales, in a frame comoving with the galaxy velocities, the clustering pattern of galax-
ies would be isotropic. In reality, however, peculiar velocities of galaxies perturb the measured
redshift via Doppler effect (and consequently the inferred line-of-sight distance), which induces an
anisotropy in the galaxy distribution that is proportional to the galaxy velocities. This effect is re-
ferred to as redshift space distortions (RSD). Specifically, the inferred three-dimensional position
of a galaxy ~xobs differs from the true unobserved one ~x by [392]

~xobs = ~x+H−1(n̂ · ~vg)n̂ , (66)

where n̂ is the angular position of the galaxy on the sky. The observed redshift-space fractional
galaxy density perturbation δsg is related to the rest-frame one δg through

δsg(~xobs) =
δg(~x)

1 +H−1n̂in̂j∂ivg,j(~x)

∣

∣

∣

~x=~xobs−H−1(n̂·~vg)n̂
. (67)

Working to linear order in δg and ~vg, the power spectrum of galaxies on large scales becomes [392]

P s
g (
~k) = (b1 + fµ2)2Pm(k) , where µ =

~k · n̂
k

, (68)

which is clearly anisotropic as it depends explicitly on the angle between the Fourier modes and
the line-of-sight direction n̂. The degree of anisotropy is proportional to the linear growth rate
f = d lnD/d ln a, which can be therefore extracted from galaxy surveys [358–361] (cf. right
panel of Fig. 11). Different theories of gravity make different predictions for the growth rate,
which makes redshift space distortions a powerful tool to test gravity (cf. Sec. 8.2).

Another interesting probe of gravity is the so-called EG statistic [88]. This is obtained by
combining the quadrupole moment of the anisotropic galaxy power spectrum P s

g (
~k) (which is
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proportional to the cross-correlation between galaxies and the velocity divergence field θ = ∇~v,
Pgθ) with the cross-correlation between lensing maps (either CMB lensing or cosmic shear) and
galaxy positions, Pg∇2Φlens

(where we write Φlens = (Φ +Ψ)/2 for short):

EG ≡
Pg(∇2Φlens)

Pgθ

in GR
=

Ωm0

f(z)
=

Ωm0

Ωm(z)0.55
, (69)

where the last two equalities assume large linear scales and GR. The numerator of the EG statistic
is sensitive to modifications to the lensing potential (Σ in Eqs. (60)), whereas the denominator to
changes to the dynamical potential (Q in Eqs. (60)). The ratio between these two potentials is 1 in
GR, and so this statistic directly targets modifications to gravity [336, 373–375]. Importantly as
well is the fact that this statistic is constructed to cancel the effects of galaxy bias at linear order.

The kinematic Sunyaev-Zel’dovich (kSZ) effect, which describes the shifts in the temperature
of CMB photons caused by the bulk momentum of hot ionized gas inside clusters, offers another
probe of the cosmic velocity field. Observationally [393–395], what has been detected is the
so-called pairwise kSZ signal whose amplitude can be written as

TpKSZ(r)

TCMB
= τe

v12(r)

c
, (70)

where v12(r) is the mean pairwise velocity of clusters separated by r and τe is their mean optical
depth, which is given as a line-of-sight integral of the free electron number density ne inside the
clusters, τe = σT

∫

dχne. Modified gravity can leave signatures on the pairwise kSZ effect via
the modifications to the pairwise velocity of clusters v12(r) [396, 397], which quantifies the mean
velocity at which galaxy clusters approach one another due to the influence of gravity. In linear
theory, and assuming linear cluster bias b and unbiased cluster velocities, the pairwise velocity is
given by (see e.g. Refs. [398, 399])

v12(r) = −2

3
arHf

bξ̄(r)

1 + b2ξ(r)
, (71)

where ξ(r) is the matter correlation function and ξ̄(r) = (3/r3)
∫

dr′r′2/ξ(r′). Different modified
gravity models can thus display distinct TpKSZ(r) predictions via modifications to the growth rate
f . A main complication in using current kSZ data to constrain modified gravity (see Ref. [399]
for a forecast study) lies in the uncertain value of τe, which is degenerate with the amplitude of
v12(r) and could well vary from one modified gravity model to another. In fact, other sectors of
the cosmological/astrophysical community have an interest on the kSZ effect as a probe of τe, not
the theory of gravity. One way to make progress is to use the shape of v12(r) [396], another is to
calibrate τe using hydrodynamical simulations of modified gravity.

Beyond the linear regime described by Eq. (68), there is also strong motivation to use galaxy
statistics on smaller scales. Unfortunately, disentangling galaxy velocities from their nontrivial
clustering in real space becomes complicated on small scales. A compromise was proposed by
Ref. [400], who considered the cross-correlation between massive galaxy clusters and field galax-
ies. This essentially corresponds to a specific projection of the galaxy phasespace. Due to the
presence of the massive halo hosting the galaxy cluster, the velocities of galaxies within a sepa-
ration of ∼ 5 − 20h−1Mpc are dominated by coherent infall motion on the massive cluster. This
considerably simplifies the modeling of this observable [401, 402].

9.2 Galaxy clusters

The enhanced growth of structure in the presence of a fifth force leaves an imprint on the abun-
dance [238] (Sec. 9.2.1) and profiles [403] (Sec. 9.2.2) of galaxy clusters. For chameleon models,
one of the most prominent effects is an increase of the abundance of massive clusters for large
scalar field values. In the case of small field values, this enhancement is counteracted by the
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screening effect as well as by the Yukawa suppression [404–406] beyond the Compton wavelength
of the background field. Both contribute to a recovery of Newtonian gravity and of cluster abun-
dance in agreement with ΛCDM at high masses, restricting observable effects to smaller masses.
In addition to the mass dependence, chameleon screening introduces a dependence on the envi-
ronment of the clusters. The overall shape of the matter density profiles within the cluster is not
strongly affected by the scalar field, but an increase in the halo concentration [240, 407–409] and
effects on splashback in the outer regions of clusters provide observable signature (Sec. 9.2.2).
An additional test of gravity can be performed by comparing the distribution, temperature, and
pressure of gas with the dark matter profile in the interior of the cluster (Sec. 9.2.2).

9.2.1 Cluster abundance

The statistics of virialized clusters is well described by excursion set theory, where the collapsed
structures are associated with regions where the smoothed initial matter densities exceed the linear
collapse density threshold δc. The variance of the density field σ2 characterizes the size of such
a region. Variation of the variance (or the smoothing window size) causes incremental changes
in the smoothed initial overdensity field that are independent of previous values for uncorrelated
wavenumbers. This describes a Brownian motion of the smoothed matter density field, where
the increment is a Gaussian field with zero mean. The distribution f of the Brownian motion
trajectories that first cross a flat barrier δc at a given variance was described in Ref. [410, 411].
Relaxing the assumption of sphericity of the halo, the barrier, however, is no longer flat. The
first-crossing distribution based on excursion set results for ellipsoidal collapse was described by
Sheth and Tormen [412–414],

ν f(ν) = N
√

2

π
q ν2

[

1 +
(

q ν2
)−p
]

e−q ν2/2 (72)

with peak-threshold ν ≡ δc/σ, normalisation N such that
∫

dν f(ν) = 1, as well as p = 0.3 and
q = 0.707. Hereby, q was set to match the halo mass function

nlnMvir
≡ dn

d lnMvir
=

ρ̄

Mvir
f(ν)

dν

d lnMvir
(73)

measured with ΛCDM N -body simulations.
Most tests of modified gravity with clusters have been performed within the chameleon-

screened f(R) paradigm. The halo mass function defined by Eqs. (72) and (73) with the ΛCDM
value of δc has been shown to provide a good description to N -body simulations of f(R) gravity
for large field values, while a modified collapse threshold δc derived from a collapse calculation
with enhanced forces provides a conservative lower limit on the effects for small field values [238].
The latter case was used to infer constraints on the Hu-Sawicki and designer models from the clus-
ter abundance measured with Chandra X-ray [415, 416], SDSS MaxBCG [356], and ROSAT BCS,
REFLEX, and Bright MACS data [417] at the level of |fR0| . 10−5−10−4. Ref. [418] argued that
future cluster surveys will improve this bound to a level comparable with solar system constraints
at |fR0| . 10−6. Note that f(R) designer models are constructed to exactly reproduce a ΛCDM
expansion history whereas for Hu-Sawicki models, the Hubble functions differ at O(fR0). Since
very small, this correction is usually neglected for the Hu-Sawicki model, but as a consequence
the f(R) functions differ between the two models. Another useful proxy for halo abundance is
the high signal-to-noise ratio peaks of weak lensing convergence field, which are believed to cor-
respond to the largest dark matter halos; Ref. [419] used the peak counts from CFHTLenS data
to derive a constraint at |fR0| . 10−5.2, and this bound is expected to become much stronger
with future larger lensing surveys. These, however, require a more accurate modelling of the halo
mass function that accounts for the chameleon screening effect. An improved description of the
halo mass function in the small-field regime is obtained by adopting the spherical collapse crit-
ical density δc determined by the mass and environment dependent spherical collapse model for
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chameleon and f(R) gravity [240, 420, 421] in Eq. (72). A fitting function for the halo mass
function of the Hu-Sawicki f(R) model was developed from these computations in Ref. [418],
yielding 5% accuracy in the relative enhancement of the modified cluster abundance.

Alternatively to adopting the Sheth–Tormen halo mass function, excursion set theory ap-
proaches to computing the first-crossing distribution with the moving barrier defined by the linear
chameleon collapse density have been pursued in Refs. [422, 423] based on Lagrangian and Eu-
lerian definitions of the environment, performing numerical integrations and Monte Carlo simula-
tions. The simpler Sheth–Tormen prescription combined with the mass and environment depen-
dent spherical collapse model and a subsequent averaging over the probability distribution of the
Eulerian environment, however, was found to show the better agreement with f(R)N -body simu-
lations [421]. Alternatively to the top-hat approximation implemented in the chameleon spherical
collapse computations of Refs. [240, 420, 421], the f(R) evolution of an initial density profile
was considered in Ref. [424] and applied in Ref. [425] to develop an analytic halo mass function
function based on excursion set theory with a drifting and diffusing barrier. In Ref. [426], the
chameleon screening effect was incorporated in the Sheth–Tormen halo mass function with a phe-
nomenological transition in the variance that interpolates between the linearized and suppressed
regimes that is calibrated [421, 426] to N -body simulations of the Hu-Sawicki f(R) model. A
comparison of these different approaches can be found in Ref. [427].

The enhancement of the halo mass function in Vainsthein-type modified gravity models shows
qualitatively different features from those observed in chameleon type models (in the small field
regime), e.g. Refs. [290, 428, 429]. The Vainshtein screening which is very efficient near/inside
massive objects does not prevent more massive halos from forming in these models, possibly be-
cause the long-range fifth force has managed to accrete more matter towards the surroundings of
these halos, creating a larger reservoir of raw material for their growth. Analytic results based
on the excursion set theory agree qualitatively with predictions of simulation [239], although a
re-calibrated Sheth–Tormen formula was found to work much better for the Cubic and Quar-
tic Galileon models [429]. Hence, cluster abundance is also expected to be useful to constrain
this type of model. Ref. [430], for example, used weak lensing peaks as a proxy of massive
dark matter halos and found a strong constraining potential on the nDGP model. Quantitative
constraints do not yet exist for other screening models such as symmetron and K-mouflage, al-
though modifications to spherical collapse and hence the halo mass function have been explored
[144, 145, 297, 431, 432].

9.2.2 Cluster profiles and splashback

Apart from their abundance, the internal structure of dark matter halos can also be used as a probe.
Well within the virial radius of halos, the spherically-averaged dark matter distribution formed in
f(R) N -body simulations is well described [407–409] by the Navarro-Frenk-White (NFW) [433]
profile

ρ(r) =
ρs

r
rs

(

1 + r
rs

)2 , (74)

which were originally proposed to fit halos formed in ΛCDM and other models. The character-
istic density ρs and scale rs can also be written as functions of the virial halo mass Mvir, defined
by the virial overdensity ∆vir, and virial halo concentration cvir ≡ rvir/rs. The halo concen-
tration for clusters formed in chameleon f(R) gravity was measured in N -body simulations in
Refs. [407, 408] and found to be enhanced with respect to the concentration of ΛCDM halos. This
also causes an enhancement in ρs and a decrease of rs compared to their ΛCDM counterparts.
However, for small-field values, chameleon screening suppresses the enhancement in the con-
centration, recovering ΛCDM values for high-mass clusters. A mass and environment-dependent
modeling of the chameleon halo concentration based on the spherical collapse calculations that
captures these effects was introduced in Ref. [240]. In Ref. [409] a detailed analysis based on a
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large suite of simulations with varying box sizes and resolutions was conducted, and it was found
that the effect of f(R) gravity on halo concentration can be well described by a universal fitting
formula that depends only on the combination f̄R(z)/(1 + z) – where f̄R(z) is the background
scalar field at redshift z – which works for a wide range of model parameters, halo masses and
redshifts. Observationally, miscentering and other issues can complicate the determination of halo
concentration.

At a few virial radii, in the infall region of the cluster, the halo density profile, or halo-matter
correlation function, exhibits an enhancement in chameleon models, relative to GR, caused by the
late-time gravitational forces [238, 403, 434]. The signature can be well described by the halo
model. Through stacking of galaxy clusters it has been used to derive a constraint of |fR0| .
10−3 [403].

The splashback feature in galaxy clusters has recently been introduced as a dynamical bound-
ary of cluster halos [435]. More specifically, after its initial infall stage, material being accreted
by dark matter halos experiences a turn around. The location at which it does so defines the
boundary of the multistreaming region of the halo [436, 437] and corresponds to the outermost
caustic. The definition of a turn-around radius, however, may be complicated by the surroundings
of the halo being a collection of filaments, sheets and voids [438]. At this point, the logarithmic
slope of the density profile is predicted to drop significantly below the NFW value (between -2
and -3), before rising again to the two-halo term value. Hence this splashback radius provides
a clear observational signature in both the galaxy number density (which has been measured in
redMaPPer-selected clusters [439] from SDSS and DES Y1 [440, 441]), and weak lensing [442].

A theoretical study dedicated to the splashback feature for both chameleon and Vainshtein
screening has been conducted in Ref. [443]. The reasons for its sensitivity to modified gravity
are twofold. First, for model parameters where the fifth forces are important on galactic scales,
the splashback radius is located around the transition from the screened to the unscreened regime.
Second, accreted material began its life well outside the screening/Vainshtein radius and its subse-
quent dynamics therefore has some memory of the unscreened fifth force. Using a combination of
analytic approximations for the dynamics of accreted shells and N-body simulations, Ref. [443]
found that the splashback radius for dark matter particles in Vainshtein-screened theories with
rc ∼ O(500) Mpc (corresponding to theories that are relevant on galaxy scales and not excluded
by GW170817) is significantly larger than GR. For chameleon theories the signature is on galaxy
scale subhalos within clusters. Subhalos experience dynamical friction as they pass through their
host, which results in their splashback radius being smaller than particles. The effect is mass
dependent with subhalos having mass ratio Msub/Mhost > 0.01 exhibiting significantly smaller
splashback radii. For the chameleon theories studied, the reduced dynamical friction resulted
in smaller subhalo splashback radius than in GR. Some examples of these effects are shown in
Fig. 12. Recently, a semi-analytic study has revealed that for certain parameters, the symmetron
can produce deviations of O(10%) [444].

9.2.3 Dynamical vs lensing masses

The mass distribution of galaxies and clusters determines the gravitational potential that lenses
the photon trajectories and govern the kinematic properties of the cluster. A generic feature of
modified gravity theories is an inequality between the two metric potentials. Photons respond to
the sum of the metric potentials while nonrelativistic tracers such as stars and galaxies, which
typically move with speeds of 100-1000 km/s, respond to the time-time potential. Thus inferences
made about the gravitational potential or the mass distribution using photons (i.e. lensing or the
ISW effect) can be discrepant with dynamical masses inferred from stars and galaxy motions. This
is often cast in terms of the PPN parameter γ, and provides a powerful test of gravity on a variety
of scales:

• On the smallest scales, O(1 kpc), strong lensing and stellar dynamical mass estimates within
lens galaxies can be compared [445, 446].
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Figure 12: Left panel: Comparison of the splashback radius (defined as the minimum of each
curve) for GR and chameleon theories. F5 models correspond to χ = 10−5. The red lines corre-
spond to particles and the blue and black to subhalos with masses indicated in the figure. Right

panel: The density slope for dark matter particles in GR (black) and a Vainshtein-screened theory
with rc = 600 Mpc (red). The splashback radius is the minimum of each curve. Reproduced from
Ref. [443].

• A similar comparison of strong lensing by galaxy clusters with galaxy velocity dispersions
or X-Ray masses can be made (length scales O(100 kpc)) [133, 447]

• Weak lensing mass profiles of galaxies and clusters provide mass estimates out to the virial
radii of their halos and beyond. For clusters, these can be compared with SZ masses (that
are calibrated using GR-based simulations) that extend to the virial radius. On slightly
larger scales the lensing masses can be compared with dynamical estimates of infall motions
from redshift space surveys [164, 400, 448–450]. On similar scales, ∼ 0.1 − 10 Mpc/h,
Ref. [451] reported an interesting discrepancy between the measured galaxy-galaxy lensing
signal of BOSS CMASS galaxies in CFHTLenS and CS82 fields and the prediction from a
number of mock catalogues with CMASS-like clustering and stellar mass functions.

• On even larger scales, ∼ 10− 100 Mpc, assuming linear bias for the galaxies, weak lensing
and redshift space power spectra have been used to estimate the EG parameter [373, 374,
452, 453] which is reliably known for GR.

Further information to be compared with lensing comes from cluster gas temperature, density
and pressure profiles measured with X-ray and SZ data. The gas density ρgas and pressure P relate
to the dynamical mass profile Mdyn(r) as

1

ρgas(r)

dP (r)

dr
= −GMdyn(r)

r2
. (75)

The dynamical mass Mdyn differs from the lensing mass due to the fifth force that can be inter-
preted as arising from the gradient of the scalar field profile. This can be modelled following
Refs. [133, 407, 454, 455].

A simple approximation for chameleon gravity is given by [427]

Mdyn(r) ≃
{

1 +
Θ(r − rc)

3 + 2ω

[

1− M(rc)

M(r)

]}

M(r)lens, (76)

where Θ is the Heaviside step function, M(r)lens is the lensing mass, and the chameleon screening
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scale is

rc ≃
8πGρsr

3
s

3 + 2ω

1

1− φenv
− rs (77)

with the scalar field value φenv in the environment (φ = 1+fR for f(R) gravity). A fitting function
for the relation between the dynamical and true masses for f(R) gravity, calibrated using a large
suite of N-body simulations with varying resolutions and box sizes, was given in Ref. [456]:

Mdyn

Mlens
=

7

6
− 1

6
tanh [p1 (log10(Mlens/M⊙)− p2)] , (78)

where p1 and p2 are given by

p2 = 1.503 log10

[ |fR(z)|
1 + z

]

+ 21.64, (79)

p1 = 2.21, (80)

works very well for all models with |fR0| ∈
[

10−6.5, 10−4
]

in a wide range of redshifts z ∈ [0, 1].
In particular, the constancy of p1 and the slope of p2 (1.503) are very close to the predictions of
thin-shell modelling (which gives a slope 1.5 for p2).

Assuming no non-thermal pressure, the gas pressure, density and temperature are related by
P = Pthermal ∝ ρgasTgas. Hence, in hydrostatic equilibrium, the lensing, X-ray surface bright-
ness, X-ray temperature, and SZ observations are uniquely determined from any combination of
two profiles adopted for either Pthermal, ρgas, Tgas, and M . A combination of the four measure-
ments therefore breaks degeneracies among the profiles and yields a powerful test of gravity [457].
Combining weak lensing measurements with gas observations from the X-ray surface brightness
and temperature as well as the Sunyaev-Zel’dovich effect from the Coma cluster, Ref. [457] in-
ferred constraints on chameleon models that correspond to |fR0| . 6×10−5 when cast in terms of
Hu-Sawicki f(R). The same constraint was obtained in Ref. [450] from the stacked profiles of 58
clusters with combined XMM Cluster Survey X-ray and CFHTLenS weak lensing measurements
but with no SZ data. This test has also been conducted for Galileon gravity [458] and beyond
Horndeski theories [164].

The method of comparing the hydrostatic and lensing masses of galaxy clusters has also been
applied to Vainshtein breaking theories (see Sec. 9.7). Unlike thin-shell screening theories where
the Newtonian potential is altered but not the lensing potential, Vainshtein breaking alters both
potentials (see Eqs. (35) and (36)). For an NFW halo, the masses are

M(r)dyn = MNFW + πΥ1r
3
sρs

(

1− rs
r

)(

1 +
rs
r

)−3
(81)

M(r)lens = MNFW +
πr3sρs
2

[

(Υ1 + 5Υ2 + 4Υ3)− (Υ1 + 5Υ2 + 4Υ3)
rs
r

]

. (82)

Assuming Υ3 = 0 (corresponding to beyond Horndeski theories with no DHOST terms), Ref. [164]
constrained Υ1 and Υ2 by comparing Mhydrostatic and Mlens for a sample of 58 X-ray selected
clusters for which lensing data from CFHTLenS and X-ray data from XMM-Newton was avail-
able. The hydrostatic mass was found using the X-ray surface brightness temperature and the
lensing mass was found by stacking the profiles. The 2σ bounds Υ1 = −0.110.93−0.67 and Υ2 =
−0.221.22−1.19 were obtained.

The above method requires lensing data to be available for X-ray or SZ-selected clusters. An
alternative way to constrain chameleon-type models that uses the fact that the dynamical and true
masses of clusters can be different, without needing lensing data, is to consider the gas fractions
of clusters. The largest galaxy clusters form from regions whose initial sizes are over 10 Mpc,
and it is expected that the mass ratio between baryonic (dominated by hot gas) and dark matter
components inside them is close to the cosmic average, Ωb/Ωm [459], making clusters ‘standard
buckets’. The cluster gas fraction profile, fgas(r) ≡ Mgas(< r)/Mtot(< r), can be estimated by
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measuring the mass profile (Mtot(< r)) and hot gas (Mgas(< r)) profile. These can be obtained
by respectively observing the X-ray temperature and luminosity profiles. In chameleon models,
the measured Mtot(< r) is the cluster dynamical mass, which implies that for unscreened halos
the observationally inferred value of fgas(r), fobs

gas (r), is related to the true value, f true
gas (r), by

fobs
gas (r) =

Mgas(< r)

Mtot,dyn(< r)
=

Mtot,lens(< r)

Mtot,dyn(< r)

Mgas(< r)

Mtot,lens(< r)
≡ η(r)f true

gas (r), (83)

where η(r) ∈ [3/4, 1] encodes the screening effect. Because it is f true
gas (r) that is directly related

to Ωb/Ωm, this suggests that in chameleon models, depending on the screening, the observed gas
fraction can have a systematic difference from the expected value from constraints on Ωb,Ωm by
other observations such as the CMB. Since the screening depends on the background scalar field
value and redshift, η(r) can evolve with redshift, which can also be a signature of departures from
ΛCDM. Ref. [460] estimates that Hu-Sawicki n = 1 f(R) model with |fR0| = 3 ∼ 5 × 10−5 is
in tension with the gas fraction data of the 42 clusters analysed by Ref. [461].

The distinction between dynamical and lensing masses in cluster observations is also important
for the modelling of cluster scaling relations – the relations that is often used to infer a cluster’s
mass from some observational proxy. For example, in f(R) gravity, an interesting observation is

that the gas density profile of a halo with dynamical mass Mf(R)
dyn = M∗ from a simulation with

baryon density parameter Ωb is very similar to that of ΛCDM halos whose lensing (or true) mass is
given by MΛCDM

lens = M∗ but from a simulation with a baryon density parameter ΩbM
f(R)
lens /M

f(R)
dyn ,

where M
f(R)
lens is the true mass of the f(R) halo whose dynamical mass is equal to M∗. This is

easy to understand: dynamically the f(R) halo whose dynamical mass is M∗ and the ΛCDM halo
whose true mass is M∗ are indistinguishable, but assuming that all haloes have the same ratio of
baryon-to-true-halo mass, the f(R) halo, which has a smaller true mass, would have a smaller
baryon mass. Ref. [462] shows this using non-radiative hydrodynamical simulations:

ρf(R)
gas (r) =

M
f(R)
lens (< r)

M
f(R)
dyn (< r)

ρΛCDM
gas (r), (84)

where ρ
f(R)
gas , ρΛCDM

gas are respectively the hot gas density profiles of the f(R) halo whose dynam-
ical mass is M∗ and the ΛCDM halo whose true mass is M∗. Cluster observables, such as the
SZ Compton-y parameter YSZ, its X-ray counterpart YX and the X-ray luminosity LX, are usually
integrated quantities that can be schematically written as

Y =

∫ r

0
dr′4πr′2

(

ρgas(r
′)
)a (

Tgas(r
′)
)b

, (85)

where a, b are power indices. Therefore, from the above equation, Y f(R) and Y ΛCDM satisfy

Y f(R) =

∫ r

0
dr′4πr′2

(

ρf(R)
gas (r′)

)a (

T f(R)
gas (r′)

)b

=





M
f(R)
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M
f(R)
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



a
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0
dr′4πr′2

(

ρΛCDM
gas (r′)

)a (
TΛCDM
gas (r′)

)b
=





M
f(R)
true

M
f(R)
dyn





a

Y ΛCDM,(86)

where we have used the fact that for a f(R) halo with dynamical mass equal to M∗ and a ΛCDM
halo with true mass equal to M∗ the temperature profiles Tgas(r) should be identical. Eq. (86) is

useful because using it one can directly obtain the f(R) cluster scaling relation, Y f(R)
(

M
f(R)
dyn

)

from the corresponding ΛCDM scaling relation Y ΛCDM
(

M = M
f(R)
dyn

)

(which are usually better

known or easier to obtain), without having to run large suites of hydro simulations in f(R) gravity
[462]. Ref. [456] proposes a framework to use these ‘rescaled’ f(R) cluster scaling relations to
relate cluster observables from X-ray and SZ surveys to cluster masses, and put constraints using
the abundance of clusters.
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(a) (b)

Figure 13: (a) Comparison of the fifth-force (y-axis) and normal GR (x-axis) contributions to the
total force felt at particle locations in N-body simulations of the nDGP model. The four pan-
els split the particles by the type of cosmic web structure (haloes, filaments, walls and voids, as
identified by the ORIGAMI algorithm [483]) where each particle lies. The solid line marks the
unscreened linear expectation, which is followed in filaments/walls/voids; in the higher density
haloes, the fifth force is suppressed. Figure reproduced from Ref. [473]. (b) Differential surface
mass density (which is related to the lensing shear) of spherically symmetric stacks of voids in
the Cubic Galileon model. Relative to the GR scenario (red; dubbed QCDM because the back-
ground is not ΛCDM), the full model result (blue) displays roughly the same enhancement as a
linearized unscreened version of it (green). This indicates the screening mechanism is not at play
and thus that the fifth force can have prominent observational signatures. Figure reproduced from
Ref. [484].

9.3 Voids in galaxy surveys

The term ‘cosmic void’ is broadly used to refer to large (typically from 5− 100 Mpc) underdense
regions of the universe, characterized by mass outflow from their centers onto the higher-density
mass-accreting filaments and walls that define their boundaries [463–466]. Being the parts of the
cosmic web with the lowest density, they are regions where the screening mechanisms are expected
to be the least efficient; this gives void-related observations a promising potential to test gravity
on astrophysical/cosmological scales.

Despite the existence of a few simpler analytic attempts to describe voids in modified gravity
[467–470], N-body simulations are still the best available tool to extract void properties such as
their profile, abundance, dynamics and screening efficiency (cf. the left panel of Fig. 13) [471–
479]; see also Ref. [480] for a recent review.

In practice, a first challenge facing the utility of voids as a cosmological probe lies in how
to identify them from the complicated cosmic web. This has opened many possibilities, as a
result of which there is no unique or widely-agreed way to define them. For example, voids
can be defined according to the type and number density of the tracer field (whether they are
identified from a matter field, galaxies, clusters, etc.), and their dimensionality (whether they
are identified from a 3D or 2D projected tracer field). On top of this, due to their generally non-
regular shapes, there exists a variety of void-finding algorithms to identify them from a given tracer
field. These complexities can be portrayed as a source of confusion in void-related works, but one
should appreciate also the enrichment of the types of analyses that can be done as a consequence.
For example, different void definitions can be more or less sensitive to specific modified gravity
signatures, as investigated recently in Refs. [481, 482].

In the following, we briefly review some of the main recent developments on tests of gravity
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with cosmic voids:

• Weak lensing by 3D voids. The lensing signal from individual voids is too weak to be sys-
tematically detected with the currently available precision [485], and so virtually all studies
performed to date focus on the signal obtained from stacking many such void lensing pro-
files, which increases the signal-to-noise [486–489]. Modified gravity theories can impact
the observed lensing profiles in two main ways. First, if the growth of structure is boosted,
then voids become emptier as the mass outflows towards their surrounding walls/filaments
become more efficient [475, 490]. Second, if the relation between mass and the lensing
potential is also modified [484, 491], then the lensing signal is affected since photons follow
a modified geodesic equation. The right panel of Fig. 13 shows how in the Cubic Galileon
model the screening is inefficient and a strong signature of the fifth force is imprinted in the
void lensing predictions.

• Weak lensing by 2D voids. A way to increase the signal-to-noise in lensing observations by
underdense regions is to focus the analysis on 2D voids, or equivalently lines-of-sight that
are predominantly devoid of structure. This type of analysis has been pioneered by the DES
collaboration (who use galaxy troughs [492] or density-split-statistics [493, 494]), in which
the lines-of-sight are discriminated by their projected photometric galaxy count. The first
few studies of this lensing signal in modified gravity were carried out in Refs. [481, 495]
for f(R) and Ref. [496] for DGP gravity. Recently, Ref. [481] proposed two more 2D void
definitions: 2D spherical underdensity voids (SVF2; similar to 3D spherical voids but in 2D)
and tunnels (circumcicles of triangular 2D Delaunay tessellation cells). These void finders
are found to produce stronger signals compared to troughs and 3D voids, and are also better
discriminators of GR, f(R) and DGP gravity [481, 482]. The lensing signal produced by
2D voids found directly in lensing maps (using peaks as tracers) allows for even stronger
signals and tests of gravity [430, 497] because the lensing map is a more direct tracer field
of the underlying matter field.

• The ISW effect and voids. The time evolution of the lensing potential in and around voids
can be probed via the ISW effect and this is also generically affected by modified gravity.
The stacking of CMB maps on top of voids found in foreground galaxy distributions results
in cold-spots that indicate that the potential has been getting shallower with cosmic time
(e.g. [353, 498]). The modified signal arises from a combination of the same two effects
discussed for void lensing above: both modified dynamics (e.g., as in the f(R) model stud-
ied in Ref. [499]) and modified lensing potentials can contribute to different time-evolutions
of the gravitational potential inside voids. For instance, a stronger gravity can work to slow
down the decay of the gravitational potential (or even make it grow), thereby leading to a
weaker amplitude of the cold spots (or turning them into hot spots).

• Growth rate measurements with RSD. The average radial tracer number density profiles for
a large enough number of voids is expected to be spherically symmetric in real space. In
redshift space, however, for galaxies used as tracers, peculiar velocities work to distort these
profiles in the line-of-sight direction. The degree of anisotropy allows us to put bounds on
the growth rate of structure, and consequently, test gravity. For example, Refs. [500–505]
developed and applied methods to measure the cross correlation between galaxies and voids
in galaxy catalogues to infer the growth rate of structure (see also Ref. [506]). In the context
of testing modified gravity theories with screening, there is an interest in focusing on void-
galaxy cross-correlations (compared to galaxy auto-correlations) that comes from targeting
galaxies that lie in the lowest density, less screened regions of the universe.

• Void abundances. While void abundance is in principle a very sensitive probe of modified
gravity [475, 507], its use in cosmological tests is far less popular. A major reason for this
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is that, in observations, 3D voids are mostly found from a biased tracer field that needs to be
also fully understood in order to make accurate predictions of void abundance. Indeed, void
abundance is effectively fixed by the number density and clustering of the tracers [481, 482].
One interesting work around this difficulty is that proposed in Ref. [497] to use lensing
peaks directly as 2D void tracers. Ref. [497] showed that, when identified in this way, voids
are self-similar in their abundances at various lensing peak signal-noise-ratio values. More
recenlty, Ref. [430] verified that 2D voids identified using lensing peaks can indeed be a
powerful discriminator of GR and DGP gravity.

• In-and-out of void comparisons. Another powerful test of gravity involves comparing the
dynamics and evolution of low-mass objects inside voids (where they would be unscreened
in chameleon and symmetron theories) with similar (but screened) objects in higher-density
regions [508, 509]. Unexpected strong differences in properties of objects from these differ-
ent environments can be a signature of departures from GR. The study of velocity profiles
or rotation curves of screened and unscreened galaxies inside and outside voids is an exam-
ple of one such tests [328]. Another way to search for the unscreened nature of objects in
voids is using the marked two-point correlation function, which is similar to the usual cor-
relation function but giving selected objects (e.g., those in voids) a higher weight (see e.g.,
Refs. [279, 282–284]).

Finally, we mention in passing also Minkowski functionals. Although not direct probes of cos-
mic voids, these are useful descriptions of the complex morphology of the cosmic web (of which
voids occupy most of the volume) that can be used to find interesting signatures from modified
gravity effects; see e.g. Ref. [510] who found using N -body simulations that Minkowski function-
als measured in the three-dimensional matter distribution can discriminate with high significance
models such as GR, f(R) and nDGP.

9.4 Observational screening maps

Testing modified gravity by means of astrophysical objects requires identifying a difference be-
tween screened and unscreened subsamples, which in turn requires an observational proxy for the
degree of screening. As described in Sec. 4.4.2, in thin-shell-screening models the background
value of the scalar field sets a threshold in Newtonian potential |Φ| which marks the onset of
screening, as measured for example by a difference between lensing and dynamical masses. This
has been verified in modified gravity simulations, where alternative proxies such as the distance
to massive nearby neighbours have also been shown to be effective [508, 511, 512]. In particular,
it was shown in [512] that the Newtonian potential generated by mass within one Compton wave-
length of the scalar field is a good proxy for the degree of screening in thin-shell theories. The
degree of other types of screening is also expected to be correlated with simple gravitational vari-
ables (e.g. acceleration a for kinetic and curvature K for Vainshtein; [513, 514]), although in these
cases the lack of knowledge of two-body solutions makes exact predictions difficult. The environ-
mental contribution to non-thin-shell screening may be much lower, especially if the test object
is much smaller than the screening radius. Nevertheless, to first order the task of determining
the degree of screening in a given theory is approximately solved by mapping out the Newtonian
potential and its derivatives.

For a given object, Φ, a and K receive both an internal contribution, from the object itself,
and an external contribution from surrounding mass. Calculating the former requires the mass
distribution of the object, but to first order is given simply by |Φ| = GM/R, a = GM/R2 and
K ≃ GM/R3, where M is the mass of the object and R its size. The environmental compo-
nents are more difficult to calculate as they require knowledge of the object’s environment. A
first estimate may be obtained by summing the contributions from mass associated with observed
light within a Compton wavelength of the scalar field from the test point. This may be achieved
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(a) Newtonian potential (b) Acceleration (c) Curvature

Figure 14: Maps of environmental Newtonian potential |Φ|, acceleration a and curvature K across
a 300 Mpc × 300 Mpc slice of the local universe. The Milky Way is located at x = y = 0.
Reproduced from Ref. [515].

from a given galaxy catalogue either by estimating group masses from the velocity dispersions
of their constituent galaxies [512], or assigning N-body halos to individual galaxies by means of
their luminosity in a manner consistent with galaxy–galaxy clustering [515]. However, a signifi-
cant fraction of the universe’s mass is not associated with currently-observable light, either in halos
hosting galaxies too faint to see or in diffuse mass not associated with halos at all. The former con-
tribution can be estimated using the halo distribution in N-body simulations, and the latter from a
reconstruction of the smooth density field from galaxy number densities and redshifts (given a bias
model and fiducial cosmology) using an algorithm such as BORG [516–519], or constrained sim-
ulations such as ELUCID [520, 521] or CLUES [522]. A full pipeline is constructed in Ref. [515],
allowing the degree of environmental screening to be calculated for any object within ∼ 200 h−1

Mpc (Fig. 14), and the associated code is publicly available on the project website.15 Alterna-
tively, one can also predict the environmental and self screening of halos by running a modified
gravity solver directly on the reconstructed density field to calculate the fifth force [479] – this is a
model-dependent approach, but the cost is low because for each model and parameter choice one
only needs to do the calculation once rather than hundreds of times as in N-body simulations.

The power of any test relying on the distinction between screened and unscreened galaxies is
limited by the uncertainty in the degree of environmental screening. This has four main contribu-
tions, listed here in approximately decreasing order of importance [515]:

1. Uncertainties in the distribution and masses of halos unassociated with an observable galaxy.
This is a factor of a few for Φ but may be an order of magnitude or more for a and K, which
depend more sensitively on mass close to the test point. This depends on the magnitude
limit of the initial galaxy catalogue as well as the algorithm used to account for unseen
mass. (this may not be problematic for non-thin-shell models if environmental screening is
suppressed.)

2. Uncertainties in the mass distribution of the smooth density field, which accounts for mass
outside of halos that are well-resolved in an N-body simulation. The posterior probability
distribution for this mass distribution is calculated for example in Ref. [519], allowing this
uncertainty to be straightforwardly propagated into screening maps. This contribution is
relatively most significant in low-density regions with few nearby halos, where other con-
tributions to the gravitational field are small.

3. Uncertainties in the masses and concentrations of halos hosting galaxies included in the
basic galaxy catalogue. In Ref. [515] these are calculated using inverse abundance matching,
which specifies a range of possible halo properties for a galaxy of given luminosity, even
for fixed values of the model parameters which are themselves uncertain.

15https://www.novelprobes.org/codes
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4. Uncertainties in the magnitude and position of the source galaxies. This purely statistical
error is subdominant to the foregoing systematic issues.

The lowest background field value that is testable is set by the minimum degree of environ-
mental screening at which a statistically significant sample of objects can be compiled. The most
unscreened galaxies are located in the lowest-density regions of the universe, where not only is
the number of halos within the Compton wavelength λC minimised, but also the galaxy distribu-
tion indicates little mass situated outside halos in the smooth density field. The analyses of both
Ref. [512] and Ref. [515] indicate that objects exist in potentials at least as low as |Φ| = 10−7 for
a window radius λC ≃ 1 Mpc, allowing the self-screening parameter χ to be probed below this
level. This gives astrophysical tests the potential for significantly greater constraining power than
cosmological tests.

9.5 Tests of thin-shell screening

9.5.1 Stellar evolution

Stars are important probes of chameleon/symmetron theories precisely because they have Newto-
nian potentials that range from 10−6 (main-sequence) to 10−7–10−8 (post-main-sequence). In this
subsection we will discuss the novel effects that can be exhibited in stars under modified gravity.
Stars in dense galaxies are subject to environmental screening so the effects described in this sec-
tion must be tested using unscreened galaxies. As discussed in section 4.4.2, these are typically
dwarf galaxies in voids. These can be found in observational data sets using the maps described
in 9.4. We begin by showing how hydrostatic equilibrium is altered, and then present observable
effects of this on stellar luminosity, lifetime and pulsations.

A star is a complex system where many different areas of physics play an important role,
including nuclear physics, atomic physics, thermodynamics and convection. Despite this, there
is only one stellar structure equation where gravitational physics is important, the hydrostatic
equilibrium equation, which in GR is given by

dP

dr
= −GM(r)ρ(r)

r2
. (87)

This equation tells us the pressure profile that a star must assume if the star is to remain in equilib-
rium, i.e. if the inward gravitational force is to be balanced by the outward pressure, from nuclear
burning for example. In the case of chameleons/symmetrons, this is modified to include the fifth
force so that one has

dP

dr
= −GM(r)ρ(r)

r2

[

1 + 2α2

(

1− M(rs)

M(r)

)

Θ(r − rs)

]

, (88)

where Θ(x) is the Heaviside step function; this ensures that the fifth force is only operative in
the region exterior to the screening radius (see (23)). Calculating the new properties of stars
in chameleon gravity is tantamount to solving this equation simultaneously with the equations
describing stellar structure and energy production.

The new term in the hydrostatic equilibrium equation (88) essentially increases the gravita-
tional force in the region outside the screening radius, which has several important consequences.
Consider two stars of equal mass M , one screened and one unscreened. The unscreened star feels
a stronger inward gravitational force and must therefore burn more nuclear fuel per unit time in
order to prevent gravitational collapse. This suggests that the unscreened star will deplete its fuel
reserves faster than the screened star and will therefore have a shorter lifetime. Furthermore, the
increased rate of nuclear burning results in the star being more luminous. To make this more
quantitative, consider the extreme case where the star is fully unscreened so that rs = 0 and one
therefore has G → (1 + 2α2)G. Simple dimensional analysis arguments show that the luminos-
ity of low mass stars scales as L ∝ G4 at fixed mass for low-mass main-sequence stars and that
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L ∝ G for high-mass stars [121]. In the former case, this scaling law arises because low-mass
stars are supported by thermodynamic pressure (i.e. the ideal gas law) so that P ∝ ρT and in
the latter because high-mass stars are supported by radiation pressure P ∝ T 4. The ratio of the
luminosity of the unscreened to the screened star is then

Lunscreened

Lscreened
=

{

(1 + 2α2)4, low-mass main-sequence

(1 + 2α2), high-mass main-sequence
. (89)

Evidently, low-mass stars are more susceptible to the effects of modified gravity than high-mass
stars. One explanation for this is that high mass stars need to absorb more of the extra radia-
tion being produced by the enhanced gravitational force in order to support themselves. A more
thorough (and technical) analytic treatment of stellar structure in chameleon gravity is given in
Ref. [120, 121].

In practice, the complex nature of stars means that a numerical treatment is necessary in
order to produce realistic stellar models that can make realistic observational predictions. For
this reason, the publicly available stellar structure code MESA [523, 524] has been modified by
Refs. [121, 525] so that the hydrostatic equilibrium equation to be solved for is equation (88)
rather than (87). This is achieved using an iterative procedure: given an initial stellar model, the
screening radius is found by solving equation (25). MESA then uses this to solve the modified
hydrostatic equilibrium equation in conjunction with all of the other stellar structure equations in
order to find the stellar model resulting from this degree of screening. This is then used to cal-
culate a new screening radius, and the procedure repeated until convergence is reached. Chang
& Hui [525] investigated the validity of this approximation by numerically solving for the scalar
profile using a Gauss-Seidel algorithm in conjunction with the other stellar structure equations
and found excellent agreement between the exact and approximate solutions. For this reason,
modern implementations have used the approximation. As an example of the effects of modified
gravity, a color-magnitude diagram (or Hertzprung-Russell track) for a solar mass and metallicity
(Z = 0.02) star in Hu-Sawicki f(R) gravity (2α2 = 1/3) with fR0 = 10−6 is compared to the
GR case in Fig. 15. One can see that the simple qualitative predictions made above hold true upon
full numerical simulation: the f(R) star is indeed hotter and more luminous than the GR star. If
one looks at the age of the stars when they exit the main sequence one also finds that the f(R)
star is younger. Note that using fR0 = 10−6 implies that the galaxy hosting the star is unscreened.
Chameleon (and similar) searches typically focus on unscreened galaxies (see section 4.4.2). If
one is interested in screened galaxies then one should adjust the value of fR0 appropriately to
account for environmental screening.

Given that stars are generally brighter in modified gravity, one would expect dwarf galaxies of
fixed stellar mass in voids to be brighter than their screened cluster counterparts [121]. Further,
low-mass stars are more affected and the naïve expectation is that void galaxies should also be
redder in color. To date, no numerical simulations of galactic properties including the effect of
modified gravity on stars have been performed. There are many competing effects that could alter
this expectation, for example one would expect a larger population of post-main-sequence stars
(which are brighter than main-sequence stars and more affected by modified gravity) since low-
mass stars would exit the main-sequence sooner. The precise effects of modified gravity on the
initial mass function and star formation rate are unknown due to a lack of investigation.

Going beyond hydrostatic equilibrium, the dynamics of small perturbations ~δr are governed
by the momentum equation

~̈δr = −1

ρ

dP

dr
+ ~a, (90)

where ~a is the force per unit mass. In GR this is ~a = −~∇Φ, but in chameleon and symmetron
gravity one instead has ~a = −~∇Φ − α~∇φ so that modified gravity also affects the dynamics
of stellar oscillations. Stellar oscillations have proven to be valuable tools for testing chameleon
gravity [120, 122, 526, 527]. Indeed, the Sun oscillates in over 107 different modes and pulsating
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Figure 15: The tracks in the color-magnitude diagram for a solar mass and metallicity star in GR
(black) and Hu-Sawicki f(R) gravity (red) with fR0 = 10−6. Here, L is normalized to the solar
luminosity and Teff is measured in Kelvin.

stars where the oscillations are driven by some dynamical forcing16 such as Cepheids and RR
Lyrae stars can be used as distance indicators [528]. Perturbing (90) and the other stellar structure
equations, one finds that the frequency of linear radial adiabatic oscillations

ω2 ∼ GM

R3
. (91)

Changing the value of G then causes the pulsation period Π changes by a fractional amount

∆Π

Π
= −αQ, (92)

where Q is the scalar charge defined in Eq. (44). This is O(1) for unscreened stars.

9.5.2 Distance indicators

Distance indicators are objects which have some known intrinsic property that allows us to calcu-
late their absolute distance. For example, the luminosity distance of an object at non-cosmological
distance is given by d2L = L

4πF for measured flux F . Since we cannot measure L, only objects
for which it is known by some other means (either from theoretical calculations or empirical mea-
surements and calibrations in the local neighborhood) can be used to find the distances to their
host galaxies. Distance indicators are invaluable for testing chameleon theories since they are
both sensitive to gravity and can be observed in void dwarf galaxies which are least likely to be
screened.

The principle behind distance indicator tests of chameleons is the following: suppose that one
attempts to measure the distance to an unscreened void dwarf galaxy using two different distance
indicators, one screened (or insensitive to the theory of gravity) and the other unscreened. If the
theory of gravity is correct, the two estimates will agree; if not, the estimates will disagree. This
is because the formula used to calculate the distance to the unscreened object is incorrect: either
it has assumed GR or has been calibrated empirically in the local (screened) neighborhood. As
an example, suppose that in GR the luminosity of some object is known to be constant, i.e. it
is a standard candle. If unscreened objects are more luminous, then, given a measured flux, the
application of the luminosity distance formula to this object will underestimate the distance since
one would have used too low a luminosity.

Three different distance indicators that have been used to constrain chameleon theories are:

• Cepheid variable stars: Cepheid variable stars are post-main-sequence stars with progeni-
tors of mass 3 <

∼ M/M⊙
<
∼ 10 that have evolved off the main-sequence. Semi-convective

16The driving is due to non-gravitational effects and hence are not sensitive to the theory of gravity.
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processes (convection driven by gradients in the chemical composition) cause them to exe-
cute what are referred to as blue loops in the color-magnitude diagram where their temper-
ature increases at fixed luminosity. During this looping phase, they enter a narrow vertical
strip where they are unstable to pulsations driven by the κ-mechanism [529]. (A helium
ionization layer dams up energy because small compressions [density increases] result in
the helium becoming doubly ionized rather than increasing the outward pressure gradient.)
During this phase, the star pulsates with a period–luminosity relation

MV = a log Π + b log(B − V ) + c, (93)

where a ≈ −3 [528] and Π is the pulsation period. Using equation (92), one finds that
applying this to unscreened Cepheids will underestimate the distance by [526]:

∆d

d
= −0.6αQ. (94)

One can make quantitative predictions for individual Cepheids by calculating the average
value of 2αQ using MESA profiles (See Ref. [526] for the technical details).

• Tip of the red giant branch stars: Stars of mass 1 <
∼ M/M⊙

<
∼ 2 do not execute blue

loops. Instead, they ascend the red giant branch (RGB) where their cores become hotter,
denser, and more luminous until the central conditions are such that the triple-α process can
begin, at which point helium ignition begins explosively and the star moves very rapidly
onto the horizontal branch. This leaves a visible discontinuity in the I-band magnitude
I = 4.0 ± 0.1 when the star reaches the tip of the red giant branch (TRGB) [528]. The
discontinuity is almost independent of mass, with a small spread due to variations in the
core masses of RGB stars and metallicity effects. For this reason, the TRGB is a standard
candle. During its ascent of the RGB, the star’s luminosity is due entirely to a thin hydrogen
burning shell around the core and so whether or not the TRGB is sensitive to modified
gravity depends on whether the core is unscreened. One finds this to be the case if χ >

∼ 10−6.
When this happens, the core temperature increases more rapidly than in GR and the helium
flash begins earlier, i.e. at a lower luminosity (see Appendix B of Ref. [526] for technical
details). For this reason, unscreened TRGB indicators over-estimate the luminosity distance.
When the core is screened (χ <

∼ 10−6) their calculated distances give the GR result. The
complex structure of RGB stars means that it is best to compute the decrease in the TRGB
luminosity using MESA.

• Water Masers: A third distance indicator that has found some use in testing chameleon
theories is based on the distances to water masers [530]. These are clouds of H2O gas
in Keplerian orbits in the accretion disks of black holes. Active galactic nuclei cause a
population inversion in the clouds resulting in stimulated emission of microwave-frequency
radiation. Using this, a simultaneous measurement of the radial velocity, centripetal acceler-
ation, angle on the sky, and inclination of the orbital plane is possible, enabling a geometric
distance estimate. As the central regions of galaxies are highly screened, water masers are
screened distance indicators.

TRGB vs. Water Masers: Since TRGB distances are unscreened when χ >
∼ 10−6, one can

compare their distance estimates with maser estimates to constrain this parameter range. This was
done by Ref. [526] for the one galaxy (NGC 4258, a spiral galaxy unscreened when χ > 10−6)
where there are simultaneous measurements of both TRGB and water maser distances. These both
give 7.2 Mpc within errors, which rules out χ & 10−6 with high significance. A later measurement
revised the maser distance to 7.6 Mpc [531] but this is still consistent with the TRGB distance
within errors.

Cepheids vs. TRGB: When χ < 10−6 TRGB distances are screened and so one can ob-
tain new constraints by comparing TRGB with Cepheid distances. This is achieved using ∆d =
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dCepheid−dTRGB and d = dTRGB in equation (94). This analysis was performed by Ref. [526] for
a sample of 22 unscreened dwarf galaxies in voids (selected using the screening map of Ref. [512]),
producing the constraints shown in Fig. 16. In particular, fR0 > 3× 10−7 is ruled out at the 68%
confidence level. An updated version of this test using additional data, and generalised to screen-
ing mechanisms beyond chameleon, is presented in Ref. [532] (figure 5). It is also shown there
that the modification to the distance ladder caused by screened fifth forces is able to reduce the
Hubble tension.

Further discussion of the effect of fifth forces on stars may be found in Ref. [533].
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Figure 16: The excluded region in the χ–α plane derived by comparing Cepheid and TRGB
distance estimates to 22 unscreened galaxies. The black dashed line corresponds to f(R) theories.
Recall that fR0 = 2χ/3. Reproduced from Ref. [526].

9.5.3 Dynamical and structural galaxy properties

Besides its effect on individual stars, screening can influence the overall structure and dynamics
of galaxies’ stellar and gas mass components. This is because the surface Newtonian potential of
main sequence stars is greater than the total potential of dwarf galaxies in low-density regions;
hence for a range of χ values the stars will be screened while the gas and dark matter will not.
This can give these separate mass components measurably different kinematics. The particular
observational signals for thin-shell screening models, along with their expected magnitudes, are
the following [534–536]:

1. If the gas disk feels the fifth force and hence follows the motion of the halo center while
the stellar disk does not, the stars lag behind the gas when the system falls in an external
field. This would manifest observationally as an offset between the centroids of optical
and HI light, which trace the stars and gas respectively. The magnitude of this offset can
be calculated by requiring in the equilibrium state that the stars and gas have the same
overall acceleration in an external field, so that they remain together. This implies that the
acceleration of the stellar disk due to its offset from the halo centre equals the additional
acceleration of the gas disk due to the fifth force. Let ~a be the total Newtonian acceleration
at the position of the galaxy,17 and ~a5 the Newtonian acceleration due to unscreened matter
within the Compton wavelength λC of the scalar field, which sources the fifth force. As
unscreened mass couples to this with strength G(1 + 2α2) rather than G (see Sec. 4.1), the
total acceleration of the gas and dark matter is ~ag = ~a + 2α2 ~a5. The acceleration of the
stellar disk is

17We assume that the acceleration field varies insignificantly between the star and gas centroids, which will be
justified post-facto.
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~a∗ = ~a+
GM(< r∗)

r2∗
r̂∗, (95)

where ~r∗ is the offset between the centre of mass of the stars and gas and M(< r) is the
total mass enclosed by a sphere of radius r around the halo centre. Requiring ~ag = ~a∗, we
find that the offset ~r∗ satisfies

GM(< r∗)

r2∗
r̂∗ = 2α2 ~a5, (96)

(for a screened galaxy r∗ = 0). This allows ~r∗ to be calculated as a function of the scalar
field coupling α, total Newtonian potential Φ (which determines whether the galaxy is
screened), external fifth-force field ~a5,18 and the density profile, which may be estimated
from the dynamics of the galaxy, empirical relations between baryonic and total mass, or
N-body simulations by means of a technique such as halo abundance matching.19 For dwarf
galaxies, where even the central regions are dominated by dark matter, M = Mh to good
approximation.

2. The amplitude of the gas rotation curve is enhanced relative to the stellar RC, since the for-
mer receives a contribution from the fifth force in the same direction as Newtonian gravity,
while the latter does not:

v2g
r

=
G(1 + 2α2)M(< r)

r2
,

v2∗
r

=
GM(< r)

r2
, (97)

so that

vg
v∗

=
√

1 + 2α2. (98)

An increase of vg over the ΛCDM expectation (from mass modelling of galaxies and halos)
is also observable, but has a strong degeneracy with the dark matter distribution in galaxies.

3. The lagging of the stellar disk behind the halo centre induces a potential gradient that causes
the disk to warp into a cup shape. This effect will be greatest when the disk normal is
parallel to the external field, in which case the shape may be estimated as follows. First,
define a cylindrical coordinate system with z-axis along the external fifth-force field and
origin coincident with the halo centre, and consider a star moving in a circular orbit around
the z-axis at a distance z0 along it and a height x0 above it (Fig. 17). As before, the enclosed
halo mass must provide the additional acceleration in the z-direction:

2α2 a5 = ah,z = ah
z0
r0

, (99)

where a5 is defined above, ah the magnitude of the acceleration due to the halo and ah,z its

projection along z. Substituting ah = GM(<r0)
r2
0

yields

z0 =
2α2 a5 r

3
0

GM(< r0)
, (100)

18In practice, ~r∗ must be measured in the plane of the sky, making only the tangential component of ~a5 relevant.
19Note that in principle halo density profiles – as well as estimators for them which utilize the halo mass function, like

abundance matching – are different between ΛCDM and chameleon or symmetron cosmology. However, the present
cosmological constraints on these theories require that any such modifications be small.
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which for Mh ≫ Mg and x0 ≫ z0 (i.e. disk sizes much larger than offsets due to modified
gravity, again to be justified post-facto) simplifies to

z0 =
2α2 a5 x

3
0

GMh(< x0)
. (101)

Figure 17: Schematic illustration of disk warping in an unscreened galaxy in thin-shell-screened
modified gravity. Reproduced from Ref. [536].

The amplitude of this effect therefore depends on the same function of the external fifth-
force field, scalar coupling and total density profile as the offset r∗ described above, viz
a5 α2

M(<r) . For realistic halo density profiles which fall with increasing r, z0 is an increasing
function of x0, so that the disk acquires a convex shape around the halo centre (as shown
in Fig. 17). Heuristically, as the total halo acceleration is lower at larger x0 it must point
at a smaller angle to the z axis to compensate for the fixed acceleration difference between
screened and unscreened mass. Face-on infall as described here gives maximum warping,
and none would be expected in the edge-on case.

4. When the infall is near edge-on the stellar and gas disks and rotation curves develop asym-
metries: the side of the disk facing the external field becomes more compact than the far
side, and the RCs become asymmetric around the galaxy’s centre of mass. Deducing the
magnitude of these effects requires simulating disk infall under modified gravity [534].

Similar signals would also be expected from other screening mechanisms such as symmetron
and environment-dependent dilaton [118, 343], while Vainshtein screening requires qualitatively
different tests (Sec. 9.6).

While tracing the location of stellar and gas mass through optical and HI photometry is
straightforward, care must be taken in identifying appropriate kinematic tracers under modified
gravity. In particular, Hα emission is unlikely to faithfully trace the stellar component in this
case. Hα is emitted in the n = 3 → 2 transition of hydrogen in an ionised sphere around a star
(the Strömgren sphere). Depending on the star’s ionising energy output and mass, the majority of
the Strömgren sphere may be unscreened, giving it the kinematics of the gas rather than the stars.
Ref. [537] estimate this to be the case for typical stars and interesting values of χ (∼ 10−6−10−7).
In this case, measuring stellar kinematics requires the use of molecular absorption lines originat-
ing closer to the surface of the star, such as MgIb or CaII. As these are typically faint, tests 2 and
4 above will benefit from long-exposure observations of these lines with large telescopes.

The present state-of-the-art in searching for these four effects is presented in Refs. [535, 538],
[539, 540], [536] and [537] for effects 1, 2, 3 and 4 respectively; Refs. [539] and [537] use the
gravitational field reconstruction of Ref. [512] to determine galaxies’ degrees of screening, and
the others that of Ref. [515] (see Sec. 9.4). By reconstructing the acceleration as well as potential
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field, the maps of Ref. [515] enable the signals to be forward-modelled as a function of fifth-
force coupling α, range λC , and screening threshold χ. This was supplemented in Ref. [535]
by structural modelling of galaxies’ baryon and dark matter mass profiles in order to estimate
M(< r) and hence check for conformity between the observed and predicted signals in terms of
their dependence on both the internal properties of galaxies and their gravitational environments.
To illustrate the present state of these four tests – as well as the types of future data needed to
advance them – we list here the samples employed in these studies and the factors limiting their
constraining power.

1. Refs. [535, 538] used ∼ 11, 000 HI detections within 100 Mpc from the ALFALFA survey
cross-correlated with optical data to search for a systematic displacement between stellar
and gas centroids correlated with gravitational environment. With a highly-conservative
assumption for the measurement uncertainty in the HI centroid they set constraints on 2α2

(written there as fifth-force strength relative to gravity, ∆G/G) from ∼ few × 10−4 for
λC = 50 Mpc to ∼ 0.1 for λC = 500 kpc (see Fig. 18). This corresponds to fR0 <
few × 10−8. This test is limited by the sample size and HI resolution. It is estimated that
future data from a radio survey such as SKA should increase the sensitivity to α2 by around
6 orders of magnitude, rendering this test comparable in strength to solar system fifth-force
probes [106]. With less conservative uncertainties, Ref. [535] finds evidence at the ∼ 6σ
level for a screened fifth force with range λC ≃ 2 Mpc and strength 2α2 ≃ 0.02, although
further investigation of possible systematics (e.g. baryonic effects) is necessary to validate
this result.

Two further related tests were carried out in Ref. [537], one using 967 galaxies with Hα
RCs and optical imaging to search for displacement between the optical and Hα kinematical
centres, and the other using 28 galaxies within 4 Mpc with measured positions for ∼ 103 −
105 Red Giant Branch and main sequence stars to search for a displacement between these
populations. (Red giants are expected to remain partially unscreened due to their diffuse
outer shells which have lower Newtonian potentials; see Table 1.) These tests were limited
by the small sample size and lack of knowledge of the external field.

Figure 18: Left: The displacement between HI and optical centroids for ∼ 11, 000 ALFALFA
galaxies predicted by a fifth-force model with λC = 5 Mpc, 2α2 = 1, both with and without
thin-shell screening. Right: 1σ constraints in the 2α2 (∆G/G) vs λC plane obtained by compar-
ing the above prediction to the measured displacements, using highly conservative measurement
uncertainties. Reproduced from Ref. [538].

2. Ref. [536] reduce images of ∼ 4, 200 galaxies from the NASA Sloan Atlas to constrain
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screened fifth forces by means of warping of stellar disks. This uses a similar inference
methodology to Ref. [535], but an almost fully orthogonal signal and largely independent
data. A similar sensitivity to Ref. [535] is demonstrated, and further evidence is presented
for a screened fifth force model with λC ≃ 2 Mpc, 2α2 ≃ 0.02. These are the most sensitive
tests to date of screened fifth forces beyond the Solar System.

3. Ref. [539] compare the stellar and gas rotation curves of six low surface-brightness galaxies,
finding fR0 < 10−6. This inference is limited by the very small sample size.

Ref. [540] analyse the rotation curves of 85 galaxies from the SPARC sample under an f(R)
model, finding evidence for fR0 ≃ 10−7 if halos are assumed to have an NFW profile, but
no evidence for modified gravity if halos are instead assumed to have a cored profile as
predicted by some hydrodynamical simulations. This test is limited mainly by uncertainty
in the dark matter distributions.

4. Ref. [537] investigate asymmetries in the Hα rotation curves of 200 disk galaxies from the
Gassendi Hα survey of spirals (GHASP), but were unable to place significant constraints.
The limiting factor here is again the paucity of kinematical information with which to cal-
culate the degree of self-screening.

These tests will benefit greatly from the improved radio resolution offered by interferometric
surveys such as SKA (and its pathfinders ASKAP and APERTIF), an increase in the number
of known dwarfs in low density environments from surveys such as DES and LSST, spatially
resolved kinematics of various mass components from IFU surveys such as MaNGA, observations
of stellar RCs using stellar absorption lines, and/or increased sample size for any of the above
datasets. Uncertainties in the determination of environmental screening proxies (see Sec. 9.4) also
affect the sensitivity of these tests, which may best be reduced by using a base screening catalog
from a deeper survey. We discuss future observational prospects further in Sec. 10.

In the presence of thin-shell screening, the fifth force in the galactic outskirts can make a
cuspy matter distribution appear more core-like when reconstructed using Newtonian dynamics
because one infers more mass in the outer regions [455, 540]. This could make an underlying
NFW profile consistent with observations of the central regions of dwarf galaxies which suggest
cores, ameliorating the longstanding “cusp-core problem” [541]. For sufficiently strong screening,
the inferred density profile may even decrease towards the galaxy center, which would provide
a ‘smoking gun’ for modified gravity. The jury is still out, however, on whether NFW is an
appropriate profile for halos in the presence of hydrodynamics and stellar feedback in ΛCDM
(e.g. [254, 542–544]).

Screening may also give rise to unusual correlations between dynamical galaxy variables;
Ref. [545] for example use a symmetron model to reproduce the (arguably) unexpected mass
discrepancy–acceleration relation of spiral galaxies [546, 547]. Testing these effects in detail
will require improved theoretical understanding of their origin, magnitude and scope in modified
gravity, a systematic investigation of the degeneracies with baryonic physics, and larger and more
precise observational datasets.

All of the tests above are subject to potential systematic errors associated with galaxy for-
mation physics, which may induce similar signals even under standard gravity. For example, ram
pressure can separate stellar and gas mass and alter their relative kinematics, interactions, mergers,
and tidal interactions can warp disks, and baryonic feedback can alter the shape of halo density
profiles and rotation curves. Minimizing these effects therefore requires locating galaxies with
quiet merger histories that are unaffected by neighbors, in addition to examining the precise de-
pendence of the signal on the relevant galaxy parameters. Modified gravity and baryonic signals
may also be distinguished by their dependence on environment: while screening is expected to
kick in at a relatively sharp threshold value of Newtonian potential, acceleration or curvature, ef-
fects from galaxy formation physics would be expected to have a much more gradual dependence
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on surrounding density. These degeneracies are similar in origin to those for the power spectrum
described in Sec. 6.2, and may be investigated further by means of high resolution hydrodynamical
simulations.

For dynamical observables within galaxies there is a further degeneracy with dark matter prop-
erties, particularly its temperature and possible interactions. Self-interacting dark matter (SIDM),
where dark matter particles interact either elastically or inelastically through a new mediator, re-
duces the density in the central regions of halos through kinetic heating. For appropriate values
of the cross-section per unit mass (∼ 1 cm2/g for a velocity-independent contact interaction) this
can turn the cusps predicted at the centers of halos in cold dark matter cosmology into cores [548].
Similar effects can be produced by warm dark matter (e.g. Ref. [549]), axions/fuzzy dark matter
(e.g. Ref. [550, 551]), and by baryon-dark matter interactions (e.g. Ref. [552, 553]). Other observ-
ables of SIDM include spatial offsets between dynamical and galaxy masses in merging clusters,
warping and thickening of stellar disks and evaporation of dark matter substructure. Other types
of modified gravity theory, which we do not focus on in this review, provide novel explanations of
and predictions for galaxy kinematics, e.g. MOND [554].

9.6 Tests of Vainshtein screening

9.6.1 Vainshtein screening on small scales

As mentioned above, the efficiency of the Vainshtein mechanism makes small-scale tests very
difficult. Theories can self-accelerate cosmologically if rc ∼ 6000 Mpc [348], which typically
gives highly-suppressed fifth forces on smaller scales. Smaller values of rc represent theories
that are less screened but not important cosmologically, meaning one still needs a cosmological
constant to self-accelerate. Lunar laser ranging sets a lower bound rc >

∼ 150 Mpc (for α = 1)
[513] and most astrophysical tests, including those described below, are sensitive to larger values.

9.6.2 Strong equivalence principle violations: offset supermassive black holes

One system where the predicted SEP violations could manifest is a galaxy falling in an external
galileon field. If the galaxy itself is unscreened, the stars and gas (which have scalar charge-to-
mass ratio Q = α) will feel the galileon force, while the supermassive black hole (SMBH) at
the galaxy’s centre, which has no scalar charge (Q = 0), will not. BHs have no scalar charge in
galileon theories because the scalar field couples to the trace of the stress-energy tensor, which
excludes gravitational binding energy, while the mass of a BH is purely gravitational. As the
galileon fifth force acts in the same direction as gravity, the black hole will lag behind the galactic
center (defined as the central density cusp or the potential minimum for cored halos) as the galaxy
falls in the external field. At the equilibrium position, the missing galileon force on the SMBH is
counterbalanced by the Newtonian force due to its offset from the halo center. (This is analogous
to the case of thin-shell screening in Sec. 9.5.3 except that there the offsets are a result of WEP
violations.) The situation is sketched qualitatively in Fig. 19.

The behavior of the SMBH depends on the relative strength of the galileon and restoring
forces, as shown in Fig. 20. Typically, halos are either cored or cusped (NFW profile [433])
and the behaviour of the SMBH is different in each case. In the case of cored profiles, shown
in the left panel of Fig. 20, the restoring force rises outwards from the center due to the constant
density core. It then reaches some maximum value and falls as the density begins to fall off. Either
the galileon force is larger than the maximum restoring force, in which case the black hole will
continue unimpeded and will escape the galaxy eventually, or the galileon force is smaller than
the maximum, in which case it reaches a fixed offset at the radius where the two forces balance20.

20Of course, the general expectation is that the black hole should oscillate about the equilibrium point but, in the
situations of interest, the time-scale for these oscillations is smaller than the time-scale over which the galileon force
turns on, and so the black hole is expected to adiabatically track the equilibrium point.
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Figure 19: A galaxy falling into an external galileon field φext. In the rest frame of the galaxy, the
SMBH feel two forces: the outward galileon force and the restoring force of the baryons left at the
center.

In the case of cusped profiles, which we exemplify using the NFW profile in the right panel of
Fig. 20, the maximum restoring force is at the center of the halo. In this case, the galileon force is
either larger than the restoring force, in which case the SMBH will leave the galaxy unimpeded,
or the galileon force is less than the force at the center and the BH will remain there21.

In order to utilize this SMBH phenomenon it is necessary to look for situations where the mo-
tion of galaxies receives a contribution from a partially unscreened galileon field. In what follows,
we will describe two scenarios that have been proposed to test the SEP violation: cosmological
field galaxies and satellite galaxies falling towards the center of clusters.

● ●

11 22

Force Force

Figure 20: Left: The restoring force profile for a cored galaxy (red, solid). The blue, dashed, upper
line shows the case where the galileon force exceeds the maximum restoring force and the black,
dotted, lower line shows the case where the galileon force is smaller than this. In the latter case,
there are two equilibrium positions labelled 1 and 2. The former point represents a stable offset;
the latter is unstable. Right: The restoring force for a cusped (NFW) profile (red, solid). The blue,
dashed, upper line shows the case where the galileon force is larger than the maximum restoring
force (the force at the center) and the black, dashed, lower line shows the case where it is smaller
than this.

Numerical simulations have shown that there is an unscreened galileon field on linear cos-
mological scales (at distances >

∼ 10 Mpc) [289, 291, 326, 556] and so, as first suggested by
Ref. [149], field galaxies that have peculiar velocities due to the large scale structure in the uni-
verse should show offset SMBHs. One can estimate the size of the offset by noting that typical

21One interesting possibility is that the black hole could be initially displaced to some larger radius where the restor-
ing force is smaller than the galileon, in which case the SMBH would begin to exit the galaxy. There are several
scenarios for this such as asymmetric AGN jets and gravitational recoil (kick) from binary black hole mergers [555].
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galaxies were accelerated to a peculiar velocity of 300km/s over a Hubble time so that the New-
tonian acceleration is |∇Φext| ∼ 20 (km/s)2/kpc. This value is estimated by assuming a typical
peculiar velocity of 300 km/s, which is close to the RMS value found by averaging the observed
matter power spectrum [557]. One should however bear in mind that this is a statistical variable
and precision tests may require screening maps similar to those discussed in Sec. 9.4. A fully
unscreened galileon field has |∇φext| ∼ 2α|∇Φext|, and, assuming that the density in the center
of the halo ρ0 is constant22 one finds an offset

R = 0.1 kpc

(

2α2

1

)( |∇Φext|
20 (km/s)2/kpc

)(

0.01M⊙/pc3

ρ0

)

, (102)

where the fiducial values have been chosen to represent a low surface brightness galaxy. In prin-
ciple, the position of the black hole could be determined with microarcsecond precision using
microwave interferometry [558] whereas the optical centroid could be found using the galaxy’s
isophotes [559]. In practice, central densities derived from generalized NFW fits produce typical
offsets <

∼ 0.1 kpc. Such a small offset is hard to observe with small sample sizes, and would
be degenerate with other astrophysical effects such as asymmetric AGN jets and black hole kicks.
For these reasons, no constraints on galileon modifications of gravity have been placed using this
scenario to date.

Another situation where the galileon field is partially unscreened is massive galaxy clusters
(M ∼ 1014–1015M⊙). As discussed in Sec. 4.3, an extended mass distribution does not suppress
the galileon force as efficiently in its interior [133]. A massive galaxy cluster therefore has a large
partially screened galileon field that contributes to the motion of infalling satellite galaxies. As
an example, consider a model for the Virgo cluster shown in the left panel of Fig. 21. Outside
the virial radius (R200) one can see that the galileon force (for rc = 500 Mpc) is a factor of 2α2

times the Newtonian force but even inside this it is significant and only a factor of ∼ 5 smaller
than the Newtonian force. Furthermore, it is constant over a large range of radii, which helps
to mitigate astrophysical uncertainties on the distances of galaxies from the cluster center. An
infalling satellite galaxy will feel a force given by the sum of the red and blue curves, whereas the
SMBH will feel only the force shown by the blue curve. We plot the resultant offset for typical
cored satellite galaxies falling into massive clusters in the right panel of Fig. 21. Since the galileon
(and Newtonian) force from the cluster is radially-dependent, the offset is a function of how far
the satellite galaxy is from the cluster’s center. One can see that, owing to the larger galileon force
(the cosmological force discussed above is shown in the left panel of Fig. 21), this offset can be
of O(kpc), which is easier to observe using spectroscopic or x-ray observations (if the black hole
powers an AGN) and is likely far larger than the black hole can be offset by asymmetric AGN
jets or other astrophysical mechanisms. It is also significantly larger than the offsets between star
and gas centroids produced by thin-shell screening mechanisms (Sec. 9.5.3) for realistically small
values of α and self-screening parameter χ.

Previously, Ref. [559] had looked at the Virgo cluster to perform general tests of the SEP
without a direct focus on galileon theories.23 Building on their work, Ref. [562] have used the
model for the Virgo cluster in Fig. 21 to place new constraints on the cubic galileon shown in Fig.
22. In particular, the SMBH in the galaxy M87 is offset by less than 0.03 arcseconds, implying
that the galileon force must be less than 1000 (km/s)2/kpc; the constraints in Fig. 22 are found
by scanning the parameter space to look for regions that satisfy this bound. One can see that the
bounds are stronger than those coming from LLR, but cosmological galileons (rc ∼ 6000 Mpc)
are a long way from being probed. The authors of [562] checked that the bounds are robust to

22This breaks down at some point, but the authors of Ref. [149] had low surface brightness Seyfert galaxies in mind,
for which this is a good approximation. Furthermore, given the small offset predicted it is sensible to work in the
constant density regime.

23The SEP violation is not unique to galileon theories. Indeed, all scalar-tensor theories of gravity have this property.
What is new is the Vainshtein mechanism, which makes solar system tests of these theories more difficult, and, therefore,
SMBH tests more appealing.
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Figure 21: Left: The Newtonian and cubic galileon force profile for a Virgo-like galaxy cluster.
We have used an NFW profile (with 2-halo term corrections Ref. [435]) with concentration c = 5
and parameters that give a total mass M = 1015M⊙ [560, 561], consistent with observations. The
blue line shows the Newtonian force and the red and black solid lines show the cubic galileon
force for α = 1 and rc = 500 and 6000 Mpc (cosmological galileons) respectively. The black
dashed line shows the RMS cosmological galileon force for the fiducial values shown in equation
(102) and is shown for comparative purposes only. Right: The SMBH offset for typical infalling
satellite galaxies for cluster masses and satellite central densities indicated in the caption. The
x-axis shows the distance between the satellite galaxy and the cluster’s center. Figures reproduced
from Ref. [562].

changing some of the model assumptions (halo concentration, central density, functional form of
the profile) but of course the exact bound is sensitive to the precise model details. The effects of
departures from spherical symmetry were not investigated. One could improve upon this technique
by either performing a detailed modelling of the Virgo cluster or by looking at a large number of
clusters and performing a statistical analysis to reduce the effects of modelling uncertainties.

9.7 Vainshtein breaking

In beyond Horndeski and DHOST theories, the Vainshtein mechanism can be broken in the sense
that fifth-forces are efficiently screened outside astrophysical bodies but deviations from GR may
appear inside. See section 4.3.2 for a description of this. Since Vainshtein breaking is universal
and not subject to environmental screening it can be tested using objects in any galaxy including
our own Sun.

9.7.1 Existence of stars

A necessary condition to form stable stars is that the pressure gradient decreases toward larger
radii, P ′′(r) < 0. This implies a theoretical condition Υ1 > −2/3 (eq.(37)) DHOST theories
[160, 563, 564].

9.7.2 Tests with dwarf stars

Dwarf stars make particularly strong tests of Vainshtein breaking compared with main-sequence
or post–main-sequence stars theories due to their homogeneous structure, small variability and
lack of astrophysical degeneracies. Here, we will describe how red, brown, and white dwarf stars
can probe theories with Vainshtein breaking.

Red dwarf stars are low mass 0.08M⊙ ≤ M ≤ 0.6M⊙ stars that are heavy enough to fuse
hydrogen to helium-3 but not all the way to helium-4 on the PP-chains. They are supported by a
mixture of degeneracy pressure and ideal gas pressure so their physics is easily calculable using
polytropic models [565]. The upper bound in mass corresponds to the onset of the PPI chain and
the lower to the minimum mass for hydrogen burning (MMHB). The latter is the minimum mass
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Figure 22: The constraints on the coupling α and crossover scale rc for cubic (left panel) and
quartic (right panel) galileon models. The pink region is excluded because it would predict a
larger offset than is observed in M 87, which is falling towards the center of the Virgo cluster. The
red dashed line in the left panel indicates the previous constraints from lunar laser ranging [159].
LLR constraints on the quartic galileon are not competitive with SMBH constraints, hence they
are omitted from the right hand panel.

for which the star can burn hydrogen continuously and stably, i.e. the energy from hydrogen burn-
ing in the core is balanced by losses at the surface. Stars with masses lighter than the MMHB do
not fuse hydrogen and are brown dwarfs. The MMHB is a very strong probe of Vainshtein break-
ing theories because when Υ1 > 0 the star’s core is cooler and less dense so that one needs larger
masses in order to achieve the requisite conditions for hydrogen burning. Refs. [161, 163] used
a simple analytic model of red dwarfs in Vainshtein breaking theories to show that the MMHB
exceeds the mass of the lightest observed red dwarf, GL886C, when Υ1 > 1.6. Future observa-
tions of lighter mass red dwarfs with surveys such as GAIA could improve upon this. Similar to
the MMHB, there is also a minimum mass for lithium and deuterium burning, although these have
yet to be calculated due to the more complex reaction chains involved. (There is only one relevant
reaction for hydrogen burning.)

Brown dwarf stars are inert stars that do not burn nuclear material (they may burn primordial
fuel in short bursts but there is no sustained burning). They are primarily supported by the pressure
from coulomb scattering so that they have the simple equation of state P = Kρ2. Equations of
state such as these predict a ‘radius plateau’ such that the sizes of brown dwarfs are independent
of their mass and given by [163]

R = 0.1R⊙ f(Υ1), (103)

where f(0) = 1 corresponding to the GR prediction R = 0.1R⊙. The change due to Vainshtein
breaking can be O(20%) or more. At present, no bounds have been placed due to sparse measure-
ments of the mass-radius relation for brown dwarfs; future data from GAIA and similar surveys
could measure this relation empirically and hence allow strong constraints on Υ1, depending on
the scatter.

White dwarf stars can probe Vainshtein breaking in two different ways. First, the Chan-
drasekhar mass decreases when Υ1 < 0 (this mimics the effects of increasing the strength of
gravity) and second, the mass-radius relation is altered. Ref. [162] have investigated both of these
effects using a simple fermionic equation of state to describe carbon white dwarfs. They found
that the mass of the heaviest presently observed white dwarf (1.37± 0.01M⊙) exceeds the Chan-
drasekhar mass when Υ1 < −0.22. Fitting to the mass-radius relation for a sample of 12 white
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dwarfs they find the bounds −0.48 ≤ Υ1 ≤ 0.54 at 5σ (−0.18 ≤ Υ1 ≤ 0.27 at 1σ).

10 Future directions

To conclude this review, we briefly summarize the current state of cosmological gravity theories
and enumerate some potential future directions. On the theory side, these are theories that are
either under-developed or have not received much attention. On the experimental side, these are
directions that may not have been fully-exploited, or for which the theoretical modeling is lacking.

10.1 Current status of modified gravity theories

The present status of the modified gravity models featured prominently in this review can be
summarized as follows:

• Chameleon and similar theories including f(R): These are well-constrained and cannot
drive the cosmic acceleration without a cosmological constant but may be relevant on small
scales. They were not affected by GW170817. Applying the tests described in Sec. 9.5 to
upcoming data sets should constrain fR0 to the 10−8 level. Beyond f(R) models, smaller
strengths of the coupling of the scalar field to matter can be tested.

• Galileons and Vainshtein screened theories: The cubic galileon is in severe tension with
cosmological probes [33], while the quartic and quintic Galileon theories are ruled out as
dark energy candidates by the recent bounds imposed by GW170817. Massive gravity the-
ories that screen using the Vainshtein mechanism manifest as a mass in the gravitational
wave dispersion relation, and are most tightly constrained by Lunar Laser Ranging – see
[62, 566]. On smaller scales, Vainshtein screened theories such as galileons (that do not
self-accelerate) may be active. For these theories, small scale probes can be explored fur-
ther, with supermassive black hole offsets being one example. In the specific case of the
nDGP model with the cosmic acceleration driven by a cosmological constant — which is
described by a cubic galileon in the decoupling limit — a strong bound rc > 3090 Mpc
(2σ) was obtained using observations the growth rate of structure compared with modified
gravity simulations [36]. It would be interesting to repeat this analysis for more general
models, including quartic galileons. Tests of Vainshtein screening are discussed further in
Sec. 9.6.

• General scalar tensor theories including beyond Horndeski and DHOST: The space
of viable theories that can drive the cosmic expansion has been dramatically restricted fol-
lowing GW170817 (Sec. 3). A notable exception is cubic terms but these are strongly
constrained by cosmological measurements. Recently, Ref. [49] have indicated that beyond
Horndeski terms are completely ruled out because they would cause gravitational waves to
decay to dark energy scalars.

• Gravity parameters for large-scale tests: As detailed in Sec. 8, large-scale measurements
of lensing, redshift space distortions, and other observables have been used to constrain
parameters for the deviations of gravity in the linear regime. Figs. 10-11 summarize some
of the current constraints.

10.2 Future directions for theory

As summarized above, at present there appears no viable modified gravity model that also provides
an alternative to dark energy for cosmic acceleration. Here we summarize potentially interesting
directions for future theoretical work, one or more of which may lead to renewed connections
between theory and cosmological observations.
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• Gravitational wave speed. The tight bounds on the speed of gravitational waves described
in Sec. 3 must be respected by future developments of gravity theories, providing useful
restrictions. However, care must be taken if the strong coupling energy scale of a theory is
close to that of the gravitational wave observations, in which case the concerns of Ref. [18]
apply.

• New screening mechanisms. To date, only a handful of screening mechanisms are known:
the chameleon, symmetron and dilaton mechanisms, k-mouflage, and the Vainshtein mech-
anism (Sec. 4.1). Furthermore, the first three of these share some similarity in their imple-
mentation at the theoretical level. New methods through which screening could occur would
stimulate new tests; however, at present it seems that potentially all the screening mecha-
nisms possible from standard field couplings have been exploited. Perhaps new mechanisms
could be linked to a transition scale in spacetime curvature (see Fig. 1) or acceleration, for
example. Very recently, Ref. [533] has identified a new screening mechanism that screens
fifth forces mediated by interactions between dark matter and baryons. They suggest several
astrophysical tests that merit further investigation.

• Looking beyond standard field theory. Over the past decade much progress has been
achieved in developing extremely general field theories for gravity. For example, the Be-
yond Horndeski paradigm covers the general second-order theory of a scalar field and a
metric, and Generalized Proca theory acts similarly for theories of a vector and a metric
(though is not yet proven to be the most general construction possible). If these general
‘parent theories’ are ruled out by observations – as is beginning to happen for the Horndeski
family — then we will have effectively exhausted the application of regular field theory
techniques to the coupling of scalar, vector, and tensor fields. This will likely prompt us to
look further afield towards more nonstandard ideas, such as nonlocal Lagrangians, or ther-
modynamic or emergent viewpoints on gravity [567–569].

• Multi-field theories: Current theories typically focus on one new field (the exception is
massive gravity where bigravity has been extensively studied) and there is relatively lit-
tle work on multi-scalar-tensor, multi-vector-tensor, or scalar-vector-tensor theories even
though such theories exist and are known to be free of the Ostrogradsky instability (see e.g.
[570–572]). It would be interesting to study the cosmology of these theories, and determine
whether they are subject to the same stringent bounds from GW170817 and graviton decay
into dark energy (discussed in Sec. 3) that are highly-constraining for single filed extensions
of GR.

• The cosmological constant problem: With a vast number of alternatives to ΛCDM ruled
out, now may be a good time to re-examine the cosmological constant problem. After all, as
ΛCDM is still the model that fits the data best the problem is entirely theoretical: the small
cosmological constant that we observe is fine-tuned [573–575] because theory predicts a
value that is larger by many orders of magnitude. A compelling mechanism that explains
this would place ΛCDM on a more solid theoretical footing. In the last decade, significant
theoretical progress has been made towards understanding the cosmological constant prob-
lem and new models such as supersymmetric large extra dimensions [576], vacuum energy
sequestering [577–579], degravitating superfluids [580], and tempering the cosmological
constant [581, 582] have emerged as potential resolutions. An effort aimed towards finding
novel small scale tests of these theories akin to the program aimed at testing screened mod-
ified gravity theories could help to confirm or refute these models.
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• Novel probes of quintessence/K-essence: While the landscape of possible modified grav-
ity models has been reduced by the observation of GW170817, models of dark energy
where new degrees of freedom do not couple to matter (i.e. their scalar potential drives
the cosmological acceleration) have survived unscathed. For example, quintessence mod-
els where the acceleration is driven by a scalar field rolling down a shallow potential are
phenomenologically viable, as are K-essence theories where the acceleration is driven by
kinetic self-interactions24 [76]. Cosmologically, these models can be tested by measuring
the dark energy equation of state and other probes of the background expansion as well as
the growth of cosmic structure [76]. It would be interesting to see if small-scale tests could
be devised along the lines of those used to test modified gravity. One such example is the
effect of a dynamically changing cosmological constant on black holes [583].

• Massive gravity: Massive gravity (and massive bigravity) models are theoretically well-
motivated, because they are both natural alternatives to general relativity and screen using
the Vainshtein mechanism so are phenomenologically viable. Massive gravity itself does
not admit flat FRW cosmological solutions [584] and those with spatial curvature are unsta-
ble [585]. Massive bigravity does admit flat FRW solutions but they are unstable [586]. It
has been speculated that the Vainshtein mechanism can cure this linear instability and some
preliminary exploratory work has been performed [587] but further work is needed to asses
whether this is indeed the case. Similarly, extensions of massive bigravity have been studied
by [588], who find that there are regions of parameter space that admits a stable cosmology.
This theory certainly merits further investigation. Given that scalar-tensor and vector-tensor
models are largely excluded, now may be the time to search for stable massive trigravity
models (and possibly even more interacting metrics) that could be candidate benchmarks
for upcoming observations and simulations.

• Baryon-dark matter couplings: Traditionally, theories that explain the cosmic accelera-
tion fall into two classes: dark energy, where the acceleration is driven by a new fluid with
an equation of state w < −1/3 that does not result fifth-forces or equivalence principle
violations e.g. quintessence, and modified gravity, where the acceleration is driven by mod-
ifications of general relativity (the theories discussed in this review). Recently, a third class
has been proposed where dark matter is postulated to be a superfluid whose excitations cou-
ple to baryons. This coupling could lead to cosmic acceleration at late times [589, 590].
Recently, Ref. [533] investigated this model and showed that it contains a novel screening
mechanism where the value of Newton’s constant can vary depending on the local dark mat-
ter density. The authors also list further potential astrophysical tests that could prove fruitful
once the theory is developed (see also Ref. [532, 591]).

• Massive Galileons: The galileons studied in this work are massless but, recently, it has
been noted that one can add a mass without spoiling the theoretical properties such as non-
renormalization that make these appealing effective field theories [592]. For some parame-
ters, massive galileons can be derived from a Lorentz-invariant UV-completion [593], some-
thing which is presently unclear for their massless counterparts. To date, there has been little
investigation of the properties of massive galileons (with the exception of [100]). Further
theoretical investigation of their screening (if it persists) and cosmology could reveal them
to be a strong competitor to ΛCDM.

24With the exception of theoretically well-motivated models such as DBI, these models are on shakier theoretical
footing since they rely on higher-order terms that are outside the range of validity of the effective field theory so may
operate in a regime where the theory is not predictive.
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• Degeneracies with baryonic physics: As mentioned in Sec. 6.2 (and throughout), many
modified gravity predictions are degenerate with the hydronamical effects of baryons in the
process of galaxy formation. Overcoming these degeneracies will require improvements in
the resolution, accuracy and predictive power of cosmological hydrodynamical simulations,
as well as inference frameworks that incorporate more sophisticated models for baryonic ef-
fects. Performing such simulations in modified gravity will reduce uncertainty concerning
the interplay between baryons and modified gravity, and enable fully self-consistent modi-
fied gravity analyses. For current attempts at such simulations see e.g. Refs. [258, 269].

10.3 Future directions for observations

• Dynamical vs. lensing tests: A powerful, generic way to test for the existence of deviations
from GR is to compare observables that depend on the motion of massive particles versus
massless ones. This is because massive particles respond to the Newtonian potential Φ,
whilst massless ones respond to the Weyl potential Φ + Ψ. In GR this is equivalent to 2Φ;
a generic feature of modified gravity theories is that they break this relationship, such that
Φ + Ψ 6= 2Φ. Observationally, the test involves the comparison of dynamical and lensing
masses on galaxy and cluster scales (Sec. 9.2.3), and of larger scale cross-correlations of
galaxy clustering and weak lensing (Sec. 9.1). In an era in which the landscape of modified
gravity theories is constantly evolving, this robust test is valuable independent of particular
models.

• Voids: Cosmological voids – under-dense regions of large-scale structure – provide new
ways to test gravity (Sec. 9.3). In particular, the low-density nature of voids means that
screening mechanisms should be largely ineffective there, allowing deviations from GR to
manifest unmitigated. Both lensing and redshift-space signatures are promising. However,
a detailed understanding of void tracers and void finding algorithms is required and still in
progress. Planned analyses from surveys with spectroscopy (to enable 3D void finding) or
well-calibrated void finders that work with high quality photometric redshifts are expected
to yield qualitative advances.

• Galaxy-scale tests of screening: Signals in the morphology and kinematics of galaxies
have emerged as powerful ways to probe screened modified gravity (Sec. 9.5.3). These tests
typically require one or more of the following: i) galaxies with a wide range of masses and
environments and hence degrees of screening (especially low mass galaxies in underdense
regions), ii) multi-wavelength observations to locate the various mass components of galax-
ies at high precision, iii) knowledge of the geometry of the system relative to the external
field direction, and iv) kinematic information to determine halo mass profiles and degrees of
self-screening in addition to the relative dynamics of stars and gas. Larger galaxy samples
may greatly improve constraints, as could smaller surveys specifically targeting unscreened
regions. These tests also require knowledge of the environmental screening field, which will
be improved by deeper and wider photometric surveys.

• Future gravitational wave tests: We have discussed the constraints provided by the LIGO
detection of a neutron star merger in Sec 3. Doubtless there will be more major results to
come that use gravitational waves to constrain deviations from GR. Strong-field modifica-
tions to gravity can be constrained from the waveform, provided that parameters of the bi-
nary can be measured sufficiently well and that that adequate predictions can be made using
numerical or semi-analytic relativity calculations. Given more events with electromagnetic
counterparts, constraints on the gravitational wave luminosity distance and standard sirens
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can be brought into play [594]. Alternatively, it may be possible constrain cosmological
parameters using ‘dark sirens’ – mergers without detected electromagnetic counterparts –
by marginalising over likely host galaxies within a the localisation volume of an event [595–
597].

• Testing more general parameterizations: The background expansion rate of the universe
has been found to be consistent with the predictions of ΛCDM to a high degree (although
there is an intriguing tension between the value of H0 measured locally and that inferred
from the CMB and other probes). Much of the phenomenology of modified gravity has
therefore been geared towards modified perturbation dynamics, while leaving the back-
ground expansion rate largely unchanged. As such, modern tests of gravity need to do more
than simply constrain the background expansion history. In cosmology, parameters such as
µ and Σ (Sec. 8.1) are easier to relate directly to gravity than general measurements of the
growth rate f . All such parameterizations are however motivated by large-scale tests, and
generally involve a redshift and scale dependence which is more challenging to constrain.
For smaller scale tests, ideally functions or parameters of the action (or of a representative
action in the case of a broader class of theories) may be constrained, as has been done re-
cently for chameleon theories.

• Laboratory & strong-field tests of gravity: It was realized a few years ago [598–600]
that sufficiently low-density environments in vacuum chambers should allow tests of the
chameleon screening mechanism in the laboratory. Likewise, tests of axion physics in the
laboratory have been proposed. Any new ways to constrain screening or other modified
gravity effects in the laboratory could be powerful, considering the repeatable nature and
sensitivity achievable with modern apparatus. Greater integration with the results of strong-
field tests of gravity may also be achievable.

Many of the tests described above rely to some degree on an assumption of a background cos-
mology. The means that taking into account the effect of modifications of gravity on the inference
of cosmological parameters becomes crucial. A notable example [601] is the interplay between
the effects of a running Planck mass and H0. Thus, comprehensive analyses of astrophysical tests
of gravity must incorporate a consistent inference of constraints on the parameters describing the
background cosmology.

10.4 Outlook

In this review, we have described the motivations for constructing and testing theories of gravity
that may be active on weak-field astrophysical and cosmological scales, and have reviewed the
theoretical, computational, and observational work that has been undertaken to date. We focus in
particular on astrophysical probes. With several cosmological and galaxy surveys already under-
way and others on the horizon (summarised qualitatively in Table 3), the next decade of research
in this field will be driven by ever richer datasets. The widening gap between the theoretical and
observational communities makes enhancing our interaction of paramount importance to utilize
fully the potential of this data. The Novel Probes Project is a step towards this goal, and we hope
the reader is inspired to participate. Please visit https://www.novelprobes.org to join
our Slack forum and become involved in this exciting opportunity.
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Table 3: Summary of tests of modified gravity enabled by current and future surveys.

Survey
Clusters

Ia

CMB
(incl.
ISW)

Clusters
IIb

Strong
lens.

RSDs
Rot.
curves

Cepheids
(dist.

indic.)
Voids

Stellar
ev.

Galaxy
dyn./
struct.

DES [172, 173]
HSC [178–180]

✓ ✓ ✓ ✓ ✓ ✓ ✓

CMB
[183–190]

✓ ✓ ✓ ✓

DESI
[195, 196]

PFS [197, 198]
✓ ✓ ✓ ✓

LSST
[199–201]

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

WFIRST
[202, 203]

Euclid
[204, 205]

✓ ✓ ✓ ✓ ✓ ✓ ✓

Simons Obs.
[207]

CMB S-4
[208, 209]

✓ ✓ ✓ ✓

HIRAX
[212, 213]

CHIME [193]
? ✓ ? ? ?

SKA [210, 211] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SPHEREx
[602, 603]

✓ ✓ ✓ ✓

MANGA
[604, 605]

✓ ✓

SDSS V
[606, 607]

✓ ? ?

4MOST
[608, 609]

✓ ✓ ✓ ✓ ✓ ? ?

Gaia [610, 611] ✓ ✓ ✓ ✓

MUSE [612] ✓ ? ✓

a Cluster density profiles.
b Cluster abundances.
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