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ABSTRACT

We define twist-two and twist-three quark fragmentation functions in Quan-

tum Chromodynamics (QCD) and study their physical implications. Using this

formalism we show how the nucleon’s transversity distribution can be measured in

single pion inclusive electroproduction.
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Recent measurements of the nucleon’s dominant spin–dependent quark dis-

tribution have sparked renewed interest in deep–inelastic spin physics. 1, 2, 3 In

addition to the debate over the unexpected result reported in Ref. [1], the clas-

sification and interpretation of spin dependent effects in deep inelastic scattering

has been re–examined and extended. 4, 5 One of the most interesting consequences

has been the discovery of a class of chirally odd quark distribution functions in-

cluding one, h1(x,Q
2),5, 6 which scales in the deep inelastic limit and provides the

long-sought parton description of the quark distribution in a transversely polar-

ized nucleon.5 For reasons discussed in Ref. [5] we call h1(x,Q
2) the nucleon’s

transversity distribution. Chirally odd quark distributions are difficult to measure

because they are suppressed in totally–inclusive deep inelastic scattering. Up to

now, the only practical way to determine h1(x,Q
2) was muon pair production (the

“Drell-Yan” process) with transversely polarized target and beam.5,6

In this Letter we show how to generalize the spin, twist and chirality analysis

of deep inelastic processes to include quark fragmentation functions. Our anal-

ysis is complete at the leading order and, for special cases of interest, at orders

1/
√

Q2 and 1/Q2. As an application of this formalism – one of many – we show

how a chirally odd fragmentation function can be exploited to enable a measure-

ment of h1(x,Q
2) to be obtained in polarized electroproduction of pions from a

transversely polarized nucleon. This is an experiment which could be performed at

several existing facilities. Related suggestions involving semi–inclusive production

of Λ–hyperons and of two pions have been discussed previously. 7, 8 Our proposal

is simpler since it involves only one particle in the final state and does not re-

quire measurement of that particle’s spin. The price we pay for this simplicity is

suppression by a power of
√

Q2.

The simplest quark fragmentation function is represented diagramatically in

Fig. [1]. More complicated fragmentation processes, such as coherent fragmenta-

tion of several quarks and gluons, do contribute at order 1/
√

Q2 and beyond. For

reasons discussed below, they will not concern us here. In Fig. [1], a quark of

momentum k and helicity h fragments into a hadron of momentum P and helicity
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H plus an unobserved final state X . The process then repeats in reverse as the

unobserved system, X , plus the hadron of momentum P and helicity H ′ reconsti-

tute the quark of momentum k and helicity h′. The scattering k + P → k + P

is forward, i.e. collinear. For definiteness, we take the momentum of the quark–

hadron system to be aligned along the ê3–axis. Then helicity is conserved as a

consequence of angular momentum conservation about this axis: h−H = h′−H ′.

The initial and final hadron helicities H and H ′ need not be equal because the

hadron need not have been in a helicity eigenstate; likewise for the quark. This

possibility arises when observed hadrons are polarized transversely to the direction

of hard momentum flow in a deep inelastic process.5

Our first objective is to classify the spin and chirality dependence and twist

(order in 1/Q2 as Q2 → ∞) of the possible quark fragmentation functions pictured

in Fig. [1]. To do this it is necessary to decompose the Dirac spin space of the quark

field component with momentum along the ê3–axis. Consider the three mutually

compatible (i.e. commuting) sets of projection operators,

P± =
1

2
γ∓γ± =

1

2
(1± α3) (1)

Λ± =
1

2
(1± σ3) (2)

χ± =
1

2
(1± γ5) (3)

P± projects on the “good” and “bad” light–cone components of the quark field,

respectively. Λ± and χ± project on positive and negative helicity and chirality

states respectively. It is easy to show, then, that the good light–cone component

of the quark field with positive (negative) helicity, ψ↑+ ≡ Λ+P+ψ (ψ↓+ ≡ Λ−P+ψ),

has positive (negative) chirality. In contrast, the bad light–cone component with

positive (negative) helicity, ψ↑− ≡ Λ+P−ψ (ψ↓− ≡ Λ−P−ψ), has negative (positive)

chirality.

Our studies have shown5, 9 that
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(1) Quark fragmentation functions of the form shown in Fig. [1] and the equivalent

gluon fragmentation functions (without further active parton lines) are suffi-

cient to characterize hadron production in hard processes, provided: (i) one

studies leading twist (twist-two) (O(1/Q0)) in any hard process, or (ii) one

studies an effect in deep inelastic lepton scattering at the lowest twist at which

it arises, and one ignores QCD radiative corrections.

(2) Each appearance of a bad component of the quark field costs one power of
√

Q2 in the deep inelastic limit (i.e. it increases the twist by unity);

(3) For produced hadrons of spin-1/2, helicity differences are observed in longitu-

dinal spin asymmetries; helicity flip is observed in transverse spin asymmetries;

(4) Perturbative QCD cannot flip quark chirality (except through quark mass in-

sertions which we assume to be negligible for light quarks) so chirally–odd

quark distribution and fragmentation functions must occur in pairs.

The first two rules emerge from a detailed study of the operator product expansion 10

or equivalently the collinear expansion of Feynman diagrams. 11 Rule (1.i) is well-

known and corresponds to the usual probabilistic formulation of the parton model

at twist-two. Rule (1.ii) is a new result presented in detail in Ref. [9]. As exam-

ples consider two distribution functions to which the rule (1.ii) applies: transverse

polarization (g2) or longitudinal (FL) effects in deep inelastic lepton scattering.

In the absence of QCD radiative corrections, these effects first appear at twist-

three O(1/
√

Q2) and twist-four O(1/Q2) respectively. There are several mul-

tiquark/gluon distribution functions which cannot be reduced to Fig. [1] which

might be expected enter g2 or FL. In the case of g2 it is well known since the work

of Shuryak and Vainshteyn 12 that all contributing operators at twist-three can be

arranged by careful use of the QCD equations of motion in the form of a quark-

quark correlation function evaluated in the target state. The same result applies

to FL, in this case at twist-four. This result allows us to use the properties of

two-particle forward amplitudes to catalogue the quark distribution and fragmen-

tation functions which control hadron production at the leading non-trivial twist in

4



deep inelastic scattering. Rule (3) is a simple consequence of quantum mechanics:

transversely polarized states are linear combinations of helicity eigenstates. The

final rule is obvious since QCD and the electroweak interactions are all chirally

invariant in perturbation theory neglecting mass insertions.

We now combine the above classification of quark fields with these rules to

enumerate and characterize quark fragmentation. Fragmentation functions can

be labelled uniquely by specifying the helicity of quarks and hadrons and the

light cone projection of the quarks in Fig. [1]: Âab
hH ;h′H ′, where a and b are the

quark light–cone projections, either + or −. Parity invariance of QCD requires:

Âab
hH ;h′H ′ = Âab

−h−H ;−h′−H ′. Time reversal invariance, which further reduces the

number of independent quark distribution functions does not generate relationships

among the {Â} because it changes the out–state (PX)out in Fig. [1] to an in–state.

As a first example, consider production of a scalar meson like the pion. Through

order 1/
√

Q2 there are three independent fragmentation functions: Â++
1

2
0; 1

2
0
, Â+−

1

2
0; 1

2
0
,

and Â−+
1

2
0; 1

2
0
. The first is twist-two and scales in the Q2 → ∞ limit, the latter

two are twist-three and are suppressed by 1/
√

Q2 in the Q2 → ∞ limit. The

first function, Â++
1

2
0; 1

2
0
, is proportional to the traditional fragmentation function

D(z, Q2). It has the same twist, light-cone, helicity and chirality structure as

the familiar, spin-average quark distribution function, f1(x,Q
2), so to avoid an

explosion of notation we denote it by f̂1(z, Q
2) [We will follow the same convention

for other fragmentation functions.]:

f̂1(z, Q
2) ∝ Â++

1

2
0; 1

2
0
(4)

If we were studying quark distribution functions, the latter two would be equal by

time-reversal invariance. Here, there are two independent fragmentation functions.

ê1(z, Q
2) ∝ Â+−

1

2
0; 1

2
0
+ Â−+

1

2
0; 1

2
0

ê1̄(z, Q
2) ∝ Â+−

1

2
0; 1

2
0
− Â−+

1

2
0; 1

2
0

(5)
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The application to spin–1/2 is summarized in Table 1. The fragmentation functions

described in Eqs. (4) – (5) (for spin-zero) and in Table 1 (for spin 1/2) are sufficient

to describe quark fragmentation in processes to which Rule (1.i) or (1.ii) applies.

In order to relate particular deep inelastic processes to quark distribution and

fragmentation functions and to study them in models of non-perturbative QCD, it

is necessary to have operator representations for them. We presented this formal-

ism for distribution functions in Ref. [5]. Since we are interested in pion production

here, we study fragmentation functions which are independent of the final hadron’s

spin. The generalizions to spin–1/2 and spin–1 are presented in Ref. [9]. Generaliz-

ing the procedure in Refs. [5] and [ 13], we can define four fragmentation functions

with quark fields alone,

z

∫

dλ

2π
e−iλ/z 〈0| γµψ(0) |PXout〉〈PXout| ψ̄(λn) |0〉 = 4[f̂1(z)p

µ + f̂4(z)M
2nµ],(6)

z

∫

dλ

2π
e−iλ/z 〈0|ψ(0) |PXout〉〈PXout| ψ̄(λn) |0〉 = 4Mê1(z), (7)

z

∫

dλ

2π
e−iλ/z 〈0|σµνiγ5ψ(0) |PXout〉〈PXout| ψ̄(λn) |0〉 = 4Mǫµναβpαnβ ê1̄(z), (8)

where P is the four-momentum of the pion and p and n are two light-like vectors

such that p2 = n2 = 0, p− = n+ = 0, p · n = 1, and P µ = pµ + nµm2
π/2. All

Dirac indices on quark fields are implicitly contracted. The mass M appearing

in Eqs. (6) – (8) is a generic QCD mass scale, which we sometimes choose for

convenience to be the nucleon mass. We avoid use of the produced hadron mass

because of the singular behavior introduced in the chiral limit (the left hand side

of Eq. (7) or (8) does not vanish as mπ → 0). The summation over X is implicit

and covers all possible states which can be populated by the quark fragmentation.

The state |PXout〉 is an out state between the pion and X . The renormalization

scale dependence is suppressed in Eqs. (6) – (8). Here we work in n ·A = 0 gauge,

otherwise gauge links have to be added to ensure the color gauge invariance. The

gauge invariance and other issues of interpretation for equations like Eqs. (6)– (8)

are discussed in detail in Ref. [ 13]. From a simple dimensional analysis, we see that
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f̂1(z), ê1(z) and ê1̄(z), and f̂4(z) are twist-two, -three, and -four, respectively (they

contribute in order 1/Q0, 1/Q1, and 1/Q2 respectively); and from their γ-matrix

structure, f̂1(z) and f̂4(z) are chirally even and ê1(z) and ê1̄(z) are chirally odd.

This assignment agrees with the results quoted above. Hermiticity guarantees that

these fragmentation functions are real.

As an important application of the new fragmentation functions introduced

above, we consider deep-inelastic scattering with longitudinally polarized leptons

on polarized nucleon targets, focusing on pion production in the current fragmen-

tation region. As we shall show below, this process allows us to gain access to the

nucleon’s transversity distribution.

The simplest cut diagram for the process is shown in Fig. [2], where a quark

struck by the virtual photon fragments into an observed pion plus other unob-

served hadrons. The cross section of the process is proportional to a trace and

integral over the quark loop which contains the quark distribution function and

fragmentation function. Due to chirality conservation at the hard (photon) vertex,

the trace picks up only the products of the terms in which the distribution and

fragmentation functions have the same chirality (Rule (4) above). When the nu-

cleon is longitudinally polarized (with respect to the virtual-photon momentum),

the twist-two, chirally even distribution g1(x) can couple with the twist-two chi-

rally even fragmentation function f̂1(z), producing a leading contribution O(1/Q0)

to the cross section. On the other hand, in the case of a transversely polarized

nucleon, there is no leading-order contribution. At the next order, the nucleon’s

transversity distribution h1(x) can combine with the twist-three chirally odd frag-

mentation function ê1(z), and similarly gT (x) can combine with the chirally even

transverse-spin distribution f̂1(z). Both couplings produce 1/
√

Q2 contributions

to the cross section.

It is simple to see, however, that Fig. [2] alone does not produce an electromagnetically-

gauge-invariant result. This is a typical example of the need to consider multi-

quark/gluon processes beyond twist-two.10,11 In the present case (twist-three),
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however, the contributions from coherent scattering can be expressed, with novel

use of QCD equations of motion, in terms of the distributions and fragmentation

functions defined from quark bilinears. This is a specific example of Rule (1.ii).

The combined result is gauge invariant, as can be seen from the resulting nucleon

tensor,

Ŵ µν = −iǫµναβ
qα
ν
[(S · n)pβĜ1(x, z) + S⊥βĜT (x, z)] (9)

where S is the polarization vector of the nucleon (Sµ = (S ·n)pµ+(S ·p)nµ+Sµ
⊥
), p

and n are light-cone vectors defined with respect to the virtual-photon momentum

q. The two structure functions in Ŵ µν are related to parton distributions and

fragmentation functions,

Ĝ1(x, z) =
1

2

∑

a

e2ag
a
1(x)f̂

a
1 (z)

ĜT (x, z) =
1

2

∑

a

e2a

[

gaT (x)f̂
a
1 (z) +

ha1(x)

x

êa(z)

z

]

(10)

where the summation over a includes quarks and antiquarks of all flavors.

To isolate the spin-dependent part of the deep-inelastic cross section we take

the difference of cross sections with left-handed and right-handed leptons, we use

d2∆σ

dE′dΩ
=
α2
em

Q4

E′

EMN
∆ℓµνŴµν(11)

where Q2 = −q2, k = (E,k) and k′ = (E′,k′) are the incident and outgoing

momenta of the lepton, and ∆ℓµν is the spin-dependent part of the lepton tensor,

∆ℓµν = −Tr[γµ k/′ γνγ5 k/] = −4iǫµναβqαkβ. It is convenient to express the cross

section in terms of scaling variables in a frame where lepton beam defines the ê3-

axis and the ê1 − ê3 plane contains the nucleon polarization vector, which has a

polar angle α. In this system, the scattered lepton has polar angles (θ, φ) and

therefore the momentum transfer q has angles (θ, π − φ). Then,

d4∆σ

dx dy dz dφ
=

8α2
em

Q2

[

cosα(1−
y

2
)G1(x, z)
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+ cosφ sinα
√

(κ− 1)(1− y)
(

GT (x, z)−G1(x, z)(1−
y

2
)
) ]

(12)

where y = 1 − E′/E and κ = 1 + 4x2M2/Q2 in the second term signals the

suppression by a factor of 1/Q associated with the structure function GT . The

existence of G1 in the same term is due to a small longitudinal polarization of the

nucleon relative to q when its spin is perpendicular to the lepton beam.

Eq. (12) is our main result. As a check, we multiply by z, integrate over

it and sum over all hadron species. Using the well-known momentum sum rule,
∑

hadrons

∫

dzzf̂a1 (z) = 1, and the sum rule,
∑

hadrons

∫

dzêa1(z) = 0, which is re-

lated to the fact that the chiral condensate vanishes in the perturbative QCD vac-

uum, we get the well known result for total inclusive scattering, given in Eq. (2.8)

in Ref. [ 14] (if one neglects the terms of order 1/Q2 in the latter). [Eq (2.8) in

Ref. [ 14] contains a sign error: the sign of the second term should be reversed

corresponding to the replacement cosφ → cos(π − φ).] The similarity between

the inclusive and semi-inclusive cross sections suggests that they can be extracted

conveniently from the same experiment.

The aim of this example was to show that an unfamiliar fragmentation function

(ê1) could be employed to obtain a measurement of an interesting, if unfamiliar,

distribution function (h1). It is apparent from Eq. (12) that we have been only

partially successful: although the ha1 distribution for each quark flavour appears

in Eq. (12), the sum over flavors couples it to the unknown flavor dependence of

êa1. Fortunately, flavor tagging can be used at large–z to identify the contributions

of individual quark flavors. For x in the valence region (where one can ignore

antiquarks in the nucleon), and z → 1, the dominant fragmentation, u → π+,

d → π−, s → K−, effectively allows one to trigger on the contributions of u, d

and s quarks separately. One might be concerned that the unknown fragmentation

function, ê1, might not respect the dominant fragmentation selection rules, which

have only been tested for the spin-averaged, twist-two fragmentation function, f̂1.

However, the coherent gluon interactions which distnguish the twist-three ê1 from

f̂1 are flavor independent and should not alter the selection rules. More complicated
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flavor structure does arise at higher twist where multiquark correlation functions

appear. We have not attempted to make an estimate of the usefulness of this flavor

tagging method in the manner of Ref. [ 15], which should precede the attempt to

carry out this measurement.
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P, H P, H′

k, h k, h′

Fig. 1. Diagram for quark fragmentation functions.

Fig. 2. Pion-production in deep-inelastic scattering.

Table I. Quark fragmentation functions for spin-1
2
baryon.

Note: the functions with bar vanish if there are no final state interactions

Twist-2 Twist-3 Twist-4

++ +−(S) +−(A) −−

Â 1

2

1

2
→ 1

2

1

2

+ Â 1

2
− 1

2
→ 1

2
− 1

2

f̂1 ê1 ê1̄ f̂4

Â 1

2

1

2
→ 1

2

1

2

− Â 1

2
− 1

2
→ 1

2
− 1

2

ĝ1 ĥ2 ĥ2̄ ĝ3

Â 1

2
− 1

2
→− 1

2

1

2

ĥ1 ĝ2 ĝ2̄ ĥ3
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FIGURE CAPTIONS

1) Diagram for quark fragmentation functions.

2) Pion-production in deep-inelastic scattering.
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