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Abstract

Background: Protein kinase D (PKD) has been implicated in a wide range of cellular processes and pathological 

conditions including cancer. However, targeting PKD therapeutically and dissecting PKD-mediated cellular responses 

remains difficult due to lack of a potent and selective inhibitor. Previously, we identified a novel pan-PKD inhibitor, 

CID755673, with potency in the upper nanomolar range and high selectivity for PKD. In an effort to further enhance its 

selectivity and potency for potential in vivo application, small molecule analogs of CID755673 were generated by 

modifying both the core structure and side-chains.

Results: After initial activity screening, five analogs with equal or greater potencies as CID755673 were chosen for 

further analysis: kb-NB142-70, kb-NB165-09, kb-NB165-31, kb-NB165-92, and kb-NB184-02. Our data showed that 

modifications to the aromatic core structure in particular significantly increased potency while retaining high 

specificity for PKD. When tested in prostate cancer cells, all compounds inhibited PMA-induced autophosphorylation 

of PKD1, with kb-NB142-70 being most active. Importantly, these analogs caused a dramatic arrest in cell proliferation 

accompanying elevated cytotoxicity when applied to prostate cancer cells. Cell migration and invasion were also 

inhibited by these analogs with varying potencies that correlated to their cellular activity.

Conclusions: Throughout the battery of experiments, the compounds kb-NB142-70 and kb-NB165-09 emerged as the 

most potent and specific analogs in vitro and in cells. These compounds are undergoing further testing for their 

effectiveness as pharmacological tools for dissecting PKD function and as potential anti-cancer agents in the treatment 

of prostate cancer.

Background
The PKD family is a novel family of serine/threonine

kinases and diacyglycerol (DAG) receptors. Three iso-

forms of PKD have been identified so far: PKD1 (formerly

PKCμ), PKD2, and PKD3 (PKCν) [1-4]. Originally classi-

fied as a member of the protein kinase C (PKC) family,

the PKD family is now recognized as a subfamily of the

calcium/calmodulin-dependent kinase superfamily, and

is only distantly related to PKC in structure [5,6]. All iso-

forms contain a catalytic domain, a cysteine-rich DAG-

binding domain (C1), and a pleckstrin homology (PH)

domain that negatively regulates PKD activity [7]. DAG

regulates the localization of PKD through binding to its

C1 domain [4] and its activity through regulating PKC-

dependent phosphorylation of PKD on serines 738 and

742 (Ser738/742) in the activation loop [8,9]. Rapid, early

activation of PKD by PKC then leads to autophosphoryla-

tion of PKD on serine 916 (Ser916) and subsequent full

activation of PKD [10]. Interestingly, recent evidence sug-

gests that while Ser742 transphosphorylation by PKC is

required for early activation of PKD, Ser742 is also a site of

autophosphorylation, and that autophosphorylation at

this site is required for maintaining prolonged PKD acti-

vation [11].

Since its discovery, PKD has been implicated in various

cellular functions significant to tumor development

including proliferation, survival, apoptosis, angiogenesis,

and motility. For example, PKD activation in response to

vascular endothelial-derived growth factor (VEGF) or

bombesin leads to activation of extracellular signal-regu-

lated kinase (ERK) 1/2, regulating cell proliferation in
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several cell types [12,13]. PKD can also be activated by

oxidative stress, which modulates cell survival through

the NF-κB and JNK signaling pathways [14-16]. Further-

more, PKD has been implicated in the regulation of the

epithelial to mesenchymal transition in prostate cancer

cells by modulation of β-catenin, and angiogenesis in vas-

cular endothelial cells through modulating phosphoryla-

tion and nucleocytoplasmic shuttling of class IIa histone

deacetylases (HDACs) [15,17]. Disruption of these funda-

mental pathways could potentially lead to the develop-

ment, progression, and metastasis of cancer. In recent

studies, PKD expression has been shown to be dysregu-

lated in human prostate cancer tissues [18,19], implicat-

ing a role for PKD in the progression of prostate cancer.

To support this, we previously reported that a knock-

down of PKD3, a member of the PKD family, using

siRNA caused a dramatic arrest in cell proliferation in

PC3 cells [18]. Furthermore, we also found that inhibition

of PKD using the novel PKD inhibitor CID755673 not

only reduced proliferation in LNCaP, DU145, and PC3

cells, but also significantly slowed migration and invasion

of PC3 and DU145 cells [20].

Our previous report identified CID755673 as a potent

and selective PKD inhibitor with an in vitro IC50 for

PKD1 of 182 nM [20]. This compound also was active in

cells and inhibited multiple known biological functions of

PKD. CID755673 was highly selective and did not inhibit

multiple PKC isoforms tested, or CAMKIIα. This

remarkable selectivity represents a significant improve-

ment over compounds previously used to inhibit PKD,

such as Gö6976, a compound known foremost for its

inhibition of PKCs [21]. Despite its apparent high speci-

ficity and potent inhibition of PKD in vitro, its cellular

activity was relatively weak. Efforts to improve the

potency of this compound are imperative to ensure its

effective application in cells and animals.

In this study, we present the in vitro and cellular activity

of five novel analogs of CID755673. The analogs were

synthesized with modifications to both their core struc-

tures and side chains. We show that several of these ana-

logs exhibited increased potency toward PKD inhibition

both in vitro and in cells. Additionally, they cause potent

growth arrest, moderate cell death, and inhibition of

migration and invasion in prostate cancer cells, support-

ing their potential for in vivo applications.

Methods
Chemicals and reagents

DMSO was purchased from Sigma. PKCα was obtained

from Cell Signaling Technology and Calbiochem, PKCβI

was from Cell Signaling Technology, and PKCδ was from

Enzo Life Sciences. Myelin basic protein 4-14 was pur-

chased from Sigma. CID755673 and its analogs, kb-

NB142-70, kb-NB165-09, kb-NB165-31, kb-NB165-92,

and kb-NB184-02, were synthesized according to stan-

dard organic synthesis procedures [22-27].

Synthesis of CID755673

CID755673 and its byproduct CID797718 were synthe-

sized according to Fig. 1 and the following experimental

protocols:

3,3-Dibromoazepan-2-one (1). A solution of ε-capro-

lactam (15.1 g, 0.133 mol) in CHCl3 (400 mL) was cooled

to 0-5°C and PCl5 (55.2 g, 0.265 mol) was added over the

course of 30 min followed by addition of anhydrous ZnI2

(1.53 g, 4.79 mmol) under N2. The reaction mixture was

slowly allowed to reach rt as Br2 (42.4 g, 0.265 mol) was

added dropwise over 30 min. The mixture was stirred at

rt for 6 h and then poured into ice-water (300 mL). The

aqueous layer was separated and extracted with CHCl3 (3

× 100 mL). The combined organic fractions were washed

with 0.50 M aq NaHSO3 (3 × 200 mL) and brine (1 × 400

mL), dried (MgSO4), and concentrated to yield a yellow

solid residue. The solid was suspended in water, filtered,

and washed with water and Et2O to give 1 (27.5 g, 101.5

mmol, 76% yield) as a white solid: mp 161-163°C (lit 162-

164°C);[25]1H NMR (CDCl3, 600 MHz) δ 6.07 (bs, 1 H),

3.38 (dd, J = 10.2, 6.0 Hz, 2 H), 2.75 (t, J = 6.0 Hz, 2 H), 2.0

(quint., J = 6.0 Hz, 2 H), 1.72 (quint., J = 6.0 Hz, 2 H); 13C

NMR (CDCl3, 150 MHz) δ 168.5, 69.5, 45.9, 42.6, 28.4,

28.2; IR (ATR, neat) 3201, 3085, 2940, 2929, 1661, 1464,

1407, 1326 cm-1; HRMS (ES+) m/z calcd for C6H9Br2NO

[M+Na]+, 291.8949, found 291.8973.

3-Piperidin-1-yl-1,5,6,7-tetrahydroazepin-2-one (2). A

solution of 1 (27.0 g, 99.7 mmol) in piperidine (240 mL)

was heated at reflux for 4.5 h under N2. The solution was

allowed to reach rt and washed with 0.50 M aq NaHSO3

(200 mL). The aqueous phase was separated and

extracted with CHCl3 (3 × 100 mL). The combined

organic fractions were washed with brine (1 × 300 mL),

dried (MgSO4), and concentrated to afford a yellow solid,

which was suspended in water, filtered, and washed with

water and Et2O to give 2 (17.6 g, 90.59 mmol, 91% yield)

as a white solid: mp 140-143°C (lit 139-144°C); 1H NMR

(CDCl3, 600 MHz) δ 6.59 (bs, 1 H), 5.06 (t, J = 7.8 Hz, 1

H), 3.22 (dd, J = 13.2, 6.6 Hz, 2 H), 2.78 (t, J = 5.4 Hz, 4 H),

2.15 (dd, J = 14.4, 7.2 Hz, 2 H), 1.76 (quint., J = 6.6 Hz, 2

H), 1.65 (quint., J = 5.4 Hz, 4 H), 1.51 (quint., J = 6.0 Hz, 2

H); 13C NMR (CDCl3, 150 MHz) δ 171.2, 147.3, 105.2,

49.9 (2 C), 39.3, 30.0, 25.3 (2 C), 24.3, 21.3; IR (ATR, neat)

3193, 2950, 2923, 2935, 2855, 1655, 1605 cm-1; HRMS

(EI+) m/z calcd for C11H18N2O [M]+, 194.1419, found

194.1422.

7-Hydroxy-10a-piperidino-2,3,4,5,5a,10a-hexahyd-

robenzofuro[2,3-c]azepin-1(1H)-one (3). A mixture of
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1,4-benzoquinone (0.568 g, 5.15 mmol) and enamine 2

(1.00 g, 5.15 mmol) in anhydrous EtOH (4 mL) was

stirred for 11 h at rt. The precipitate was filtered off,

washed with absolute EtOH and dried under high vac-

uum to give 3 (1.12 g, 3.704 mmol, 77% yield) as a light

pink solid: mp 254-255°C (lit 257-260°C);[27]1H NMR

(DMSO-d6, 600 MHz) δ 8.73 (s, 1 H), 7.60 (t, J = 7.2 Hz, 1

H), 6.55 (d, J = 1.8 Hz, 1 H), 6.52 (d, J = 9.0 Hz, 1 H), 6.48

(dd, J = 9.0, 2.4 Hz, 1 H), 3.91 - 3.99 (m, 1 H), 3.28 (d, J =

12.6 Hz, 1 H), 2.91 - 2.98 (m, 1 H), 2.60 - 2.66 (m, 2 H),

2.39 - 2.46 (m, 2 H), 1.92 (d, J = 13.8 Hz, 1 H), 1.68 (quint.,

J = 4.5 Hz, 2 H), 1.32 - 1.49 (m, 7 H); 13C NMR (DMSO-

d6, 150 MHz) δ 169.9, 151.3, 151.1, 130.1, 115.0, 111.1,

108.4, 107.4, 47.2, 46.9 (2 C), 38.2, 29.7, 27.1, 26.4 (2 C),

24.8; IR (ATR, neat) 3259 (br), 2949, 2849, 2824, 1649,

1472, 1351, 1208 cm-1; HRMS (EI+) m/z calcd for

C17H22N2O3 [M]+, 302.1630, found 302.1625.

7-Hydroxy-2,3,4,5-tetrahydro-[1]benzoxolo[2,3-c]aze-

pin-1-one CID755673 and 9-hydroxy-1,2,3,4-tetrahydro-

chromeno[3,4-b]pyridin-5-one CID797718. Adduct 3

(2.0 g, 6.61 mmol) was suspended in conc HCl (6 mL) and

the reaction mixture was heated at 100°C for 3 h under

N2. After cooling the solution down to rt, a light amber

precipitate was formed, which was washed with Et2O and

filtered. The solid was dissolved in the minimum amount

of MeOH, preadsorbed on SiO2 and purified by chroma-

tography on SiO2 (5% MeOH in CH2Cl2 to i-PrOH,

100%), to yield CID755673 (1.19 g, 5.48 mmol, 83% yield)

and CID797718 (0.118 g, 0.543 mmol, 8% yield).

CID755673: mp (i-PrOH) 245-247°C (lit. 244-

247°C);[27]1H NMR (DMSO-d6, 600 MHz) δ 9.36 (s, 1

H), 8.09 (t, J = 4.8 Hz, 1 H), 7.41 (d, J = 9.0 Hz, 1 H), 6.92

(d, J = 2.4 Hz, 1 H), 6.90 (dd, J = 9.0, 2.4 Hz, 1 H), 3.24 (dd,

J = 9, 4.8 Hz, 2 H), 2.89 (t, J = 6.6 Hz, 2 H), 1.98 - 2.02 (m,

2 H); 13C NMR (DMSO-d6, 150 MHz) δ 161.9, 153.9,

148.1, 144.3, 129.6, 123.5, 116.9, 112.4, 105.1, 41.2, 26.8,

24.3; IR (ATR, neat) 3187 (br), 3059, 2921, 1680, 1579,

1472, 1435, 1339, 1166 cm-1; HRMS (ES+) m/z calcd for

C12H11NO3 [M+H]+, 218.0817, found 218.0832;

CID797718: mp (i-PrOH) 217-218°C (lit. 213-

216°C);[27]1H NMR (DMSO-d6, 600 MHz) δ 9.41 (s, 1

H), 7.09 (d, J = 9.0 Hz, 1 H), 6.74 (d, J = 3.0 Hz, 1 H), 6.66

(dd, J = 9.0, 3.0 Hz, 1 H), 5.91 (s, 1 H), 3.22 - 3.24 (m, 2 H),

2.59 (t, J = 6.6 Hz, 2 H), 1.85 - 1.90 (m, 2 H); 13C NMR

(DMSO-d6, 150 MHz) δ 158.1, 154.5, 140.9, 129.8, 122.9,

116.8, 114.8, 113.4, 106.4, 40.3, 21.6, 20.6; IR (ATR, neat)

3401, 3305 (br), 2937, 2879, 1662, 1583, 1449, 1342, 1219,

1184 cm-1; HRMS (ES+) m/z calcd for C12H11NO3

[M+H]+, 218.0817, found 218.0802.

In Vitro Radiometric PKD or CAMK Kinase Assay

In vitro radiometric kinase assays were conducted as pre-

viously described [20]. Briefly, 1 μCi [γ-32P] ATP (Perki-

nElmer Life Sciences), 70 μM ATP, 50 ng purified

recombinant human PKD1 (Biomol International, Plym-

outh Meeting, PA), PKD2 (SignalChem, Richmond, BC,

Canada), or CAMKIIα (Enzo Life Sciences) or 75 ng

PKD3 (Enzo Life Sciences), and 2.5 μg syntide-2 (Sigma)

in 50 μl kinase buffer containing 50 mM Tris-HCl, pH

7.5, 4 mM MgCl2, and 10 mM β-mercaptoethanol. For the

CAMK assay, 0.5 mM CaCl2 and 30 ng/μl calmodulin

were pre-incubated for 10 min on ice, and then added to

Figure 1 Synthesis and chemical structures of CID755673 and CID797718. CID755673, a compound identified and confirmed as a PKD1 inhibitor 

after interrogation of the PMLSC library, and CID797718, an analog of CID755673 obtained during the synthesis of the latter structure, were synthe-

sized as described in "Methods".
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each reaction mixture. The reaction was incubated at

30°C for 10 min, and 25 μl of the reaction mixture was

then spotted onto Whatman P81 filter paper (Whatman

Inc., Clifton, NJ). The filter papers were washed 3 times

in 0.5% phosphoric acid, air-dried, and counted using a

Beckman LS6500 multipurpose scintillation counter

(Beckman).

In Vitro Radiometric PKC Kinase Assay

The PKC in vitro kinase assays were performed as

described previously [20].

Cell Lines and Western Blot Analysis

DU145 and PC3 cells were maintained in RPMI 1640 sup-

plemented with 10% fetal bovine serum (FBS) and 1000

units/l penicillin, and 1 mg/ml streptomycin in 5% CO2 at

37°C. LNCaP cells were maintained as described previ-

ously [18]. Western blot analysis was carried out as previ-

ously reported [28]. Briefly, cells were lysed in lysis buffer

containing 200 mM Tris-HCl, pH 7.4, 100 μM 4-(2-amin-

oethyl) benzenesulfonyl fluoride, 1 mM EGTA, and 1%

Triton X-100. Protein concentration was determined

using the BCA Protein Concentration Assay reagent kit

(Pierce) and then equal amounts of protein were sub-

jected to SDS-PAGE followed by electrotransfer to nitro-

cellulose membranes. Membranes were blocked with 5%

nonfat milk in Tris-buffered saline and then probed with

primary antibodies for either p-S916-PKD1 (Millipore),

p-S742-PKCμ/PKD (Biosource), or GAPDH, followed by

anti-mouse or anti-rabbit secondary antibodies conju-

gated to horseradish peroxidase (Bio-Rad). The enhanced

chemiluminescence (ECL) Western blotting detection

system (Amersham Biosciences) was used to facilitate

detection of protein bands.

MTT Assay

PC3 cells were seeded into 96-well plates (3000 cells/well)

and allowed to attach overnight. Cells were then incu-

bated in media containing 0.3-100 μM inhibitors for 72 h.

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

bromide methyl thiazolyl tetrazolium (MTT) solution

was prepared at 2 mg/ml concentration in PBS, sterilized

by filtering through a 0.2 μm filter, and wrapped in foil to

protect from light. 50 μl MTT solution was added to each

well and incubated for 4 h at 37°C. Then, media was

removed and 200 μl DMSO was added to each well. The

Figure 2 Chemical structures and SAR of CID755673 and its analogs. A, Diagram describing the major structural zones dissected for SAR analysis. 

B, Chemical structures of the parental compound CID755673, previously identified and confirmed as a pan-PKD inhibitor, and of five analogs of 

CID755673.
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plate was mixed for 5 min and the optical density was

determined at 570 nm.

Cell Proliferation Assay and Cell Cycle Analysis

Proliferation of PC3 cells was measured by counting the

number of viable cells upon trypan blue staining as previ-

ously described [18]. Cell cycle analysis was performed as

described [18]. Briefly, PC3 cells were treated with indi-

cated compounds at 10 μM concentration for 48 h, and

then fixed in 70% ice-cold ethanol overnight and labeled

with propidium iodide. The labeled cells were analyzed

using a FACScan Benchtop Cytometer (BD Biosciences).

Wound Healing Assay

Wound-induced migration was measured as described

previously [20]. Briefly, PC3 or DU145 cells were grown

to confluence in 6-well plates. Migration was initiated by

scraping the monolayer with a pipette tip, creating a

"wound." The indicated concentration of compound was

added to the media, and the wound was imaged immedi-

ately under an inverted phase-contrast microscope with

10× objective. After 24 h, cells were fixed in methanol

and stained with 1% crystal violet, and a final image was

taken. The wound gap was measured, and % wound heal-

ing was calculated. The average % wound healing was

determined based on at least 9 measurements of the

wound gap.

Matrigel Invasion Assay

DU145 cells (8.0 × 104 cells/ml) in RPMI containing 0.1%

fetal bovine serum (FBS) were seeded into the top cham-

ber of BioCoat control inserts (pore size 8 μm) or BioCoat

Matrigel invasion inserts with Matrigel-coated filters (BD

Pharmingen). To stimulate invasion, media in the lower

chamber of the insert contained 20% FBS. Inhibitors were

added at 10 μM concentration to both the upper and

lower chambers, and cells were incubated for 22 h. After

incubation, noninvasive cells were removed using a cot-

ton swab, and invasive cells were fixed in 100% methanol

and stained with 1% crystal violet. After staining, cells

were counted under a microscope (200× magnification).

The percentage invasion was determined by cell counts in

5 fields of the number of cells that invaded the Matrigel

matrix relative to the number of cells that migrated

through the control insert.

Statistical Analysis

Statistical analysis was completed using GraphPad Prism

V software. A p value of < 0.05 was considered statisti-

cally significant.

Results
Design of CID755673 analogs

CID755673 and CID797718, a structural analog of

CID755673, were synthesized by the PMLSC Chemistry

Core following the scheme illustrated in Fig. 1 (see

Figure 3 Inhibition of PKD by CID755673 analogs in vitro. A-E, inhibition of recombinant human PKD1 in vitro. PKD kinase activity was assayed by 

a radiometric kinase assay in the presence of increasing concentrations of the CID755673 analogs. A 10-point concentration curve was generated for 

each compound for IC50 determination. Each IC50 was determined as the mean ± S.E.M. of three independent experiments with triplicate determina-

tions at each concentration in each experiment. Representative graphs are shown.
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"Methods" for details of the synthesis). CID797718 is a

byproduct of CID755673 synthesis, and has 10-fold less

inhibitory activity toward PKD than the parental com-

pound [20].

The design of the CID755673 analogs was based on ini-

tial structure-activity relationship (SAR) analysis

described in a separate manuscript (Bravo-Altamirano K,

LaValle CR, Byerly R, Giridhar KV, Chen J, Leimgruber S,

Barrett R, Sharlow ER, Lazo JS, Wang QJ, Wipf P. Synthe-

sis and Structure-Activity Relationship Evaluation of

Selective Small-Molecule Inhibitors for Protein Kinase D,

manuscript submitted). We dissected the parent com-

pound CID755673 into 4 major structural zones in order

to elucidate a fundamental SAR (Fig. 2A). In zone I, we

modified the phenolic substituent as well as the α-posi-

tion on the aromatic ring. In zone II, we substituted the

oxygen ring atom with sulfur and nitrogen. In zone III, we

altered the ring size by adding or removing methylene

groups, as well as substituting the benzylic position. In

zone IV, we pursued functional group interconversions as

well as replacement of the amide with heterocyclic

groups. Most of the zone I derivatives were considerably

less active than CID755673 in the PKD screen. In particu-

lar, carbon substituents ortho to the phenol and O-benzy-

lations were detrimental. In contrast, ortho-halogenation

and O-methylation were well tolerated. Nitrogen replace-

ments in zone II were associated with loss of activity,

whereas sulfur substitution was not only tolerated well

but lead often to a substantial increase in activity. Among

the zone III substitutions, a thioether insertion exo to the

five-membered heterocycle and an additional methylene

group (leading to an eight-membered fused ring) were

well tolerated. Finally, all zone IV substitutions were

unsatisfactory, and we decided to retain the amide func-

tion of CID755673 in this position.

Figure 4 Inhibition of PMA-induced endogenous PKD1 activation in LNCaP cells. LNCaP cells were pretreated with indicated concentrations of 

the five analogs for 45 min, then stimulated with 100 nM PMA for 20 min. Cell lysates were immunoblotted for p-S916-PKD1 and p-S742-PKD1. GAPDH 

was blotted as a loading control. The experiment was repeated at least three times and representative blots are shown.

Table 1: In vitro inhibitory activity of CID755673 and its analogs for PKD

IC50 (nM)

Compound PKD1 PKD2 PKD3

CID755673 182 ± 27 (n = 5) 280 ± 1.8 (n = 3) 227 ± 24 (n = 3)

Kb-NB142-70 28.3 ± 2.3 (n = 3) 58.7 ± 4.2 (n = 3) 53.2 ± 3.5 (n = 3)

Kb-NB165-09 82.5 ± 4.6 (n = 4) 141.6 ± 7.4 (n = 3) 98.5 ± 15.3 (n = 3)

Kb-NB165-31 114.1 ± 23.9 (n = 3) 162.9 ± 20.5 (n = 3) 91.1 ± 17.2 (n = 3)

Kb-NB165-92 111.2 ± 6 (n = 3) 100.7 ± 10.9 (n = 3) 58.8 ± 7.3 (n = 3)

Kb-NB184-02 192.8 ± 27.4 (n = 3) 463.2 ± 38.2 (n = 4) 324.7 ± 39.0 (n = 3)

IC50 were determined for CID755673 and its analogs against PKD1, -2, and -3 using radiometric kinase activity assays. Each IC50 was calculated 

as the mean ± S.E.M. of at least three independent experiments with triplicate determinations at each concentration in each experiment as 

described in "Methods." *n, number of independent experiments
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After initial screening and the SAR analysis on ca 50

analogs summarized above, five novel compounds with

equal or greater potency for PKD were selected for fur-

ther testing (Fig. 2B).

In vitro activities of CID755673 analogs

The in vitro inhibitory activities of the novel compounds

toward PKD were determined using radiometric PKD

kinase activity assays. Recombinant human PKD1, -2, or -

3 was incubated with the substrate, syntide-2, in the pres-

ence of 10 different concentrations of each compound.

IC50 values were determined for each compound by plot-

ting percent PKD activity versus compound concentra-

tion for each point. We found that while the compounds

inhibited all three PKD isoforms, their potency and selec-

tivity varied (Fig. 3A-E and Table 1). The most potent

compound was found to be kb-NB142-70, which inhib-

ited PKD1 with an IC50 of 28.3 ± 2.3 nM (n = 3), showing

a 7-fold greater inhibition than the parental compound

(Table 1). This compound was also a robust inhibitor of

PKD2 and -3, demonstrating respective IC50s of 58.7 ± 4.2

nM (n = 3) and 53.2 ± 3.5 nM (n = 3). Notably, kb-NB142-

70 and kb-NB184-02 exhibited about 2-fold greater selec-

tivity toward PKD1. In contrast, the compound kb-

NB165-92 was more selective toward PKD3, showing

approximately 2-fold greater inhibition of PKD3 (IC50 =

58.8 ±7.3 nM, n = 3) than PKD1 or -2 (IC50 = 111.2 ± 6.0

and 100.7 ±10.9, n = 3, respectively), which is unique

among the compounds tested. Other compounds, namely

kb-NB165-09 and kb-NB165-31 showed similar inhibi-

tion of all three isoforms. Overall, our results demon-

strated that core structural modification of CID755673

substantially enhanced its potency, but had less effect on

isoform selectivity.

The analogs inhibit PMA-induced endogenous PKD1 

activation

To determine whether the compounds are active in cells,

we tested their ability to inhibit activation of PKD1 by

phorbol 12-myristate 13-acetate (PMA) in LNCaP pros-

tate cancer cells. PKD1 has been shown to be the pre-

dominant isoform expressed in these cells [18], and

stimulation with PMA leads to PKC-dependent phospho-

rylation of Ser738/742 in the activation loop followed by

autophosphorylation of PKD1 on Ser916 in the C-termi-

nus [8,10]. Since catalytic activity of PKD1 correlates well

with the phosphorylation state of Ser916 [10], we mea-

sured both p-Ser916 and p-Ser742 levels by Western blot

analysis to track PKD1 activity. As is shown in Fig. 4 (lane

2), addition of PMA alone induced phosphorylation of

both Ser916 and Ser742 of PKD1. When LNCaP cells were

pretreated with the novel CID755673 analogs before

PMA treatment, concentration-dependent inhibition of

phosphorylation at both Ser916 and Ser742 of PKD1 was

observed (Fig. 4, lanes 3-7). This effect appeared to be

most potent for the compound kb-NB142-70, with a cal-

culated cellular IC50 for inhibition of Ser916 phosphoryla-

tion of 2.2 ± 0.6 μM (n = 3) (Table 2). kb-NB165-09 and

kb-NB165-92 showed similar cellular activity, with IC50s

of 3.1 ± 0.5 (n = 3) and 2.6 ± 0.7 μM (n = 3) respectively.

Consistent with our in vitro data, kb-NB184-02 was again

the least potent compound, demonstrating a cellular IC50

of 18.6 ± 2.0 μM (n = 3). GAPDH was used as a loading

control instead of PKD1 because the PKD1 antibody

showed a slight inconsistency in detecting phosphory-

lated and non-phosphorylated forms of PKD1 (Fig. 4 and

data not shown). Taken together, these results indicated

that the analogs were capable of inhibiting PKD1 in intact

cells.

Specificity of CID755673 and its analogs to PKD

We previously reported that CID755673 showed selectiv-

ity toward PKD and did not inhibit several other kinases

tested, including PLK1, CAK, protein kinase B (AKT/

PKB), PKCα, -βI, -δ, or CAMKIIα. To determine whether

the novel analogs retained this specificity, we tested the

compounds against their ability to inhibit PKCα, -βI, -δ,

and CAMKIIα in in vitro radiometric kinase activity

assays. All analogs were poor inhibitors of PKCα and

PKCβI, with only slight (< 50%) inhibitory activity at 10

μM concentration (Fig. 5A and 5B). This was also true for

PKCδ and CAMKIIα with the exception of kb-NB165-31,

which did show nearly 50% inhibitory activity toward

PKCδ and about 70% inhibition of CAMKIIα activity at

10 μM concentration (Fig. 5C and 5D). As a positive con-

trol, the potent PKC inhibitor GF109203X showed strong

inhibition of all three of these isoforms (Fig. 5A-C).

Table 2: Cellular inhibition of PKD1 autophosphorylation 

at S916 by CID755673 analogs

Compound Cellular IC50 (μM)

kb-NB142-70 2.2 ± 0.6 (n = 3)

kb-NB165-09 3.1 ± 0.5 (n = 3)

kb-NB165-31 8.6 ± 2.0 (n = 3)

kb-NB165-92 2.6 ± 0.7 (n = 2)

kb-NB184-02 18.6 ± 2.0 (n = 3)

Cellular IC50 was determined by densitometry analysis of Western 

blotting data for PKD1 autophosphorylation at S916 in LNCaP 

cells. Each IC50 was calculated as the mean ± S.E.M. of at least two 

independent experiments. *n, number of independent 

experiments
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To further investigate the specificity of this series of

compounds, a kinase profiling experiment was conducted

on CID755673, testing 48 additional kinases (Table 3).

CID755673 showed "significant" inhibition (≥ 50%) of six

out of a total 48 kinases - MK2, GSK-3β, CK1δ, MK5/

PRAK, CDK2, and ERK1. As a control, PKD2 activity was

reduced by 95% when treated with 10 μM CID755673. A

separate, smaller scale analysis of the kinase inhibition

profile of the CID755673 analogs has also been con-

ducted and showed similar patterns of inhibition as the

parental compound, indicating that the analogs of

CID75573 act on similar targets (data not shown).

Effects of the CID755673 analogs on tumor cell death, 

proliferation, and cell cycle distribution

Given the effects of PKD3 knockdown by siRNA or

CID755673 in the inhibition of prostate cancer cell prolif-

eration [18,20] and the implications that PKD regulates

cell survival and proliferation [12,29], we wanted to test

whether the new compounds were cytotoxic and whether

they also inhibited prostate cancer cell proliferation.

Therefore, we determined the cytotoxic effects of the

compounds on PC3 cells by MTT assay. As shown in Fig.

6, the parental compound induced very little cell death,

having an EC50 of 319.8 μM in this context. In contrast,

the analogs showed considerable increases in cytotoxic-

ity. kb-NB142-70 was again the most potent, causing con-

siderable cell death and demonstrating an EC50 of 8.025

μM. kb-NB165-09, kb-NB165-31, and kb-NB184-02

showed similar effects on cell death, with EC50s of 49.98

μM, 31.91 μM, and 33.84 μM, respectively.

In addition to the novel analogs demonstrating

increased cytotoxicity when compared to the parental

compound, they also caused dramatic arrest in prostate

cancer cell proliferation when applied at 10 μM concen-

tration to PC3 cells, as determined by cell counts over six

consecutive days (Fig. 7A). In contrast to the parental

compound, which only slowed cell proliferation, the

Figure 5 Selectivity of the CID755673 analogs. Inhibition of PKCα (A), PKCβI (B), PKCδ (C), or CAMKIIα (D) by each of the 5 analogs was determined 

at 100 nM, 1 μM, and 10 μM concentrations. In the PKC assays, the potent PKC inhibitor GF109203X was used as a control. Data are the mean ± S.E.M. 

of three independent experiments. Statistical significance was determined using the unpaired t-test. ns, not statistically significant; *, p < 0.05; **, p < 

0.01; ***, p < 0.001.
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novel analogs drastically inhibited cell proliferation, with

kb-NB142-70 being most potent among the compounds.

To gain insight into the mechanism of growth inhibi-

tion caused by the analogs, we conducted cell cycle analy-

sis in PC3 cells. Our previous data indicated the parent

compound CID755673 caused G2/M phase cell cycle

arrest when applied at 10 or 25 μM for six days [20]. In

the present study, PC3 cells were treated with 10 μM

compound for 48 h and cell cycle distribution was ana-

lyzed by flow cytometry after propidium iodide labeling

of fixed cells. Indeed, the compounds showed increased

accumulation in the G2/M phase of the cell cycle when

compared to the DMSO treated control or to CID755673

(note that in this experiment, 48 h incubation of

CID755673 was too short to induce G2/M arrest) (Fig.

7B). Taken together, our data indicated that the novel

analogs of CID755673 were potent inhibitors of survival

and proliferation in prostate cancer cells.

CID755673 and its analogs cause accumulation of cyclin D1 

and cyclin D3

Though our evidence supports that CID755673 and its

analogs induce cell cycle arrest at G2/M phase, a recent

study by Torres-Marquez et al. demonstrated that

CID755673 treatment enhanced phorbol ester- and

growth factor-induced DNA synthesis and G1/S cell cycle

progression in Swiss 3T3 cells independent of PKD1 [30].

In this study, it is important to note that both DNA syn-

thesis and cell cycle distribution were determined after 40

h CID755673 treatment, while in our previous study cell

proliferation was measured by counting cell numbers for

six consecutive days of CID755673 treatment [20].

Although it was clear based on counting cell numbers

Table 3: Kinase profiling report for CID755673

CID755673, 10 μM CID755673, 10 μM

Kinase Average % Inhibition Kinase Average % Inhibition

ABL 8 KDR 8

AKT1 3 MAPKAPK2 95

AKT2 4 MARK1 12

AMPK 35 MET 18

AurA 7 MSK1 7

BTK -3 p38a 2

CAMK4 17 p70S6K 44

CDK2 71 PAK2 3

CHK1 7 PDGFRα 5

CHK2 4 PDK1 22

CK1δ 82 PIM2 6

c-Raf 2 PKA 6

EGFR 11 PKCη 40

ErbB4 1 PKCγ 30

Erk1 50 PKCθ 32

Erk2 31 PKCζ -4

FGFR1 16 PKD2 95

FLT3 14 PKG1α 13

GSK3β 86 PKG1β 11

IGF1R -2 MK5/PRAK 75

Ikkb 49 RSK1 29

IBSR 3 SGK1 9

IRAK4 0 SRC 7

JNK2 36 SYK -8

48 kinases were interrogated using a single-dose in vitro kinase assay at 10 μM CID755673. -20 to +20% inhibition, baseline levels; >20 to 49% 

inhibition, compound only marginally actively inhibits the kinase; >50% inhibition, compound is actively inhibiting the kinase. The assay was 

performed by Caliper Life Sciences (Hanover, MD).
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that CID755673 inhibited cell proliferation and ultimately

caused G2/M arrest, our study did not rule out the possi-

bility that this compound could affect other stages of cell

cycle progression. To investigate this possibility and to

determine if CID755673 indeed affects the G1/S transi-

tion, we measured the levels of cell cycle markers in

response to treatment with CID755673 and its analogs.

As shown in Fig. 8A, CID755673 induced cyclin D1 and

D3 expression in a concentration-dependent manner in

PC3 cells, suggesting a role for CID755673 in promoting

the G1/S transition. Importantly however, the analogs of

CID755673, with the exception of kb-NB165-09, showed

much reduced effects on levels of cyclin D1 or D3, imply-

ing the specificity of these compounds was improved

(Fig. 8B). These data support the idea that CID755673

and its analogs have a complex effect on cell cycle pro-

gression; in addition to the induction of G2/M arrest and

subsequent inhibition of cell proliferation, these com-

pounds may also promote the G1/S transition.

Effects of the CID755673 analogs on tumor cell migration 

and invasion

Previous reports have indicated that PKD may have

important roles in the regulation of cell motility, adhe-

sion, and invasion [31-33]. Additionally, we previously

demonstrated that the PKD inhibitor CID755673 slowed

cell migration and invasion in prostate cancer cells [20].

In order to assess whether the novel analogs of

CID755673 retained the ability to slow prostate cancer

cell migration and invasion, we performed two assays.

First, we evaluated the effects of the compounds on

migration in both DU145 and PC3 cells by wound healing

assay. Confluent cells were wounded and then treated

with either 5 μM or 25 μM inhibitor. Wound closure was

inhibited in a concentration-dependent manner in both

DU145 and PC3 cells (Fig. 9A and 9B). In this assay, kb-

NB142-70 and kb-NB165-09 were the most potent inhib-

itors of wound healing, with wounds showing only 25-

35% closure when treated with 25 μM concentration of

these two compounds. kb-NB165-31 appeared to

strongly resemble the potency of the parental compound,

demonstrating 55-60% wound closure at 25 μM concen-

tration in both PC3 and DU145 cells. The analogs also

significantly inhibited tumor cell invasion measured by

Matrigel invasion assay (Fig. 10A and 10B). Consistent

with our previously reported results, 10 μM CID755673

significantly inhibited invasion of DU145 cells. Invasion

was also inhibited by kb-NB165-31, kb-NB165-92, and

kb-NB184-02 at levels similar to the parental compound.

However, kb-NB142-70 and kb-NB165-09 showed

increased potency in this assay, reducing percent invasion

to only 10%. Taken together, these results support the

conclusion that the novel analogs of CID755673 are

potent inhibitors of prostate cancer cell migration and

invasion.

Discussion
In this study, we report the generation and characteriza-

tion of five novel analogs of the PKD inhibitor

CID755673. This compound, previously identified as a

novel PKD inhibitor, inhibited PKD1 with an IC50 of 182

nM in vitro, and blocked cancer-associated properties of

prostate cancer cells. The novel analogs, synthesized to

have modifications in both the core structure and side

chains, showed equal or increased potency to PKD1 inhi-

bition in vitro and in cells when compared with

CID755673. Additionally, we confirmed they also inhib-

ited PKD2 and PKD3 in vitro, acting as pan-PKD inhibi-

tors like the parental compound. Of the compounds

reported here, the most potent was kb-NB142-70, which

inhibited PKD1 with nearly a 7-fold greater potency com-

pared to the parental compound. Furthermore, kb-

NB142-70 inhibited PKD2 and PKD3 about 4-fold stron-

ger than CID755673. The analogs also demonstrated

increased inhibition of PMA-induced autophosphoryla-

tion of endogenous PKD1 in LNCaP prostate cancer cells

when compared to the parental compound. Thus, we

have established that these small molecule analogs of

CID755673 are also potent inhibitors of PKD both in

vitro and in cells.

CID755673 is superior in specificity when compared

with other compounds known to inhibit PKD, such as

staurosporine and staurosporine-related the compounds

Figure 6 Cytotoxic effects of the CID755673 analogs in PC3 cells. 

PC3 cells were seeded into 96-well plates (3000 cells/well) and were 

then incubated in media containing 0.3-100 μM inhibitors for 72 h. 

MTT solution was added to each well and incubated for 4 h. Optical 

density was read at 570 nm to determine cell viability. The EC50 was de-

termined as the mean ± S.E.M. of three independent experiments for 

each compound.
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K252a and Gö6976, even though these compounds have

been reported to inhibit PKD in the low double- and sin-

gle-digit nanomolar range (IC50s of 40 nM, 7 nM, and 20

nM, respectively). A kinase profiling report demonstrated

that CID755673 may also target a few additional kinases,

including glycogen synthase kinase-3β (GSK3β), casein

kinase 1δ (CK1δ), mitogen-activated protein kinase-acti-

vated protein kinase (MK) 5, MK2, and cyclin-dependent

kinase 2 (CDK2). Importantly however, CID755673 lacks

or shows only marginal activity towards almost all PKC

isoforms that have been tested thus far (including PKC-α,

-β, -γ, -δ, -η, -θ and -ζ), which distinguishes it from the

commonly used PKC/PKD inhibitors such as Gö6976.

This feature may allow selective targeting of PKD-medi-

ated signaling pathways and cellular processes, though

discretion must be used since additional targets of

CID755673 do indeed exist. Similar to the parental com-

pound, the novel analogs for the most part retained spec-

ificity when tested against PKCα, -βI, -δ, and CAMKIIα.

One compound, kb-NB165-31, did show significant

inhibitory activity toward PKCδ and CAMKIIα when

tested at 10 μM concentration. This compound has an

iodine atom added as a side chain of the benzene ring in

kb-NB142-70, which retained strong selectivity to PKD in

vitro, suggesting that the increase in lipophilicity and the

introduction of a polarizable group at the phenol ortho-

position reduce compound specificity. Interestingly, in

the case of kb-NB165-92, the expansion of the lactam by

one carbon to a fused 8-membered ring reduced the

Figure 7 Effects of the CID755673 analogs on cell proliferation in PC3 cells. A, The analogs caused potent arrest in cell proliferation. PC3 cells 

were plated in triplicate in 24-well plates. Cells were allowed to attach overnight. A cell count at day 1 was made, and then either vehicle (DMSO) or 

the indicated compound at 10 μM concentration was added. Cells were counted daily for a total of 6 days. Media and inhibitor were refreshed every 

2 days. The mean cell number ± S.E. was plotted over time. The experiment was repeated twice and a representative graph is shown. Statistical sig-

nificance versus Day 1 cell count was determined by unpaired t-test and is indicated. *, p < 0.05; **, p < 0.01; ***, p < 0.001. B, The analogs caused G2/

M phase cell cycle arrest. PC3 cells were treated with either vehicle (DMSO), or 10 μM concentration of indicated compound for 48 hours. Cell cycle 

distribution was determined by flow cytometry after propidium iodide labeling of fixed cells. The experiment was repeated three times and a repre-

sentative is shown for each compound.
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potencies for PKD1 and PKD2 by 2-4 fold, while not

altering potency for PKD3, implying that zone III of our

pharmacophore may contain determinants for isoform-

selectivity. However, this concept should be further

exploited as methoxy analogs of kb-NB142-70 and kb-

NB165-92, in contrast, did not exhibit an analogous shift

in isoform-selectivity.

Cellular activity of the analogs was demonstrated

through inhibition of PMA-induced activation of endoge-

nous PKD1 by measuring the phosphorylation levels of

Ser916 and Ser742. Based on the canonical pathway of

PKC-dependent PKD activation, phorbol ester-stimu-

lated phosphorylation on Ser738/742 by PKC followed by

autophosphorylation of PKD1 on Ser916 would result in

full activation of PKD [8,10,34,35]. However, recent stud-

ies suggest that Ser742 may be a site of both trans- and

autophosphorylation. While initial, early catalytic activa-

tion of PKD requires rapid transphosphorylation on

Ser738/742 by PKC isoenzymes, the major mechanism

required to maintain prolonged PKD activation is Ser742

autophosphorylation [11]. Therefore, the observed dose-

dependent inhibition of Ser742 phosphorylation on PKD1

after agonist stimulation (100 nM PMA for 20 min) by

our novel analogs reflects the inhibition of PKD1 auto-

phosphorylation at this site, analogous to the inhibition

of Ser916 phosphorylation. Further analysis is required to

determine the precise mechanism of inhibition of PKD by

these novel compounds.

PKD has been implicated in the regulation of cell prolif-

eration, survival, and apoptotic pathways in multiple cell

types [16,18,36]. We have previously shown that PC3 cells

predominantly express high levels of PKD3, potentially

making them very sensitive to PKD3 inhibition, and that

knockdown of PKD3 by siRNA causes strong arrest in cell

proliferation in these cells [18]. Here, we have shown that

one of the more striking differences between the parental

compound and its analogs is the increase in cytotoxicity

and dramatic arrest in cell proliferation. While

CID755673 is only minimally cytotoxic to prostate cancer

cells, and can be tolerated at high concentrations for pro-

longed treatments [20], the novel analogs induced signifi-

cant cytotoxicity in PC3 cells after much shorter

treatments (48 h) and at much lower concentrations (5-10

μM). Based on our preliminary analysis, the effects of the

compounds on viability in other prostate cancer cells

(LNCaP and DU145) are comparable to those in PC3 cells

(data not shown). The inhibitors appear to exhibit a gen-

eral inhibitory effect on cell viability, with potency vary-

ing between different tumor cell types. Additionally, the

analogs cause much more potent arrest in cell prolifera-

tion than the parental compound. Since the anti-prolifer-

ative effects of the analogs phenocopied those caused by

knockdown of PKD3 in PC3 cells, it is conceivable that

these effects, at least to some extent, are mediated

through inhibition of PKD. That said, we cannot exclude

the possibility that CID755673 and its analogs have addi-

tional cellular targets whose inhibition may contribute to

the elevated cytotoxicity and potent growth arrest

observed in prostate cancer cells. Moreover, since the

analogs, mimicking the parental compound, all induced

apparent G2/M cell cycle arrest, it is likely that the mech-

anisms underlying the growth inhibition caused by the

analogs are similar to those induced by the parental com-

pound. Based on the kinase profiling data, we speculate

that, in addition to PKD, the inhibitory effect of

CID755673 and its analogs on cell proliferation may be

contributed to the inhibition of CDK2, another potential

target of CID755673. Although CDK2 is generally consid-

ered a regulator of S-phase entry [37,38], some reports

have also linked it to the G2/M transition [38,39]. Accord-

ing to the accepted model of cell cycle progression, CDK2

is activated by binding to cyclin E in late G1 phase, result-

ing in phosphorylation of the retinoblastoma protein (Rb)

and facilitating the G1/S-phase transition [40]. It also pro-

Figure 8 CID755673 and its analogs cause accumulation of cyclin 

D1 and cyclin D3. A, PC3 cells were treated with increasing concentra-

tions of CID755673 for 48 hrs. Inhibitor and growth media were re-

freshed after 24 hrs. Western blots for cyclin D1 and cyclin D3 are 

shown. B, PC3 cells were treated with 25 μM CID755673, 10 μM kb-

NB142-70, 10 μM kb-NB165-09, 1 μM kb-NB165-92, or 10 μM kb-NB184-

02 for 48 hrs. Note that 1 μM kb-NB165-92 was used in this assay since 

this compound at 10 μM caused significant cell death. Inhibitors and 

growth media were refreshed after 24 hrs. Western blots for cyclin D1 

and D3 are shown. GAPDH was used as a loading control.
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motes progression of S-phase by binding to cyclin A.

However, it has been reported that inhibition of CDK2 by

expression of a dominant negative CDK2 mutant or over-

expression of p27kip1 can cause accumulation in G2/M

[38,39]. Therefore, it is plausible that the G2/M arrest and

reduced cell proliferation caused by CID755673 and its

analogs is in part due to inhibition of CDK2. It is also pos-

sible that CID755673 and its analogs may inhibit other

members of the CDK family, for example CDK1, which

plays a critical role in G2/M cell cycle progression. Finally,

it must be stated that although CKD2 and a few other

proteins were identified as potential hits in a single dose

kinase profiling experiment, the activities of CID755673

and its analogs toward these targets need to be further

validated in 10-point dose-response kinase assays.

Although CID755673 and its analogs potently inhibited

cell proliferation, their effects on cell cycle progression

appeared to complex, involving two opposing effects on

different stages of the cell cycle: 1) promotion of the G1/S

transition; 2) induction of G2/M arrest. The G2/M arrest

ultimately leads to cessation of cell proliferation. Our

findings that CID755673 and its analogs induced cyclin

D1 and D3 expression may underlie the potentiation

effect of CID755673 on the G1/S transition induced by

other mitogens [30]. Given that the report by Torres-

Marquez et al. used DNA synthesis and cell cycle distri-

bution as readouts, it remains to be determined if the

potentiation effect reported indeed resulted in increased

cell number (cell proliferation) since the G2/M block may

ultimately inhibit this effect. With regard to the potential

targets that may account for this effect, we hypothesize,

based on our kinase profiling data, that GSK-3β could

play a role since active GSK-3β has a negative effect on

cell cycle progression [41]. Expression of the cell cycle

proteins cyclin D1 and cyclin D3 is regulated by GSK-3β

signaling at the transcriptional level and through protein

degradation [41-43]. Thus, inhibition of GSK-3β may be

in part responsible for the promotion of the G1/S transi-

tion and the reported potentiation effect with other mito-

gens. It is important to note that the analogs of

CID755673 in general showed less activity in inducing

cyclin D1 or D3 expression, suggesting that they are less

active at promoting the G1/S transition and are more

selective for PKD. This correlated to their much

enhanced growth suppressive and cytotoxic effects in

prostate cancer cells, implying that reducing/removing

the G1/S cell cycle-promoting effect of the analogs could

significantly improve the antitumor activity of these ana-

logs.

In addition to the effects of these analogs on cell sur-

vival and proliferation, we also show that they are potent

inhibitors of prostate cancer cell migration and invasion.

kb-NB142-70 and kb-NB165-09 in particular, strongly

reduced wound healing in both DU145 cells and PC3 cells

in a dose-dependent manner, and significantly inhibited

invasion of DU145 cells through Matrigel invasion inserts

when applied at 10 μM concentration. Furthermore, the

pattern of inhibition exhibited by the analogs is fairly

Figure 9 Effects of the CID755673 analogs on prostate cancer cell migration. The analogs inhibited wound healing in prostate cancer cells. 

DU145 cells (A) or PC3 cells (B) were grown to confluence in 6-well plates. The monolayer was wounded and imaged immediately. Cells were then 

treated with either vehicle (DMSO) or analogs at indicated concentration for 24 hours. Cells were then fixed and stained with 0.5% crystal violet. Per-

centage wound closure was calculated as an average of 9 determinations for each concentration/compound as described under "Methods." Data 

shown are the mean ± S.E.M. for three independent experiments. Statistical significance versus the DMSO control was determined by unpaired t-test 

in GraphPad Prism V. ns, not statistically significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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consistent with their inhibitory activities toward PKD.

This suggests an important role for PKD in prostate can-

cer cell motility and supports the potential value of thera-

peutic targeting of PKD in the reduction or prevention of

prostate tumor metastases. Though the mechanism

through which PKD may mediate migration and invasion

is not yet known, several recent reports have begun to

shed light onto the complexity of these signaling path-

ways, suggesting PKD involvement in both β-catenin and

Akt signaling in prostate cancer cells [18,19,32].

Conclusions
In conclusion, we report the biochemical and functional

analysis of several novel analogs of the PKD inhibitor

CID755673. These analogs show equal and increased

potency toward PKD inhibition both in vitro and in cells.

The new lead compounds display prominent cytotoxic

and anti-proliferative effects, and potently inhibit migra-

tion and invasion in prostate cancer cells. Although the

molecular mechanisms underlying some of the biological

effects of these compounds appear to be complex and

may involve additional targets, their potent effects on

multiple cancer-associated biologies warrant further

development of this series of compounds toward possible

clinical application in cancer therapy.
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Figure 10 Analogs of CID755673 inhibit prostate cancer cell invasion. A, The analogs inhibited invasion in DU145 cells. 0.08 M DU145 cells in 

RPMI 1640 media containing 0.1% FBS and 10 μM of indicated compound were seeded into Matrigel inserts. After 22 hours, noninvasive cells were 

removed and invasive cells were fixed in 100% methanol, stained in 0.1% crystal violet solution, and photographed. The number of cells that invaded 

the Matrigel matrix was determined by cell counts in 5 fields relative to the number of cells that migrated through the control insert. The data shown 

is the mean ± S.E.M. of two independent experiments. Statistical significance versus the control DMSO was determined by unpaired t-test. ***, p < 

0.001. B, Representative images comparing invasion of the vehicle (DMSO) and the compounds.
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