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The purpose of this study is to examine the challenges and opportunities presented
by the evolution of the legacy grid into a smart grid within a framework relevant to
signal processing research. The focus here is on the application of statistical signal
processing techniques to design new algorithms for state estimation which is a key
function in the supervisory control and planning of power grids. To begin with,
two resource-efficient forecasting-aided state estimation algorithms are developed
which can combine measurements from both the traditional measurement devices
as well as the newer measuring devices known as phasor measurement units and
operate on them optimally in order to arrive at an estimate of the system state.
The ability of the algorithms to track the evolution of the state vector in time is
verified using a computer simulation and their statistical performance with respect
to the root mean-squared error is studied. Since concentrating the state estimation
function at a single point to monitor a large interconnection leads to huge com-
munication and computational overhead, a more feasible approach is to distribute
the state estimation function throughout the interconnection. An on-demand,
distributed estimation scheme which features event-triggered communication is
developed herein to reduce the communication and computational overhead as-
sociated with distributed estimation in large systems. This technique is derived
from a cutting-edge signal processing paradigm known as set-membership adap-
tive filtering. The performance of the new algorithm is studied using computer
simulations and comparisons are drawn to existing adaptive filtering methods like
the recursive least-squares method.
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“We can’t solve problems by using the same kind of
thinking we used when we created them.”

– Albert Einstein
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Chapter 1

Introduction

Power generating stations, end-users (loads) and the network of transmission lines
used to transmit power from the generators to the loads collectively constitute a
power system also known as the power grid, or simply, “the grid”. The power
grid is a vast, complex system which needs to be constantly monitored in order to
maintain its operations in a normal, secure state, i.e. the net demand for electrical
energy must be met by injecting the required amount into the transmission and
distribution network. In order to control this flow of electricity, the authority in
charge of delivering it must be aware of the present “state” of the power system.

The minimal set of network parameters which represent the state of a power
system is the collection of the voltage magnitudes and phase angles at every node
in the power network. In the terminology of the power grid, these nodes are called
busbars or buses. The process of acquiring measurements from all parts of the grid
and extracting the system state from these measurements is called state estima-
tion [1]. The measurements acquired commonly consist of transmission line power
flows, generator outputs, loads, circuit breaker positions, transformer tap positions
and capacitor bank values.

The state estimation function is one of the key components in energy man-
agement systems (EMS) and is used to analyse contingencies, make decisions on
real-time market pricing [2], and determine any corrective actions which may be re-
quired. While state estimation in power systems has been studied extensively since
its introduction in the late 1960s, the traditional state estimation paradigm will need
to evolve to meet the demands of the modern energy ecosystem like environmental
compliance, market deregulation and improved reliability and security.

The general infrastructure of the power grid, based in part on Nikola Tesla’s
design published in 1888, has remained largely unchanged for over a century. How-
ever, certain assumptions which were hitherto valid, like centralized unidirectional
electric power transmission and distribution, are no longer true. Moreover, advances
in information and communication technology have not permeated the energy in-
frastructure adequately. This has given impetus for a new energy infrastructure for
the future known as the smart grid [3].

Figure 1.1 offers a general depiction of the three main layers of the electric power
grid hierarchy. Based on the multi-level state estimation paradigm in [4], state es-
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Figure 1.1: Electricity ecosystem of the future grid featuring the various players and
levels of interaction.

timation would be carried out at different levels, namely the transmission system
operator (TSO) level, the local level or substation level and, increasingly, at the dis-
tribution level. The TSO is an entity that operates the transmission grid in order to
supply electricity from the generating companies (GENCOs) to the utility companies
and then to the consumer. Substations are a vital link between the transmission
and distribution networks and are responsible for converting voltage and current
levels. The trend of deregulation of vertically integrated utilities, particularly in the
United States, would mean that market forces would play an increasing role in the
future grid.
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1.1 Motivation

There are several aspects of the smart grid that affect research on state estimation
in power systems. Two major changes, however, directly motivate the work herein:

Emergence of new measurement technologies [5]: The recent emergence of
smart grid technologies like phasor measurement units (PMUs), developed in
the early 1980s, has offered hopes for near-real-time monitoring of the power
grid. Typically, a PMU takes 30 measurements per second, thereby offering
a much more timely view of the power system dynamics than conventional
measurements. More importantly, all PMU measurements are synchronized,
as they are time-stamped by the global positioning system’s (GPS) universal
clock. However, PMUs with their higher measurement frequency put unneces-
sary strain on the communications infrastructure of the smart grid. This drives
the need for resource-efficient, event-triggered state estimation solutions that
employ data-dependent selective sensing and estimation.

Departure from a vertically integrated utility structure [6]: Until recently,
electricity utilities were either private or government monopolies charged with
producing, transmitting and distributing power to industries and the general
populace. Today, however, transmission system is operated separately by an
independent entity (independent system operator (ISO) in North America and
transmission system operator (TSO) in Europe) which ensures fair and free
access to the electricity supply network. Such regulations may require utility
companies to share more information and monitor the grid over a very large
geographical area.

In summary, larger and more complicated systems, coupled with the enormous
amount of measurement data generated by new measurement technologies, call for
a rethinking of the traditional state estimation paradigm in power systems and the
development of new algorithms which face up to the challenges posed by power grids
of the future.

1.2 Scope of the Research Problem

This work is concerned with the state estimation problems associated with the con-
trol of a small portion of the overall power system that is typically maintained by
an independent system operator (in America) or a transmission system operator (in
Europe). This is termed the own system and is connected to the interconnected
system by tie lines. All the algorithms studied herein assume that the controlling
authority has access to measurements on all nodes in its own system. The meter
readings are not perfect and small random errors are always present. Furthermore,
it is assumed that any bad data have been removed and network modelling and
parameter errors are not present. The objective here is to develop novel state esti-
mation algorithms which can function within the existing SE framework while, at
the same time, meeting the challenges posed by the emergence of the smart grid.
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To begin with, resource-efficient dynamic state estimation algorithms must be
developed which can combine measurements from both the traditional measurement
devices as well as the newer PMUs and operate on them optimally in order to
arrive at an estimate of the system state. Furthermore, concentrating the state
estimation function at a single point to monitor a large interconnection leads to huge
communication and computational overhead. A more feasible approach would be
to distribute the state estimation function throughout the interconnection. An on-
demand estimation scheme featuring event-triggered communication is necessary to
reduce the communication and computational overhead associated with distributed
estimation in large systems.

1.3 Contributions

The contributions of this thesis are relevant to the fields of statistical signal process-
ing as well as smart grid research. A current research topic in signal processing is
the application of signal processing techniques to power systems, and opportunities
for achieving this were examined in collaboration with members of the ASPECT
research group at the University of Notre Dame, Indiana, USA. An outcome of the
extensive research work and literature survey performed resulted in an article [7]
to be published in a special issue of the IEEE Signal Processing Magazine. The
literature survey presented here, while not exhaustive, examines the evolution of
state estimation in power systems from a signal processing standpoint, and, where
possible, the applications of signal processing techniques are highlighted.

Specifically, the contributions of this thesis are twofold:

Forecasting-aided state estimation with PMUs: A forecasting-aided state es-
timation scheme is developed to combine conventional measurements with
PMU measurements. However, this scheme has certain drawbacks like high
computational complexity and the possibility of ill-conditioned matrices. To
overcome these drawbacks, a new, reduced complexity, reduced-order algo-
rithm is proposed for dynamic state estimation in power systems. Next, the
ability of the two estimation techniques to track the evolution of the state vec-
tor in time is verified using computer simulations. Furthermore, the statistical
performance of both algorithms with respect to the root mean-squared error
is studied and their performances are compared.

Event-triggered multi-area state estimation: A new selective-update nonlin-
ear adaptive filtering algorithm is derived here, upon which a novel, resource-
efficient, recursive algorithm for multi-area state estimation in large intercon-
nections is based. This algorithm was presented at 4th IEEE International
Workshop on Computational Advances in Multi-Sensor Adaptive Processing
(CAMSAP) in San Juan, Puerto Rico [8]. This approach not only reduces the
amount of communication between the different regions that make up the large
interconnection but also computational complexity. The performance of the
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estimation algorithm is studied using computer simulations and comparisons
are drawn to recursive least-squares adaptive filtering.

1.4 Organization

The remainder of this work is organized as follows. In Chapter 2 we conduct a of
the evolution of various state estimation paradigms and algorithms existing in the
literature. In Chapter 3, we explore the impact of PMUs on power system state
estimation. In Chapter 4, two new algorithms are introduced. Results originating
from computer simulations of these algorithms are also discussed here. In Chapter
5, we introduce a new, event-triggered distributed state estimation algorithm and
discuss the results of computer simulations of this algorithm. Conclusions drawn
from the research that has led to the publication of this work are discussed briefly
in Chapter 6.



Chapter 2

State Estimation and Its Evolution

The study of power generation and transmission is one of the oldest branches of
engineering. It is a vast and diverse field with over two hundred years of research
and thousands of books dedicated to the field. Therefore, in this chapter, only those
aspects of power systems are explained which are crucial in understanding topics
covered in later chapters. However, a detailed treatment of the basics of power
systems may be found in [9, 10].

In the following, after describing some basics, we survey the development and
evolution of various state estimation techniques which work exclusively on conven-
tional power-flow, power-injection and busbar voltage-magnitude measurements.

2.1 Measurement Acquisition

The EMS/SCADA (Energy Management System/Supervisory Control and Data
Acquisition) system is a set of computational tools used to monitor, control, and
optimize the performance of a power system. Initially, power systems were overseen
only by supervisory control systems. These were control systems which monitored
the status of circuit breakers at substations along with generator outputs and the
overall system frequency [1]. Later, supervisory control systems were enhanced by
adding an interconnection-wide real-time data acquisition function giving rise to
the first SCADA system. Coupled with the planning and analysis functions, this is
called the SCADA/EMS or EMS/SCADA system.

During normal operation, the power system is either in a secure or insecure
state. The security of a power system is defined as “an instantaneous time-varying
condition reflecting the robustness of the system relative to imminent disturbances;
the complement of the risk of disruption of unimpaired system performance” [11].
In other words, the power system is said to be in a secure state if disturbances
within the power grid do not impair system performance. State estimation is a vital
component of the EMS/SCADA and it is used to analyse the security of the power
system and take corrective or preventive action when necessary.

The relationship between state estimation and the EMS/SCADA system is shown
in Fig. 2.1. The data acquisition system obtains real-time measurement from de-
vices like remote terminal units (RTU) and, more recently, phasor data concentrators

6
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Figure 2.1: Relationship between the different elements that collectively constitute
the EMS/SCADA [7].

(PDC) scattered throughout the system. The state estimator then calculates the
system state and provides the necessary information to the supervisory control sys-
tem which then takes action by sending control signals to the switchgear (circuit
breakers).

The conventional state estimator built into the EMS consists of four main pro-
cesses [1] as shown in Fig. 2.1:

Topology Processing which is a process that tracks the network topology and
maintains a real-time database of the network model. This is done by analysing
the position of circuit breakers and other switchgear in the substations.

Observability Analysis which is a process that is run to ensure the measurement
set is sufficient to perform state estimation. If it is found that the measure-
ment set is incomplete, pseudo-measurements are added to the measurement
sets. Pseudo-measurements are measurements generated from short-term load
forecasts, historical records or similar approximation methods.

State Estimator which functions by operating on the measurement set and, using
some kind of estimation algorithm, arrive at an estimate of the system state.

Bad-Data Processing which is a process that identifies any gross errors in the
measurement set and eliminates bad measurements.
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2.2 Structure of the Measurement Set

Commonly used measurements include line power flows, bus power injections, bus
voltage magnitudes and line current flows. The system state x is related to the mea-
surements by a set of L nonlinear expressions known as the measurement function
h(x).

Now, the state vector x ∈ R(2N−1)×1 consists of the voltage magnitudes and
phase angles on each bus in the system, i.e. N bus voltage magnitudes and N − 1
phase angles. The phase angle of one bus, known as the reference bus or slack bus,
is assumed to be known and set to an arbitrary value, such as 0. The state vector
will have the following form assuming the first bus is chosen as the reference bus:

x = [θ2, θ3, . . . , θN , |V1|, . . . , |VN |]
T, (2.1)

where θn denote the phase angles and |Vn| the magnitudes of the voltages at the
n-th bus.

A transmission line connected between two nodes i and j possesses a conductance
gij which is a function of the length and material of the line and a susceptance bij
which is a function of the material of the line and the frequency of the alternating
current flowing through it. Furthermore, the entire transmission line behaves like
one of the plates of a capacitor, the other plate being the earth itself. This means
that the transmission line behaves as if some electricity is shunted to the ground
through a capacitor. To make analysis easier, this capacitor is split into two and each
capacitor is connected between either end of the transmission line and the ground.
Now each capacitor is known as a shunt capacitor. When several lines are connected
to a node i, their capacitances are lumped together and treated as one single shunt
capacitor connected between node i and the ground. This shunt capacitor has an
admittance ySi = gSi + jbSi. Figure 2.2 shows the representation of a transmission
line as a circuit known as a π-model with discrete elements.

gij + jbij

gSi + jbSi gSj + jbSj

i j

Figure 2.2: Two-port π-model of a transmission line connected between nodes i and
j.
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We begin with one of the most fundamental expressions in the study of electricity
known as Ohm’s law formulated by Georg Simon Ohm, a German physicist. Ohm’s
law is stated as “the current through a conductor between two points, say i and j,
is directly proportional to the potential difference across the two points.” and may
be expressed mathematically as

Vij = Vi − Vj = zijIij (2.2)

where Iij and Vij are the complex current and voltage phasors respectively and zij
is known as the impedance, which is a complex quantity given by zij = rij + jxij .
The resistance, denoted by r, is the obstruction offered to the flow of direct current,
and xij is termed the reactance is is the resistance offered to the flow of alternating
current and is a function of the frequency of the alternating current. Equation (2.2)
may also be expressed as

Iij = yij(Vi − Vj) (2.3)

where yij is known as the admittance and is the inverse of the impedance. Further-
more, yij = gij+jbij where gij and bij are known as the conductance and susceptance
respectively.

A set of fundamental laws that explain the flow of current in an electrical circuit
was proposed by the German physicist Gustav Kirchhoff in 1845. In order to develop
a model for relating the system state to the conventional measurements we require
one of Kirchhoff’s laws known as Kirchhoff’s first law. It is derived from the principle
of conservation of charge and states that “the algebraic sum of currents in a network
of conductors meeting at a point is zero.” It is expressed mathematically as

K∑

k=1

Ik = 0 (2.4)

where K is the total number of conductors connected to a point and Ik is the current
flowing either into the point or away from the point.

Consider a power network consisting of N nodes (buses). We begin by writing
a set of nodal equations obtained by applying Kirchhoff’s current law at each bus.
The vector of net current injections at each bus is denoted by ī ∈ CN×1 and the
vector of voltage phasors at each bus by v̄ ∈ CN×1, where v̄n = |Vn|e

jθn. The nodal
equations now take the following form:

ī =








I1
I2
...
IN







=








Y11 Y12 · · · Y1N

Y21 Y22 · · · Y2N
...

...
...

...
YN1 YN2 · · · YNN















V1

V2
...
VN







= Yv̄, (2.5)

where Y is called the admittance matrix and any entry Yij of Y is given by

Yij = Gij + jBij =







0 if node m is not connected to node n

ymS +
∑

l∈Gm

yml if m = n

−yij otherwise
(2.6)
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where yiS is the sum of all shunt admittances connected at node i, Gi is the set of
all nodes connected to node i, also known as the neighbourhood of i and yij is the
admittance of the line connecting node-i to node-j.

The measurements collected by conventional measuring devices like instrument
transformer pairs generally consist of:

1. Real and reactive power injections: The real power injection Pi and the reactive
power injection Qi at bus i are related to the state variables |Vn| and θn,
n = 1, 2, . . . , N , as

Pi = |Vi|
∑

m∈Gi

|Vm|(Gim cos θim +Bim sin θim) (2.7)

Qi = |Vi|
∑

m∈Gi

|Vm|(Gim cos θim − Bim sin θim) (2.8)

2. Real and reactive power flow: The real power and reactive flows from bus i to
bus j denoted by Pij and Qij respectively are given by

Pij = |Vi|
2(gSi + gij)− |Vi||Vj|(gij cos θij + bij sin θij) (2.9)

Qij = −|Vi|
2(bSi + bij)− |Vi||Vj|(gij sin θij + bij cos θij) (2.10)

These measurements taken at various points on the power system form the mea-
surement model upon which state estimation is based.

2.3 Overview of State Estimation Methods

State estimation schemes may be classified into three distinct paradigms or frame-
works depending on the measurement model upon which the estimation algorithms
are based as follows.

- Static state estimation (SSE)

- Forecasting-aided state estimation (FASE)

- Multi-area state estimation (MASE)

Here, a brief overview of the evolution of each of the above frameworks is given.

2.3.1 Static state estimation

For the last four decades, much of the research in power system state estimation
has been focused on static state estimation (SSE), primarily due to the fact that
the traditional monitoring technologies, such as those implemented in the SCADA
system, can only take non-synchronized measurements every two to four seconds.
Furthermore, to reduce the computational complexity of implementation, the esti-
mates are usually updated only once every few minutes. Hence the usefulness of
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SSE as a means to provide real-time monitoring of the power grid is quite limited
in practice.

As mentioned earlier, in an N -bus system, the (2N − 1)× 1 state vector has the
form x = [θ2, θ3, . . . , θN , |V1|, . . . , |VN |]

T. In order to estimate the state x, a set of
measurements z ∈ RL×1, L > 2N − 1, is collected. These measurements consist of
non-synchronized active and reactive power flows in network elements (given by (2.9)
and (2.10)), bus power injections (given by (2.7) and (2.8)) and voltage magnitudes
at the buses. The measurements are typically obtained within SCADA systems, and
are related to the state vector by an overdetermined system of nonlinear equations
h(x), namely

z = h(x) + n, (2.11)

where n is a zero-mean Gaussian measurement noise vector with covariance matrix
Cn ∈ RL×L.

In the traditional SSE approach first proposed by Schweppe [12], the state vector
is estimated from the measurement equation in (2.11) using the weighted least-
squares (WLS) method. In particular, the SSE problem is solved by finding

x̂ = argmin
x

[z− h(x)]TW−1[z− h(x)] (2.12)

where weighting matrix W is commonly taken as diagonal with elements related to
background noise covariance as W = Cn.

The solution for x̂ is obtained in an iterative fashion by linearising (2.11) around
the available estimate (at iteration j) and applying the Gauss-Newton algorithm to
improve the estimate, using the following equations:

G(j)∆x(j) = HT(j)W−1[z− h(x(j)] (2.13)

x̂(j + 1) = x̂(j) +∆x(j) (2.14)

where G(j) = HT(j)W−1H(j) is the gain matrix at iteration j. The Jacobian
matrix, H(j) ∈ RL×(2N−1), at each iteration, is the first-order partial derivative of
h(x), with respect to x, evaluated at x̂(j), and is given by

H(j) =
∂h(x)

∂x

∣
∣
∣
∣
x=x̂(j)

(2.15)

Equation (2.13) is usually referred to as the normal equation.
The iterative process is terminated when the norm of the residual falls below a

predefined value, i.e. for some δ > 0, ‖z− h(x̂(j))‖2 ≤ δ, and the covariance of the
estimate is given by

G−1(j) = [HT(j)W−1H(j)]−1 (2.16)

One of the main problems in solving the normal equation in (2.13) is compu-
tational complexity. An approach to reduce the computational cost is to take into
account the fact that G(j) is sparse and symmetric. A more common approach
in the literature is to take advantage of the sparseness of matrix H(j), which is
in general even more sparse than G(j), and employ a robust and computationally
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efficient QR factorization of the weighted Jacobian, e.g. using a sequence of Givens
rotations (or Householder reflections) of the weighted Jacobian matrix W− 1

2H(j).
A good treatment of this topic and related important references can be found in [13].
Specifically, let Q(j) ∈ RL×L be an orthogonal transformation that triangularizes
the weighted Jacobian as follows

Q(j)W−1/2H(j) =

[
R(j)
0

]

(2.17)

where R(j) ∈ R(2N−1)×(2N−1) is upper/lower triangular. We may now rewrite (2.13)
as

[
RT(j) 0

]
[
R(j)
0

]

∆x(j)

=
[
RT(j) 0

]
Q(j)W−1/2[z− h(x(j))]

(2.18)

which allows us to solve for ∆x(j) in two stages

[
y1(j)
y2(j)

]

= Q(j)W−1/2[z− h(x(j))] (2.19)

R(j)∆x(j) = y1(j) (2.20)

where y1(j) ∈ R(2N−1)×1, as seen in (2.19), is formed by taking the 2N − 1 first
elements of the transformed (weighted) measurement error vector. The correction
term ∆x(j) is obtained via backward (or forward) substitution.

To overcome the computational cost associated with directly solving (2.13), it
has often been argued that the gain matrix G(j) does not change considerably dur-
ing several iterations, which implies we can assume a piecewise constant Jacobian
matrix [12]. This observation is exploited in the hybrid method proposed by Mon-
ticelli and Garcia [14] to reduce storage requirements when applying orthogonal
transformations. In particular, the triangular matrix R in (2.17) remains constant
for those iterations when the measurement Jacobian is not re-evaluated. Thus, by
only transforming the left-hand side of (2.13) we may acquire the correction term
∆x(j) from

RTR∆x(j) = HTW−1[z− h(x(j))]

Comparing with (2.19)–(2.20) we see that only R need to be stored (and not factors
of Q) at the expense of an additional forward (or backward) substitution.

The computational complexity of the aforementioned SE approaches may be fur-
ther reduced by assuming voltage magnitudes and phases to be independent [13].
The state estimate is then obtained by solving two decoupled WLS problems since
the measurement Jacobian becomes block-diagonal. This approach renders a par-
ticularly efficient implementation of the hybrid method both in terms of storage
requirements and computational cost.

A more recent approach proposed by Gómez-Expósito et al. for reducing the
computational cost is to use a nested, or multi-level, formulation of the nonlinear
measurement model [4]. This approach can sustain growth in size, complexity, data



13

and it is designed to function at different levels of the modeling hierarchy in order
to accomplish very large-scale interconnection-wide monitoring. This method uses
the same overdetermined set of measurement equations as in (2.11). It is then
“unfolded” into K sequential WLS problems by introducing a set of intermediate
variables Y = {y1,y2, . . . ,yK} with the following nested structure

z = f1(y1) + n

y1 = f2(y2) + n1

... (2.21)

yK−1 = fK(yK) + nK−1

yK = fK+1(x) + nK

The set Y is chosen such that the solution of the K-tuple (2.21) offers an advantage
over solving equation (2.11), e.g. reduction of computational complexity or amount
of information exchange between different levels. This is a particularly appealing
solution when the measurement model can be factorized into both linear and nonlin-
ear parts, which may be suitable for a hierarchical structure that comprises a linear
substation model and a nonlinear transmission level model leading to a factorized
form of the measurement model.

2.3.2 Forecasting-aided state estimation

Conventional SSE relies on a single set of measurements all taken at one snapshot
in time. Hence it disregards the evolution of the states over consecutive measure-
ment instants. The basic idea of forecasting-aided state estimation (FASE) is to
provide a recursive update of the state estimate that can also track the changes oc-
curring during normal system operation. One of the advantages of FASE is that it
includes by design a forecasting feature that can get around the problem of missing
measurements, as the predicted states may be used in lieu of those measurements.
Note, however, that FASE is somewhat different from the true dynamic SE since
the transients in power systems usually occur at a much faster time scale than those
considered in FASE.

The first step towards a dynamic state estimator was taken by Debs and Larson
in 1970 [15]. A simple state transition model was developed assuming the system
was in a quasi-steady state. Tracking state estimators [16] came next, but the
problem here was that no time evolution model was assumed explicitly to follow
the dynamics of the system. The next breakthrough in FASE came from Leite da
Silva et al. [17] who developed a more appropriate state transition model and used
Kalman filtering and an exponential smoothing algorithm for forecasting. A robust
FASE algorithm based on M-estimation was introduced by Durgaprasad and Thakur
in [18] as an alternative to the Kalman filter based approaches and more recently, a
FASE algorithm was proposed by Valverde and Terzija based on unscented Kalman
filter (UKF) [19]. A more extensive literature survey and related references may be
found in [20].
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A typical FASE is formulated with the following dynamic model [17]

x(k + 1) = F(k)x(k) + g(k) +w(k) (2.22)

where for time instant k, F(k) ∈ R(2N−1)×(2N−1) is the state-transition matrix, vector
g(k) is associated with the trend behaviour of the state trajectory, and w(k) is
assumed to be zero-mean Gaussian noise with covariance matrix Cw.

Using (2.22) and the measurements arriving at instant k, z(k) = h [x(k)]+n(k),
the majority of the FASE algorithms that appear in the literature are based on the
extended Kalman filter (EKF) [7], whose recursions are given by

x̂(k + 1) = x̃(k + 1) +K(k + 1) [z(k + 1)− h(x̃(k + 1))] (2.23)

where H(k+ 1) is the measurement Jacobian evaluated at x̃(k + 1), x̃(k + 1) is the
predicted or forecast value of the state estimate at time k + 1 given by

x̃(k + 1) = F(k)x̂(k) + g(k), (2.24)

K(k + 1) is the Kalman gain given by

K(k + 1) = Σ(k + 1)HT(k + 1)C−1
n , (2.25)

Σ(k + 1) is the a posteriori estimation error covariance matrix given by

Σ(k + 1) =
[
HT(k + 1)C−1

n H(k + 1) +M−1(k + 1)
]−1

(2.26)

and M(k + 1) is the a priori estimation error covariance matrix given by

M(k + 1) = F(k)Σ(k)FT(k) +Cw. (2.27)

We note that matrix F(k) and vector g(k) in (2.22) are in most FASE related
papers recursively updated using the classic Holt-Winters method [17]. This rather
naive state-transition model appears to work quite well, although it ignores any
coupling between state variables.

2.3.3 Multi-area state estimation

Multi-area state estimation (MASE) traces its origins back to the late 70s when mi-
croprocessor technology was not mature enough to handle the computational load of
SE in very large interconnections and SE was implemented on multiprocessor com-
puting architectures. Since the power grid is inevitably a large network, a centralized
solution to the associated SE problem amounts to tremendous computational com-
plexity. An alternative is to divide the large power system into smaller areas, each
equipped with a local processor to provide a local SE solution. Comparing to a
centralized SE approach, MASE reduces the amount of data that each state estima-
tor needs to process (hence reduces complexity) and it improves the robustness of
the system by distributing the knowledge of the state. However, its implementation
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requires additional communication overhead and it comes with the time-skewness
problem that results from asynchronous measurements obtained in different areas.

In MASE, each area has local measurements formulated by

zm = hm(xm) + nm, m = 1, . . . , M (2.28)

where xm = [xi
T
m xb

T
m]

T is the local state vector of area m, which is further parti-
tioned into internal state variables, xi

T
m, and border state variables, xb

T
m. Internal

variables are those state variables that are observable for the particular area while
border variables are states of those buses with lines connecting two areas (so-called
tie-lines).

A local estimate can be obtained from (2.28) using the techniques outlined in ear-
lier sections with the difference that the measurement Jacobian is derived from the
local estimate. Taking into account the coupling between areas located in close prox-
imity, improved state estimates can be obtained by combining local estimates using
either a hierarchical structure, a decentralized structure, or a combination of both.
In the hierarchical scheme, a central computer controls the local processors which
may be either located in disparate geographical areas (distributed architecture) or in
the same area (parallel architecture). The local state estimators communicate only
with the central computer. In the fully decentralized architecture, i.e. no central
computer, each local state estimator communicates only with its neighbours. The
amount of data exchange of the solution depends on whether local estimates (or
measurements) are transmitted at every iteration of the local estimation algorithm
or upon convergence. A survey of various MASE methods is given in [21] along
with a good treatment of a two-level hierarchical MASE example. More recently,
an enhanced MASE scheme was introduced by Korres [22] which performs state
estimation in a fully distributed manner.

2.4 Discussion

The development of computationally efficient algorithms will continue to be a chal-
lenge although research on state estimation in power systems may seem to be quite
mature. This is because as the power grid becomes more complex, intelligent and
interconnected, outcomes of such research will be beneficial to the development of
improved energy management systems of the future. For example, since the Jaco-
bian matrix H is sparse [23], efficient solutions which have been developed recently
for sparse systems can be applied, thus enabling reduced-complexity solutions.

The forecasting-aided state estimation (FASE) algorithms found in the literature
are based on the extended Kalman filter whose limitations are well known. Fast con-
verging algorithms with good tracking capabilities may be found by exploiting the
equivalence between the incremental Gauss-Newton algorithm and the iterated ex-
tended Kalman filter [24]. The use of the unscented Kalman and H∞ filters in power
system state estimation also deserves further investigation. Furthermore, novel al-
gorithms need to be developed which incorporate PMUs in the FASE paradigm and
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the optimality of such algorithms deserves to be studied. This problem is studied
in detail and solutions are proposed and verified in Chapter 4.

Multi-area state estimation can most likely benefit from recent advances in sig-
nal processing, particularly distributed estimation. A fully distributed state esti-
mator (static or dynamic) that provides local awareness of the whole state vector
can exploit the fruits of average consensus techniques that abound in the litera-
ture, see, e.g. [25, 26]. Taking into account the sparseness of the problem, dynamic
Kalman filter based solutions for sparse systems, e.g. [27], can be useful when the
amount of information shared between neighbours is kept to a minimum to reduce
either the amount of communication or if the neighbour is a competing operator
in a deregulated market. Algorithms based on event-triggered state estimation and
communication hold the potential to drastically reduce the computational and com-
munication resources used by state estimators. This means that larger and more
complex state estimation problems can be solved in the future without the need to
overhaul the existing infrastructure of the SCADA/EMS. A new, event-triggered
MASE scheme has been developed in Chapter 5 which reduces the computational
and communication resources used.



Chapter 3

Impact of Phasor Measurement
Units on State Estimation

A PMU is a transducer which converts a three-phase analogue voltage or current
signal into a precision time-tagged positive sequence phasor. PMUs provide ac-
curate measurements of positive sequence voltage and current phasors. The main
problem faced by engineers today is to combine those PMU measurements with con-
ventional measurements to obtain an optimal state estimate. This chapter examines
the impact that synchrophasor technology has had on the state estimation.

3.1 Measurement Acquisition

Phasor measurement units calculate the positive sequence voltage and current pha-
sors from signals sampled from instrument transformer secondary windings. Fig-
ure 3.1 shows the major components of a modern PMU. Typically, the current and
voltage signals are oversampled and then conditioned using a combination of ana-
logue and digital anti-aliasing filters. The sampling clock is phase-locked with the
GPS clock pulse. A microprocessor then estimates the phasors by using a discrete
Fourier transform. A time stamp is created based on two signals derived from the
GPS receiver and this, along with the current and voltage phasor data is transmitted
to a data concentrator through a modem.

Figure 3.2 shows how PMU measurements are collected and sent to the SCADA
system. PMUs are placed at substations and provide measurements of time-stamped
positive sequence voltages and currents of all monitored buses and feeders. At the
next level of the measurement hierarchy we find phasor data concentrators (PDCs).
The function of a PDC is to gather data from several PMUs, reject bad data and
align the time stamps while creating a coherent record of simultaneously recorded
data from the wider-area interconnection. On a system-wide scale, in the case of a
centralized EMS/SCADA, a higher level may be envisioned known as the super data
concentrator (Super PDC) [28] with a functionality similar to that of the PDC.

17
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Figure 3.1: Important components of a modern PMU [28].

Figure 3.2: Hierarchy of phasor measurement systems and phasor data concentra-
tors.

3.2 Structure of the PMU Measurement Set

In this section we derive a relationship between the PMU measurements and the
state vector. However, instead of using the traditional polar form of the voltage
phasors, we define a new form of the state vector in Cartesian co-ordinates. This
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new state vector denoted by v has the following form:

v = [ℜ{V1}, . . . , ℜ{VN} ℑ{V2}, . . . , ℑ{VN}]
T, (3.1)

where ℜ{Vn} and ℑ{Vn} are, respectively, the real and imaginary parts of the voltage
phasor at the nth bus [5]. As before, bus 1 is the slack bus and this implies that the
imaginary part of the voltage phasor at bus 1 is zero.

Consider the π-model of a transmission line connecting nodes p and q as shown
in Figure 3.3. Let us assume there is a PMU at node p. Let the complex voltage
phasors at p and q be Vp and Vq, respectively. The PMU measures the current
phasor Ip and the voltage phasor Vp. The state vector for this system is given by

v =
[
ℜ{Vp} ℜ{Vq} ℑ{Vp} ℑ{Vq}

]T
. (3.2)

The voltage measurements of the PMU at p are given by

zvp =

[
ℜ{Vp}
ℑ{Vp}

]

+ n1

=

[
1 0 0 0
0 0 1 0

]

v + n1

= Bv + n1

(3.3)

where zvp is the vector of PMU voltage measurements and n1 is zero-mean Gaussian
measurement noise.

gpq + jbpq

gSp + jbSp gSq + jbSq

p q
Vp Vq

Ip
Ipq

ISp

A

Figure 3.3: Two-port π-model of a transmission line connecting nodes p and q. A
PMU is placed at node p.

Similarly, the current measurements of the PMU at p are given by

zip =

[
ℜ{Ip}
ℑ{Ip}

]

+ n2 (3.4)

where zip is the vector of PMU measurements and n2 is zero-mean Gaussian mea-
surement noise.
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In order to relate the current Ip to the state vector we apply Kirchhoff’s current-
law at node A. Now, we have

Ip = Ipq + ISp (3.5)

= (gpq + jbpq)(Vp − Vq) + (gSp + jbSp)V p. (3.6)

Simplifying the above and separating the real and imaginary parts, we have

ℜ{Ip} = (gpq + gSp)ℜ{Vp} − gpqℜ{Vq} − (bpq + bSp)ℑ{Vp}+ bpqℑ{Vq} (3.7)

and

ℑ{Ip} = (bpq + bSp)ℜ{Vp} − bpqℜ{Vq}+ (gpq + gSp)ℑ{Vp} − gpqℑ{Vq}. (3.8)

Combining (3.7) and (3.8), we have

[
ℜ{Ip}
ℑ{Ip}

]

=

[
(gpq + gSp) −gpq −(bpq + bSp) bpq
(bpq + bSp) −bpq (gpq + gSp) −gpq

]

v (3.9)

= Yv. (3.10)

Substituting (3.9) in (3.4), we have

zip = Yv + n2. (3.11)

By combining (3.3) and (3.11) and extending the reasoning employed in their
derivation to an N bus system, we have

z =

[
B
Y

]

v + n (3.12)

= Av + n (3.13)

where z is the vector of PMU measurements with L1 voltage measurements and L2

current measurements, B ∈ RL1×(2N−1) is a matrix in which each row is a vector
of zeros with a one in the column associated with the buses containing PMUs and
Y ∈ RL2×(2N−1) is a matrix of admittances. The zero-mean Gaussian measurement
noise is given by n.

3.3 State Estimation with PMUs in Literature

The first step towards a realizable PMU came with the introduction of the symmet-
rical component distance relay by Phadke et al. [29, 30]. PMUs may be used for a
host of other purposes apart from state estimation, which is arguably one of the most
important application. Some other applications of PMUs include fault recording,
disturbance recording and transmission and generation modelling verification [31].

An important issue which arises in applying PMUs for state estimation is that of
the optimal placement of PMUs. Yuill et al. present an overview of various methods
which exist in the literature to decide where to place PMUs optimally [32].
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When a sufficient number of PMUs are deployed on the grid, the system is fully
observable and iterative solutions are avoided as the system becomes linear as seen
in (3.12). Even though making the system fully observable using PMUs is not yet
realizable due to financial constraints, it seems likely that in the near future, we
could see large-scale deployment of PMUs in power grid as the deployment costs
decrease. However, presently, there is a need for state estimators that combine
conventional SCADA and PMU measurements.

Static state estimation using both PMU and traditional SCADA measurements
has been studied extensively. There are two ways to include PMU measurements
in the SE process [5]. One method is to use a single state estimator, where PMU
measurements are mixed with the traditional power flow measurements. This type of
state estimator is also called an integrated state estimator. Another method is to use
a two-stage scheme, where the state estimate obtained from the traditional SCADA
measurements in (2.13) is improved by using a second estimator that employs PMU
measurements only. The latter method has the advantage of leaving the existing
SCADA software intact, while the former generally shows better performance in
terms of accuracy and redundancy.

Let us first consider the approach when conventional SCADA measurements
given by (2.11) are mixed with PMU measurements given by (3.12). In order to
jointly process the measurements we first need to relate the PMU state v of com-
plex phasors (Cartesian coordinates) to the conventional state vector x (polar coor-
dinates), through a simple nonlinear transformation, i.e. there exists a one-to-one
mapping d : R → R between them defined by v = d(x). Thus, a single estimator,
static or dynamic, that incorporates both conventional and PMU measurements can
be derived based on the following augmented measurement model:

[
z1
z2

]

=

[
h(x)
Ad(x)

]

+

[
n1

n2

]

, (3.14)

where z1 and n1 are the conventional measurements and noise vectors, and z2 and
n2 denote the PMU measurements and noise vectors respectively.

Instead of mixing the measurements, we may use a two-step approach, also
known as a hierarchical state estimator, where the conventional state estimate x̂
from (2.13) is converted into voltage phasors, i.e. v̂1 = d(x̂), and then used as
additional measurements in an augmented form of the linear measurement model
given in (3.12)

[
v̂1

z2

]

=

[
B̃
Y

]

v +

[
ñ1

n2

]

, (3.15)

where B̃, like B in (3.12), simply sifts out the relevant phasors, and ñ1 is the noise
vector associated with the (transformed) conventional measurements. We may now
solve for the unknown phasors v using a linear weighted least squares approach [5].
Recently, a constrained formulation for state estimation using both conventional
meaurements and PMUmeasurements was presented in [33]. A method for weighting
PMU measurements for use in a two-stage scheme based on PMU measurement
uncertainty was introduced by the same authors in [34]
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The problem of multi-area state estimation incorporating phasor measurements
was first introduced by Zhao and Abur [35] who present a hierarchical scheme for
distributed state estimation using PMU measurements. Jiang et al. [36] also use
PMU measurements in each region to obtain a hierarchical state estimator that
functions in three steps. A distributed state estimator which has the same accuracy
and redundancy as an integrated state estimator has been introduced by Jiang et
al. based on diakoptics. Diakoptic literally means “tear-through”, and consists of
breaking a system down into subsystems which can be solved independently before
being assembled back together to obtain a solution to the whole problem. The inclu-
sion of PMU measurements in multi-level state estimators has also been considered
in [4]. A recent two-level MASE scheme which incorporates PMU measurements
both at the substation and the control center level was introduced by Yang et al.
in [37]

3.4 Discussion

In spite of the substantial body of research work discussed above, many well-known
challenges remain in combining PMU measurements that are of a much higher qual-
ity with conventional measurements to obtain an optimal state estimate, namely:

Computational burden - The dimensions of the vectors and matrices involved
in the state estimation process are increased due to the inclusion of PMU
measurements. This results in an increased computational burden on the
EMS/SCADA.

Data tsunami 1 - The sampling rate of PMUs is around two orders of magni-
tude higher than the conventional measurements. Novel techniques need to
be developed to extract relevant state information from this tidal wave of
measurement data.

Degraded numerical stability - Since PMU measurements are significantly more
accurate than traditional measurements, inclusion of those measurements in
the estimation process often results in ill-conditioned gain or measurement
noise covariance matrices.

Time skewness - Synchronized PMU measurements are sampled much faster than
non-synchronized conventional measurements. These two sets of measure-
ments have significantly different sampling rates and are not synchronized
with each other.

Retrofitting - According to utility companies, PMUs are currently not used in
performing state estimation since retrofitting is a rather onerous task and can
be quite costly.

1Data tsunami is a term used in information science to refer to a tidal wave of data which
swamps computer systems rendering them incapable of separating wheat from chaff.
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In short, since PMUs will be deployed in ever increasing numbers in power grids
of the future, there is a need for a new set of state estimation algorithms which
take into account the issues mentioned above. In the following chapter, we shall
introduce two such algorithms.



Chapter 4

Forecasting-Aided State
Estimation with Phasor
Measurements

As the power grid continues to evolve, it will become more complex and dynamic.
Therefore, it becomes necessary to closely track state changes to ensure the de-
pendability, reliability and security of the power system. To this end, the use of
forecasting-aided state estimation seems justified since it treats the state vector as a
dynamically evolving variable and seeks to track its evolution in time. Furthermore,
static state estimation puts a considerable computational load on the EMS/SCADA
since the conventional Gauss-Newton weighted least-squares approach requires sev-
eral iterations at each time instant until it converges. On the other hand, the FASE
approach is computationally more resource-efficient efficient since only one iteration
is performed at each time instant. In this chapter, we present two novel algorithms
to incorporate PMUs into the FASE framework.

State estimators employing PMU measurements can also be cast into the FASE
framework in a manner described in the previous chapter, i.e. either PMU measure-
ments are mixed with conventional measurements or included in a post-processing
step. In the mixed approach, extended Kalman filters (EKF) can be derived for the
mixed data model given by (3.14), reproduced here for convenience:

[
z1
z2

]

=

[
h(x)
Ad(x)

]

+

[
n1

n2

]

, (4.1)

where z1 and n1 are the conventional measurements and noise vectors, and z2 and
n2 denote the PMU measurements and noise vectors, respectively. Matrix A relates
the PMU measurements to the Cartesian form of the state vector given by d(x).

Alternatively, if the PMU measurements are included in a post-processing step,
a linear Kalman filter can be used, or one may also use a simple linear weighted
least-squares estimator at the second stage. However, mixing measurements of dif-
ferent qualities into a single state estimator may sometimes cause the covariance
matrix of the combined noise vector to become ill-conditioned. In addition to this,
the dimensions of the vectors and matrices involved in the SE process are increased

24
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due to the additional PMU measurements, which may lead to significantly increased
computational complexity. For this reason, the problem can be cast into a con-
strained Kalman filtering problem where high-quality measurements are employed
as deterministic equality or inequality constraints. For example, more robust FASEs
with a reduced order Kalman filter can be derived by applying the ideas proposed
in [38], an approach considered here in detail.

In this chapter, we present two novel FASE methods for incorporating phasor
measurements in forecasting-aided EKF-based state estimators. These results may
be extended to other forms of nonlinear Kalman filters as well.

4.1 Mixed-Measurement Extended

Kalman Filter

In the mixed-measurement estimation model described by (4.1), the PMU measure-
ments are appended to the conventional measurements. Although a static state
estimator for the same problem has been derived in [5], a more computationally
efficient solution to the problem would be to cast it into the FASE framework.

The state transition model remains the same as in conventional FASE, i.e.

x(k + 1) = F(k)x(k) + g(k) +w(k),

where for time instant k, F(k) ∈ R(2N−1)×(2N−1) is the state-transition matrix, vec-
tor g(k) is associated with the trend behavior of the state-trajectory, and w(k) is
assumed to be zero-mean Gaussian noise with covariance matrix Cw.

The dynamic version of measurement model given by (4.1) at a time instant k

can be written as [
z1(k)
z2(k)

]

=

[
h{x(k)}
Ad{x(k)}

]

+

[
n1(k)
n2(k)

]

, (4.2)

where z1(k) and n1(k) are the conventional measurements and noise vectors, and
z2(k) and n2(k) denote the PMU measurements and the (transformed) noise vectors.
The noise vectors n1(k) and n2(k) are assumed to be zero-mean Gaussian distributed
with covariance matrices C1 and C2, respectively.

The state vector in Cartesian co-ordinates, denoted by v, is related to the conven-
tional state vector in polar co-ordinates, denoted by x, through a simple nonlinear
transformation, i.e there exists a one-to-one mapping d : R → R between them given
by

v(k) = d{x(k)}. (4.3)

Now, writing (4.2) as a single expression and combining it with the state transi-
tion model we have a pair of equations given by

x(k + 1) = F(k)x(k) + g(k) +w(k), (4.4)

z̄(k) = h̄(x[k]) + n̄(k). (4.5)

where the mixed measurement set is denoted by z̄(k) =
[
zT1 (k) zT2 (k)

]T
, h̄{x(k)} =

[
hT {x(k)} (Ad{x(k)})T

]T
and n̄(k) =

[
nT
1 (k) nT

2 (k)
]T
. We shall now derive
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an EKF for this model known as MM/EKF which stands for mixed-measurement
extended Kalman filter.

4.1.1 The estimation algorithm

At a time instant k, the first step in the estimation process is to predict the state
vector at the next time instant k + 1. In order to make the forecast, we employ
a well-known forecasting tool known as Holt’s two-parameter linear exponential
smoothing, a technique used in extensively in time-series analysis. The application
of this technique for forecasting-aided state estimation in power systems was first
introduced in [17]. Let xi(k) be the ith component of the true state vector x(k).
Now, if x̃i(k) and x̃i(k+1) are the predictions at time instants k and k+1, according
to Holt’s two parameter linear exponential smoothing,

x̃i(k + 1) = ai(k) + bi(k), (4.6)

where

ai(k) = αix̂i(k) + (1− αi)x̃i(k)

bi(k) = βi[ai(k)− ai(k − 1)] + (1− βi)bi(k − 1),

and αi and βi are the smoothing parameters. Typically, in FASE, αi and βi are the
same for all values of i. Furthermore, (4.6) can be rewritten as

x̃i(k + 1) = fi(k)x(k) + gi(k), (4.7)

where

fi(k) = αi(1 + βi)

gi(k) = (1 + βi)(1− αi)x̃i(k)− βiai(k − 1) + (1− βi)bi(k − 1).

Writing the above expressions in matrix form,

x̃(k + 1) = F(k)x(k) + g(k). (4.8)

Next, we employ an EKF to correct the forecast made in the first step. The
corrected value, also the state estimate at time k + 1, is given by

x̂(k + 1) = x̃(k + 1) +K(k + 1)
[
z̄(k + 1)− h̄(x̃[k + 1])

]
. (4.9)

The Kalman gain K(k + 1) is given by

K(k + 1) = Σ(k + 1)HT(k + 1)C−1
n , (4.10)

Σ(k + 1) is the a posteriori estimation error covariance matrix given by

Σ(k + 1) =
[
HT(k + 1)C−1

n H(k + 1) +M−1(k + 1)
]−1

, (4.11)
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and M(k + 1) is the a priori estimation error covariance matrix given by

M(k + 1) = F(k)Σ(k)FT(k) +Cw. (4.12)

In the above expressions, H̄(k+1) is the measurement Jacobian,Cn = E
[
n̄(k)n̄T(k)

]

and Cw = E
[
w(k)wT(k)

]
.

The measurement Jacobian H̄(k + 1) can be written as

H̄(k + 1) =





∂
∂x
h{x}

A ∂
∂x
d{x}





x=x̃(k+1)

. (4.13)

Now, for an N bus system, assuming there are L conventional measurements,

∂

∂x
h{x} = H =









∂h1{x}
∂θ2

· · · ∂h1{x}
∂θN

∂h1{x}
∂|V1|

· · · ∂h1{x}
∂|VN |

∂h2{x}
∂θ2

· · · ∂h2{x}
∂θN

∂h2{x}
∂|V1|

· · · ∂h2{x}
∂|VN |

...
. . .

...
...

. . .
...

∂hL{x}
∂θ2

· · · ∂hL{x}
∂θN

∂hL{x}
∂|V1|

· · · ∂hL{x}
∂|VN |









(4.14)

where hi{x}, i = 1, 2, . . . , L, are the individual measurement functions for power-
flow, power-injection or voltage-magnitude measurements and they are dependent
on the placement of PMUs in the system under consideration. The above Jacobian,
when evaluated at x = x̃(k + 1), is denoted by H(k + 1).

Let us now consider the function d{x}:

v = d{x} =
















|V1|
|V2| cos θ2

...
|VN | cos θN

0
|V2| sin θ2

...
|VN | sin θN
















. (4.15)

It must be noted that the first bus is the reference bus and therefore, θ1 = 0.
We can form the following expression for the Jacobian of d{x} denoted by ∆:

∆ =














1 0 0 · · · 0 0 0 · · · 0
0 cos θ2 0 · · · 0 −|V2| sin θ2 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · cos θN 0 0 · · · −|VN | sin θN
0 sin θ2 0 · · · 0 −|V2| cos θ2 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · sin θN 0 0 · · · −|VN | cos θN














. (4.16)
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Since the voltage magnitudes at the buses are all approximately 1 p.u. [5], ∆
may be approximated by a unitary matrix

∆ ≈














1 0 0 · · · 0 0 0 · · · 0
0 cos θ2 0 · · · 0 − sin θ2 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · cos θN 0 0 · · · − sin θN
0 sin θ2 0 · · · 0 cos θ2 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · sin θN 0 0 · · · cos θN














. (4.17)

When evaluated at x = x̃(k + 1), ∆ is denoted as ∆(k + 1). This speeds up
computation considerably since it may be implemented using a fast algorithm like
CORDIC [39].

Therefore, from (4.14) and (4.17), we have

H̄(k + 1) =

[
H(k + 1)
A∆(k + 1)

]

(4.18)

4.2 Reduced Order EKF State Estimator

The reduced order RO/EKF state estimator presented in this section overcomes
many of the drawbacks of MM/EKF state estimator. The problem is solved in
two steps where PMU measurements and conventional measurements are handled
separately, thereby reducing the dimensions of the matrices and vectors involved. For
the same reason, there is also no possibility of having an ill-conditioned measurement
error covariance matrix which leads to improved stability. Furthermore, it is an
optimal estimator, i.e. the PMU measurements and the conventional measurements
are combined in an optimal fashion as shown in [38].

In deriving the RO/EKF state estimator, we use the Cartesian form of the state
vector. The state transition equation is given by

v(k + 1) = F(k)v(k) + g(k) +w(k) (4.19)

where F(k) is the state transition matrix, the vector g(k) is calculated as outlined
in the previous section and w(k) is the state transition noise.

The measurement equation in (4.2) is modified and written as
[
z1(k)
z2(k)

]

=

[
r{v(k)}
Av(k)

]

+

[
n1(k)
n2(k)

]

, (4.20)

where r{v(k)} is a set of non-linear functions which relate the conventional mea-
surements in z1(k) to the state vector v(k). There exists a one-to-one mapping
f : R → R between the state vector in polar co-ordinates to the state vector in
rectangular co-ordinates given by

x(k) = f{v(k)}. (4.21)
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Therefore, r{v(k)} may be written as

r{v(k)} = h (f{v(k)}) (4.22)

We then proceed by linearising (4.20) about an arbitrary point v0. In particular,
(4.20) by its first order Taylor series expansion

[
z1(k)
z2(k)

]

≈

[
r(v0) +R(v(k)− v0)

Av(k)

]

+

[
n1(k)
n2(k)

]

, (4.23)

where R is the Jacobian of the modified measurement function r(v) evaluated at
the point of linearisation v0 and is given by

R =
∂r(v)

∂v
, (4.24)

which upon application of the well-known chain rule in differential calculus yields

R =
∂h(x)

∂x
·
∂f(v)

∂v

= H ·
∂f(v)

∂v
.

(4.25)

since x = f(v).
It is now necessary to find the partial derivative of f(v) with respect to v. The

function f(v), for an N bus system is written as

x = f(v) =

















tan−1
(

ℑ{V2}
ℜ{V2}

)

...

tan−1
(

ℑ{VN}
ℜ{VN}

)

√

(ℜ{V1})2 + 0
√

(ℜ{V2})2 + (ℑ{V2})2
...

√

(ℜ{VN})2 + (ℑ{VN})2

















. (4.26)

The Jacobian Φ = ∂f(v)
∂v

is derived in a manner similar to ∆, and assuming
|Vi| = 1 for i = 1, . . . , N , it approximated by

Φ ≈














0 0 0 · · · 0 1 0 · · · 0
0 −ℑ{V2} 0 · · · 0 ℜ{V2} 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

1 0 0 · · · −ℑ{VN} 0 0 · · · ℜ{VN}
0 ℜ{V2} 0 · · · 0 ℑ{V2} 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · ℜ{VN} 0 0 · · · ℑ{VN}














. (4.27)
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From (4.25) and (4.27), we have

R = H ·Φ (4.28)

Moving the terms independent of v(k) to the left hand side we have
[
z1(k)− r(v0) +Rv0

z2(k)

]

=

[
R
A

]

v(k) +

[
n1(k)
n2(k)

]

(4.29)

which may now be written as
[
z′1(k)
z2(k)

]

=

[
R
A

]

v(k) +

[
n1(k)
n2(k)

]

= Jv(k) +

[
n1(k)
n2(k)

]

. (4.30)

Next, we attempt to partition v(k) into v1(k) and v2(k) where v2(k) are the
states which are observable by the PMUs and v1(k) are the remaining states. This
is achieved by left-multiplying v(k) by a simple permutation matrix Π. Since Π is
an orthogonal matrix we may write (4.30) as

[
z′1(k)
z2(k)

]

= JΠT

[
v1(k)
v2(k)

]

+

[
n1(k)
n2(k)

]

. (4.31)

where

J̃ = JΠT =

[
J̃11 J̃12

0 J̃22

]

. (4.32)

The matrix J̃21 is empty because clearly, PMU measurements do not depend on
states not observable by PMUs.

The measurement equation now becomes
[
z′1(k)
z2(k)

]

=

[
J̃11 J̃12

0 J̃22

] [
v1(k)
v2(k)

]

+

[
n1(k)
n2(k)

]

. (4.33)

From the above equation, it is possible to calculate v2(k) by using a linear
weighted least squares estimator operating on the measurement set z2(k). The
estimator for the PMU observable states is given by

v̂2(k + 1) = (J̃T
22C

−1
2 J̃22)

−1J̃T
22C

−1
2 z2(k). (4.34)

A state transition model for the partitioned state vector is derived starting from
(2.22). By multiplying both sides with the permutation matrix Π, we have

Πv(k + 1) = ΠF(k)v(k) +Πg(k) +Πw(k)
[
v1(k + 1)
v2(k + 1)

]

=
(
ΠF(k)ΠT

)
(Πv(k)) +

[
Π1

Π2

]

g(k) +

[
w1(k)
w2(k)

]

= F′(k)

[
v1(k)
v2(k)

]

+

[
g1(k)
g2(k)

]

+

[
w1(k)
w2(k)

]

[
v1(k + 1)
v2(k + 1)

]

=

[
F′

11(k) F′
12(k)

F′
21(k) F′

22(k)

] [
x1(k)
x2(k)

]

+

[
g1(k)
g2(k)

]

+

[
w1(k)
w2(k)

]

.
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From the above expression, the state transition equations for each of the partitions
of the state vector are given by

v1(k + 1) = F′
11(k)v1(k) + F′

12(k)v2(k) + g1(k) +w1(k) (4.35)

and
v2(k + 1) = F′

21(k)v1(k) + F′
22(k)v2(k) + g2(k) +w2(k). (4.36)

Now, we define a new state variable s(k) which is essentially a combination of
the PMU-observable states and the non-PMU-observable states. The combination
is performed using a combiner matrix P(k). The new state vector is given by

s(k) , v1(k)−P(k)v2(k). (4.37)

Finally, we have at a new pair of equations describing state transition and measure-
ment models for the state estimation problem

s(k + 1) = A(k)s(k) +B(k)v̂2(k) +D(k) (g(k) +w(k)) (4.38)

z′1(k) = J̃11s(k) +C(k)v̂2(k) + n1(k) (4.39)

where

A(k) = F′
11(k)−P(k + 1)F′

21(k)

B(k) = F′
12(k)−P(k + 1)F′

22(k) +A(k)P(k)

C(k) = J̃12 + J̃11P(k)

D(k) = Π1 −P(k)Π2

4.2.1 The estimation algorithm

The function of the estimator is to arrive at an estimate of the system state vector
v̂(k) from the conventional measurements z1(k) and the PMU measurements z2(k).

The signal processing steps proceed as follows:

1. State Forecasting: The state is forecast for the time instant k + 1 using a
suitable forecasting algorithm. The forecast is denoted by ṽ(k + 1):

ṽ(k + 1) = F(k)v(k) + g(k) (4.40)

2. Preprocessing the Measurements: In this stage, the measurements z1(k) are
transformed into z′1(k) by subtracting the quantities specified in (4.29). The
point of linearisation is assumed to be the forecast ṽ(k + 1).

3. Estimating the PMU states: The estimate the PMU-observable state vector,
denoted by v̂2(k + 1), is simply calculated by evaluating (4.34).
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4. Kalman Filtering: In order to make prediction of s(k + 1), say s̃(k + 1), we
need the combiner matrix P(k) given by

P(k) = Λ2(k)Λ
−1
1 (k) (4.41)

where

Λ2(k) = F11(k)Σ(k)FT
21(k)

Λ1(k) = F′
21(k)Σ(k)[F′

21(k)]
T

and Σ(k) is the a posteriori estimation error covariance matrix of the modified
state vector ŝ(k). Now

s̃(k + 1) = A(k)ŝ(k) +B(k)v̂2(k) +D(k)g(k). (4.42)

The prediction error covariance matrix is computed next and is given by

M(k + 1) = A(k)Σ(k)AT (k) + (I−P(k))Cw1
(I−P(k))T (4.43)

where Cw1
is the covariance matrix of the state transition uncertainty about

those states which are not PMU-observable.

The Kalman gain is computed next and is given by

K(k + 1) = M(k + 1)J̃T
11(J̃11M(k + 1)J̃T

11 +C1)
−1. (4.44)

The estimate of the modified state vector s(k) is given by

ŝ(k+ 1) = s̃(k+ 1) +K(k+ 1){z′1(k)− J̃11s̃(k+ 1)−C(k)v̂2(k+ 1)}. (4.45)

The error covariance matrix is updated for the next stage and is given by

Σ(k+1) = (I−K(k+1)J̃11)M(k+1)(I−K(k)J̃11)
T +K(k+1)C1K

T (k+1).
(4.46)

5. Recovery of the Original State Vector: The original state vector v̂(k) is com-
puted by evaluating the following expressions:

v̂1(k + 1) = ŝ(k + 1) +P(k)v̂2(k + 1) (4.47)

and

v̂(k + 1) = ΠT

[
v̂1(k + 1)
v̂2(k + 1)

]

. (4.48)

The expressions derived above are for a generic case and do not take into account
any special characteristics of the state transition model. The FASE realm is short of
a complete analysis of building adequate state evolution models, and mostly state
space equations are simply taken without a rigorous justification. For example,
almost all FASE algorithms proposed so far assume that there is no correlation
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between state variables, making the state transition matrix F(k) simply diagonal
[20]. In a real-world scenario, this is rarely the case as there is a certain amount
of correlation between buses in the same neighbourhood because any change in the
power demand on a load bus, or the power output of a generator bus affects the
power flowing in the neighbourhood of that bus. More accurate dynamic models
are therefore needed to incorporate coupling between state variables. However, here
we examine the RO/EKF algorithm when a diagonal state transition matrix is used
since developing new state transition models is beyond the scope of this thesis.

When F(k) is diagonal, the matrices F12 and F21 become zero matrices and this
simplifies the implementation considerably. From (4.41), we see that when F21 =
0, the combiner matrix becomes zero and there is a decoupling of the estimation
problem into a linear estimator and a Kalman filter and the modified state vector
reduces to v1(k). Furthermore, this is the optimal state estimator since this choice of
combiner matrix minimizes the trace of the a posteriori error covariance matrix [38].

In the light of the above, the prediction equation becomes

ṽ1(k + 1) = F′
11(k)v̂1(k) + g1(k) (4.49)

while the a priori error covariance matrix is given by

M(k + 1) = F′
11(k)Σ(k)[F′

11(k)]
T +Cw1

. (4.50)

The expressions for the Kalman gain and the a posteriori error covariance matrix
remain the same as (4.44) and (4.46), respectively.

A more computationally efficient version of the above expressions may be derived
by applying the matrix inversion lemma to (4.44) and calculating the a posteriori
error covariance matrix before the Kalman gain. Upon doing this, we arrive at the
following update expressions for the state vector associated with PMU-unobservable
states:

v̂1(k + 1) = ṽ1(k + 1) +K(k + 1){z′1(k)− J̃11ṽ1(k + 1)− J12(k)v̂2(k + 1)} (4.51)

where

K(k + 1) = Σ(k + 1)JT
11C

−1
1 (4.52)

Σ(k + 1) = (M−1(k + 1) + JT
11C

−1
1 J11)

−1. (4.53)
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4.3 Simulation Results

In this section, simulation results are presented for MM/EKF and the RO/EKF
algorithms. First, we begin by going over the details of the simulation setup. Sec-
ondly, the tracking capabilities of MM/EKF and RO/EKF are verified. Thereafter,
we analyse the error performance for both algorithms as the PMU observability
increases. We also compare the performance of the MM/EKF and the RO/EKF
algorithms. Next, we discuss certain aspects of the implementation of the two al-
gorithms presented here with regard to computational complexity. Finally, a brief
discussion of the advantages and disadvantages of both algorithms is presented in
the light of the simulation results.

4.3.1 Simulation setup

Figure 4.1: Single line diagram of the IEEE 14 bus test system [40] showing tie-lines,
generators and loads.

The two algorithms proposed are simulated on the standard IEEE 14 bus system
to verify their ability to track the evolution of the power system state. The IEEE
14 Bus Test Case represents a portion of the American Electric Power System (in
the Midwestern US) as of February, 1962 and has been used as a standard test-bed
for many state estimation algorithms in the literature. The interconnection of the
IEEE 14 bus system is shown in Figure 4.1 [40] while the placement of different
kinds of conventional measurements is shown in Figure 4.2.
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It is assumed that three previous state vectors were known with negligible uncer-
tainty in order to initialize the forecasting algorithm. The Kalman filters, however,
have no knowledge of any previous state vectors and assume a flat start condition,
i.e. the phase angles on all buses is assumed to be zero while the voltage magnitude
is assumed to be 1 p.u. Similarly, in the case of the state vector in Cartesian form,
it is assumed that the imaginary part of the voltage phasor on all buses is zero while
the real part is 1 p.u.

Figure 4.2: The IEEE 14 bus interconnection with the placement of conventional
power and voltage magnitude measurements.

In order to simulate the time-domain state evolution, the system is perturbed
by increasing the power demand on the load buses by a nominal value at every time
instant. The simulation is performed over 200 time instants. A random, zero-mean,
normally distributed jitter with a variance of 0.01 is added to the power demand
on each bus at every time instant to make the simulation more realistic. Next,
a Gauss-Newton load flow calculation is performed using the MatPower toolbox in
MATLAB [41] to update line flows, voltage magnitudes and phase angles throughout
the system. The vector of voltage magnitudes and phase angles at each time instant
represents the true state of the system. The conventional and PMU measurements
are generated using (2.11) and (3.12), respectively. The standard deviations of the
PMU readings is given in Table 4.1 and the measurement noise associated with
each conventional measurement is zero-mean Gaussian distributed with a standard
deviation of 0.01.
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Table 4.1: Standard deviations of PMU measurements.

Phasor Type Avg. Magnitude Avg. Phase
Error (p.u.) Error (deg)

Voltage 0.006 0.52
Current 0.006 1.04

4.3.2 Tracking ability

The inspiration for the simulation scenario chosen here to study the tracking ability
of the algorithms proposed here is drawn from the power outage that occurred
throughout parts of the Northeastern and Midwestern United States and Ontario,
Canada on Thursday, August 14, 2003, just before 4:10 p.m. EDT. It was the second
most widespread blackout in history and affected an estimated 10 million people in
Ontario and 45 million people in eight U.S. states. A subsequent report [42] by
the U.S.-Canada power system outage task force addressed the need for improved
situational awareness and time-synchronized phasor data. The motivation behind
the algorithms discussed here is to just that; to use improved time-synchronized
phasor data in order to have improved situational awareness. An early symptom of
the impending blackout was a sharp dip in the phase angle of the Cleveland bus.

The scenario chosen to be simulated here is a catastrophic increase in power
demand on all the load buses which causes the phase angle at load buses to dip
sharply, a phenomenon indicative of a blackout. The power demand at each load
bus is increased at the rate of 0.5% at every time instant which would overload
the generators buses causing them to behave like load buses and also causing the
phase angle to dip. An important criterion to verify the algorithms proposed here
is to study the ability of the algorithms to track the state vector as it evolves in the
simulation scenario.

There is only one PMU placed at bus 3 and the state of an arbitrary, PMU-
unobservable busbar, bus 11, is plotted with time. Figures 4.3(a) and 4.3(b) show
the ability of MM/EKF algorithm to track the true state vector. It can be seen
from the plots that it takes around 22 time instants for the MM/EKF algorithm to
converge. It is also clear from the figures that the MM/EKF state estimator is able
to track the state vector.

Next, we study the ability of the resource-efficient, RO/EKF state estimator to
track the state vector. Again, for the sake of consistency we assume that there is only
one PMU and it is placed on bus 3. Looking at Figures 4.4(a) and 4.4(b), we can see
that the RO/EKF algorithm is indeed able to track the state vector. Furthermore, it
can also be seen that the algorithm converges faster than the MM/EKF algorithm.
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Figure 4.3: The tracking plot of the phase angle of the voltage phasor on bus 11 by
the MM/EKF state estimator is shown in Figure 4.3(a) and Figure 4.3(b) shows the
tracking plot of the magnitude of the voltage phasor on bus 11.
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Figure 4.4: The tracking plot of the real part of the voltage phasor on bus 11 by
the RO/EKF state estimator is shown in Figure 4.4(a) and Figure 4.4(b) shows the
tracking plot of the imaginary part of the voltage phasor on bus 11.
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4.3.3 Performance analysis

In order to compare the two algorithms introduced in this chapter we need a common
performance measure. The performance measure here is chosen to be the root mean-
square-error (RMSE) over 100 Monte Carlo runs. We begin by evaluating the effect
of increasing the number of PMUs placed in the system on the error performance of
both algorithms. Next, we compare the RMSE performance of the MM/EKF and the
RO/EKF algorithms. Finally, we discuss the insights gained from the examination
of the performance plots.

Figures 4.5(a) and 4.5(b) show the performance of the two FASE algorithms with
regard to PMU observability. PMU observability denoted by O here is expressed
as a percentage and is defined as the ratio of the number of PMU observable state
variables in an N bus system to the total number of state variables, i.e.

O =
No. of PMU observable state variables

2N − 1
× 100.

It can be seen from both error plots that as the number of state variables observable
to PMUs increases the RMSE is reduced. This is because PMU measurements
are of a much higher quality than conventional measurements and adding PMU
measurements also increases redundancy and makes the state estimator more robust.

Now, we compare the performance of the MM/EKF algorithm and the RO/EKF
algorithm. Figures 4.6(a) and 4.6(b) compare of the performance of the MM/EKF
and RO/EKF FASE algorithms. It can be seen from the plot that the MM/EKF
algorithm, being an integrated state estimator, has a better error performance than
the RO/EKF algorithm. However, the RO/EKF has several other advantages over
the MM/EKF estimator as discussed in the following section.

4.3.4 Discussion

The main advantage of using an MM/EKF forecasting-aided state estimator is the
high accuracy as well as a high level of redundancy offered by using multiple mea-
surements of the same parameters. It also uses up less computational resources than
the conventional weighted least-squares approach since there is only one iteration
per time instant whereas the conventional state estimator iterates until convergence
at every time instant. However, the high level of redundancy, while advantageous
in terms of accuracy leads to a greater computational cost as the dimensions of the
matrices and vectors involved become large. Clearly, a more resource-efficient state
estimation method is needed to overcome the detrimental effects of the MM/EKF
with regard to computational complexity. The RO/EKF algorithm accomplishes
this by separating the PMU-observable states from the PMU-unobservable states
and estimating them separately. However, the saving in computational complexity
comes at the cost of accuracy.

The most important aspect of the RO/EKF algorithm is the resource-efficient
nature of its implementation. Since the processing is done on matrices and vectors
of reduced dimensions, the RO/EKF is also more computationally efficient than a
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typical integrated approach. For example, consider a system with N buses. Assum-
ing a fairly realistic 50% PMU observability, the dimensions of the largest matrix
inversion is halved, when compared to the integrated state estimator. Furthermore,
the inherent structure of the RO/EKF algorithm allows for some level of distributed
parallel implementation of the state estimation algorithm. For example, the task of
estimating the state of the PMU-observable states may be offloaded to the PDC or
the super-PDC since it is computationally light and only the state estimate needs to
be transmitted to the main EMS/SCADA. This means that PMU current measure-
ments, which are more in number than voltage measurements need never be trans-
mitted to the EMS/SCADA thereby freeing up communication resources. Moreover,
the problem of ill-conditioned measurement noise covariance matrices is also avoided
because the covariance matrix Cn is never inverted. This makes the algorithm very
stable when compared to the MM/EKF.

PMU measurements follow a time scale different to conventional measurements.
Because of this, the MM/EKF estimator must wait for the conventional measure-
ments to arrive before calculating the state estimate. However, in the RO/EKF
state estimator, the PMU-observable states are evaluated separately and these may
be updated as often as necessary irrespective of whether the conventional measure-
ments have arrived or not as seen from (4.51).

In summary, it is safe to say that while the MM/EKF algorithm is more accurate
due to high redundancy, this redundancy also increases the computational burden.
Even though the MM/EKF algorithm is more resource-efficient than the traditional
weighted least-squares approach, the computational load may be further reduced
by using the RO/EKF algorithm, particularly in cases where high accuracy is not
required.
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Figure 4.5: Figure 4.5(a) shows the RMSE of the MM/EKF algorithm with respect
to time while Figure 4.5(b) shows the RMSE of the RO/EKF algorithm. The dif-
ferent plots represent the performance of the algorithm for different values of PMU
observability O.



42

0 20 40 60 80 100 120 140 160 180 200
10

−3

10
−2

10
−1

10
0

 

 

RO/EKF

MM/EKF

Iteration, k

R
M
S
E

(a)

0 20 40 60 80 100 120 140 160 180 200

10
−3

10
−2

10
−1

 

 

MMEKF

RO/EKF

Iteration, k

R
M
S
E

(b)

Figure 4.6: Figure 4.6(a) compares the RMSE of the MM/EKF and the RO/EKF
algorithms with O = 63% and Figure 4.6(b) shows the performance comparison for
O = 92.5%
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The MM/EKF algorithm is summarised in Algorithm 1 and RO/EKF in Algo-
rithm 2 for anN bus system over K time instants. It is implicitly assumed that three
past state vectors are available in order to get the forecasting algorithm started.

Algorithm 1 The Mixed-Measurement/Extended Kalman Filter

MM/EKF Algorithm

Initialise
a(0) = x(−3);b(0) = 1

2
({x(−2)− x(−1)}+ {x(−3)− x(−2)});

Choose α and β

x̃(0) = x̂(0) = [0, 0, · · · , 0
︸ ︷︷ ︸

N−1

, 1, 1, · · · , 1
︸ ︷︷ ︸

N

]T

for k = 1 . . .K

Forecast state vector:

a(k) = αx̂(k) + (1− α)x̃(k)

b(k) = β[a(k)− a(k − 1)] + (1− β)b(k − 1)

g(k) = (1 + β)(1− α)x̃(k)− βa(k − 1) + (1− β)b(k − 1)

x̃(k) = Fx̂(k − 1) + g(k),F = α(1− β)I

Kalman Filtering:

1. Calculate Jacobian H̄(k) and measurement function h̄(·) using x̃(k)

2. Compute Kalman gain:

M(k) = FΣ(k − 1)FT +Cw

Σ(k) =
[
H̄T(k)C−1

n H̄(k) +M−1(k)
]−1

K(k) = Σ(k)H̄T(k)C−1
n

3. Wait for both conventional and PMU measurements to arrive. Then
form integrated measurement vector z̄(k).

4. Calculate the state estimate:

x̂(k) = x̃(k) +K(k)
[
z̄(k)− h̄(x̃[k])

]

end
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Algorithm 2 The Reduced Order/Extended Kalman Filter

RO/EKF Algorithm

Initialise
a(0) = x(−3);b(0) = 1

2
({v(−2)− v(−1)}+ {v(−3)− v(−2)});

Choose α and β

ṽ(0) = v̂(0) = [1, 1, · · · , 1
︸ ︷︷ ︸

N

, 0, 0, · · · , 0
︸ ︷︷ ︸

N−1

]T

for k = 1 . . .K

Forecast state vector:

a(k) = αv̂(k) + (1− α)ṽ(k)

b(k) = βi[a(k)− a(k − 1)] + (1− βi)b(k − 1)

g(k) = (1 + β)(1− α)ṽ(k)− βa(k − 1) + (1− β)b(k − 1)

ṽ(k) = Fv̂(k − 1) + g(k),F = α(1− β)I

Estimate PMU-observable states:
Wait for PMU measurements z2(k) to arrive. Update estimate v̂2(k):

v̂2(k) = (J̃T
22C

−1
2 J̃22)

−1J̃T
22C

−1
2 z2(k)

Kalman filtering:

1. Calculate matrices J̃11(k) and J̃12(k) using ṽ(k) given by

[

J̃11(k) J̃12(k)
]
= R(k)ΠT

2. Compute Kalman gain:

M(k) = F′
11Σ(k − 1)(F′

11)
T +Cw1

Σ(k) = (M−1(k) + J̃T
11C

−1
1 J̃11)

−1

K(k) = Σ(k)J̃T
11C

−1
1

3. Wait for conventional measurements z1(k) to arrive. Then calculate
the state estimate:

v̂1(k) = ṽ1(k) +K(k){z′1(k)− J̃11ṽ1(k)− J̃12(k)v̂2(k)}

Form full state estimate:

v̂(k) = ΠT

[
v̂1(k)
v̂2(k)

]

end



Chapter 5

Event-Triggered Multi-Area State
Estimation

The power grid of the future will be equipped with a myriad of smart measurement
devices which collect and transmit vast quantities of data. Consequently, the control
center will need to process those data, convert the raw data into useful information
and transform this information into actionable intelligence. In fact, the deployment
of PMUs at the transmission level has already resulted in more data than the legacy
grid’s control center can handle [7]. When the smart grid is fully deployed, there
is a risk that the grid’s operator will be drowned in data. In designing the smart
grid, engineers must be mindful in preventing the data tsunami. Furthermore, it is
desirable to make the communication infrastructure throughout the grid energy- and
bandwidth-efficient. Hence an event-triggered approach to sensing, communication
and information processing would be quite appealing.

To reduce the tremendous computational complexity and large storage and data
transfer requirements, multi-area state estimation (MASE) has been proposed as a
viable alternative to the traditional centralized state estimation solutions. Figure 5.1
depicts a typical two-level MASE approach where the grid is divided into smaller
areas, each of which is equipped with a local state estimator to provide a local
state estimate. These are then aggregated in some way with other local solutions to
render a global solution. Most of the existing MASE algorithms employ the weighted
least-squares (WLS) method using traditional SCADA measurements, and they are
typically implemented with a two-level architecture — a lower level that provides
local SE solutions and a higher level that coordinates local estimates to obtain a
global SE solution.

In the conventional MASE approach, the state estimates are updated and sent to
the co-ordination level at every time instant irrespective of whether or not an update
is warranted. In this chapter, we present an event-triggered MASE approach that
updates the local state estimates only when needed. Accordingly, those estimates
are transmitted to the co-ordination level only when such an action is informative,
i.e. an on-demand estimation and communication approach. The triggering event
is characterized by the estimation error exceeding a prescribed magnitude bound.
The proposed approach will not only reduce computational complexity, but the

45
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Figure 5.1: Schematic representation of two-level multi-area state estimation in a
power system divided into M subsystems.

communication requirements in MASE.
In the event-triggered MASE framework, the local areas update their state es-

timates only when needed and cooperate (transmit the estimates) only when such
an action is informative. An adaptive estimation paradigm, referred to as set-
membership adaptive filtering (SMAF) [43], offers a viable solution to this ap-
proach. SMAF algorithms feature selective update of parameter estimates unlike
conventional adaptive estimation algorithms such as recursive least-squares (RLS)
and least-mean-squares (LMS) where parameter estimates are updated continually
regardless of the benefits of such updates. In SMAF, estimates are updated only
when the measurements offer sufficient innovation, as measured by some function of
estimation error. Accordingly, distributed estimation derived from SMAF commu-
nicates only when such an action is informative.

The fundamental idea behind set-membership filtering is the assumption that
the measurement noise is considered bounded, and the bound is either known or
can be estimated. Then, a feasibility set is found such that the bounded error
specification is met for any member of this set [44]. The problem of recursive state
estimation in a linear dynamic system in the presence of bounded noise was first
studied by Schweppe in his 1968 paper [45]. The concept of a bounding ellipsoid was
introduced here. This bounding ellipsoid in the state space encloses the true states
and bounds the intersection of two ellipsoidal feasibility sets, one resulting from the
state-transition equations and the other from the measurement equation. However,
the optimization of this bounding ellipsoid was not considered. Furthermore, this
algorithm updated the parameter estimates even when new data does not contribute
any innovation.

The same problem was formulated as a system identification problem by Fogel
and Huang, where the bounding ellipsoid was optimized with respect to both the
volume and over the sum of the semi-axes of the bounding ellipsoid [46]. Another
quantity, σ, which is a characteristic of the bounding ellipsoid related to the mean-
square error [47], can also be used to optimize the bounding ellipsoid and this class
of optimal bounding ellipsoid (OBE) algorithms are known as σ-optimizer OBE
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algorithms [47–51]. A classification of different SMAF algorithms can be found
in [52].

5.1 The Extended BEACON Algorithm

In this section we develop an event-triggered nonlinear estimation algorithm known
as extended Bounding Ellipsoid Adaptive CONtrained least squares or eBEACON.
This algorithm is based on the BEACON algorithm developed in [48] by Nagraj et
al. We shall begin by deriving SMAF-based estimator for a generalized nonlinear
measurement model. In the following section, we apply this solution to the two-level
MASE framework in order to arrive at the proposed state estimator.

Let θ(n) be an arbitrary state vector at time n. Then, the set of observations
y(n) that relates to the state vector is expressed as

y(n) = f{θ(n)}+ u(n), (5.1)

where f{·} is a set of nonlinear functions operating on θ(n) and u(n) is the additive
zero-mean observation noise at time n.

We assume the norm of the observation noise vector is bounded in magnitude
by a fixed value, say γ which is either estimated or known a priori. Therefore,

‖y(n)− f{θ(n)}‖2 ≤ γ2. (5.2)

Let us now replace f{θ(n)} by its first-order Taylor series expansion in (5.2).
The point of linearization is assumed to be the latest state estimate θ̂(n− 1). This
gives us

‖y(n)− f{θ̂(n− 1)}+ Fn−1θ̂(n− 1)− Fn−1θ(n)‖
2 ≤ γ2, (5.3)

which may be written as

‖ỹ(n)− Fn−1θ(n)‖
2 ≤ γ2, (5.4)

where ỹ(n) = y(n)− f{θ̂(n− 1)}+Fn−1θ̂(n− 1) and Fn−1 is the Jacobian given by

Fn−1 =
∂f{θ}

∂θ

∣
∣
∣
∣
θ=θ(n−1)

. (5.5)

Now, (5.4) gives us a constraint set for all possible values of the state vector θ(n) at
time n given the observation set y(n). This constraint set forms an ellipsoid given
by

H(n) = {θ ∈ R
K : ‖ỹ(n)− Fn−1θ‖

2 ≤ γ2}. (5.6)

Given a sequence of pairs y(n), θ(n), n = 1, 2, . . . , N , assuming the parameter
vector to be estimated has remained constant, it must lie in the inside the intersec-
tion of all constraint sets up to N , i.e.

θ ∈ Ω(N) , ∩N
n=1H(n) = Ω(N − 1) ∩H(N). (5.7)
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However, Ω(N) forms a polytope in the parameter space which is difficult to
describe mathematically. Therefore, it is easier to outer-bound this polytope with
another ellipsoid. Consider an ellipsoid in the state space of θ that encloses the
polytope formed by the set Ω(N − 1). Let us denote this by E(N − 1). Now, the
ellipsoid that bounds the set Ω(N), denoted as E(N), is a superset containing the
intersection of E(N − 1) and H(N), i.e.

E(N) ⊃ E(N − 1) ∩ H(N). (5.8)

It is important to note that E(N) contains the true state at time N . Figure 5.2 shows
a simple, two-dimensional pictorial representation of of the different ellipsoidal sets.

H(N) E(N − 1)

Ω(N) , ∩N
n=1H(n)

E(N)

E(N − 1) ∩H(N)

Figure 5.2: Geometric representation of set-membership filtering.

By extending the above rationale, we may derive an event-triggered ellipsoidal
bounding state estimation algorithm to estimate the state vector θ(n) at a time
instant n, assuming the state vector is quasi-static. Consider an ellipsoid E(n− 1)
at a time instant n− 1 expressed as

E(n− 1) = {θ ∈ R
K : (θ − θ(n− 1))TP−1

n−1(θ − θ(n− 1)) ≤ σ2(n− 1)}, (5.9)

where σ2(n− 1) is a scalar which decides the size of the ellipsoid at time n− 1.
At a time n, the true state θ(n) is contained in the ellipsoid that outer bounds

the intersection of the ellipsoidal set E(n− 1) and the degenerate ellipsoid resulting
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from the bounded noise assumption, H(n). This ellipsoid is denoted by E(n) and is
given by a linear combination of (5.9) and (5.4)

E(n) = αE(n− 1) + βH(n),

specifically,

E(n) ={θ ∈ R
K : α(θ − θ(n− 1))TP−1

n−1(θ − θ(n− 1))

+ β ||ỹ(n)− Fn−1{θ}||
2 ≤ ασ2(n− 1) + βγ2}. (5.10)

Upon expansion of (5.10), we obtain the following relations:

θ
TP−1

n θ = θ
T
[
αP−1

n−1 + βFT
n−1Fn−1

]
θ, (5.11)

θ(n)TP−1
n θ =

[
αθT (n− 1)P−1

n−1 + βỹT (n)Fn−1

]
θ, (5.12)

and θ
TP−1

n θ(n) = θ
T
[
αP−1

n−1θ(n− 1) + βFT
n−1ỹ(n)

]
. (5.13)

From (5.11), we get a recursive expression for the shaping matrix given by

P−1
n = αP−1

n−1 + βFT
n−1Fn−1, (5.14)

and from (5.13), we have the update expression for the state vector

θ(n) = αPnP
−1
n−1θ(n− 1) + βPnF

T
n−1ỹ(n). (5.15)

Now, (5.14) may be written as

Pn =
[
αP−1

n−1 + βFT
n−1Fn−1

]−1
(5.16)

=
[
αI+ βPn−1F

T
n−1Fn−1

]−1
Pn−1. (5.17)

Upon the application of the matrix inversion lemma and simplification, we have

Pn =
1

α

[
I− βPnF

T
n−1Fn−1

]
Pn−1. (5.18)

Now, substituting the above expression in (5.15), we have

θ(n) =
[
I− βPnF

T
n−1Fn−1

]
θ(n− 1) + βPnF

T
n−1ỹ(n)

= θ(n− 1) + βPnF
T
n−1 [ỹ(n)− Fn−1θ(n− 1)]

= θ(n− 1) + βPnF
T
n−1 [y(n)− f(θ(n− 1))]

= θ(n− 1) + βPnF
T
n−1en, (5.19)

where en = {y(n)− f(θ(n− 1))}.
An alternative form of the update expression which utilizes only past values of

the shaping matrix P may be derived as follows: Consider the update term in (5.19),
βPnF

T
n−1en. Substituting (5.14) in the expression for the update term, we have

βPnF
T
n−1en = β

[
αP−1

n−1 + βFT
n−1Fn−1

]−1
FT

n−1en.
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Applying the matrix inversion lemma we have

βPnF
T
n−1en =

β

α

[

Pn−1 −
1

α
Pn−1F

T
n−1

{
1

β
I+

1

α
Fn−1Pn−1F

T
n−1

}−1

Fn−1Pn−1

]

FT
n−1en

= βPn−1F
T
n−1

{
αI+ βFn−1Pn−1F

T
n−1

}−1
en. (5.20)

Therefore, the alternative form of (5.19) is given by

θ(n) = θ(n− 1) + βPn−1F
T
n−1

{
αI+ βFn−1Pn−1F

T
n−1

}−1
en. (5.21)

Considering the remaining terms in (5.10), we have the expression

θ
TP−1

n θ − θ(n)TP−1
n θ − θ

TP−1
n θ(n) + αθ(n− 1)TP−1

n−1θ(n− 1)

+β‖ỹ(n)‖2 + θ
T (n)P−1

n θ − θ(n)TP−1
n θ(n) ≤ ασ2(n− 1) + βγ2.

Rearranging the terms we have

(θ − θ(n))TP−1
n (θ − θ(n)) ≤ ασ2(n− 1) + βγ2 − αθ(n− 1)TP−1

n−1θ(n− 1)

− θ
T (n)P−1

n θ(n)− β‖ỹ(n)‖2.

This can be written as

σ2(n) = ασ2(n− 1) + βγ2 − β‖ỹ(n)‖2 − αθ(n− 1)TP−1
n−1θ(n− 1)− θ

T (n)P−1
n θ(n).
(5.22)

Substituting (5.14) and (5.21) in (5.22), we arrive at the following expression for
σ2(n).

σ2(n) = ασ2(n− 1) + βγ2 − αβeTnQ
−1
n en, (5.23)

where Qn =
[
αI+ βFn−1Pn−1F

T
n−1

]
.

If α and β are chosen to be 1 and λ respectively (as with the BEACON algo-
rithm), where λ is a scalar and λ ≥ 0, and employing the eigenvalue decomposition
of Qn in (5.23) we have

σ2(n) = σ2(n− 1) + λγ2 − λ
∑

i

(eTndi)
2

1 + λρi
(5.24)

where ρi and di are the ith eigenvalue and eigenvector or the matrix Fn−1Pn−1F
T
n−1,

respectively. Now, σ2(n) is upper bounded by

σ2(n) = σ2(n− 1) + λγ2 −
λ‖en‖

2

1 + λρmax
(5.25)

where ρmax is the maximum singular value of Fn−1Pn−1F
T
n−1. Equation (5.26) can

be rewritten as

σ2(n) = σ2(n− 1)−

(
λ‖en‖

2

1 + λρmax
− λγ2

)

(5.26)
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The parameter σ2(n) relates to the ellipsoid E(n) and the central idea behind
the estimation algorithm is to find an optimally small ellipsoid that outer bounds
the intersection of n ellipsoidal feasibility sets. For that to be true, σ2(n) must be
less than σ2(n− 1). This gives us a condition

λ‖en‖
2

1 + λρmax

− λγ2 > 0. (5.27)

Next, in order to find the smallest possible bounding ellipsoid, i.e. the optimal
bounding ellipsoid we must minimize the second term of (5.26) with respect to λ.
Upon minimization, the optimal value of λ is found to be

λ =
1

ρmax

(
‖en‖

2

γ2
− 1

)

(5.28)

substituting this in (5.27), the condition for which σ2(n) < σ2(n− 1) is given by

‖en‖
2 > γ2. (5.29)

This expression is the key to the event-triggered nature of the estimation algorithm.
This is because (5.29) implies that unless the condition ‖en‖

2 > γ2 is satisfied,
there is no point in updating since this would do nothing to shrink the bounding
ellipsoid further. This means that (5.29) forms an innovation check, i.e. (5.29) tells
us whether or not there is sufficient innovation in the measurement set y(n) in order
to warrant an update. Therefore λ is given by

λ =

{
0 if ‖en‖

2 ≤ γ2

1
ρmax

(
‖en‖2

γ2 − 1
)

otherwise
(5.30)

The recursions of the SMAF-based estimation algorithm are summarized be-
low.

Algorithm 3 The eBEACON algorithm

if ‖y(n)− f{θ̂(n− 1)}‖ > γ2

λ =
1

ρmax

(
‖en‖

2

γ2
− 1

)

P−1
n = αP−1

n−1 + βFT
n−1Fn−1

θ̂(n) = θ̂(n− 1) + βPnF
T
n−1

[

y(n)− f{θ̂(n− 1)}
]

else

λ = 0

θ̂(n) = θ̂(n− 1)
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5.2 Event-Triggered Two-Level MASE

In this section, we apply the eBEACON algorithm to solve the problem of state
estimation in the two-level MASE framework. In order to solve the problem of state
estimation in large, complex, and highly interconnected power systems, we divide
the system into M non-overlapping areas or subsystems. Each area m is associated
with its local measurement function, namely,

zm(k) = hm [xm(k)] + nm(k), m = 1, . . . , M (5.31)

where, as in (2.28), zm(k) ∈ RLm×1 is the local measurement vector, and xm(k) =
[xi

T
m(k) xb

T
m(k)]

T is the state vector which is further partitioned into internal state
variables, xi

T
m, and border state variables, xb

T
m. Internal state variables are those

that are observable for the particular area while border state variables are the states
of those buses with lines connecting two areas (referred to as tie-lines).

In the conventional MASE framework, the coordinator reads tie-line parameters,
and recalculates the estimates of the border state variables and the phase angles on
the local slack buses and sends these back to the regional state estimators at every
time instant [53]. In contrast, in the scheme proposed here, the regional state
estimators transmit their local estimate of the border variables only when those
estimates are updated (triggered by an event). This reduces the amount of data
being transferred and minimizes communication requirements.

For two-level MASE, the distributed SMAF algorithm described proposed here
consists of two steps: 1) the local state update, and; 2) co-ordination step where
border states are combined. These two steps are described next.

5.2.1 Local update

In the local update phase, the state estimator associated with each area calculates
the innovation check given by (5.29); specifically,

‖zm(k)− hm [x̂′
m(k − 1)] ‖2 > γ2

m (5.32)

where as in x̂′
m(k − 1) is the state estimate after the co-ordination step at time

k − 1. If (5.32) is found to be true, it means that there is sufficient innovation in
the measurement set zm(k) to warrant an update of the state vector. The update
expressions for the state vector at a time k are given below and they are cognates
of (5.19) and (5.14):

x̂m(k) = x̂′
m(k − 1) + λm(k)Pm(k)H

T
m(k)em(k)

em(k) = zm(k)− hm [x̂′
m(k − 1)] (5.33)

P−1
m (k) = P−1

m (k − 1) + λm(k)H
T
m(k)Hm(k)

where x̂′
m(k − 1) = [x̂T

im(k − 1) x̂′T
bm(k − 1)]T and vector x̂′

bm(k − 1) contains the
combined border state variables obtained (and fed back) from the co-ordination
level. The update parameter λm(k) is given by

λm(k) =
1

ρmax

[
‖em(k)‖

γm
− 1

]

(5.34)
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where ρmax is the largest eigenvalue of Hm(k)Pm(k − 1)HT
m(k).

Each region updates its state estimate based on (5.33). Thereafter, the states are
transmitted to the co-ordination level. We note that the algorithm in (5.33) updates
the state estimates only when the received data contain sufficient innovation, as
indicated by (5.32). As such, λm(k) 6= 0, or equivalently ‖em(k)‖ > γm, defines the
triggering event.

5.2.2 Co-ordination phase

The function of the co-ordination step is to obtain an interconnection-wide state
estimate while exploiting the diversity of border state estimates to improve the
local state estimates. Typically, in a two-level MASE scheme, the co-ordination
level receives tie-line measurements, boundary measurements and suitable pseudo-
measurements from all the regions [53]. These collectively make up a set of mea-
surements zc(k) and a consensus state estimate is obtained by solving a second
estimation problem expressed as

zc(k) = hc [xc(k)] + nc(k) (5.35)

where nc(k) is the error associated with the measurements zc(k) and xc(k) =
[xT

b1(k) · · ·x
T
bM(k)θsk1 (k) · · · θskM (k)]T, θskm (k) being the phase angle of the local slack

bus of region m referred to the global slack bus.
The updated (or consensus) border variables {x̂′

bm(k)}
M
m=1, obtained by solving

(5.35), are sent back to all the regions to be used in the next iteration of (5.33).
As noted above, if no update takes place in a particular area it will not transmit
anything to the co-ordination level, which will then use the most recent reported
variables. Furthermore, if none of the areas sharing border variables performed an
update, the co-ordination level need not solve (5.35) and x̂′

m(k) = x̂′
m(k − 1).

The above method, however, is not a unique solution for the co-ordination step
and other algorithms for co-ordination are also possible. Advances in distributed
estimation, which has been an active field of research in the signal processing com-
munity lately, can also be applied to the MASE framework. In distributed estima-
tion, several nodes (or areas in case of MASE) estimate a common parameter vector
through local collaborations. In the case of MASE, the measurements of each area
only relates to a small part of the whole state vector. Thus, the resulting compu-
tational and communication costs of a distributed estimation approach depend on
whether local knowledge of the whole state vector is required or not. For example,
by redefining the correction vector in (2.13) as ∆x = [∆xT

1 · · · ∆xT
M ]T, an iterative

WLS solution for the MASE takes the form

∆x(j) =

[
M∑

m=1

HT
m(j)W

−1
m Hm(j)

]−1 M∑

m=1

HT
m(j)W

−1
m [zm − hm(xm(j))]

x̂m(j + 1) = x̂m(j) +∆xm(j)

(5.36)

where Hm(j) is the measurement Jacobian of area m obtained with the local state
estimate x̂m(j). The simplest method seems to be to express (5.36) in terms of aver-
ages 1

M

∑

mHT
mW

−1
m Hm and 1

M

∑

mHT
mW

−1
m [zm −hm(xm)] across the areas. These
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so-called consensus algorithms (also related to gossip algorithms) can be expected
to be of relevance here, see, e.g. [25, 26]. Then, two separate consensus algorithms
can be used to compute these quantities, and in turn, the quantity ∆xm to be used
at the jth iteration of the estimator. However, this method requires communica-
tion corresponding to two consensus algorithms being executed in parallel. Perhaps
more importantly, it requires the two algorithms to converge before the quantity
∆xm can be computed and hence the iteration of the estimation algorithm can be
done. In other words, this approach requires the consensus algorithm to be exe-
cuted at a much faster time scale than the consensus algorithm. While there has
been some characterization of the performance loss when the time scales do not
separate smoothly [54–56], the general problem still remains open.

The local update step and the co-ordination step described in this section con-
stitute a novel, two-level MASE algorithm which is known as Multiple-Input eBEA-
CON or MI-eBEACON and is similar to the MI-eBEACON algorithm in [57].

5.3 Simulation Results

In this section we discuss the results of a computer simulation of the proposed
algorithm as formulated in (5.33). The MI-eBEACON algorithm is tested with the
standard IEEE 14 bus system, which is partitioned into three areas as shown in
Fig. 5.3. The simulation is performed over 250 time instants. The dynamics of the
system are simulated by introducing a sudden load increase of 10% on all load buses
at the 90th time instant and then restoring the load to its original value at the 150th
time instant while a zero-mean normally distributed jitter with standard deviation
σP = 0.8×10−3 is added to the load at every time instant. A load flow calculation is
then performed using the MatPower toolbox in MATLAB [41] to update line flows,
voltage magnitudes and phase angles throughout the system.

For simplicity we assume that the system is fully observable by PMUs, which
are placed at buses 2,6,8 and 9. PMUs measure not only voltage phasors at buses
where they are installed but also current phasors through all incident buses. Since
the current phasor on a line between two buses is linearly related to the two voltage
phasors at those two buses [37], the PMU measurements across the system are
linearly related to the voltage phasors [5]. Furthermore, phasor measurements are
synchronized with a global time reference so the co-ordination level is simplified
and a consensus estimate of the border state variables within a neighbourhood are
combined by simply taking a weighted average. While more sophisticated consensus
algorithms may be considered in the future, see, e.g. [58], this topic is out the scope
of the work here. In particular, the border variable x̂bm,n(k) of area m is common
with areas defined by neighbourhood Gmn, and consequently we get

x̂′
bm,n(k) = c(n)m,m(k)x̂bm,n(k) +

∑

l∈Gmn\{mn}

c
(n)
l,m(k)x̂bl,n(k)

The regional state estimators have no a priori information about the state and
begin with a flat start, i.e. the real part of all voltage phasors are set to 1 p.u. (per
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Figure 5.3: IEEE 14 bus system divided into three areas with PMU placements.

unit) and the imaginary parts are set to 0 p.u. To make the measurements emu-
late a real system, we introduced a zero-mean white Gaussian noise to corrupt the
measurements. In a typical PMU, both the voltage and current magnitude measure-
ments have a standard deviation of 0.006 p.u., while the voltage and current phase
angles have standard deviations of 0.52◦ and 1.04◦, respectively. This must be taken
into account when generating the random measurement noise in the simulation.

The simulations are performed for different error bounds γm which are specified
by

γm =
√

αtr(E[nm(k)nT
m(k)]) (5.37)

where α can be varied so as to control the frequency of updates, trading off with
performance.

Figure 5.4 shows that the algorithm is quite capable of tracking the sudden drop
in voltage caused by, e.g. a surge in demand. In this case, α = 4, and close observa-
tion of the figure reveals that updates occur mostly after the bus-voltage changes.
This kind of event-triggered SE offers considerable saving in communication between
subsystems, particularly when the grid is quasi-static.

The performance measure δ(k) is calculated by averaging the measurement error
over I realizations

δ(k) =
1

MI

I∑

i=1

M∑

m=1

1

Lm

||z(i)m (k)−H(i)
m x̂(i)

m (k)||2 (5.38)

where x̂m(k) is the estimate of xm(k).
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(a)

(b)

Figure 5.4: Tracking ability of the MI-eBEACON algorithm showing the real part
(Figure 5.4(a)) and imaginary part(Figure 5.4(b)) of the voltage at bus 4.

Figure 5.5 shows the performance of the proposed algorithm, and compares it to
that of the recursive least-squares (RLS) algorithm. The parameter λ is known as
the forgetting factor or the weighting factor and reduces the influence of old data.
It is clear from the figure that as we increase the error bound, the performance
degrades. Also, the proposed algorithm is clearly superior to the RLS estimator.

The amount of communication is measured simply by calculating the number of
times an update occurred as a percentage of the total number of time instants. This
is because communication occurs only if the local state estimate has been updated.
The average update frequency per area is a good measure of the communication
costs associated with updates. Figure 5.6 shows how changing the error bound
affects the average update frequency and the steady-state performance as measured
by δs = 1

50

∑250
k=200 δ(k). We can see that the performance degrades at a much

slower rate when compared to the decrease of the update frequency. This means
that a careful choice of γm would significantly reduce the amount of communication
between regions without significantly compromising the performance.

In the scenario studied, we observe that the computational complexity at each
update instant is of roughly same order, O(N3

m), for both the RLS algorithm and
the MI-eBEACON algorithm. However, for the MI-eBEACON algorithm updates
occur only 14% of the time (when α = 4) in the case studied (see Figure 5.6).
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Figure 5.5: Comparing MI-eBEACON to RLS in terms of δ(k).
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Figure 5.6: Steady state performance measure δs (Figure 5.6(a)) and update fre-
quency (Figure 5.6(b)) as a function of α.
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We note that the aforementioned complexity figures are pessimistic, for the com-
putational complexity can be further reduced by exploiting the sparseness of Hm(k).
Furthermore, the communication cost of the MI-eBEACON algorithm is almost 86%
less when compared to the RLS approach. This is because data transfer occurs be-
tween the co-ordination level and the local state estimators at every time instant
for the RLS approach, while it occurs, on average, only 14% of the time for the
MI-eBEACON algorithm. In general, updates mostly take place when there is a
change, e.g. load or topological changes, in the system.

5.4 Discussion

In this chapter we design a distributed adaptive estimation technique for multi-area
state estimation in power systems and study its performance using a simulation.
Distributed approaches can enhance the computational performance and the relia-
bility of SE algorithms. Efficient and reliable communication is the backbone for the
distributed SE algorithms. The scheme described here, known as MI-eBEACON,
updates only when it is necessary (event-triggered) while conventional approaches
update the state estimate at every time instant regardless of the benefits of the up-
date. This resulting sparse update feature leads to reduced communication between
neighbours, reduced interference and reduced local processing cost.
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The steps of the MI-eBEACON algorithm are summarized below:

Algorithm 4 The MI-eBEACON Algorithm

for k = 1 . . .K and m = 1 . . .M

Local update step:

if ‖zm(k)− hm [x̂′
m(k − 1)] ‖2 > γ2

m

1. Update local state estimate.

em(k) = zm(k)− hm [x̂′
m(k − 1)]

λm(k) =
1

ρmax

[
‖em(k)‖

γm
− 1

]

P−1
m (k) = P−1

m (k − 1) + λm(k)H
T
m(k)Hm(k)

x̂m(k) = x̂′
m(k − 1) + λm(k)Pm(k)H

T
m(k)em(k)

2. Transmit x̂m(k) to the co-ordination level.

else

1. Keep previous state estimate.

λm(k) = 0

x̂m(k) = x̂′
m(k − 1)

2. No communication occurs.

Co-ordination step:

1. Solve zc(k) = hc [xc(k)] + nc(k)

2. Form vectors {x̂′
bm(k)}

M
m=1 and transmit to local state estimators.



Chapter 6

Conclusions

The research work presented here deals with discovering new ways to carry out
state estimation in power systems taking into account recent advances in the field of
measurement technology and statistical signal processing. Two factors in particular,
namely, the emergence of new measurement technologies and the departure from
a vertically integrated utility structure, have revitalized research in power system
state estimation. Specifically, larger and more complicated systems, coupled with the
enormous amount of measurement data generated by new measurement technologies,
call for a rethinking of the traditional state estimation paradigm in power systems
and the development of new algorithms which face up to the challenges posed by
power grids of the future.

The focus of the work presented in this thesis is the development of novel state
estimation algorithms which can function within the existing state estimation frame-
work while, at the same time, meeting the constraints imposed by the emerging
smart grid. To begin with, resource-efficient dynamic state estimation algorithms
must be developed which can combine measurements from both the traditional mea-
surement devices as well as the newer phasor measurement units (PMUs) and op-
erate on them optimally in order to arrive at an estimate of the system state. Fur-
thermore, concentrating the state estimation function at a single point to monitor a
large interconnection leads to huge communication and computational overheads. A
more feasible approach would be to distribute the state estimation function through-
out the interconnection. An on-demand estimation scheme featuring event-triggered
communication is necessary to reduce the communication and computational over-
heads associated with distributed estimation in large systems.

In this thesis, a forecasting-aided state estimation scheme known as the mixed-
measurement extended Kalman filter (MM/EKF) is developed to combine conven-
tional measurements with PMU measurements. Also, a new, reduced complex-
ity, reduced-order algorithm known as the reduced order extended Kalman fil-
ter (RO/EKF) algorithm is proposed which addresses certain drawbacks of the
MM/EKF scheme. The ability of the MM/EKF and RO/EKF to track the evolution
of the state vector in time is verified with computer simulations and the statistical
performance of the RO/EKF algorithm with respect to the root mean-squared error
is studied and compared with the performance of the MM/EKF estimator.

60
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In order to address the demands on communication and computational resources
placed by larger and more complicated systems, a novel, resource-efficient, adaptive
estimation algorithm is developed. Using the concept of set-membership adaptive
filtering, a new selective-update nonlinear adaptive filtering algorithm known as
eBEACON is derived. This is extended to a two-level multi-area state estimation
algorithm, known as known as MI-eBEACON [8], for multi-area state estimation
in large interconnections. The performance of this is studied using a computer
simulation and comparisons are drawn to recursive least-squares adaptive filtering.

In conclusion, while some researchers may consider the field of power system state
estimation somewhat mature, new techniques for state estimation must be developed
as the power grid becomes more complex, more interconnected and more intelligent.
Looking ahead, progress in the field of estimation theory and adaptive filtering will
greatly facilitate and benefit the development of the smart grid. In return, research
on state estimation within the framework of one of the most complex man-made
systems can invigorate the statistical signal processing research as a whole.
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