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I. INTRODUCTION

Spectral congestion is quickly becoming a problem for

the telecommunications sector [1] and cooperative spec-

trum sharing between radar and communications systems

such that both systems mutually benefit from the presence

of each other has been proposed as a potential solution [2],

[3]. In order to determine how to efficiently share spectral

resources and achieve radio frequency (RF) convergence

[4], a thorough understanding of the fundamental perfor-

mance limits of cooperative spectrum sharing is needed.

Bliss et al. [3], [5] investigated the fundamental limits of

an in-band cooperative radar and communications system

and developed inner bounds on performance for such a sys-

tem. However, these bounds were specifically developed

by considering only local estimation errors using a radar

waveform that is suboptimal for joint performance. Gener-

alizing these performance bounds can help establish limits

for cooperative spectrum sharing.

Furthermore, these joint radar-communications perfor-

mance bounds were found to depend on the shape of the

radar waveform spectrum [3], [5]. For a given bandwidth, an

impulse-like radar spectral shape (small root mean square

(rms) bandwidth) was found to be favorable for communi-

cations performance, whereas a radar waveform spectrum

with more energy at the edges of the bandwidth allocation

(large rms bandwidth) was found to be more favorable for

estimation performance. However, the latter waveform also

has higher autocorrelation side-lobes or ambiguity, which

negatively impacts the global (local and nonlocal regime)

estimation performance by increasing the radar threshold

signal-to-noise ratio (SNR) at which nonlocal estimation

errors occur. Thus, the shape of the radar spectrum poses

a tradeoff both in terms of radar performance versus com-

munications performance and in terms of improved esti-

mation performance versus an increased radar threshold

SNR.

Paul et al. [6] generalized the performance bounds de-

veloped by Bliss et al. [3], [5] by taking nonlocal estimation

errors into account and tuning the shape of the radar wave-

form spectrum to maximize joint radar-communications

performance. The results presented in this paper are an

extension of the work presented by Paul et al. [6]. In this

paper, we present a new radar waveform design method

for a joint radar-communications system that optimizes the

radar waveform spectrum to maximize radar performance

or minimize estimation error variance in the nonlocal (or

low-SNR) regime and optimizes the communications power

spectrum to maximize communications performance by

employing the continuous spectral water-filling algorithm

[7]. This novel method designs a jointly optimal radar wave-

form that is constant modulus, unlike the method presented

by Paul et al. [6]. The global estimation rate, introduced in

[6], and data rate capture radar and communications perfor-

mance, respectively. In order to place emphasis on wave-

form design approaches and their performance, we assume

a simple scenario with a single target and no clutter. The

problem scenario considered in this paper is given by Fig. 1.
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Fig. 1. Joint radar-communications system simulation scenario for

radar waveform design. In this scenario, a radar and communications

user attempt to use the same spectrum-space-time. This scenario is

instructional, and can easily be scaled to more complicated scenarios by

using it as a building block to construct real-world examples.

A. Contributions

The main contributions of this paper are summarized

below.

1) Develop novel minimum estimation error variance

waveform design method to design a constant modu-

lus radar waveform that maximizes radar performance

of a joint radar-communications system.

2) Develop novel spectral water-filling SIC data rate that

maximizes communications performance of a joint

radar-communications system.

3) Perform numerical study of the effects of radar threshold

SNR and the order of nonlinear chirp phase on waveform

design performance.

4) Compare performance of new waveform design algo-

rithm with previously derived spectral-mask shaping

waveform design method.

B. Background

The performance bounds presented in Bliss et al. [3]–

[5], [8], which only considered local estimation errors, were

shown to be dependent primarily on the rms bandwidth of

the radar waveform. Paul et al. [6] extended the estima-

tion rate to consider nonlocal or global estimation errors

and employed a spectral mask to shape the radar waveform

spectrum so as to maximize the performance of a joint

radar-communications system. An evolutionary optimiza-

tion algorithm was applied to find the optimal spectral mask

that maximizes radar and communications performance (es-

timation and data rate, respectively) and new performance

bounds were developed. Performance bounds comparing

communications performance versus radar detection per-

formance were derived for a joint radar-communications

system in [9].

Modern approaches to the RF convergence problem

have looked at waveform design in the context of a single,

unified waveform for radar and communications. For exam-

ple, orthogonal frequency-division multiplexing (OFDM)

is commonly chosen for this dual waveform [10]–[14],

where a single transmission is used for communications

and monostatic radar. Most results using OFDM waveforms

revealed data-dependent ambiguities, opposing cyclic pre-

fix requirements, and demanding peak-to-average power

ratio (PAPR) requirements. Spread spectrum waveforms

have also been proposed for their autocorrelation proper-

ties [15]–[17], and multiple-input multiple-output (MIMO)

radar techniques have been suggested, given that the in-

dependent transmitted waveforms allow more degrees of

freedom for joint radar-communications codesign [18]–

[20]. Multiple orthogonal linear frequency-modulated (FM)

chirps have also been proposed to accomplish both radar

detection and communications transmissions in a MIMO

system [21]. Both systems have fundamentally different

waveform requirements and that is why, contrary to the

aforementioned approaches, the waveform design method

proposed in this paper assumes that radar and communica-

tions systems transmit separate waveforms.

Researchers have also looked at optimization theory

based radar waveform design methods that look to optimize

radar performance, whereas the communications system is

constrained to reduce interference. Optimization theory is

used to maximize some radar performance metrics (detec-

tion probability, ambiguity function features, etc.) and keep

interference to other in-band systems at a minimum [22]–

[24] or impose constraints on the communications rate of

other in-band systems [25].

Researchers have searched several other research areas

for potential solutions to the spectral congestion problem.

Some researchers looked at spatial mitigation as a means

to improve spectral interoperability [26]–[28]. Joint coding

techniques, such as robust codes for communications that

have desirable radar ambiguity properties, as well as codes

that trade data rate and channel estimation error have been

investigated as codesign solutions [29]–[32].

C. Problem Set-Up

We consider the scenario shown in Fig. 1, which in-

volves a radar and communications user attempting to use

the same spectrum-space-time. We consider the joint radar-

communications receiver to be a radar transmitter/receiver

that can act as a communications receiver. The key assump-

tions made in this paper for the scenario described in Fig. 1

are as follows.

1) Joint radar-communications receiver is capable of si-

multaneously decoding a communications signal and

estimating a target parameter.

2) Radar detection and track acquisition have already taken

place.

3) Radar system is an active, single-input single-output

(SISO), monostatic, and pulsed system.

4) Interpulse ambiguities between radar pulses not consid-

ered.

5) A single SISO communications transmitter is present.

6) Only one radar target is present.

7) Target range or delay is the only parameter of interest.

8) Target cross section is well estimated.
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TABLE I

Survey of Notation

It should be noted that the performance bounds and re-

sults presented in this paper are very closely dependent on

the employed receiver model. By employing a mitigation

technique called successive interference cancelation (SIC)

(discussed later in the paper) at the receiver, the communi-

cations data rate at the receiver becomes dependent on the

radar waveform spectrum [5]. Employing different mitiga-

tion techniques and changing the receiver model will result

in a set of performance bounds that are different from the

ones presented in this paper.

II. JOINT RADAR-COMMUNICATIONS SYSTEM—
RECEIVER MODEL AND PERFORMANCE METRICS

In this section, we present both the model used to

represent the joint radar-communications receiver and the

performance metrics used in this paper to characterize

radar and communications performance for the joint radar-

communications system. A discussion of the SIC mitigation

techniques employed at the receiver is also provided. We

present a table of significant notation that is employed in

this paper in Table I.

A. SIC Receiver Model

We present the joint radar-communications receiver

model that employs SIC, an interference mitigation tech-

nique. It is this receiver model that causes communications

performance to be closely tied to the spectrum of the radar

waveform. This receiver model was first developed in [3].

We assume that we have some knowledge of the radar

target range (or time-delay), based on previous observa-

tions, up to some random fluctuation or process noise,

which is modeled as a zero-mean random variable nτ,proc(t).

Fig. 2. Joint radar-communications system block diagram for SIC

scenario. The radar and communications signals have two effective

channels, but arrive converged at the joint receiver. The radar signal is

predicted and removed, allowing a reduced rate communications user to

operate. Assuming near perfect decoding of the communications user,

the ideal signal can be reconstructed and subtracted from the original

waveform, allowing for unimpeded radar access.

Using this information, we can generate a predicted radar

return and subtract it from the joint radar-communications

received signal. Since there is some error in the predicted

and actual target locations, this predicted radar signal sup-

pression leaves behind a residual contribution, nresi(t), to the

joint received signal. By lowering the communications rate,

the receiver can perfectly decode the communications mes-

sage from the radar-suppressed joint received signal (which

consists of the communications signal, thermal noise, and

radar residual). The joint radar-communications receiver

uses the decoded communications message to reconstruct

and remove the communications waveform from the re-

ceived signal to obtain a radar return signal free of commu-

nications interference. This method of interference cance-

lation is called SIC. SIC is the same optimal multiuser

detection technique used for a two-user multiple-access

communications channel [7], [33], except it is now refor-

mulated for a communications and radar user instead of

two communications users. The block diagram of the joint

radar-communications system considered in this scenario is

shown in Fig. 2. For a joint radar-communications received

signal, z(t), given by

z(t) = b
√

Pcom r(t) + n(t) +
√

Prad a x(t − τ )

the received signal at the communications receiver with the

predicted radar return suppressed, z̃(t), is given by [3], [5]

z̃(t) = b
√

Pcom r(t) + n(t)

+
√

Prad a[x(t − τ ) − x(t − τpre)] (1)

where x(t − τpre) is the predicted radar return signal, and

τpre is the predicted target delay. When applying SIC, the

interference residual plus noise signal nint+n(t), from the

communications receiver’s perspective, is given by [3], [5]

nint+n(t) = n(t) + nresi(t)

= n(t) +
√

‖a‖2 Prad nτ,proc(t)
∂x(t − τ )

∂t
(2)

where nτ,proc(t) is the process noise with variance σ 2
τ,proc.

It should be noted that SIC performance is highly sen-

sitive to model mismatch errors since they introduce larger

residuals in the SIC process, negatively impacting interfer-

ence cancelation performance. Potential sources for model

mismatch include dynamic range constraints on the receiver

or transmitter, phase noise, etc. Insufficient transmitter or
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receiver dynamic range implies that if one received signal

is stronger than the other signal, mitigating the stronger

signal through SIC will be incredibly difficult, resulting in

high residual values being present in the weaker signal after

SIC. Communications signal mitigation by 40–50 dB has

been demonstrated experimentally [34], [35]. As a result, a

dynamic range of 50 dB is sufficient to avoid model mis-

match errors for the joint radar-communications receiver.

Additionally, it should be noted that the performance of the

SIC receiver has a complex dependency on receiver phase

noise. Large phase noise can introduce larger postradar sup-

pression residual values, negatively impacting joint radar-

communications performance. A better analysis of the re-

lationship between the SIC receiver and phase noise can be

found in [36].

B. Spectral Water-Filling SIC Data Rate

We develop and present the novel spectral water-

filling SIC data rate, which utilizes the continuous spectral

water-filling algorithm [7], [37] to determine the optimal

communications power distribution over frequency. The

continuous spectral water-filling algorithm optimizes the

data rate for a given noise power spectral density [7], [37].

Once the receiver model is known, the communications

transmitter can easily determine the noise spectral den-

sity at the receiver, Nint+n(f ), and apply the continuous

spectral water-filling algorithm to determine the optimal

communications transmit power distribution, P (f ). This

communications power distribution, P (f ), maximizes

the communications data rate at which the joint radar-

communications receiver decodes the communications

message. We define this maximized communications rate

as the spectral water-filling SIC data rate. We use the spec-

tral water-filling SIC data rate to measure communications

performance. The continuous spectral water-filling algo-

rithm is a continuous form extension of the water-filling

algorithm employed in [3] and [5]. Fig. 3 highlights how

the continuous spectral water-filling algorithm selects the

optimal power distribution.

As mentioned earlier, since we employ the SIC model at

the joint radar-communications receiver, the receiver will

decode the communications message after the predicted

radar signal has been mitigated from the received signal. As

a result, from the communications receiver’s perspective,

the channel will be corrupted by noise given by (2). In

order to find the noise spectral density, Nint+n(f ), we first

calculate the autocorrelation function of the time- and band-

limited noise signal, n(t) (since the received signal is also

time- and band-limited)

γ (α) =
〈

nint+n(t) n∗
int+n(t − α)

〉

=
〈

n(t) n∗(t − α)
〉

+ 〈nresi(t) nresi(t − α)〉

= kB Ttemp B sinc(π B α)

+ ‖a‖2 Prad σ 2
τ,proc

∂x(t − τ )

∂t

∂x∗(t − τ − α)

∂t

Fig. 3. Notional example of the continuous spectral water-filling

algorithm. The black, dashed line indicates the fill level (maximum

amount of communications power that can be allocated at any

frequency), the green curve represents the noise power spectral density

Nint+n(f ), and the optimal communications power spectral distribution is

shown in blue.

= kB Ttemp B sinc(π B α) + (4π2) ‖a‖2 Prad σ 2
τ,proc

·

∫ ∞

−∞

dff 2X(f )X∗(f )ei2πf α

= kB Ttemp B sinc(π B α)

+ (4π2) ‖a‖2 Prad σ 2
τ,proc g(α) (3)

where Parseval’s theorem and the time-shift and time

derivative properties of the Fourier transform are used

between the second and third steps, sinc(x) =
sin(x)

x
, and

g(α) is the inverse Fourier transform with respect to α of

G(f ) = ‖X(f )‖2 f 2. Since the noise power spectral den-

sity and autocorrelation are Fourier transform pairs, the

noise power spectral density is given by

Nint+n(f ) = N(f ) + Nresi(f )

= kB Ttemp �B(f )

+ (4π2) ‖a‖2 Prad σ 2
τ,proc ‖X(f )‖2 f 2 (4)

where N(f ) and Nresi(f ) are the Fourier transforms of n(t)

and nresi(t), respectively, and �B(f ) is a top-hat or rect-

angular function from −B
2

to B
2

. The optimal communica-

tions power spectrum determined by the continuous spectral

water-filling algorithm is given by

P (f ) =

(

µ −
Nint+n(f )

b2

)+

(5)

where (x)+ = x if x ≥ 0; otherwise (x)+ = 0 and µ is a

constant that is determined from the power constraint

Pcom =

∫ B
2

−B
2

df P (f ) =

∫ B
2

−B
2

df

(

µ −
Nint+n(f )

b2

)+

.

(6)

The spectral water-filling SIC data rate (the correspond-

ing data rate for the channel with noise spectral density
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Nint+n(f )) is given by [7], [37]

Rcom =

∫ B
2

−B
2

df log

(

1 +
b2 P (f )

Nint+n(f )

)

. (7)

It should be noted that due to the complexity involved in

determining analytical solutions for the integrals shown in

(6) and (7), these integrals are evaluated numerically to

determine the optimal value for µ and the communications

data rate.

C. Global Estimation Rate

Here, we provide a brief discussion of the global esti-

mation rate, which was first developed in [6]. We measure

radar performance by the estimation rate [3], [5], which

measures the amount of information contained in radar re-

turns. The estimation rate is upper bounded as follows:

Rest ≤
δ

2T
log2

[

1 +
σ 2

τ,proc

σ 2
est

]

(8)

where σ 2
est is the range estimation noise variance, which is

bounded locally by the Cramer–Rao lower bound (CRLB)

[38]. The estimation rate was extended in [6] to account for

global estimation errors. The method of interval errors [33],

[39], [40] is employed to calculate the effect of nonlocal er-

rors on time-delay estimation performance. A closed-form

solution of the probability of side-lobe confusion, Ps.l. is ob-

tained in terms of the values and locations of the side-lobe

peaks, integrated radar SNR, and the Marcum Q-function

QM [33]. The method of intervals time-delay estimation

variance is then given by

σ 2
est = [1 − Ps.l.(ISNR)] σ 2

CRLB(ISNR) + Ps.l.(ISNR) φ2
s.l.

(9)

where φs.l. is the offset in time (seconds) between the au-

tocorrelation peak side-lobe and main-lobe [5]. The proba-

bility of side-lobe confusion, Ps.l., is given by [33]

Ps.l.(ISNR) = 1 − QM

(
√

ISNR

2

(

1 +
√

1 − ‖ρ‖2

)

√

ISNR

2

(

1 −
√

1 − ‖ρ‖2

)

)

+ QM

(
√

ISNR

2

(

1 −
√

1 − ‖ρ‖2

)

√

ISNR

2

(

1 +
√

1 − ‖ρ‖2

)

)

(10)

where ρ is the ratio of the main-lobe to the peak side-lobe of

the autocorrelation function. For a radar system performing

time-delay estimation, the CRLB for time delay estimation

is given by [41]

σ 2
CRLB = (8π2B2

rmsISNR)−1 (11)

where the rms bandwidth is given by

B2
rms =

∫

f 2 ‖X(f )‖2 df
∫

‖X(f )‖2 df
. (12)

A more intuitive understanding of how the estimation rate

metric captures target parameter estimation performance

and the implications of altering the estimation rate can

be found in [4]. The estimation rate is extended to account

for Doppler measurement and continuous signaling radars

in [42].

III. NONLINEAR CHIRP WITH PARAMETRIC
POLYNOMIAL PHASE

In this section, we briefly introduce the novel parameter-

ized nonlinear chirp that will be used to design the optimal

radar waveform in the minimum estimation error variance

waveform design method. We also derive an approximate

closed-form solution for the spectrum for a special case of

this nonlinear chirp waveform.

One desirable property for radar waveforms is to have a

PAPR as close as possible to 1 (the smallest possible value).

Thus, most current radar systems require the signal to be

constant modulus or unimodular. This keeps the peak and

the average power the same over any time period, grant-

ing the signal the smallest possible PAPR of 1. To ensure

that the optimized radar waveform is unimodular, we begin

by considering the following unimodular nonlinear chirp

signal with a polynomial phase

x(t) = e
iπ

(

∑N
m=1 pmt2m

)

(13)

where N is a positive integer and pm ∈ R, ∀m are phase co-

efficients. Note that we have constrained the phase polyno-

mial to have only even-powered terms to ensure symmetry

in the frequency domain. The shape of the waveform spec-

trum is determined by the phase coefficients. The minimum

estimation error variance method selects the appropriate

phase coefficient values so as to optimize the shape of the

radar spectrum to maximize joint radar-communications

performance.

In the following discussion, we derive an approximate

expression for the spectrum of the nonlinear chirp waveform

shown in (13) for N = 2.

A. Spectrum of Nonlinear Chirp With Parametric
Polynomial Phase

Due to the increased complexity involved in evaluating

the spectrum for higher values of N , we consider the simple

case of N = 2. The spectrum of the band-limited nonlinear

chirp with bandwidth B and time-duration T is given by

X(f ) =

∫ T
2

−T
2

dt eiπ (p1 B2 t2+p2 B4 t4) e−i2 π f t

=

∫ T
2

−T
2

dt eiπ (p1 B2 t2+p2 B4 t4−2 f t)

=

∫ T
2

−T
2

dt eiφ(t,f ). (14)
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In order to obtain a closed-form solution for the above

integral, we employ the principle of stationary phase (PSP)

[43]. We first find the points in time, t0, where the phase,

φ(t, f ), is stationary, i.e., when

∂φ(t, f )

∂t

∣

∣

∣

t=t0

= 0

⇒ π(2 p1 B2 t0 + 4 p2 B4 t3
0 − 2 f ) = 0

⇒ 2 p1 B2 t0 + 4 p2 B4 t3
0 − 2 f = 0. (15)

Solving for t0, we get

t0 =
−6

2
3 B6 p1 p2

Q

+
6

1
3 (9 B8 p2

2 f +

√

3 B16 p3
2 (2 B2 p3

1 + 27 p2 f 2))
2
3

Q
(16)

where

Q = 6 B4 p2

(

9B8 p2
2 f

+

√

3 B16 p3
2 (2 B2 p3

1 + 27 p2 f 2)

)
1
3

.

Using the PSP, the expression for an approximation of the

spectrum is given by [43]

X(f ) ≈ 2

√

−π

2 φ′′(t0, f )
e−i π

4 x(t0) eiφ(t0,f )

= 2

√

−1

4 p1 B2 + 24 p2 B4 t2
0

e−i π
4 eiπ (p1 B2 t2

0 +p2 B4 t4
0 )

· eiπ (p1 B2 t2
0 +p2 B4 t4

0 −2 f t0) (17)

where φ′′(t, f ) =
∂2φ(t,f )

∂t2 = π(2 p1 B2 + 12 p2 B4 t2). The

closed form shown in (17) is given for reference and il-

lustration. Its performance is not considered for numerical

analysis in the paper.

IV. RADAR WAVEFORM DESIGN METHODS

In this section, we present two radar waveform design

algorithms for a joint radar-communications system. We

first briefly discuss the spectral mask shaping method that

was first introduced in [6]. A novel radar waveform design

method, the minimum estimation error variance method, is

then presented in this section. The spectral mask shaping

method will be used as a baseline to compare the perfor-

mance of the minimum estimation error variance method

presented in this paper.

A. Spectral Mask Shaping Method

We present the radar waveform design method pre-

sented in [6]. This method will be used as a performance

baseline to compare the performance of the novel radar

waveform design method presented in this paper. The

radar waveform can be designed to maximize radar estima-

tion rate, communications rate, or some weighting therein.

Without consideration of global error, waveform design can

be simplified to tuning Brms [3]. A closed-form, parameter-

ized spectral mask is used to tune Brms to jointly maximize

both the radar and communications users’ information rate.

We assume we have a linear FM chirp, which spans

from −B/2 to B/2 in time T . We then apply a frequency-

domain spectral mask weighting to the chirp, W (f ) =

x + z f 2 , |f | ≤ B
2

. The rms bandwidth of the resulting

weighted chirp is found by assuming that the chirp spec-

trum is approximately flat using the PSP [43]. As a result,

the rms bandwidth is easily calculable in closed form for

the polynomial [6]

Brms =

√

√

√

√

x2 B3

12
+ x z B5

40
+ z2 B7

448

x2 B + x z B3

6
+ z2 B5

80

. (18)

Using differential evolution [44] to tune Brms, the fol-

lowing objective function (or cost function) is optimized

to maximize joint performance (radar and communications

users’ information rate)

Rtotal = Rest(Brms)
α R̃com(Brms)

(1−α) (19)

where R̃com(Brms) is the SIC communications data rate de-

fined in [3] (not to be confused with the spectral water-filling

SIC data rate defined in this paper) and α is a blending pa-

rameter that is varied from 0 to 1. When α = 0, only com-

munications rate is considered. When α = 1, only the radar

estimation rate is considered. In between, the product is

jointly maximized. Note that for α = 0.5, Rtotal represents

the geometric mean of the two rates. This provides a more

numerically stable error term, even when R̃com ≫ Rest.

B. Minimum Estimation Error Variance Method

The waveform design algorithm that we propose in this

section designs an optimal nonlinear chirp radar waveform

(as modeled in Section III) from a global estimation rate

perspective. In other words, we first design the waveform to

minimize the global estimation error variance (estimation

error variance taking into account both nonlocal and local

estimation errors), given by (9). This minimization of the

global estimation error variance is accomplished by mini-

mizing the estimation error variance at the radar threshold

SNR of the radar estimator. The threshold point of an es-

timator is the estimator (or radar) SNR value at which the

estimator’s performance deviates from the CRLB [38] due

to error contributions from nonlocal estimation errors. At

SNR values lower than the threshold point, due to autocor-

relation main-lobe–side-lobe confusion, nonlocal estima-

tion errors begin to contribute to estimator’s error variance,

which causes the estimation performance to degrade and

deviate from the CRLB [33]. Since the threshold point is

the SNR point at which an estimator’s performance de-

viates from the CRLB and also the SNR point at which

nonlocal estimation errors contribute to estimation perfor-

mance, minimizing the CRLB at the threshold point gives

the lowest possible global estimation error variance or high-

est possible global estimation rate.
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Fig. 4. Notional example depicting the impact of the constraint given

by (20) on the feasible set for optimization. The dashed vertical line

indicates the given signal-to-noise ratio (SNR). The red, purple and blue

solid curves indicate the estimator performance for different radar

waveforms and the black solid lines indicate the Cramér-Rao lower

bound (CRLB) for each radar waveform. The black dots indicate the

CRLB values for various feasible radar waveforms at the given SNR. The

red and purple dots indicate the actual estimation error variance

(estimation performance) for various feasible radar waveforms at the

given SNR. The grayed out curves indicate estimation performance for

unfeasible radar waveforms at the given SNR. Minimizing the CRLB

over the feasible set ensures that the optimal radar waveform will have

the lowest estimation threshold point (or best estimation performance,

taking both local and non-local estimation errors).

For a given SNR, we have to design a radar waveform

that has a threshold point at that SNR and has the best (or

smallest) estimation error variance. We first eliminate all

radar waveforms that have a threshold point higher than the

current SNR and then, from the remaining feasible solution

set, we find the radar waveform that minimizes the CRLB

given by (11). We perform the first elimination step by im-

posing the following constraint on the ratio of the global es-

timation error variance [given by (9)] and the CRLB [given

by (11)]

σ 2
est

σ 2
CRLB

≤ δconstraint (20)

where δconstraint is a parameter whose value determines the

size of the feasible solution set. We discuss how to tune this

parameter in Section V. By ensuring the above ratio stays

below δconstraint, any radar waveforms with higher threshold

points (SNR values) are eliminated. Fig. 4 depicts how

this constraint works on eliminating radar waveforms with

higher threshold points.

We also introduce an additional constraint on spectral

leakage (constraint C2) to the waveform optimization prob-

lem in order to obtain optimal radar waveforms that not only

ensure optimal joint radar-communications performance,

but also satisfy additional real-world properties that a tra-

ditional radar waveform would. Since the system can only

receive signals whose spectrum lies within the system’s

bandwidth, any RF energy that leaks outside of the band-

width will be lost. To minimize this loss of RF energy, we

introduce a constraint on the amount of energy present in

the radar spectrum at frequencies out of the system band-

width range. We enforce this spectral leakage constraint by

Fig. 5. Spectral leakage mask used constrain the amount of energy in

the radar spectrum leaking out at frequencies out of the system

bandwidth range. The spectral leakage constraint is enforced by having

the radar spectrum be below this thresholding spectral leakage mask.

having the radar spectrum be below a thresholding spectral

mask such as the one seen in Fig. 5.

We consider the nonlinear chirp waveform given by

(13). The spectral shape of the waveform is determined by

the parameters pm, m = 1, . . . , N . In order to design the

radar waveform spectrum that minimizes the global esti-

mation performance, we solve the following optimization

problem:

minimize
p̄

1

8π2Brms(p̄)2T B(SNR)
,

subject to pm ∈ [0, 10] ∀m

σ 2
est

σ 2
CRLB

≤ δconstraint

�A(p̄) = 1 (C2)

(21)

where p̄ = (p1, . . . , pN ), and p1, . . . , pN are the coeffi-

cients of the phase polynomial for the unimodular wave-

form in (13), and Brms(p̄) is given by (12). The constraint

C2 constrains the coefficients p̄ such that the resulting spec-

trum of the waveform stays below a certain masking thresh-

old, which is represented by an indicator function, where

A is the set of all phase coefficients that let the result-

ing masked spectrum stay below the masking threshold as

shown in Fig. 5.

Once the optimal radar waveform that maximizes the

radar performance of a joint radar-communications system

is designed, the continuous spectral water-filling algorithm

described in Section II-B is employed to determine the

spectral water-filling SIC data rate that maximizes the com-

munications performance of a joint radar-communications

system. This optimization process is called the minimum

estimation error variance method. It should be noted that

the optimization problem described in (21) is a nonconvex

optimization problem.

C. Impact of Threshold Point SNR

As mentioned in Section I, we saw from [3] and

[5] that the spectral shape of the radar waveform (the

radar rms bandwidth) impacts the performance of a joint
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radar-communications system. Shaping the radar spectrum

imposes a tradeoff both in terms of radar performance ver-

sus communications performance and in terms of improved

estimation performance versus an increased radar threshold

SNR. In this section, we briefly discuss how the choice of

the threshold SNR impacts both the shape of the radar

waveform spectrum and the performance of the joint radar-

communications system.

Selecting a low value for the threshold SNR implies

that even for small radar SNR values, the probability of

side-lobe confusion for the radar waveform autocorrela-

tion function (which causes the estimator performance to

deviate from the CRLB) is small. Radar waveforms with

more energy at frequencies closer to center of the band-

width allocation can have such autocorrelation functions.

However, such a radar waveform has a smaller rms band-

width, which degrades the overall estimation performance

as seen in (11). Furthermore, as we observed from (4), radar

waveforms with more spectral energy at the bandwidth cen-

ter will reduce the noise spectral density, Nint+n(f ), due to

minimal radar residual values (Nresi(f )), thereby maximiz-

ing the data rate.

Conversely, selecting a larger value for the threshold

point implies that there is more ambiguity in the radar wave-

form autocorrelation function (higher side-lobes), which

occurs for radar waveforms with more energy at frequen-

cies closer to the edges of the bandwidth allocation. Such

waveforms also have larger rms bandwidth values and a bet-

ter estimation performance. Finally, radar waveforms with

more spectral energy at the bandwidth edges have larger

Nresi(f ) values and consequently, larger Nint+n(f ) values,

which degrade the communications data rate.

Thus, we see that selecting a low radar SNR threshold

point increases the communications performance and de-

creases the radar performance but also results in a radar

waveform with low side-lobes in the autocorrelation. Simi-

larly, selecting a high threshold point increases the radar

performance and decreases the communications perfor-

mance but also results in a radar waveform with large auto-

correlation side-lobes. The objective is to select a threshold

point that optimizes the spectral shape of the radar wave-

form such that the performance with respect to radar and

communications is jointly maximized.

The results from the numerical study of the above opti-

mization problem are discussed in Section V.

V. SIMULATION RESULTS

In this section, we present an example of the waveform

design technique discussed in this paper, the minimum esti-

mation error variance method, for an example parameter set.

The parameters used in the example are shown in Table II.

Additionally, a performance comparison of the minimum

estimation error variance method with the previously de-

rived spectral mask shaping method is also provided. We

also study the effect of the order of the nonlinear chirp

phase on joint radar-communications performance. In or-

der to better solve the nonconvex optimization problem

TABLE II

Parameters For Waveform Design Methods

Fig. 6. Real valued amplitude of waveform versus time (s). We see that

the radar waveform has a chip shape similar to a nonlinear chirp in the

time domain. The constant modulus nature of the radar waveform is also

clearly evident.

described in Section IV-B, all the results presented below

were obtained by solving the optimization problem in (21)

using fmincon [45] for 100 Monte-Carlo runs with random-

ized initial solutions and selecting the solution with the

highest objective value.

A. Minimum Estimation Error Variance Method Optimal
Waveform Shape

Here we present an example of a joint radar-

communications optimal radar waveform designed by the

minimum estimation error variance method. Figs. 6 and

7 show time-domain and time-frequency representations

of the nonlinear chirp waveform with a phase polynomial

shown in (13) for the number of phase polynomial coeffi-

cients, N = 6 and a threshold SNR value of 0 dB. Fig. 6

shows the real valued amplitude of the waveform as a func-

tion of time. We see that the radar waveform has a chip

shape similar to a nonlinear chirp in the time domain. The

constant modulus nature of the radar waveform is also ap-

parent from the figure. Fig. 7 shows the short-time Fourier

transform spectrogram as a function of time and frequency.

From this figure, we observe that the optimal radar wave-

form has a nonlinear time-frequency representation and is

similar to a sum of polynomials.
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Fig. 7. Short-time Fourier transform spectrogram versus time (s) and

frequency (Hz). We observe that the optimal radar waveform has a

non-linear time-frequency representation and is similar to a sum of

polynomials.

Fig. 8. Minimum estimation error variance optimized radar waveform

spectrum for different threshold SNR values. The radar waveform

optimization was done for N = 6. We see the optimal radar spectrum has

more spectral energy at the edges of the bandwidth for high threshold

SNR values and has more spectral energy closer to the center for low

threshold SNR values.

B. Impact of Threshold SNR

We now discuss the numerical results from implement-

ing the minimum estimation error variance method in Sec-

tion IV-B. First, we highlight the impact of the threshold

SNR value on the shape of the radar spectrum. We consider

two threshold SNR values of −80 and 50 dB and we choose

N = 6 in (13), i.e., x(t) = eiπ (
∑6

m=1 pmt2m). The minimum es-

timation error variance optimized radar waveform spectrum

for this set of parameters is shown in Fig. 8. From Fig. 8, we

see the optimal radar spectrum has more spectral energy at

the edges of the bandwidth for high threshold SNR values

and has more spectral energy closer to the center for low

threshold SNR values, as we stated in Section IV-C.

We also study the impact of the threshold SNR (or

radar SNR) on the system performance. For the purpose

of this study, we choose N = 6. For different values of

SNR, we optimize the shape of the waveform, i.e., op-

timize the coefficients p̄ = (p1, . . . , p6), to minimize the

CRLB achieved with the waveform. We also impose the

constraint σ 2
est/σ

2
CRLB ≤ δconstraint, which ensures that for

Fig. 9. Rms bandwidth of the optimized radar waveform versus SNR.

As expected, the optimal rms bandwidth increases as we increase the

threshold SNR. From (11), we see that the optimal rms bandwidth

increasing as the threshold SNR increases will thereby reduce the CRLB.

As a result, we see that the estimation performance increases with SNR.

Fig. 10. Autocorrelation function of the optimized radar waveform

versus SNR. As expected, the peak side-lobe of the autocorrelation

function increases as we increase the threshold SNR. This trend is

observed because a higher threshold SNR implies the optimal waveform

has more ambiguity, which translates into higher peak autocorrelation

side-lobes.

the given SNR, our feasible solution set include only wave-

forms whose threshold SNR is less than or equal to the given

SNR (as discussed in Section IV-B). δconstraint is tuned so

that the ratio between the estimation error variance (which

characterizes estimation performance in this paper) and the

CRLB remains close to 1. For this simulation, we consider a

δconstraint value of 1 + ǫ, where ǫ introduces some flexibility

to the constraint and typically has a value of 0.01.

Fig. 9 shows the rms bandwidth values achieved with

each optimized waveform for various values of thresh-

old SNR. As expected, the optimal rms bandwidth in-

creases as we increase the threshold SNR. From (11) and

Section IV-C, we see that the optimal rms bandwidth in-

creasing as the threshold SNR increases will thereby reduce

the CRLB as stated in Section IV-C.

Fig. 10 shows the autocorrelation function achieved

with each optimized waveform for various values of thresh-

old SNR. For SNR values −80, −20, and 20 dB, we ob-

served that the peak side-lobes in all three cases occur at
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Fig. 11. Estimation and data rates versus threshold SNR. Clearly, we

see the performance of the system improve with respect to the estimation

rate and degrade with respect to the spectral water-filling successive

interference cancellation (SIC) data rate as we increase the threshold

SNR.

±0.2–0.5 µs and have values of −10, −7, and −6 dB, re-

spectively. As expected, the peak side-lobe of the autocorre-

lation function increases as we increase the threshold SNR.

As mentioned in Section IV-C, a higher threshold SNR im-

plies that the optimal waveform has more ambiguity, which

translates to higher peak autocorrelation side-lobes.

Now, for each threshold SNR value considered and

for each optimal waveform shape parameter vector

(p1, p2, p3, p4, p5, p6) obtained above, we evaluate the

radar estimation rate bound in (8) and the spectral water-

filling SIC data rate in (7) corresponding to each of these

waveforms. Fig. 11 shows the plot of estimation rate and

the data rate against the threshold SNR value. According

to the figure, the performance of the system improves with

respect to the estimation rate as we increase the thresh-

old SNR, which is expected as the minimum achievable

CRLB decreases with threshold SNR, and the estimation

rate increases with decreasing CRLB according to (8) and

(9). However, we observe that the spectral water-filling SIC

data rate reduces as the threshold SNR increases. This trend

occurs because, as we stated in Section IV-C, as the thresh-

old SNR increases, the noise spectral density, Nint+n(f )

achieves higher values due to larger radar residual values,

which reduces the spectral water-filling SIC data rate.

C. Impact of Order of Chirp Phase

We first investigate the relationship between the au-

tocorrelation peak side-lobe levels and the order of the

nonlinear chirp waveform’s phase, N . Fig. 12 shows the

autocorrelation function for N = 2 and N = 8 at a thresh-

old SNR value of 0 dB. We clearly see that the autocor-

relation peak side-lobes decrease as N increases, which

causes the estimation performance to improve overall as N

increases.

As the shape of the waveform explicitly depends on the

coefficients p1, . . . , pN in (21), we now study the effect of

the number of coefficients, N , on both the estimation and the

data rates. For this study, we choose a threshold SNR value

of 0 dB and vary N from 1 to 8. For each N and threshold

Fig. 12. Autocorrelation function of the optimized radar waveform

versus N . We clearly see that the autocorrelation peak side-lobes

decrease as N increases, which causes the estimation performance to

improve overall as N increases.

Fig. 13. Estimation and data rates versus N . We see that as N increases,

the estimation rate increases and the spectral water-filling SIC data rate

decreases. The improvement in estimation rates as N increases is

because there are more degrees of freedom available to shape the optimal

radar waveform spectrum, which results in optimal waveforms that have

better or lower autocorrelation side-lobe levels. Additionally, increasing

N means increasing the amount of energy at higher frequencies for the

radar waveform spectrum, which improves local estimation performance.

Furthermore, the increase in the radar waveform’s spectral content at

higher frequencies, due to an increase in N , means that the noise spectral

density, Nint+n(f ), achieves higher values due to larger radar residual

values, which reduces the spectral water-filling SIC data rate.

SNR value, we solve (21) and evaluate the estimation rate

from (8) and spectral water-filling SIC data rate from (7).

Fig. 13 shows plots of these rates against N . From Fig. 13,

we see that as N increases, the estimation rate increases

and the spectral water-filling SIC data rate decreases. The

improvement in estimation rates as N increases is because

there are more degrees of freedom available to shape the

optimal radar waveform spectrum obtained by solving the

optimization problem in (21). As a result of these increased

degrees of freedom, optimal radar waveforms are obtained

that have better or lower autocorrelation side-lobe levels

(a trend we observed earlier). Additionally, increasing N

means increasing the amount of energy at higher frequen-

cies for the radar waveform spectrum, which results in the
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TABLE III

Minimum Estimation Error Versus Spectral-Mask Shaping For

SNR = 7.6 dB

Brms value increasing, there by improving local estimation

performance given by (11). This increase in local estima-

tion performance, coupled with lower autocorrelation side-

lobe levels, results in an overall increase in the estimation

rate as N increases. Furthermore, the increase in the radar

waveform’s spectral content at higher frequencies, due to

an increase in N , means that the noise spectral density,

Nint+n(f ), achieves higher values due to larger radar resid-

ual values, which reduces the spectral water-filling SIC data

rate.

D. Performance Comparison of Waveform Design
Algorithms

We compare the performance of the minimum estima-

tion error variance method against the spectral mask shap-

ing method in [6]. We conduct a Monte Carlo study with

50 runs to compare the performance of these methods. For

this study, we choose the SNR of 7.6 dB, and set N = 6. In

each Monte Carlo run, we evaluate the estimation rates and

the communications rates (spectral water-filling SIC data

rate for the minimum estimation error variance method and

the SIC data rate for the spectral mask shaping method)

from the two methods. Table III shows the average of esti-

mation rates (Rest) and communications rates (Rcom) from

the Monte-Carlo study.

From Table III, we clearly observe that the minimum

estimation error variance method outperforms the spectral-

mask shaping method in terms of estimation rate and com-

munications rate. Furthermore, a significant increase in the

achieved communications rate highlights the impact of the

continuous water-filling algorithm. Thus, we see the explicit

advantage of the proposed method over the method in [6]

in that the minimum estimation error variance method pro-

posed in this paper designs radar waveforms that are con-

stant modulus and ensures better estimation performance

and better communications performance over the spectral

shaping method.

VI. CONCLUSION

We presented a novel radar waveform design technique

that maximizes the performance of a spectrum sharing, joint

radar-communications system. The global estimation rate,

an extension on the estimation rate that takes into account

nonlocal or global estimation errors, and the data rate are

used to measure radar and communications performance,

respectively. We developed the novel minimum estimation

error variance radar waveform design method that selects

the phase parameters of a nonlinear chirp radar waveform

to maximize radar performance. We also developed the

spectral water-filling SIC data rate, which is the maximized

communications data rate for a joint radar-communications

receiver employing SIC. This data rate was obtained by

employing the continuous spectral water-filling algorithm,

which determines the optimal communications power spec-

tral distribution for a given noise spectral density. We pre-

sented examples of the minimum estimation error variance

radar waveform design method for an example parameter

set and also compared the method’s performance against

the performance of the previously derived spectral mask

shaping method. We saw that the minimum estimation er-

ror variance method is able to achieve higher estimation

and communications data rate values than the spectral mask

shaping method. We also observed that the optimal estima-

tion rate increases for higher radar SNR values whereas the

optimal spectral-water-filling SIC data rate decreases for

higher radar SNR values. Finally, we observed that the esti-

mation rate increases and the spectral water-filling SIC data

rate decreases as the number of coefficients in the phase of

the nonlinear chirp increases.
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