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Abstract 

Regulations on benzene, nitro- and sulfur-containing aromatic hydrocarbon content in 

commercial gasolines are becoming more restrictive due to environmental and health issues. 

The benzene content in reformulated commercial gasoline is currently around 1 %. The 

reduction of benzene levels to comply with future regulations will imply significant changes 

in refinery configurations. This paper reports a novel extraction process to simultaneously 

separate benzene, thiophene, and pyrrole from a gasoline using the 1-butyl-4-metylpyridinium 

tricyanomethanide ([4bmpy][TCM]) ionic liquid (IL). A distillation sequence is also proposed 

for the isolation of the three aromatic hydrocarbons. The conceptual design of the whole 

process has been based on experimental data from the liquid-liquid extraction and vapor-

liquid separation of benzene, thiophene, and pyrrole from isooctane using the IL 

[4bmpy][TCM]. A COSMO-based/Aspen Plus methodology has been used to simulate the 

conceptual design. The a priori COSMO-based/Aspen Plus approach was validated by 

comparison with the experimental liquid-liquid extraction results and conventional 

simulations based on experimental distribution ratios and K-values. Benzene, thiophene, and 

pyrrole contents in the gasoline would be reduced from 5.0 % to 0.1 % using the proposed 

process with a solvent-to-feed mass ratio of 5.0 and also three streams with high content in 

each aromatic would be obtained. Increasing the solvent-to-feed mass ratio above 5.0, 

benzene content in the treated gasoline could be reduced up to 200 ppm. 

 
                                                 
*Corresponding author. Tel.: +34 91 394 51 19; Fax: +34 91 394 42 43. E–mail address: 
jgarcia@quim.ucm.es (Julián García). 
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1. INTRODUCTION 

Benzene has been identified as the major contributor to cancer risk among the hydrocarbons 

forming commercial gasoline.1 In addition, the presence of nitrogen- and sulfur-containing 

hydrocarbons in gasoline implies NOx and SOx emissions that cause acid rain and respiratory 

problems.2,3 For these reasons, regulations such as the Rule for Control of Emissions of 

Hazardous Air Pollutants from Mobile Sources in US or the Directive 2009/30/CE in the 

European Union have recently reduced the maximum content of benzene in automotive fuels 

below 1 %.4,5 Moreover, more restrictive regulations on the benzene and sulfur-containing 

hydrocarbons contents in gasoline are expected in the near future.6 Current designs of 

refineries are not capable to assay these incoming purity standards. A wide refinery redesign 

would be needed to reduce the benzene content under 0.6 vol. % and also a reformulation of 

blended gasolines due to the reduction in the octane number.1 Because of this, we have 

developed the conceptual design of a novel extraction process based on ILs to reduce the 

benzene, thiophene, and pyrrole contents in gasolines and thus to comply with more 

restrictive regulations without modifying refinery configurations.  

ILs have been proposed as potential replacements of conventional organic solvents due to 

their nonvolatile nature, wide liquid range, and tunable properties.7 Specifically, ILs have 

been extensively studied in the extraction of benzene, toluene, ethylbenzene, and xylenes 

(BTEX) from n-alkanes.8-12 In addition, a wide number of papers have been focused on the 

extraction of nitrogen- and sulfur-containing aromatic hydrocarbons using ILs.2,13-23 However, 

the great majority of works has studied simplified binary mixtures such as the extraction of 

toluene or thiophene from n-alkanes24-27 and the recovery of the extracted hydrocarbons from 

the IL has been hardly investigated.28  
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In this work, the [4bmpy][TCM] IL has been selected as solvent for the simultaneous 

extraction of benzene, thiophene, and pyrrole from isooctane due to its high thermal stability, 

low viscosity, and high recyclability, but first and foremost due to its high capacity to extract 

aromatics.29  The vapor-liquid recovery of the extracted aromatics from the IL-based solvent 

have been also done. From the experimental hydrocarbon distribution ratios, we have 

simulated the extractor using the Kremser method. On the other hand, the experimental K-

values obtained in the vapor-liquid separation of the hydrocarbons from the IL have been used 

to apply the algorithm developed by Navarro et al. to simulate flash distillation units with 

high IL concentration.28 Kremser method has been used to select the optimal temperature in 

the extractor and the Navarro et al. algorithm was used to find suitable temperature and 

pressure combinations in the flash distillation units that form the recovery section. Both 

methods require experimental data and, therefore, they are only suitable to simulate separation 

processes within the experimental boundaries. Hence, the above methodology is not capable 

to deal with a more realistic gasoline model compose of a large number of hydrocarbons, 

which would be no possible to experimentally manage. To simulate the separation process for 

a gasoline model formed by 14 hydrocarbons, we have selected an a priori approach, the 

COSMO-based/Aspen Plus methodology.30 This recently developed methodology has been 

revealed as a powerful tool to be used in the conceptual design of new separation processes 

for multicomponent mixtures based on ILs without the need of having experimental data.30 To 

date, COSMO-based/Aspen Plus methodology has been applied in the design of alternative 

process using ILs for aromatic extraction,31 CO2 absorption,32 toluene absorption,33 and 

absorption refrigeration cycles.34,35 

The validation of the a priori COSMO-based/Aspen Plus approach has been made first by 

comparing the predictions with the experimental liquid-liquid equilibrium data of the ternary 
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systems (benzene, thiophene or pyrrole + isooctane + [4bmpy][TCM]). Isooctane was 

selected as reference in the ternary systems to represent the non-aromatic content in gasolines. 

This compound is used as reference standard in the octane number scale with a Research 

Octane Number of 100.36 In addition, a comparative analysis between the results obtained 

using the experimental data-based simulations of the extractor by the Kremser method and 

flash distillation simulations by the Navarro et al. algorithm28 with those using the COSMO-

based/Aspen Plus methodology was also performed for a simplified stream formed by 

isooctane, benzene, thiophene, and pyrrole.  

Once the COSMO-based/Aspen Plus approach was validated, the optimization and 

simulation of the proposed process was done for a more realistic gasoline formed by 14 

hydrocarbons with the composition listed in Table 1. This stream was formed by a 10 wt. % 

of toluene, p-xylene, 1,2,4-trimethylbenzene, and C6-C8 isoalkane hydrocarbons because their 

octane numbers are higher or equal to 100.36 p-Xylene has been chosen as benchmark for C8 

aromatic hydrocarbons and 1,2,4-trimethylbenzene for the C9-C10 aromatic hydrocarbons in 

the gasoline model. Toluene, p-xylene, and 1,2,4-trimethylbenzene contents in the gasoline 

model are based on the usual composition of commercial gasolines.37 In addition, a 5 wt. % of 

benzene, pyrrole, thiophene, C6-C8 n-alkanes, and C6-C7 cycloalkanes was fixed to evaluate 

the performance of the IL in the extraction of benzene, pyrrole, and thiophene from n-alkanes, 

cycloalkanes, isoalkanes, and other aromatic hydrocarbons with a similar boiling range. 

In Figure 1, the flow diagram of the proposed process to extract benzene, thiophene, and 

pyrrole from the gasoline is depicted. The first section of the process is formed by a liquid-

liquid extraction column (T-100) where the untreated gasoline and the [4bmpy][TCM] are fed 

in a countercurrent flow. A raffinate stream, the treated gasoline, is withdrawn from the top of 

the extractor. The extract, the IL loaded with the aromatic hydrocarbons, exits the bottom of 



5 

 

the extractor. The second section is formed by three flash distillation units (V-100, V-101, and 

V-102) to selectively recover the extracted hydrocarbons from the IL. The IL [4bmpy][TCM] 

was revealed as an efficient mass agent in the vapor-liquid separation of aliphatic and 

aromatic hydrocarbons in our previous work, substantially increasing the aliphatic/aromatic 

relative volatility.29 For that reason, the V-100 and V-101 flash distillation units were destined 

to selectively recover and recycling of the extracted non-aromatic hydrocarbons from the IL. 

The rich non-aromatic streams from the top of V-100 and V-101 are recycled to the bottom of 

the extractor. The bottoms stream from V-101, substantially free of non-aromatic impurities, 

is sent to the V-102 flash distillation unit where the aromatic product is separated from the IL. 

Lean IL from the bottom of V-102 is returned to the extractor. The aromatic product is 

recovered overhead and sent to the third section formed by three conventional distillation 

columns. A benzene-rich stream is recovered from the first column (T-101), a thiophene-rich 

stream from the second column (T-102), and a pyrrole-rich stream from the third column (T-

103). Finally, the toluene-rich stream is mixed with the treated gasoline stream to increase the 

octane number of the gasoline product. 

 

2. EXPERIMENTAL SECTION 

2.1. Chemicals. [4bmpy][TCM] was acquired from Iolitec GmbH with a mass fraction purity 

higher than 0.98, a water content of 129 ppm and a halide content lower than 0.5 %. Handling 

of the IL was made inside a glove box filled with dry nitrogen to avoid hydration. The 

structure of [4bmpy][TCM] is shown in Figure 2. Benzene, pyrrole, thiophene were purchased 

from Sigma-Aldrich, whereas isooctane was supplied by Merck with the purities listed in 

Table 2.  
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2.2. Experimental liquid-liquid extraction procedure. Liquid-liquid equilibrium 

experiments of benzene, thiophene, or pyrrole from isooctane using [4bmpy][TCM] was made 

in 8 mL glass vials over the whole range of composition of the ternary systems at 313.2 K. 

Raffinate phases were analyzed in an Agilent 7890A gas chromatograph equipped with a 

liquid autosampler Agilent 7693, whereas the extract phases were analyzed by Headspace Gas 

Chromatography (HS-GC) in the Agilent 7890A gas chromatograph using an Agilent 7697A 

headspace sampler. The complete description of the analytical method used to determine the 

composition of raffinate and extract phases can be found elsewhere.38  

In addition to the above ternary liquid-liquid equilibrium experiments, the simultaneous 

extraction of benzene, thiophene, and pyrrole from a mixture with isooctane containing 1000 

ppm of each aromatic hydrocarbon was performed using [4bmpy][TCM] at 303.2, 313.2, and 

323.2 K and solvent-to-feed ratios (S/F) in mass of 1.0, 2.0, 3.0, 4.0, and 5.0. Raffinate and 

extract phases obtained in these experiments were analyzed as described above for the ternary 

liquid-liquid equilibrium experiments. 

2.3. Simulation of the liquid-liquid extractor by the Kremser Method. From the results 

obtained in the simultaneous extraction of benzene, thiophene, and pyrrole from isooctane, a 

countercurrent liquid-liquid extractor was simulated using the Kremser method, analogous to 

the method used in absorption. The parameters used in the Kremser method were the 

extraction factor (E) and the reciprocal of E (U) calculated from the experimental values of 

distribution ratios (Di) for each hydrocarbon: 

i i

V
E D

L
            (1) 

1
i

i i

L
U

E DV
            (2) 
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where Di is the experimental distribution ratio, L denotes the raffinate mass flow, and V is the 

extract mass flow. From the experimental distribution ratios of the hydrocarbons at 323.2 K 

and an S/F ratio in mass of 2.0, flows of raffinate and extract streams were estimated 

calculating total balances for each component. Using the experimental values of Di and fixing 

a mass flow of 1000 t/h for the feed, the extractor was simulated using an iterative method 

implemented in Microsoft Excel. This method was employed in our previous works in the 

simulation of the dearomatization of pyrolysis and reformer gasolines using ILs.23,39 The 

influence of the number of equilibrium stages (Ns) in the extractor on the yield of extraction 

of benzene, thiophene, and pyrrole was studied in the simulations. The results obtained in the 

simulations by the Kremser method were compared with those obtained by the COSMO-

based/Aspen Plus methodology under the same conditions.  

2.4. Experimental vapor-liquid separation of the extracted hydrocarbons from the IL. 

The extracted hydrocarbons are recovered from the IL using flash distillation units as a result 

of the nonvolatile nature of the IL and the aforementioned improvement of the 

aliphatic/aromatic relative volatility in the presence of IL. The vapor-liquid recovery of the 

extracted hydrocarbons from [4bmpy][TCM] was experimentally studied for the feed 

composition of each flash distillation unit. The required vapor-liquid equilibria data between 

benzene, thiophene, pyrrole, isooctane, and [4bmpy][TCM] were determined using the 

Agilent 7697A headspace sampler coupled to the Agilent GC 7890A at temperatures between 

323.2 K and 423.2 K. These temperatures were selected considering the maximum operation 

temperature for [4bmpy][TCM] that ensures the thermal stability of the IL for 1 year (447 

K).29 The complete description of the HS-GC method to determine the vapor-liquid equilibria 

between hydrocarbons and ILs can be found in our previous publication.40 
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2.5. Simulation of the vapor-liquid separation of the extracted hydrocarbons. To simulate 

the flash distillation units, the experimental K-values for each hydrocarbon obtained by the 

HS-GC method were used. Adiabatic flash simulations was performed at different 

temperatures and pressures using the algorithm published by Navarro et al. for mixtures 

formed by ILs and hydrocarbons.28 In addition, the three flash distillation units were 

simulated using the COSMO-based/Aspen Plus methodology at the same temperatures and 

pressures used in the Navarro et al. algorithm.  

2.6. Simulation of the proposed process by the COSMO-based/Aspen Plus methodology. 

To define [4bmpy][TCM] in the database of Aspen Plus, the molecular geometry of the IL 

was optimized using TURBOMOLE with DFT method B88-P86 (bp) and TZVP basis set. In 

this case, the molecular model formed by independent anions (Cation + Anion) was employed 

in the geometry optimization. The IL was described in Aspen Plus V8.8 as pseudo-component 

introducing its density, molecular weight, molecular volume, -profile, and normal boiling 

temperature. These properties were obtained in the COSMOthermX program package 

(version C30_1201, BP_TZVP_C30_1201, default parametrization). The introduction of ILs 

in Aspen Plus using COSMO-based calculations has been extensively described in our 

previous publication.30 In the simulation of the proposed process, a gasoline model formed by 

14 hydrocarbons was employed with the composition previously listed in Table 1. All the 

hydrocarbons forming the gasoline were selected as conventional compounds from the Aspen 

Plus database.  

The COSMOSAC property model was selected to calculate the activity coefficients in the 

simulations. Specifically, we have employed the modification to the Lin and Sandler model 

(mode 3 of COSMOSAC model) developed by Lin, Mathias et al. (2002) because this 
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COSMO-based equation exhibited the lowest values of mean absolute percentage error in the 

prediction of activity coefficients at infinite dilution of a wide variety of solutes in ILs.30,41 

An adiabatic Aspen Plus EXTRACT rigorous model with 20 equilibrium stages at 323 K 

and 101.3 kPa was used to simulate the extractor (T-100). The IL was introduced in the stage 

1 and the gasoline in the stage 20. The recycled streams obtained in the first and second flash 

distillation units (V-100) and (V-101) were introduced at 323 K and 101.3 kPa in the stages 

18 and 19 of the extractor. The FLASH2 model was employed to simulate the three flash 

distillation units used to recover the extracted hydrocarbons from the IL.  

To simulate the separation of the extracted hydrocarbons in the conventional distillation 

columns, the DSTWU model was selected. This model uses the Winn-Underwood-Gilliland 

method, fixing the recovery of heavy and light key components. Recoveries of light and 

heavy key components were selected to ensure the convergence of the simulations using 10 

equilibrium stages in each distillation column. The first distillation column (T-101) operates 

at 101.3 kPa with a 99 % of benzene recovery (light key component) and a 0.5 % of thiophene 

recovery (heavy key component) in the distillate. In the second distillation column (T-102), 

thiophene was selected as light key component with a 99 % of recovery in the distillate 

whereas toluene was the heavy key component with a 1 % of recovery in the distillate; this 

column also operates at 101.3 kPa. Finally, the third distillation column has the aim of 

separating toluene from pyrrole at 60.8 kPa. For that purpose, toluene was fixed as the light 

key component with a 99.9 % of recovery in the distillate and the pyrrole recovery was fixed 

to 2.5 %. The toluene-rich stream obtained in the distillate was mixed with the raffinate from 

the extraction column to obtain the treated gasoline.  

 

3. RESULTS AND DISCUSSION 
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3.1. Liquid-liquid extraction of benzene, thiophene, or pyrrole from isooctane using 

[4bmpy][TCM]. Experimental determination and COSMO-based/Aspen Plus 

predictions. The experimental liquid-liquid equilibria for the {isooctane + (benzene, 

thiophene, or pyrrole) + [4bmpy][TCM]} ternary systems at 313.2 K are plotted in Figure 3 

and listed in Table S1 of the Supporting Information. As seen, the solubility of the aromatic 

hydrocarbons was considerably higher than that of isooctane in the IL. Specifically, the 

pyrrole was completely miscible with the IL, whereas the solubility of benzene in the IL was 

0.792 and for the thiophene was 0.944 in mole basis. These high values of solubility confirm 

the high affinity of the IL-based solvent for the three aromatic hydrocarbons. 

In Figure 3, predictions for the ternary liquid-liquid equilibria using the COSMO-

based/Aspen Plus approach are plotted together with the experimental data. As can be seen, 

the predicted tie-lines were almost coincident with the experimental values at low content in 

the three aromatic hydrocarbons. This result is essential to perform the simulation of the 

proposed process of extraction of benzene, thiophene, and pyrrole from gasoline, since the 

content of the three aromatic hydrocarbons in the gasoline will be lower than 5 wt. %. The 

largest deviations of the predictions were observed for the extraction of benzene, being the 

experimental solubility slightly higher than that predicted by the COSMO-based/Aspen Plus 

approach. In the case of thiophene, the predicted solubility in the IL was slightly higher than 

the experimental value and COSMO-based calculations predicted a phenomenon of solutropy 

that does not exist in the experimental results. However, the predicted tie line slopes were 

very similar to the experimental at low values of thiophene. On the other hand, the 

experimental ternary liquid-liquid equilibria obtained in the extraction of the pyrrole was 

almost coincident with the predictions from the COSMO-based/Aspen Plus methodology. 

Considering the low deviations between experimental and predicted ternary liquid-liquid 
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equilibria at low contents of aromatic hydrocarbons, the COSMO-based/Aspen Plus 

predictions seems to be adequate to be used in the conceptual design of the extraction process 

of benzene, thiophene, and pyrrole from gasolines. 

From the experimental results of the ternary liquid-liquid equilibria, the aromatic 

distribution ratios (Darom) and aromatic/isooctane selectivities (arom,isooctane) were calculated as 

follows: 

extract
aromatic

arom raffinate
aromatic

w
D

w
           (3) 

arom
arom,isooctane

isooctane

D

D
       (4) 

where wi are the experimental mass fractions of benzene, thiophene, or pyrrole in the raffinate 

and extract phases. Experimental values of Darom and arom,isooctane are listed as a function of 

composition in Table S1 of the Supporting Information. For comparative purposes, the 

highest values of aromatic distribution ratios and aromatic/isooctane selectivities for the three 

ternary systems are listed in Table 3; these values were obtained at the lowest aromatic 

content in the feed. The pyrrole was extracted with very high values of mass-based 

distribution ratios and pyrrole/isooctane selectivities. These results are due to the similarity 

between the structure of the pyrrole and the pyridinium-based cation. The replacement of the 

nitrogen atom in the pyrrole by the sulfur in the thiophene has substantially decreased the 

values of the distribution ratio and the selectivity in the extraction from isooctane. In the case 

of benzene, both extractive properties were slightly smaller than those in the extraction of 

thiophene.  

According to the results obtained, nitrogen-containing aromatic hydrocarbons will be more 

easily extracted from gasolines using the IL [4bmpy][TCM] than those containing sulfur or 

BTEX. These conclusions are in agreement with Hansmeier et al. (2011), who concluded that 
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nitrogen-containing aromatic hydrocarbons are better extracted than sulfur-containing 

aromatic hydrocarbons using ILs.24  

3.2. Experimental simultaneous extraction of benzene, thiophene, and pyrrole from 

isooctane. The performance of [4bmpy][TCM] in the simultaneous extraction of the three 

aromatic hydrocarbons was studied for mixtures of isooctane with contents of 1000 ppm of 

every aromatic. This composition was selected to represent a low content of benzene, 

thiophene, and pyrrole in the extractor of the proposed process. From the experimental results, 

yield of extraction of isooctane and total yield of extraction of the aromatic hydrocarbons 

were calculated with the following expressions: 

extract
isooctane

isooctane feed
isooctane

(%) 100
m

Yld
m

         (5) 

extract extract extract
benzene thiophene pyrrole

arom feed feed feed
benzene thiophene pyrrole

(%) 100
m m m

Yld
m m m

 


 
      (6) 

where mi are the masses of each hydrocarbon added to the vial or determined in the extract 

phase. Experimental yields of extraction as a function of temperature and mass-based solvent-

to-feed ratio are depicted in Figure 4. As observed, the yield of extraction of aromatic 

hydrocarbons was substantially higher than that for isooctane. This result is in agreement with 

the high value of aromatic/isooctane selectivities obtained in the ternary liquid-liquid 

equilibria. The effect of temperature on the yield of extraction of aromatic hydrocarbons was 

more significant than that observed for the isooctane. Therefore, a temperature of 323.2 K 

seems to be the optimal to separate these compounds and thus this temperature will be used in 

the simulation of the proposed process. On the other hand, the effect of S/F ratio on the yield 

of extraction of aromatic hydrocarbons was lower than that on the extraction of isooctane. For 

instance, The Yldarom at 323.2 K using S/F ratios of 2.0 and 5.0 were 70.1 % and 79.8 %, 

respectively. On the other hand, the Yldisooctane increased from 3.2 to 7.3 % using S/F ratios of 
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2.0 and 5.0, respectively. Therefore, to minimize the co-extraction of isooctane and to reduce 

investment and operating costs, a S/F ratio of 2.0 was selected as the most adequate to 

perform the separation of benzene, thiophene, and pyrrole from isooctane. 

3.3. Simulation of the extraction of benzene, thiophene, and pyrrole from isooctane using 

the Kremser method and the COSMO-based/Aspen Plus methodology. The liquid-liquid 

extraction of the three aromatic hydrocarbons from isooctane in a countercurrent extractor 

was also simulated using the Kremser method and the COSMO-based/Aspen Plus 

methodology. Simulations were performed at 323.2 K and a S/F ratio in mass of 2.0 as a 

function of number of equilibrium stages. The feed stream was the isooctane mixture with 

contents of 1000 ppm of benzene, thiophene, and pyrrole above-mentioned. The experimental 

distribution ratios of each hydrocarbon calculated from the experimental liquid-liquid 

equilibrium at 323.2 K and S/F ratio of 2.0 were used in the Kremser method.  

Yields of extraction of benzene, thiophene, and pyrrole were calculated from the flows and 

compositions obtained in the simulations. In Figure 5, the results obtained by the Kremser 

method and the COSMO-based/Aspen Plus methodology are depicted. As seen, the results 

obtained for the pyrrole were almost coincident using both simulation methods, obtaining a 

yield of extraction almost complete at all number of stages employed because of the high 

solubility of pyrrole in [4bmpy][TCM]. In the case of thiophene, COSMO/Aspen Plus 

predicted slightly higher yields of extraction than the Kremser method at Ns between 2 and 8. 

This difference can be explained because the COSMO-based calculations slightly 

overestimated the experimental thiophene solubility in [4bmpy][TCM] as concluded in the 

analysis of the ternary liquid-liquid equilibria data for the system {isooctane + thiophene + 

[4bmpy][TCM]}. The largest deviations between both methods used in the simulations were 

obtained for the yields of extraction of benzene. COSMO-based simulations estimated lower 
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values of Yldbenzene than the Kremser method over the whole range of the number of 

equilibrium stages in the extractor. These differences can be caused because the Kremser 

method assumes a constant benzene distribution ratio along the column, whereas the 

COSMO-based/Aspen Plus methodology calculates the liquid-liquid equilibrium in each 

stage. Analyzing the results obtained in the simulation of the extractor using both methods, 

the a priori COSMO-based/Aspen Plus approach provides results comparable to those 

obtained by the experimental data-based Kremser method. Because of this, the application of 

COSMO-based/Aspen Plus methodology to develop the conceptual design of the proposed 

process to extract benzene, thiophene, and pyrrole from gasoline seems to be adequate. 

3.4. Simulation of the vapor-liquid separation of the extracted hydrocarbons. The 

simulation of the recovery section has been performed using the algorithm developed by 

Navarro et al. based in the experimental K-values of each hydrocarbon in the presence of 

ILs28 and the COSMO-based/Aspen Plus methodology. To simulate the first flash distillation, 

experimental data of vapor-liquid equilibria between the extracted hydrocarbons and 

[4bmpy][TCM] with a mixture composition equal to that of the extract stream calculated from 

the simulation of the extractor at temperatures from 323 K to 373 K were obtained. Results 

from the experimental determination of the vapor-liquid equilibria are listed in Table S2 in the 

Supporting Information. The objective of the first flash distillation unit was to recover 

approximately the 50 % of the extracted isooctane. To obtain this recovery, the operating 

conditions of the first flash were fixed at 323 K and 10 kPa, since the highest values of 

isooctane/aromatic relative volatilities were obtained at the lowest temperature. The second 

flash distillation unit also operates at 323 K but the pressure was reduced at 3 kPa to volatilize 

the remaining isooctane in the IL. Finally, the aim of the third flash distillation unit was to 

recover the aromatic hydrocarbons from the IL. Because of this, experimental vapor-liquid 
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equilibria were also determined at 423 K. This temperature is substantially lower than the 

maximum operating temperature (447 K) for [4bmpy][TCM] that ensures the use of this IL 

for at least 1 year without thermal decomposition.29 The pressure of the third flash distillation 

unit was fixed at 0.5 kPa to increase the aromatic hydrocarbon recovery from the IL. 

From the mass flow and composition values of the feed and vapor streams obtained from 

the simulations of the flash distillation units, values of the recovery of isooctane (Risooctane) and 

aromatics (Rarom) were calculated using the following equations: 

 
 
isooctane vapor stream

isooctane
isooctane feed

(%) 100
m

R
m

                       (7) 

 
 
benzene thiophene pyrrole vapor stream

arom

benzene thiophene pyrrole feed

(%) 100
m m m

R
m m m

 


 
      (8) 

In Table 4, a comparison between the values of Risooctane and Rarom obtained by the Navarro 

et al. algorithm and the COSMO-based/Aspen Plus approach for the three flash distillation 

units is reported. The recovery of the isooctane was substantially higher than the aromatic 

recovery for both simulation methods. Therefore, the COSMO-based/Aspen Plus 

methodology has successfully predicted the entrainer effect caused by the IL [4bmpy][TCM] 

that increases the isooctane/aromatic relative volatility. The effect of temperature and pressure 

in the flash distillations units on the hydrocarbon recovery was also correctly described by 

both simulation methods. Hence, these results confirm the applicability of the COSMO-

based/Aspen Plus approach to simulate the whole extraction process of aromatic 

hydrocarbons from gasolines considering both extraction and recovery sections. 

3.5. Simulation of the proposed process to extract benzene, thiophene, and pyrrole from 

gasoline using [4bmpy][TCM]. In the simulation of the whole process, we have used for the 

extractor the optimized temperature determined from the experimental liquid-liquid 
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equilibrium data (323.2 K) and the temperature and pressure optimized for each flash 

distillation units by the Navarro et al. algorithm (323.2 K and 10 kPa for V-100, 323.2 K and 

3 kPa for V-101, and 423.2 K and 0.5 kPa for V-102). The main objective of the simulations 

was to determine the effect of S/F ratio on the benzene, thiophene, and pyrrole contents in the 

treated gasoline. For that reason, simulations were performed at S/F ratios from 0.5 to 9.0 

obtaining the results shown in Figure 6. As a result of the high solubility of pyrrole in the IL, 

the percentage of this aromatic hydrocarbon in the treated gasoline is almost constant with the 

S/F ratio. In the case of thiophene, employing a solvent-to-feed ratio higher than 4.0 the 

content of this sulfur-containing aromatic hydrocarbon in the treated gasoline would be lower 

than 0.06 wt. %. Finally, the effect of S/F ratio on the benzene content in the treated gasoline 

was the most significant because this aromatic hydrocarbon is the less soluble in 

[4bmpy][TCM]. As observed, using a mass-based S/F ratio of 5.0, the benzene content in the 

treated gasoline would be reduced from 5.0 wt. % to 0.05 wt. %. In addition, a treated 

gasoline with 200 ppm of benzene could be obtained using a S/F ratio of 7.0. Therefore, this 

proposed process would be used to comply with highly restrictive regulations on benzene 

content in gasoline. The benzene content in the final treated gasoline was lower than those for 

thiophene and pyrrole at S/F ratios greater than 5.0 because the toluene rich-stream obtained 

in the third distillation column has small quantities of thiophene and pyrrole that increases the 

content of both aromatic hydrocarbons in the treated gasoline.  

The aim of the three distillation columns of the proposed process is to obtain three by-

product streams with high contents in benzene, thiophene, and pyrrole and to recover the 

extracted toluene to be mixed with the treated gasoline obtained from the liquid-liquid 

extraction column to increase its octane number. In Figure 6, purities of benzene, pyrrole, and 

thiophene in the by-product streams obtained in the distillation columns are also shown. The 
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bottom stream obtained from the third distillation column had a purity of pyrrole higher than 

99.7 wt. % in all simulations because the boiling point of this nitrogen-containing aromatic 

hydrocarbon is different enough than that of the toluene. The purity of thiophene obtained 

from the second distillation column decreased at S/F higher than 2.5 because the co-extraction 

of other compounds, such as n-octane or cycloheptane. In the case of benzene, its purity in the 

distillate of the first distillation column increased at S/F values between 0.5 and 5.0 because 

the yield of extraction of this aromatic hydrocarbon also rose. By contrast, the benzene purity 

decreased at S/F ratios greater than 5.0 because of the co-extraction of isohexane, n-hexane, 

and cyclohexane. Analyzing the global results, a S/F ratio of 5.0 seems to be the optimal to 

obtain very low aromatic contents in the final gasoline and to obtain three by-product streams 

formed by benzene, thiophene, and pyrrole with purities that ensure their commercial value. 

However, this S/F ratio could be increased to reduce the benzene content in the treated 

gasoline up to 200 ppm. Flows, temperatures, pressures and compositions of the streams 

obtained in the simulation of the proposed process at a S/F ratio of 5.0 are listed in Table S3 

in the Supporting Information.  

To sum up, the proposed process of extraction of benzene, thiophene, and pyrrole from 

gasoline using [4bmpy][TCM] with a S/F ratio of 5.0 would reduce the content of these three 

aromatic hydrocarbons from 5.0 % to 0.1 % in the gasoline, obtaining also three valuable by-

product streams with a 91.3 wt. % of benzene, 99.8 wt. % of pyrrole, and 92.3 wt. % of 

thiophene, respectively. 

 

4. CONCLUSIONS 

In this paper, the conceptual design of a novel process to reduce benzene, thiophene, and 

pyrrole content in gasoline based on the IL [4bmpy][TCM] has been developed using 
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experimental data and the a priori COSMO-based/Aspen Plus methodology. Firstly, the 

liquid-liquid equilibria for the ternary system (benzene, thiophene, or pyrrole + isooctane + 

[4bmpy][TCM]) were experimentally determined at 313.2 K. The ternary diagrams were 

adequately predicted by the COSMO-based/Aspen Plus methodology. High values of 

aromatic/isooctane selectivities and aromatic distribution ratios were obtained using 

[4bmpy][TCM]; therefore, this IL is adequate to be applied in the extraction of benzene, 

thiophene, and pyrrole from gasolines. The simultaneous extraction of the three aromatic 

hydrocarbons from isooctane and the recovery of the extracted hydrocarbons from the solvent 

were also experimentally studied. From the experimental data, the extractor and the recovery 

section formed by three flash distillation units were simulated using the Kremser method and 

the Navarro et al. algorithm, respectively. The results obtained in the experimental-based 

simulation methods were comparable to those employing the a priori COSMO-based/Aspen 

Plus approach. Because of this, the conceptual design of the process to reduce the benzene, 

thiophene, and pyrrole content in a gasoline formed by n-alkanes, isoalkanes, cycloalkanes, 

and aromatic hydrocarbons was made using the COSMO-based/Aspen Plus methodology. The 

complete process was simulated at several solvent-to-feed ratios to optimize this variable. 

Using a S/F ratio of 5.0, the benzene, thiophene, and pyrrole contents in the gasoline were 

reduced from 5.0 wt. % to 0.1 wt. %. In addition, three product streams with high contents in 

benzene, thiophene, and pyrrole could be obtained in a separation section formed by three 

distillation columns. Increasing the S/F ratio the benzene content in the treated gasoline could 

be reduced up to 200 ppm. Hence, the proposed process could be applied in the future to 

accomplish more restrictive regulations on benzene, nitrogen-containing, or sulphur-

containing aromatic hydrocarbons without modifying the currently used structure of 

refineries.  
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Table 1. Composition of the Gasoline used in the COSMO-based/Aspen Plus Simulation of the 
Proposed Process for the Simultaneous Extraction of Benzene, Pyrrole, and Thiophene 

Hydrocarbon  wt.% 

Benzene 5.0 

Pyrrole 5.0 

Thiophene 5.0 

n-Hexane 5.0 

Isohexane 10.0 

Cyclohexane 5.0 

n-Heptane 5.0 

Isoheptane 10.0 

Cycloheptane 5.0 

n-Octane 5.0 

Isooctane 10.0 

Toluene 10.0 

p-Xylene 10.0 

1,2,4-trimethylbenzene 10.0 
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Table 2. Specifications of the Chemicals  

Chemical Supplier Mass Fraction Purity Analysis Method 

[4bmpy][TCM]a Iolitec GmbH 0.98 NMRb and ICc 

Benzene Sigma–Aldrich 0.998 GCd 

Thiophene Sigma–Aldrich 0.99 GCd 

Pyrrole Sigma–Aldrich 0.98 GCd 

Isooctane Merck 0.995 GCd 
a [4bmpy][TCM] = 1-butyl-4-methylpyridinium tricyanomethanide 
b Nuclear Magnetic Resonance 
c Ion Chromatography 
d Gas Chromatography 
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Table 3. Maximum Values of Mass-based Aromatic Distribution Ratio (Darom) and 
Aromatic/isooctane Selectivity (arom,isooctane) in the {isooctane + aromatic + [4bmpy][TCM]} 
Ternary Liquid-liquid Equilibria at 313.2 K  

Aromatic Extracted 
Maximum  

Mass-based Darom 
Maximum  
arom,isooctane 

Benzene 0.80 65.6 

Thiophene 1.16 81.4 

Pyrrole 48.1 4141.9 
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Table 4. Recovery of Isooctane and Aromatic Hydrocarbons from the [4bmpy][TCM] in the 
Three Flash Distillation Units Simulated by the Navarro et al. Algorithm28 and by COSMO-
based/Aspen Plus Methodology 

Method 
V-100  

(323.2 K, 10 kPa) 
 

V-101  
(323.2 K, 3 kPa) 

 
V-102  

(423.2 K, 0.5 kPa) 

Navarro et al. 
Algorithm 

Risooct / % Rarom / %  Risooct / % Rarom / %  Risooct / % Rarom / % 

60.66 3.52  70.67 7.55  99.98 77.6 

COSMO-based/ 
Aspen Plus 

Risooct / % Rarom / %  Risooct / % Rarom / %  Risooct / % Rarom / % 

52.52 6.04  72.00 11.63  98.79 71.6 
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Figure 1. Flow diagram of the proposed process to reduce benzene, thiophene, and pyrrole content in gasoline using the ionic liquid [4bmpy][TCM] 

as solvent. 
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Figure 2. Structure of the 1-butyl-4-metylpyridinium tricyanomethanide ([4bmpy][TCM]) 

ionic liquid. 
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Figure 3. Ternary liquid-liquid equilibrium in the extraction of benzene, thiophene, and 

pyrrole from isooctane using [4bmpy][TCM] at 313.2 K. Solid lines and blue points are 

experimental tie-lines whereas dashed lines and empty squares are COSMO-based/Aspen Plus 

predictions. 
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Figure 4. Yields of extraction of aromatic hydrocarbons and isooctane as a function of 

temperature and S/F ratio in the simultaneous extraction of benzene, thiophene, and pyrrole 

from a mixture with 1000 ppm of each aromatic hydrocarbon using [4bmpy][TCM]. 
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Figure 5. Yield of extraction of benzene, thiophene, and pyrrole from isooctane in the 

simulation of the extractor at 323.2 K and a S/F of 2.0 as a function of the number of 

equilibrium stages by the Kremser Method and the COSMO-based/Aspen Plus methodology. 
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Figure 6. Benzene, pyrrole, and thiophene content in the treated gasoline and purity of the 

obtained by-products in the simulation of the proposed process using the COSMO-

based/Aspen Plus methodology as a function of solvent-to-feed ratio. 


