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  Introduction

  Adenylyl cyclases (ACs) are a family of enzymes which 
produce adenosine 3 � ,5 � -cyclic mononucleotide (cAMP) 
from ATP. To date, 9 transmembrane ACs (tmACs) and 
1 soluble adenylyl cyclase (sAC) have been cloned and 
characterized in mammals  [1–6] . All tmACs possess 3 
cytosolic domains (designated the N, C1a/b and C2 do-
mains;  fig. 1 ) which are separated by 2 sets of 6 trans-
membrane clusters (M1 and M2)  [1, 4, 7, 8] . The C1a and 
C2 domains form the catalytic core and are highly ho-
mologous (with 50–90% similarity in amino acids) among 
the 9 tmAC members  [9] . The catalytic core complex can 
be activated by forskolin or Gs �  proteins  [10–12]  by en-
hancing the interaction between the C1a and C2 domains 
and by stabilizing the C1a–C2 catalytic core complex  [9] . 
In addition, several AC isoforms (type I AC, AC1; type V 
AC, AC5 and type VI AC, AC6), but not all, can be inhib-
ited by Gi �   [13] . The tmACs can also be regulated by a 
wide variety of signaling molecules, including G protein 
 ��  subunits, regulators of G protein signaling (RGSs), 
Ca 2+ , calmodulin, protein kinases (e.g. protein kinase A, 
protein kinase C, tyrosine kinases and Ca 2+ /calmodulin-
dependent protein kinase II), phosphatases and nitric ox-
ide in isozyme-specific manners  [1, 14–29] . tmACs can 
thus function as molecular coincidence detectors which 
integrate positive and negative signals that act direct -
 ly through stimulation of G protein-coupled receptors 
(GPCRs) or indirectly via intracellular signaling path-
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  Abstract

  Adenosine 3 � ,5 � -cyclic mononucleotide (cAMP) is one of the 
most important second messengers which govern cellular 
signal transductions. Adenylyl cyclases (ACs), which are 
cAMP-synthesizing enzymes, are responsible for cAMP pro-
duction during extracellular stimulation or intracellular met-
abolic alteration. In mammals, 9 transmembrane ACs and 1 
soluble AC have been identified and characterized. In the 
past 2 decades, the biochemical properties of these ACs 
have been extensively studied. Genetic knockout and trans-
genic overexpression mouse models of at least 6 ACs have 
been produced, revealing their specific in vivo functions. An 
awareness of the importance of microdomains and cellular 
compartmentation for selective AC regulation has also been 
fostered. Most intriguingly, a handful of novel AC-binding 
proteins have recently been reported. Selective binding of 
ACs to their binding partners allows the precise compart-
mentalization of ACs and permits unique regulation. Based 
on recent studies on AC-interacting proteins (particularly 
Snapin and Ric8a), this review focuses on the importance 
and possible involvement of AC-interacting proteins in (1) 
the association of the cAMP signaling pathway with various 
cellular machineries and (2) the coordination of tightly regu-
lated cAMP signaling by other signaling molecules.
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ways  [30] . Besides classical regulatory mechanisms medi-
ated by trimeric G proteins or phosphorylation, ACs can 
also be modulated by direct protein-protein interactions 
which highlight the importance of binding partners and 
microdomains in the selectivity of AC members.

  Besides the 9 tmACs, only 1 mammalian sAC has been 
reported. Its structure is distinct from those of the tmACs, 
and it does not respond to standard activators (i.e. for-
skolin or Gs � ) of tmACs. Instead, the sAC can be direct-
ly activated by CO 2 /HCO 3  and Ca 2+   [3] . Expression of the 
sAC was first identified in testes and was later also found 
to be expressed in many other tissues (e.g. in the brain 
and kidneys). It is of great interest that multiple proteins 
(including some involved in energy utilization and mem-
brane signal transduction) are closely associated with the 
sAC  [31] . Specifically, the coexistence of a sperm-specific 
Na + /H +  exchanger in the same signaling complex is vital 
for bicarbonate-mediated activation of the sAC  [32] . In 
renal epithelial cells, the sAC is closely associated with 
the vacuolar proton-pumping ATPase and is thus be-
lieved to modulate renal distal proton secretion  [33] . Sim-
ilar to tmACs, direct protein interactions are also one of 
the key modulatory modes for the sAC.

  It is generally accepted that microdomains and cellu-
lar compartmentalization are critical factors determin-
ing the specific functions of ACs  [14] . In the past few 
years, several intriguing AC-binding proteins, which 
provide novel associations with either new signaling mol-
ecules or components of other cellular machineries, have 
been reported. This review focuses on recent findings of 
novel AC-binding proteins which permit novel regula-
tion and functions of ACs via direct protein-protein in-
teractions.

  Pathophysiological Functions of ACs

  Due to the availability of transgenic overexpression or 
knockout mice of several AC isozymes, knowledge re-
garding the specific functions of AC isozymes has rap-
idly accumulated in the past decade. Selective functions 
of ACs revealed by genetic mouse models are listed in 
 table 1 . This is by no means a comprehensive list, but an 
illustration of how discriminating the functions of these 
ACs can be   in vivo.

  It has long been believed that diverse tissue expression 
profiles and/or selective subcellular localizations of ACs 
enable AC isozymes to mediate their specific pathophys-
iological functions. For example, type III AC (AC3) is 
mainly expressed in olfactory neurons  [34–36]  and was 

found to mediate the odorant-induced transduction cas-
cade and behavior  [37–39] . AC5 is heavily expressed in 
the striatum. It is therefore not surprising that genetic 
removal of AC5 impairs the function of a striatal GPCR 
(the D2 dopamine receptor)  [40] . Likewise, the sAC was 
found to be highly expressed in testes. To date, the most 
prominent function of sAC found so far is in sperm fer-
tilization  [41–43] . Another interesting example is the ap-
parent overlapping roles of AC1 and type VIII AC (AC8) 
in learning and memory. AC1 and AC8 are Ca 2+ /calmod-
ulin (CaM)-activated ACs, both of which exist in the hip-
pocampus and have been demonstrated to critically con-
tribute to long-term memory  [44] . More recent studies 
showed that AC1 and AC8 are selectively located in the 
postsynaptic density and presynaptic active zones, re-
spectively  [45] . Consistent with the postsynaptic distri-
butions, genetic removal of AC1 (but not AC8) eliminates 
the cortical lesion induced by an intracortical injection of 
N-methyl- D -aspartic acid  [46] . Taken together, AC1 and 
AC8 play different functional roles due to their distinct 
localizations.

  Table 1.  Selective pathophysiological functions of ACs revealed by 
genetic mouse models

 AC iso-
  zyme 

 Pathophysiological functions  Reference(s) 

 AC1  Learning and memory  116–118 
 Glutamate-induced neuronal death  46 
 Insertion of the AMPA receptors into 
  synapses 

 
  119 

 Opiate dependence  120 
 Pain  121 
 Pattern formation in the cortex  122 
 Circadian rhythms  123 

 AC3  Odorant-induced transduction cascade  37–39 
 Male fertility  124 

 AC5  Dopaminergic signals and motor
  functions 

 
  40, 125 

 Cardiac stress  49, 50, 56 
 Sympathetic and parasympathetic
  regulation of the heart 

 
  126 

 Action of morphine  127 
 Pain  128 
 Life span  129 

 AC6  Left ventricular function  51–54 
 AC8  Learning and memory  130 

 Opiate withdrawal  120 
 Pain  121 
 Anxiety  131 

 sAC  Male fertility  42, 132, 133 
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  The diverse functions of 2 calcium-inhibitable ACs 
(i.e. AC5 and AC6), however, are rationalized with great-
er difficulty. AC5 and AC6 are 2 major cardiac ACs. They 
both produce cAMP during stimulation of  � -adrenergic 
receptors and have been implicated in cardiac functions 
for years  [47–49] . Homology between AC5 and AC6 is 
strikingly high. The identity in amino acids of the cata-
lytic cores (C1 and C2) of rat AC5 and AC6 is nearly 85%. 
Surprisingly, studies using knockout and transgenic 
overexpression mouse models have suggested that AC5 
and AC6 function in opposite directions during cardiac 
stress  [50, 51] . Overexpression of AC6 enhances the left 
ventricular function in heart failure  [52–54] . Moreover, 
expression of AC6 in cardiomyocytes elevates cAMP
production, ameliorates heart function and prolongs sur-
vival in cardiomyopathy  [55] . Consistent with the benefi-
cial roles of AC6 in the heart, the genetic inactivation of 
AC6 impairs the calcium response and causes severer 
cardiac defects  [51] . In contrast, genetic removal of AC5 
is beneficial and suppresses myocardial apoptosis by el-
evating Bcl-2 during heart failure  [49, 56] . The effects of 
AC6 and AC5 deletion on several cardiac signaling pa-
rameters [e.g. SERCA2a affinity for Ca 2+ , phosphoryla-
tion of phospholamban and protein kinase A (PKA) ac-
tivity] also stunningly differ  [51] . It is noteworthy that the 
beneficial effects of AC6 on failing hearts cannot be ex-
plained by simply elevating the intracellular cAMP level 
because chronic elevation of the cAMP content has been 
shown to increase mortality in patients with heart failure 
 [57, 58] . AC6 thus might exert its advantageous effect via 
a pathway which is independent of cAMP generation  [51, 

55, 59] . It was proposed that the beneficial effect of AC6 
in the heart might be mediated by regulating the activat-
ing transcription factor 3 and phospholamban in a cAMP-
independent but phosphatase-dependent pathway  [48, 
55] . Selective cellular compartmentalization of cardiac 
AC6 might also contribute to its cAMP-independent 
functions. In the latter case, further investigation of the 
signal complexes that (1) comprise the binding partners 
(e.g. Snapin) of AC6 and (2) regulate the cAMP and Ca 2+  
interplay might provide important clues  [6, 59–61] .

  Interacting Proteins of ACs

  The 2 best-characterized binding proteins of tmACs 
are the  �  subunits of trimeric GTP-binding proteins. The 
stimulatory Gs �  and inhibitory Gi �  respectively bind to 
the C2 and C1 domains of ACs  [9, 62] . The heterotrimer-
ic G ��  complex also regulates the activities of tmACs. 
Specifically, G ��  inhibits AC1 and AC8, while activating 
type II AC (AC2) and type IV AC (AC4)  [21, 63] . One of 
the major binding domains of G ��  in tmACs appears to 
be the variable C1b domain ( fig. 1 )  [21, 64–66] . G ��  is 
also associated with the C2 domain of AC2  [67, 68] . Al-
though G � 2 clearly binds to a relatively homologous re-
gion in the regulatory N terminus of both AC5 and AC6, 
the effects of G ��  on AC5 and AC6 remain controversial 
and might depend on the cellular signaling conditions 
 [69–72] .

  Besides the trimeric GTP-binding proteins, additional 
binding proteins of tmACs have been reported ( table 2 ). 

  Table 2.  Interacting proteins of ACs

 AC
  isoform 

 Interacting protein  Interacting
  domain(s)
  of AC 

 Function  Reference(s) 

 AC5  PAM  C2  Inhibiting AC activity  73, 134 
 RGS2  C1  Inhibiting AC5 activity  19, 74 
 AKAP79/150  n.d.  Mediating the PKA-evoked inhibition of AC5  75 
 Ric8a  N  Inhibiting AC5 activity  89 

 AC6  Snapin  N  Preventing the PKC-mediated inhibition of AC6 activity  80 
 AKAP79/150  n.d.  Mediating the PKA-evoked inhibition of AC6  75 

 AC8  Calmodulin  N, C  Mediating the CCE-evoked stimulation  78, 114 
 PP2A-C  N  Coordinating Ca 2+  and cAMP signals  81 

 sAC  Na + /H +  exchanger  n.d.  Mediating the bicarbonate-mediated activation of sAC  32 
 Vascular proton-pumping ATPase  n.d.  Modulating renal distal proton secretion  33 

 Trimeric GTP-binding proteins bind multiple ACs and are therefore not listed here. n.d. = Not defined. 
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For example, the protein associated with Myc (PAM) was 
found to interact with AC5. By binding to its C2 domain, 
PAM inhibits the catalytic activity of AC5 and a few oth-
er ACs, but not all ACs (e.g. not AC2)  [73] . In addition, 
regulators of the G protein signaling 2 (RGS2) were shown 
to bind to the C1 domain of AC5 and inhibit its activity 

 [19] . Since RGS2 also interacts with other ACs, this RGS2-
mediated inhibition might be a general regulatory mode 
for other tmACs  [74] . Using an affinity purification 
method, an A-kinase anchoring protein (AKAP79/150) 
was found to form a complex with AC5 and AC6  [75] . 
AKAP79/150 is a multivalent scaffolding protein which 
is associated with many signaling molecules (such as 
PKA and PKC) that are capable of regulating tmACs  [76] . 
In particular, both AC5 and AC6 can be suppressed by 
PKA  [18, 77] . Interacting with AKAP79/150 brings PKA 
close to these 2 ACs and creates a negative feedback loop 
for the tight control of cAMP production by AC5 and 
AC6 during stimulation  [75] .

  The N-terminal domains of the 9 tmACs are diverse 
in both length and amino acid sequences  [72] . AC4 has 
the shortest N terminus [ 28 ; amino acids (aa)], while AC5 
has the longest N terminus (239 aa) ( table 3 ;  fig. 1 ). Ac-
cumulating evidence has demonstrated that N termini of 
tmACs usually serve as regulatory domains  [3, 78–81] . To 
date, a handful of N-terminus-interacting proteins which 
bind to 3 tmACs with long N termini (i.e. AC5, AC6 and 
AC8) have been characterized. Due to the divergent na-
ture of these N termini, regulation mediated by N-ter-
minus-binding proteins is usually isozyme specific  [79, 
80] .

  Interaction with Ric8a Allows the
Receptor-Independent Regulation of AC5
  AC5 has the longest N terminus among all 9 tmACs 

( table 3 ). The first reported binding partner of AC5 � s N 
terminus was G � 2 as described above  [71] . Interestingly, 
the binding region (aa 77–151) of G � 2 is where the N-ter-
minal domains of AC5 and AC6 share some homology 
 [72] . Binding to G � 1 therefore affects the activities of 
both AC5 and AC6  [71] .

  The second reported protein which binds to the N ter-
minus of AC5 is Ric8a, a guanine nucleotide exchange 
factor  [79] . Ric8a was first reported to mediate the Gq � -
responsible signaling pathway for neurotransmitter re-
lease in nematodes and was subsequently shown to func-
tion as a receptor-independent guanine exchange factor 
by binding to numerous G �  proteins  [82] . Briefly, Ric8a 
is known to bind to the GDP-bound form of the G �  pro-
tein and promote the exchange of GDP and GTP. Inter-
actions between AC5 and Ric8a lead to suppression of 
the cyclase activity of AC5 via a Gi �  protein-dependent 
pathway. Most intriguingly, this inhibition of AC5 by
Ric8a requires no activation of the GPCR. In addition, 
Ric8a has been shown to enhance  �� -evoked signaling 
 [47] . Since G ��  is also known to modulate AC5  [69, 71] , 

  Table 3.  Distinct sizes of the N termini of tmACs

 AC
  isozyme 

 Length of the N
  terminus (aa) 

 Accession No.
  (GenBank) 

 AC2 44  M80550. Gb_Ro 
 AC4 28  M80633. Gb_Ro 
 AC7 33  U12919. Gb_Ro 

 AC5  239  M96159. Gb_Ro 
 AC6  163  M96160. Gb_Ro 

 AC1 62  M25579. Gb_Om 
 AC8  178  L26986. Gb_Ro 
 AC3 77  M55075. Gb_Ro 

 AC9  120  U30602. Gb_Ro 

M1 M2

NH2

C1a C1b C2

C2C1

COOH

  Fig. 1.  Schematic representation of tmACs. All tmACs possess 3 
large cytosolic domains (designated are the N, C1a/b and C2 do-
mains) that are separated by 2 sets (M1 and M2) of 6 transmem-
brane clusters. The C1a and C2 domains form the catalytic core. 
The N terminus domains are diverse in length (ranging from 28 
to 239 aa, table 3) and in amino acid sequence. 
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it will be of great interest to further elucidate the func-
tional interactions between Ric8a and G ��  in regulating 
AC5.

  As detailed above, AC5 is considered to be harmful to 
cardiac function during cardiac stress because the hearts 
of AC5-null mice express higher levels of Bcl-2 during 
pressure overload  [49] . Suppression of AC5 is considered 
to be beneficial by inhibiting myocardial apoptosis dur-
ing heart failure. AC5-selective inhibitors are therefore 
potential drugs for treating cardiac myocyte apoptosis 
evoked by excessive  � -adrenergic stimulation  [56] . Al-
though the physiological relevance of the AC5/Ric8a 
complex is currently unknown, it was interesting that the 
level of Ric8a was elevated 48 h after an acute myocar-
dial infarction induced by left coronary artery ligation 
 [83] . Since Ric8a suppresses the overactivation of AC5 
 [79] , the increase in Ric8a expression might play a protec-
tive role during cardiac stress. Potential clinical implica-
tions of the AC5/Ric8a complex are worthy of further ex-
ploration.

  Snapin Links AC6 to a Wide Variety of Cellular 
Apparatuses
  The N terminus of AC6 is a relatively large cytosolic 

domain of 160 aa. It interacts with the C1a domain and 
plays an important role in the Gi � -mediated inhibition 
of AC6  [84] . Moreover, phosphorylation of the N termi-
nus of AC6 at Ser 10  by PKC is responsible for the PKC-
evoked inhibition of AC6  [16, 72] . The first protein iden-
tified to interact with the N terminus of AC6 was Snapin 
 [60] . Snapin was originally found to be located on syn-
aptic vesicle membranes and to primarily be involved in 
the exocytosis process for neurotransmitter release  [85] . 
It interacts with the assembled soluble N-ethylma-
leimide-sensitive fusion protein attachment protein re-
ceptor (SNARE) core complex as well as with isolated 
SNAP25 through its C-terminal coiled-coil domain 
 [85] . Moreover, Snapin is implicated as being a synapse-
specific PKA target with an important regulatory role 
in neurotransmitter release  [85–88] . It is interesting to 
note that Snapin might have a more general role in 
SNARE-mediated fusion events, since it has a broad tis-
sue distribution and predominantly cytoplasmic local-
ization  [89, 90] . More recent studies have suggested that 
Snapin may also be involved in intracellular vesicle traf-
ficking. The interaction between AC6 and Snapin pro-
vides a fine-tuning mechanism for the cAMP produc-
tion system via the vesicle-transporting machinery in 
the brain.

  It is intriguing that at least 20 binding proteins of 
Snapin were found in the past decade, indicating that 
Snapin might be a critical scaffold protein linking a wide 
variety of cellular machineries with the vesicle-trans-
porting system ( table 4 ). Some of these Snapin-interact-
ing proteins are associated with neurosecretion and bio-
genesis of the endosomal-lysosomal system  [88, 91–93] . 
Other Snapin-interacting proteins include a regulator of 
G protein signaling 7  [94] , TPR/MET tyrosine kinase 
 [95] , dysbindin  [96] , casein kinase 1 �   [97] , a UT-A1 urea 
transporter  [98] , the Exo70 subunit of the exocyst  [99] , 
members of the transient receptor potential canonical 
(TRPC) family  [93, 100]  and ryanodine receptors (RyRs) 
 [61] . Among the Snapin-interacting proteins, RyRs are 
of greatest interest because they are calcium channels 
located in the endoplasmic reticula (ER) and are major 
players in calcium-induced calcium release in animal 
cells. Snapin binds to all 3 forms of RyRs  [61] . The AC6/
Snapin/RyR complex might allow AC6 to be efficiently 
suppressed by extracellular calcium influx as well as by 
intracellular calcium release ( fig. 2 ). By binding to 
Snapin, AC6 might regulate the trafficking of important 
membrane proteins in multiple organs. The role of AC6 
in Snapin-mediated vesicle fusion might be complex and 
needs to be carefully investigated in each specific cell 
type. It is possible that AC6 might manipulate vesicle 
fusion events and the tight interaction between Ca 2+  and 
cAMP by (1) producing cAMP and (2) tethering a group 
of calcium-sensitive molecules to the site of action. In 
cells expressing AC6 ( fig. 2 a), the stimulation of a Gs �  
protein-coupled receptor (Gs � -R) activates AC6, trig-
gers cAMP production and subsequently activates PKA. 
It is noteworthy that AC6 was shown to be associated 
with AKAP150 and likely coexists with PKA  [75] . Acti-
vation of PKA then leads to the phosphorylation of (1) 
Snapin enhancing its ability to interact with SNAP25 
 [85]  and modulating vesicle fusion events, (2) receptors 
or channels (e.g. AMPA GluR1 and the L-type calcium 
channel) increasing their activities and triggering more 
calcium to enter the cells  [101–104] , (3) the RyR, pro-
longing its activity  [105]  and thus promoting greater cal-
cium release from ryanodine-sensitive intracellular 
stores and (4) AC6 itself, efficiently terminating cAMP 
production  [18] . In the presence of AC6 signalosomes, 
activation of the Gs � -R might efficiently potentiate cal-
cium-mediated responses at multiple steps by PKA-
evoked phosphorylation. The impaired calcium re-
sponse found in cardiac myocytes that contain no AC6 
supports the above-mentioned concept  [51] . Due to the 
apparent increase in efficiency, this fine-tuning mode of 
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AC6 signalosomes might be critical for the suboptimal 
stimulation of the Gs � -R. In cells expressing other AC 
isoforms, the Snapin/RyR complex is not in the proxi-
mal position of AC and might not be effectively phos-
phorylated by PKA, except when activation of the Gs � -
R is maximal.

  When the actions of Ca 2+  are considered, the cAMP/
PKA pathway is expected to be negatively regulated at 
multiple steps in cells expressing AC6 ( fig. 2 b). Stimula-
tion of receptors and/or depolarization allows calcium to 
enter through a membrane receptor/channel (R 2 ). An in-
crease of cellular Ca 2+  (1) triggers vesicle fusion through 
the SNARE complex, (2) evokes RyR-mediated Ca 2+ -in-
duced Ca 2+  release, further increasing the cellular Ca 2+  
level and thus suppressing AC6, and (3) directly suppress-

es the activity of AC6, reducing cAMP production and 
PKA activation. Collectively, the presence of the AC6/
Snapin complex ensures that the cAMP/PKA pathway ac-
tivated by AC6 is efficiently suppressed by Ca 2+  at mul-
tiple steps, thereby creating a precisely controlled inter-
play between cAMP and Ca 2+ .

  Another very interesting class of Snapin-binding 
partners is the TRPC family ( fig. 3 ). In sympathetic neu-
rons, Snapin binds to a TRPC member (TRPM7) which 
is located in synaptic vesicles. TRPM7 is a nonselective 
cationic channel and is inactive unless synaptic vesicles 
are fused with plasma membranes via the SNARE ma-
chinery  [93] . In addition, Snapin directly interacts with 
TRPC6 (a TRPC member) and the  �  1 -adrenergic recep-
tor (a GPCR) and subsequently enhances the calcium 

  Table 4.  Snapin-interacting proteins

 Protein  Interacting domain
  of Snapin 

 Function  Refer-
ence 

 SNAP25  C terminus (aa 79–136)  Synaptic vesicle exocytosis 85 
 SNAP23  C terminus (aa 79–136)  Nonneuronal vesicle exocytosis 89 
 RGS7  n.d.  Synaptic vesicle exocytosis 94 
 AC6  aa 33–51  Prevention of the PKC-mediated inhibition of AC6 60 
 TRPV1  n.d.  Inhibition of the PKC-induced potentiation of TRPV1

  channel activity 
 135 

 BLOS1  n.d.  n.c. 92 
 BLOS2 
 BLOS3 
 Dysbindin-1  n.d.  Synaptic vesicle exocytosis 96 
 Cypin  C terminus (aa 81–126)  Modulation of neuronal processes   136 
 Collectrin  n.d.  Modulation of insulin exocytosis  137 
 EBAG9  N terminus (aa 21–82)  Exocytosis 91 
 TPR/MET  n.d.   n.c. 95 
 CK1 �   C terminus (aa 37–136)  Phosphorylation of Snapin 97 
 GCSF-R  n.d.  n.c.  138 
 RyR  n.d.  Sensitization of the RyR at submicromolar concentrations of Ca 2+  61 
 Urea transporter UT-A1  C terminus (aa 81–126)  Enhancement of urea transport activity 98 
 TRPM7  n.d.  Modulation of postsynaptic EPSPs 93 
  �  1A -AR  n.d.  Enhancement of  �  1 a-adrenoceptor-mediated calcium influx

  through TRPC6 
 100 

 TRPC6  n.d.  Enhancement of  �  1 a-adrenoceptor-mediated calcium influx
  through TRPC6 

 100 

 Exo70  C terminus (aa 84–118)  Modulation of GLUT4 trafficking 99 

 The functional consequence of the corresponding interaction 
is listed.

  SNAP25 = Synaptosome-associated 25-kDa protein; RGS7 = 
regulators of G-protein signaling 7; AC6 = type VI adenylyl cy-
clase; TRPV1 = vanilloid receptor-1; BLOS1–3 = BLOC subunits 
1, 2 and 3 (BLOC-1 = lysosome-related organelle complex-1); 
EBAG9 = estrogen receptor-binding fragment-associated gene 9; 

CK1 �  = casein kinase 1 � ; GCSF-R = granulocyte colony-stimulat-
ing factor receptor; RyR = ryanodine receptor; TRPM7 = transient 
receptor potential cation channel, subfamily M, member 7;  �  1A -
AR =  �  1A  adrenergic receptor; EPSP = excitatory postsynaptic po-
tential; TRPC = transient receptor potential canonical; GLUT4 = 
glucose transporter 4; aa = amino acids; n.d. = not defined; n.c. = 
not characterized. 
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influx evoked by receptor-operated Ca 2+  channels  [100] . 
Two other TRPC family members (TRPC1 and TRPC3) 
were also found to interact with Snapin-interacting pro-
teins (e.g. SNAP-25, SNAP-23 and syntaxin-3)  [106–
108] . Taken together, the direct binding of Snapin at its 
N terminus brings AC6 to a position proximal to TRPC 
family members which are involved in capacitative cal-
cium entry (CCE)  [109, 110] . This is of great importance 
because AC6 can be selectively inhibited by CCE in non-
excitable cells  [23] . As TRPC also interacts with inositol 
1,4,5-triphosphate receptors (IP 3 Rs)  [111] , it is likely that 
the AC6/Snapin complex might be associated with TRPC 
and IP 3 R. Noteworthy is that since several ACs (e.g. 
AC5, AC6 and AC8) with different N termini can be 
regulated by CCE  [112, 113] , Snapin-mediated signalo-
somes (AC6, Snapin, TRPC and IP 3 R) are less likely to 
play a major role in CCE-mediated inhibition. Instead, 
such a protein complex might significantly contribute to 
G � q-mediated selective potentiation of AC6 (but not 
AC5)  [112] .

  In addition to the RyR and TRPC family, there are at 
least 18 more proteins which interact with Snapin ( ta-
ble 4 ). Through binding to Snapin, AC6 might move 
through the vesicular transport system to closely associ-
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  Fig. 2.  Schematic diagrams of the potential roles of AC6/Snapin/
RyR complex in the calcium–cAMP interplay.  a  Actions of PKA: 
in the presence of an AC6 signalosome, the activation of a Gs �  
protein-coupled receptor (Gs � -R) efficiently modulates calcium-
mediated responses at multiple steps by PKA-evoked phosphory-
lation (1–3, please see the text for details). Activated cAMP/PKA 
might also phosphorylate AC6 itself to rapidly terminate cAMP 
production (4). This fine-tuning mode of the AC6 signalosome 
might play a significant role during suboptimal stimulation of the 
Gs � -R. Only the actions of PKA are illustrated here.  b  Actions of 
Ca 2+ : when the actions of Ca 2+  are considered, the cAMP/PKA 
pathway is expected to be negatively regulated at multiple steps in 
cells expressing AC6. Stimulation of receptors and/or depolariza-
tion allows calcium entry through a membrane receptor/channel 
(R 2 ). Increase of cellular Ca 2+  (1) triggers vesicle fusion through 
the SNARE complex, (2) evokes RyR-mediated Ca 2+ -induced 
Ca 2+  release, further increasing cellular Ca 2+  levels and thus sup-
pressing AC6, and (3) directly suppresses the activity of AC6, re-
ducing cAMP production and PKA activation. The presence of 
the AC6/Snapin/RyR complex ensures that the cAMP/PKA path-
way activated by AC6 is efficiently suppressed by Ca 2+  at multiple 
steps. ER = Endoplasmic reticula; P = phosphorylation site; R 1  = 
Gs � -coupled receptor; R 2  = receptors or channels which allow the 
entry of extracellular calcium. 

TRPC

PLC

IP3
DAG

ER

Snapin

AC6Ca2+

Ca2+

R2

IP3R

R1

Gq� Gs�
�

�

C1a C2
COOH

cAMP

PKACaM

1

2

  Fig. 3.  Schematic diagram of the potential roles of AC6/Snapin/
TRPC complex in a calcium–cAMP interplay. By binding to 
Snapin, AC6 is expected to be close to TRPC (a major component 
of CCE)  [110, 119]  and can be effectively inhibited by CCE  [23] . In 
addition, since IP 3 R is also a binding partner of TRPC  [111] , the 
AC6/Snapin complex might therefore be associated with TRPC 
and IP 3 R, which allows AC6 to be selectively potentiated during 
activation of G � q-coupled receptors  [112] . R 1  = Gs � -coupled re-
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ate with a wide variety of cellular machineries. The AC6-
AKAP79/150-PKA complex allows Snapin to tightly con-
trol PKA-mediated regulation of the apparatuses that
interact with Snapin. Although the most important func-
tions of Snapin signalosomes appear to provide a plat-
form for the interplay between cAMP and Ca 2+  as de-
scribed above, novel cross-talk mechanisms among 
Snapin-binding proteins are expected to be rapidly un-
raveled in the near future.

  The N Terminus of AC8 Brings Together the Key 
Elements for a cAMP-Signaling Module
  The N terminus of AC8 is of great interest because it 

is the longest among those of the 3 Ca 2+ -responsive ACs 
(AC1, AC3 and AC8;  table 3 ) and plays a critical role in 
CCE’s regulation of AC8  [114] . At least 2 important sig-
nal molecules (calmodulin and phosphatase 2A) bind to 
AC8’s N terminus in a mutually exclusive manner  [78, 
82, 114] . Dynamic regulation among AC8, calmodulin 
and phosphatase 2A might represent a central step in 
coordinating cAMP, Ca 2+  and protein phosphorylation 
of major components in the surrounding microdomains 
 [6] .

  Concluding Remarks

  Almost 2 decades after the first AC was cloned  [115] , 
tremendous amounts of information regarding ACs have 
accumulated. The most exciting findings to date include 
specific   in vivo functions of ACs revealed by genetic 
mouse models, and the awareness that AC signalosomes 
tether major players of cAMP modules to appropriate cel-
lular compartments. Searching for novel AC-interacting 
proteins, particularly those which bind to regulatory do-
mains, has therefore set the stage for identifying novel 
functions and regulatory mechanisms of ACs. In addi-
tion, new genetic mouse models of tissue/cell-specific AC 
knockout, conditional AC knockout and knockin of AC 
mutants lacking regulatory domains should provide fur-
ther understanding of the pathophysiological roles of 
ACs in the coming decade.
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