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Abstract: The goal of this study is to develop some new connection formulae between two generalized
classes of Fibonacci and Lucas polynomials. Hypergeometric functions of the kind 2F1(z) are included
in all connection coefficients for a specific z. Several new connection formulae between some famous
polynomials, such as Fibonacci, Lucas, Pell, Fermat, Pell–Lucas, and Fermat–Lucas polynomials,
are deduced as special cases of the derived connection formulae. Some of the introduced formulae
generalize some of those existing in the literature. As two applications of the derived connection
formulae, some new formulae linking some celebrated numbers are given and also some newly closed
formulae of certain definite weighted integrals are deduced. Based on using the two generalized
classes of Fibonacci and Lucas polynomials, some new reduction formulae of certain odd and even
radicals are developed.

Keywords: generalized Fibonacci and generalized Lucas numbers; Lucas and Fibonacci numbers;
recurrence relation; radicals reduction
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1. Introduction

The Fibonacci and Lucas sequences are among the important number sequences.
These sequences of numbers and their corresponding polynomials can be generated by
recurrence relations, each of degree two. In fact, these sequences of polynomials and
numbers are crucial in a variety of fields, such as number theory, probability, combinatorics,
numerical analysis, and physics, so investigations of these sequences attract the attention
of many mathematicians and scientists. From a theoretical point of view, there are several
studies concerning Fibonacci and Lucas sequences, see, for instance, [1,2]. In addition,
in the important books of Koshy [3] and Djordjevic and Milovanovic [4], the authors
studied various sequences related to the Fibonacci and Lucas sequences and some of
their generalizations.

Many authors devoted considerable attention to the generalizations of the Fibonacci
and Lucas sequences of numbers and polynomials. For example, Fibonacci k-numbers
were considered in [5]. In [6], the authors developed new identities for the two classes
of k−Fibonacci and k−Lucas polynomials. Horadam in [7] is considered an important
class of generalized numbers that involves four parameters. Abd-Elhameed et al. in [8]
have investigated the same sequence of Horadam numbers and developed new identities
of these numbers. The authors in [9] studied a type of generalized Fibonacci numbers.
A type of generalized Fibonacci polynomials, namely, distance Fibonacci polynomials, was
investigated in [10]. A four-parameter generalization of some special sequences was also
considered in [11]. Some other studies regarding different types of generalized sequences
can be found for example in [12–15].
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If we have two polynomial sets {Ai(x)}i≥0 and {Bj(x)}j≥0, then to solve the connec-
tion problem between them, we have to find the connection coefficients Ci,j in the equation:

Ai(x) =
i

∑
j=0

Ci,j Bj(x). (1)

The coefficients Ci,j in (1) have prominent parts in several problems in mathematics
as well as in mathematical physics. Due to this importance, the connection problems
between various polynomials have been investigated by many authors. In this regard,
Abd-Elhameed et al. in [16] solved the connection problems between Fibonacci polynomials
and Chebyshev polynomials of first and second kinds. Some other studies concerning
connection problems can be found in [17,18].

In the field of special functions and their applications, hypergeometric functions play
an important role (see, for example, [19,20]). In fact, nearly all of mathematics’ fundamental
functions are hypergeometric or ratios of hypergeometric functions. Furthermore, numer-
ous hypergeometric functions are widely used to express connection and linearization
coefficients (see, for example, [21,22]).

Here are the main points of this article:

• We solve the connection problems between two certain classes of polynomials general-
izing Fibonacci and Lucas polynomials. For a specific z, we prove that the obtained
expressions involve hypergeometric functions of the form 2F1(z).

• We develop some applications of the introduced connection formulae. In this re-
spect, two applications are presented. In the first, some new formulae between some
celebrated numbers are given. In the second, some definite weighted integrals are
evaluated in closed forms.

• We employ the two classes of generalized Fibonacci and generalized Lucas polynomi-
als to obtain new reduction formulae of certain kinds of even and odd radicals.

The following is a list of the paper’s contents. The two generalized Fibonacci and
Lucas polynomials are discussed in the next section, which includes some essential prop-
erties and helpful relations. The development of new connection formulae between the
two introduced generalized polynomials is the focus of Section 3. In Section 4, we establish
some further connection equations between two polynomials from the same generalized
polynomials class. Section 5 introduces two uses of the previously stated connection formu-
lae. Section 6 is interested in using the two introduced generalized classes of polynomials
to develop new expressions for particular even and odd radicals. In Section 7, new expres-
sions for a few additional radicals are developed. We end the paper with some conclusions
in Section 8.

2. Some Properties of Two Generalized Classes of Fibonacci and Lucas Polynomials

We discuss some properties of the two classes of generalized Fibonacci and Lucas
polynomials in this section.

First, let a, b, r, and s be nonzero real numbers. Two classes generalizing Fibonacci and
Lucas polynomials can be generated by means of the following two recurrence relations:

φa,b
j (x) = a x φa,b

j−1(x) + b φa,b
j−2(x), φa,b

0 (x) = 1, φa,b
1 (x) = a x, j ≥ 2, (2)

and
ψr,s

j (x) = r x ψr,s
j−1(x) + s ψr,s

j−2(x), ψr,s
0 (x) = 2, ψr,s

1 (x) = r x, j ≥ 2. (3)

Note that for each j ≥ 0, φa,b
j (x) and ψr,s

j (x) are of degree j.
See also Philippou [23,24] and references therein for different generalized Fibonacci

and Lucas polynomials. In addition, they are very useful in probability and reliability
theory as well.
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Binet’s formula for φa,b
j (x) is given by [25],

φa,b
j (x) =

(
a x +

√
a2 x2 + 4 b

)j+1
−
(

a x−
√

a2 x2 + 4 b
)j+1

2j+1
√

a2 x2 + 4 b
, j ≥ 0, (4)

while Binet’s formulae for ψr,s
j (x) is given by [26],

ψr,s
j (x) =

(
r x +

√
r2 x2 + 4 s

)j
+
(

r x−
√

r2 x2 + 4 s
)j

2j , j ≥ 0. (5)

Two of the most useful properties of the two polynomials φa,b
j (x) and ψr,s

j (x) are their
power form representations. These expressions are given respectively in [25,26] in the
following two combinatorial forms:

φa,b
j (x) =

⌊
j
2

⌋
∑

m=0
(j−m

m ) bm aj−2m xj−2m, j ≥ 0, (6)

and

ψr,s
j (x) = j

⌊
j
2

⌋
∑

m=0

sm rj−2m (j−m
m )

j−m
xj−2m, j ≥ 1. (7)

Formulae (6) and (7) yield the following functional formulae between the generalized
Fibonacci and generalized Lucas polynomials and certain special classes of them. More
precisely, we have

φa,b
j (x) = bj/2φ1,1

j

(
a x√

b

)
, j ≥ 0,

and

ψr,s
j (x) = sj/2ψ1,1

j

(
r x√

s

)
, j ≥ 1.

The inversion formulae of (6) and (7) are also of interest. The authors in [25] found the
inversion formula of φa,b

j (x) in the form

xj = a−j

⌊
j
2

⌋
∑
i=0

(−b)i (j
i) (j− 2i + 1)

j− i + 1
φa,b

j−2i(x), j ≥ 0, (8)

while the same authors proved in [26] that the inversion of ψr,s
j (x) can be expressed as:

xj = r−j

⌊
j
2

⌋
∑
i=0

(−s)i cj−2i

(
j
i

)
ψr,s

j−2i(x), j ≥ 0,

where

cj =

{
1
2 , j = 1,
1, j ≥ 1.

(9)

The fundamental benefit of making use of the two generalized polynomials φa,b
j (x)

and ψr,s
j (x) is that several important classes of polynomials can be obtained as special cases

of them. In fact, Fibonacci, Pell, Fermat, Chebyshev, and Dickson polynomials of the second
kind are special kinds of φa,b

j (x), while Lucas, Pell–Lucas, Fermat–Lucas, Chebyshev, and
Dickson polynomials of the first kind are special polynomials of ψr,s

j (x). Table 1 displays
the different celebrated special classes of the two generalized classes of polynomials.
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Table 1. Special cases of the two generalizing classes.

Fibonacci polynomials Fj+1(x) = φ1,1
j (x)

Pell polynomials Pj+1(x) = φ2,1
j (x)

Fermat polynomials Fj+1(x) = φ3,−2
j (x)

Chebyshev polynomials of second kind Uj(x) = φ2,−1
j (x)

Dickson polynomials of second kind Eα
j (x) = φ1,−α

j (x)

Lucas polynomials Lj(x) = ψ1,1
j (x)

Pell–Lucas polynomials Qj(x) = ψ2,1
j (x)

Fermat–Lucas polynomials f j(x) = ψ3,−2
j (x)

Chebyshev polynomials of first kind Tj(x) = 1
2 ψ2,−1

j (x)

Dickson polynomials of first kind Dα
j (x) = ψ1,−α

j (x)

3. Connection Formulae Between the Two Generalized Classes of Fibonacci
and Lucas Polynomials

This section concentrates on the development of new connection formulae between the
two generalized polynomial classes considered in Section 2. Several connection formulae
between some famous polynomials are also deduced as special cases. The connection
coefficients are expressed in terms of 2F1(z) for certain z.

In this instance, we refer to the definition of the hypergeometric function 2F1(z)
(see [19]),

2F1

(
a1, a2

b1

∣∣∣∣z) =
∞

∑
r=0

(a1)r (a2)r

(b1)r

zr

r!
,

where a1, a2, and b1 are complex or real parameters, with b1 not zero nor a negative integer.
Now, the following lemma is needed.

Lemma 1. Let a, b, r, and s be any nonzero real numbers and let

Am,i =
i sm

( r
a

)i−2m
(i−m

m )

i−m 2F1

(
−m, i−m
i− 2m + 2

∣∣∣∣ b r2

a2 s

)
.

Am,i fulfills the following recurrence relation:

r Am,i−1 − r b Am−1,i−1 + a s Am−1,i−2 = a Am,i.

Proof. Lemma 1 can be proved via straightforward lengthy computations in view of the
definition of the hypergeometric function 2F1(z).

Theorem 1. The following connection formula applies for any non-negative integer i:

φa,b
i (x) =

( a
r

)i b
i
2c

∑
m=0

ci−2m (−s)m
(

i
m

)
2F1

(
−m, m− i
−i

∣∣∣∣ b r2

a2 s

)
ψr,s

i−2m(x), (10)

where the numbers cj are those given in Equation (9).
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Theorem 2. The following connection formula applies for any non-negative integer i with i ≥ 1:

ψr,s
i (x) = i

b i
2c

∑
m=0

sm
( r

a

)i−2m
(i−m

m )

(i−m) 2F1

(
−m, i−m
i− 2m + 2

∣∣∣∣ b r2

a2 s

)
φa,b

i−2m(x). (11)

Proof. Similar approaches can be used to prove Theorems 1 and 2. Therefore, it is sufficient
to prove Theorem 2. We proceed by induction. For the starting value i = 1, it is easy to
see that each of the two sides in (11) is equal to (r x). Now, assume that (11) holds for all
j < i, and we show that (11) is itself valid. If we start with the recurrence relation in (3) and
apply the induction hypothesis twice, then we get

ψa,b
i (x) = r x

b i−1
2 c

∑
m=0

Am,i−1 φa,b
i−2m−1(x) + s

b i
2c−1

∑
m=0

Am,i−2 φa,b
i−2m−2(x), (12)

where

Am,i =
i sm

( r
a

)i−2m
(i−m

m )

i−m 2F1

(
−m, i−m
i− 2m + 2

∣∣∣∣ b r2

a2 s

)
.

The recurrence relation in (2) implies that

x φa,b
i−2m−1(x) =

1
a

φa,b
i−2m(x)− b

a
φa,b

i−2m−2(x). (13)

If we insert (13) into (12), then the following relation is obtained:

ψa,b
i (x) =

r
a

b i−1
2 c

∑
m=0

Am,i−1 φa,b
i−2m(x)− r b

a

b i−1
2 c

∑
m=0

Am,i−1 φa,b
i−2m−2(x)

+ s
b i

2c−1

∑
m=0

Am,i−2 φa,b
i−2m−2(x).

After some algebraic calculations, the last relation can be transformed into the equiva-
lent one:

ψa,b
i (x) =

b i−1
2 c

∑
m=1

(
r
a

Am,i−1 −
r b
a

Am−1,i−1 + s Am−1,i−2

)
φa,b

i−2m(x) +
r
a

A0,i−1 φa,b
i (x)

− r b
a

Ab i−1
2 c,i−1 φa,b

i−2 b i−1
2 c−2

(x) + s A i
2−1,i−2 ξi,

(14)

where

ξi =

{
1, i even,
0, i odd.

In virtue of Lemma 1, one can rewrite (14) in the form

ψa,b
i (x) =

b i−1
2 c

∑
m=1

Am,i φa,b
i−2m(x) +

r
a

A0,i−1 φa,b
i (x)

− r b
a

Ab i−1
2 c,i−1 φa,b

i−2 b i−1
2 c−2

(x) + s A i
2−1,i−2 ξi.

(15)
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It is not difficult to see that (15) can be written alternatively as

ψr,s
i (x) = i

b i
2c

∑
m=0

sm
( r

a

)i−2m
(i−m

m )

i−m 2F1

(
−m, i−m
i− 2m + 2

∣∣∣∣ b r2

a2 s

)
φa,b

i−2m(x).

The proof of Theorem 2 is now complete.

Next, we give a special case of Formula (10).

Corollary 1. For r = a, s = b, the connection formula in (10) reduces to the following one:

φa,b
i (x) =

b i
2c

∑
m=0

ci−2m (−b)m ψa,b
i−2m(x). (16)

Proof. The substitution by r = a and s = b into Relation (10) yields the following relation:

φa,b
i (x) =

b i
2c

∑
m=0

ci−2m (−b)m
(

i
m

)
2F1

(
−m, m− i
−i

∣∣∣∣1) ψr,s
i−2m(x).

With the aid of the Chu–Vandermond identity, it is easy to see that

2F1

(
−m, m− i
−i

∣∣∣∣1) =
1

( i
m)

,

and consequently, Formula (16) can be easily obtained.

Taking into consideration the special polynomials of the two classes φa,b
j (x) and ψr,s

j (x)
mentioned in Table 1, several connection formulae can be deduced as special cases of
Corollary 1.

Corollary 2. For a non-negative integer i, the following connection formulae hold:

Fi+1(x) =
b i

2c
∑

m=0
ci−2m (−1)m Li−2m(x),

Pi+1(x) =
b i

2c
∑

m=0
ci−2m (−1)m Qi−2m(x),

Fi+1(x) =
b i

2c
∑

m=0
ci−2m 2m fi−2m(x),

Ui(x) =2
b i

2c
∑

m=0
ci−2m Ti−2m(x), (17)

Eα
i+1(x) =

b i
2c

∑
m=0

ci−2m αm Dα
i−2m(x).

Remark 1. The connection formula in (17) can be translated to the following trigonometric identity:

2 sin θ
b i

2c
∑

m=0
ci−2m cos(i− 2m) θ = sin(i + 1) θ.
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Corollary 3. For r = a and s = b, the connection formula in (11) reduces to the following
connection formula:

ψa,b
i (x) = φa,b

i (x) + b φa,b
i−2(x). (18)

Proof. The substitution of r = 1 and b = s into Relation (11) yields the following relation:

ψa,b
i (x) = i

b i
2c

∑
m=0

bm (i−m
m )

i−m 2F1

(
−m, i−m
i− 2m + 2

∣∣∣∣1) φa,b
i−2m(x). (19)

Noting that

2F1

(
−m, i−m
i− 2m + 2

∣∣∣∣1) =


1, m = 0,
1
i , m = 1,
0, otherwise,

it is easy to see that Formula (19) reduces to

ψa,b
i (x) = φa,b

i (x) + b φa,b
i−2(x).

Taking into consideration the special polynomials of the two classes φa,b
j (x) and ψr,s

j (x),
several simple connection formulae can be deduced as special cases of Relation (18).

Corollary 4. For every non-negative integer i with i ≥ 1, the following connection formulae hold:

Li(x) =Fi+1(x) + Fi−1(x), Qi(x) = Pi+1(x) + Pi−1(x),

fi(x) =Fi+1 − 2Fi−1(x), 2 Ti(x) = Ui(x)−Ui−2(x),

Dα
i (x) =Eα

i (x)− α Eα
i−2(x).

4. Connection Formulae Between Two Different Generalized Polynomials in
the Same Class

This section is concerned with introducing other new connection formulae. We give
connection formulae between two different generalized Fibonacci polynomials. Connection
formulae between two generalized Lucas polynomials of different parameters are also
given. We show again that all the connection coefficients are expressed in terms of 2F1(z)
for a certain z.

Theorem 3. The following connection formula applies for every non-negative integer i:

φa,b
i (x) =

( a
r

)i b
i
2c

∑
m=0

(−s)m ( i
m) (i− 2m + 1)

i−m + 1 2F1

(
−m,−i + m− 1

−i

∣∣∣∣ b r2

a2 s

)
φr,s

i−2m(x). (20)

Theorem 4. The following formula applies for every non-negative integer i:

ψa,b
i (x) =

( a
r

)i b
i
2c

∑
m=0

ci−2m (−s)m
(

i
m

)
2F1

(
−m, m− i

1− i

∣∣∣∣ b r2

a2 s

)
ψr,s

i−2m(x), (21)

where the constants cj are those given in (9).

Proof. Theorems 3 and 4 can be proved using similar procedures followed in the proof
of Theorem 2, but we give here another strategy of proof which is built on making use of
the power form representation of each of φa,b

i (x) and ψa,b
i (x), i ≥ 0, and their inversion
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formulae. Now, we are going to prove Theorem 3. Making use of the analytic form of
φa,b

i (x) in (6) enables one to write

φa,b
i (x) =

b i
2c

∑
r=0

br ai−2r
(

i− r
r

)
xi−2r, (22)

Expressing the term xi−2r that appears in (22) in terms of the polynomials φr,s
j (x) using

the inversion formula in (8) leads to the following formula:

φa,b
i (x) =

b i
2c

∑
r=0

br
(

i− r
r

)( a
r

)i−2r b
i
2c−r

∑
`=0

(−s)`(i− 2`− 2r + 1)(i−2r
` )

i− `− 2r + 1
φr,s

i−2`−2 r(x).

Rearranging the right-hand side of the last relation and performing some lengthy
manipulations enables one to obtain the following relation:

φa,b
i (x) =

b i
2c

∑
m=0

(2m− i− 1) φr,s
i−2m(x)

(
m

∑
r=0

(−1)m+r br ( a
r
)i−2r sm−r (i−r

r ) (i−2r
m−r)

m− i + r− 1

)
. (23)

It is not difficult to see that

m

∑
r=0

(−1)m+r br ( a
r
)i−2r sm−r (i−r

r ) (i−2r
m−r)

m− i + r− 1

=
(−1)m+1 sm ( a

r
)i
( i

m)

i−m + 1 2F1

(
−m,−i + m− 1

−i

∣∣∣∣ b r2

a2 s

)
,

and consequently, Relation (23) yields the connection formula

φa,b
i (x) =

( a
r

)i b
i
2c

∑
m=0

(−s)m ( i
m) (i− 2m + 1)

i−m + 1 2F1

(
−m,−i + m− 1

−i

∣∣∣∣ b r2

a2 s

)
φr,s

i−2m(x).

Remark 2. Several connection formulae can be deduced as special cases of the two connection
formulae in (20) and (21). In fact, there are forty relations that can be obtained. In the following, we
give some of these formulae.

Corollary 5. If we set r = 2 and s = −1 in Relation (20), then we obtain

φa,b
i (x) =

( a
2

)i b
i
2c

∑
m=0

( i
m) (i− 2m + 1)

i−m + 1 2F1

(
−m,−i + m− 1

−i

∣∣∣∣ 4 b
−a2

)
Ui−2m(x). (24)

Corollary 6. If we set a = 2 and b = −1 in Relation (20), then we obtain

Ui(x) =
(

2
r

)i b i
2c

∑
m=0

(−s)m ( i
m) (i− 2m + 1)

i−m + 1 2F1

(
−m,−i + m− 1

−i

∣∣∣∣−r2

4 s

)
φr,s

i−2m(x). (25)

In particular, and if we set a = b = 1 in (24) and r = s = 1 in (25), then the following two
relations are obtained:

Fi+1(x) =
(

1
2

)i b i
2c

∑
m=0

( i
m) (i− 2m + 1)

i−m + 1 2F1

(
−m,−i + m− 1

−i

∣∣∣∣− 4
)

Ui−2m(x), (26)
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and

Ui(x) = 2i
b i

2c
∑

m=0

(−1)m ( i
m) (i− 2m + 1)

i−m + 1 2F1

(
−m,−i + m− 1

−i

∣∣∣∣−1
4

)
Fi−2m+1(x). (27)

Remark 3. The two relations in (26) and (27) are in agreement with those developed in [16].

Corollary 7. If we set r = 2 and s = −1 in (21), then we obtain

ψa,b
i (x) = 2

( a
2

)i b
i
2c

∑
m=0

ci−2m

(
i
m

)
2F1

(
−m, m− i

1− i

∣∣∣∣−4 b
a2

)
Ti−2m(x).

5. Two Applications of the Introduced Connection Formulae

In this section, we present two applications of the connection formulae derived in
Sections 3 and 4. In the first, we give some new relations between some celebrated numbers
and in the second application, some new definite weighted integrals are given.

5.1. Formulae between Some Celebrated Numbers

Theorems 1–4 enable one to join two families of numbers, whether they either belong
to the same class of generalized Fibonacci or Lucas numbers or they belong to two different
such classes. With respect to the six families of numbers {Fi}i≥0, {Pi}i≥0, {Fi}i≥0, {Li}i≥0,
{Qi}i≥0, and { fi}i≥0 defined in Table 1, there are thirty relations linking them. All the
coefficients between them involve 2F1(z) for a certain z. In six cases only, the appearing
2F1(z) can be summed. They are given explicitly in the following corollary.

Corollary 8. For every non-negative integer i, the following identities are valid:

Fi+1 =
b i

2c
∑

m=0
ci−2m (−1)m Li−2m, Pi+1 =

b i
2c

∑
m=0

ci−2m (−1)m Qi−2m,

Fi+1 =
b i

2c
∑

m=0
ci−2m 2m fi−2m, Li = Fi+1 + Fi−1,

Qi =Pi+1 + Pi−1, fi = Fi+1 − 2Fi−1.

Now, with respect to the remaining twenty-four relations among the celebrated se-
quences of numbers, they can be deduced easily by setting x = 1 in the relations of
Theorems 1–4, taking into consideration the different special cases of the two generalized
polynomials {φa,b

i (x)}i≥0 and {ψa,b
i (x)}i≥0.

5.2. Some Definite Weighted Integrals

In this section, and based on the connection formulae developed in Sections 3 and 4,
some definite weighted integrals are given in terms of certain hypergeometric functions of
the type 2F1(z). Some of these results are given in the following two corollaries.

Corollary 9. For all non-negative integers i, j with j ≥ i, the following two integral formulae hold:

1∫
−1

1√
1− x2

φa,b
i (x) Tj(x) dx =


π
( a

2

)i
(−1)i+j

(
i

i−j
2

)
2F1

(
−
(

i+j
2

)
j−i
2

−i

∣∣∣∣∣−4 b
a2

)
, if (i + j) even,

0, otherwise,

(28)

and
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1∫
−1

√
1− x2 ψr,s

i (x) Uj(x) dx =


π i
( r

2

)j
( i+j

2
i−j
2

)
s

i−j
2

i+j 2F1

(
j−i
2 , i+j

2

j + 2

∣∣∣∣∣−r2

4 s

)
, if (i + j) even,

0, otherwise.

(29)

Proof. If we set r = 2 and s = −1 in Relation (10), then after making use of the orthog-
onality relation of Tj(x), Relation (28) can be obtained. Relation (29) can be obtained by
setting a = 2 and b = −1 in Relation (11) and making use of the orthogonality relation of
Uj(x).

6. Reduction of Some Odd and Even Radicals

In this section, we introduce some new reduction formulae of certain odd and even
radicals through the employment of the two classes of generalized Fibonacci and Lucas
polynomials introduced in Section 2. The problems of the reduction of radicals are of
interest. There are considerable contributions regarding the reduction of various kinds of
radicals (see, for example, [27–32]). First, the following lemma is basic in the sequel.

Lemma 2. For every non-negative integer k, the following formula is valid:

(a2 x2 + 4 b)
(

φa,b
k−1(x)

)2
−
(

ψa,b
k (x)

)2
= 4 (−1)k+1 bk. (30)

Proof. The two Binet’s formulae in (4) and (5) can be rewritten in the form

φa,b
k−1(x) =

(α(x))k − (β(x))k

α(x)− β(x)
, (31)

and
ψa,b

k (x) = (α(x))k + (β(x))k, (32)

where

α(x) =
a x +

√
a2 x2 + 4 b
2

, β(x) =
a x−

√
a2 x2 + 4 b
2

, (33)

and consequently, we have

(a2 x2 + 4 b)
(

φa,b
k−1(x)

)2
−
(

ψa,b
k (x)

)2
=
{
(α(x))k − (β(x))k

}2

−
{
(α(x))k + (β(x))k

}2
= −4(α(x) β(x))k = 4 (−1)k+1 bk.

Lemma 2 is now proved.

6.1. New Formulae of Some Odd Radicals

We state and prove the following theorem in which we show how to reduce some odd
radicals using the two generalized Fibonacci and Lucas polynomials.

Theorem 5. Let k be any positive odd integer. Then for every x ∈ R such that (ax)2 ≥ −4b, the
following two identities hold:

k

√
ψa,b

k (x)
2 +

√ (
ψa,b

k (x)
)2

4 + bk +
k

√
ψa,b

k (x)
2 −

√ (
ψa,b

k (x)
)2

4 + bk = a x, (34)
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and
k

√
ψa,b

k (x)
2 +

√ (
ψa,b

k (x)
)2

4 + bk −
k

√
ψa,b

k (x)
2 −

√ (
ψa,b

k (x)
)2

4 + bk =
√

a2 x2 + 4 b. (35)

Proof. The idea of the proof is built on making use of the two Binet’s formulae in (31)
and (32). From (33), it is clear that

α(x) + β(x) = a x, (36)

α(x)− β(x) =
√

a2 x2 + 4 b. (37)

Inserting the identity in (37) into Relation (31), the following relation is obtained:√
a2 x2 + 4 b φa,b

k−1(x) = (α(x))k − (β(x))k.

Now, the last relation along with Relation (32) yields the following two relations:

(α(x))k =
1
2

{
ψa,b

k (x) +
√

a2 x2 + 4 b φa,b
k−1(x)

}
, (38)

and
(β(x))k =

1
2

{
ψa,b

k (x)−
√

a2 x2 + 4 b φa,b
k−1(x)

}
. (39)

Next, and based on the identity in (30), Relations (38) and (39) can be written alterna-
tively as

(α(x))k =
1
2

{
ψa,b

k (x) +

√(
ψa,b

k (x)
)2

+ 4 bk

}
,

and

(β(x))k =
1
2

{
ψa,b

k (x)−
√(

ψa,b
k (x)

)2
+ 4 bk

}
.

Finally, we observe that the last two relations lead to the following interesting identity,

k

√
ψa,b

k (x)
2 +

√ (
ψa,b

k (x)
)2

4 + bk ±
k

√
ψa,b

k (x)
2 −

√ (
ψa,b

k (x)
)2

4 + bk = α(x)± β(x),

which can be split using Relations (36) and (37) to give the two identities in (34) and (35).
This proves Theorem 5.

Corollary 10. Let k be any positive odd integer. Then for nonzero real numbers a and b with
b ≥ −1/4, there are infinite numbers of expressions of unit radicals in the sense that

k

√
ψa,b

k ( 1
a )

2 +

√ (
ψa,b

k ( 1
a )
)2

4 + bk +
k

√
ψa,b

k ( 1
a )

2 −

√ (
ψa,b

k ( 1
a )
)2

4 + bk = 1. (40)

Proof. Setting x = 1
a in (34) yields Formula (40).

As a consequence of Theorem 5 and taking into consideration the special polynomials
of ψa,b

i (x) in Table 1, we obtain some new reduction formulae of some odd radicals involving
Lucas, Pell–Lucas, Fermat–Lucas, Chebyshev, and Dickson polynomials of the first kinds.
The following corollaries display these formulae.

Corollary 11. For every positive integer i, the following reduction formulae hold:
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1. For all x ∈ R, one has

2i+1

√√√√ L2i+1(x)
2

+

√
L2

2i+1(x)
4

+ 1 +
2i+1

√√√√ L2i+1(x)
2

−

√
L2

2i+1(x)
4

+ 1 = x,

2i+1

√√√√ L2i+1(x)
2

+

√
L2

2i+1(x)
4

+ 1−
2i+1

√√√√ L2i+1(x)
2

−

√
L2

2i+1(x)
4

+ 1 =
√

x2 + 4.

2. For all x ∈ R, one has

2i+1

√√√√Q2i+1(x)
2

+

√
Q2

2i+1(x)
4

+ 1 +
2i+1

√√√√Q2i+1(x)
2

−

√
Q2

2i+1(x)
4

+ 1 = 2 x,

2i+1

√√√√Q2i+1(x)
2

+

√
Q2

2i+1(x)
4

+ 1−
2i+1

√√√√Q2i+1(x)
2

−

√
Q2

2i+1(x)
4

+ 1 = 2
√

x2 + 1.

3. For all x ∈ R \ (− 2
√

2
3 , 2

√
2

3 ), one has

2i+1

√√√√ f2i+1(x)
2

+

√
f 2
2i+1(x)

4
− 22i+1 +

2i+1

√√√√ f2i+1(x)
2

−

√
f 2
2i+1(x)

4
− 22i+1 = 3 x,

2i+1

√√√√ f2i+1(x)
2

+

√
f 2
2i+1(x)

4
− 22i+1 −

2i+1

√√√√ f2i+1(x)
2

−

√
f 2
2i+1(x)

4
− 22i+1 =

√
9 x2 − 8.

4. For all x ∈ R \ (−1, 1), one has

2i+1

√
T2i+1(x) +

√
T2

2i+1(x)− 1 + 2i+1

√
T2i+1(x)−

√
T2

2i+1(x)− 1 = 2 x,

2i+1

√
T2i+1(x) +

√
T2

2i+1(x)− 1− 2i+1

√
T2i+1(x)−

√
T2

2i+1(x)− 1 = 2
√

x2 − 1.

5. Either for all x ∈ R whenever α < 0 or for all x ∈ R \ (−2
√

α, 2
√

α) whenever α > 0,
one has

2i+1

√√√√Dα
2i+1(x)

2
+

√
(Dα

2i+1(x))2

4
− α2i+1 +

2i+1

√√√√Dα
2i+1(x)

2
−

√
(Dα

2i+1(x))2

4
− α2i+1 = x,

2i+1

√√√√Dα
2i+1(x)

2
+

√
(Dα

2i+1(x))2

4
− α2i+1 −

2i+1

√√√√Dα
2i+1(x)

2
−

√
(Dα

2i+1(x))2

4
− α2i+1 =

√
x2 − 4 α.

If we put x = 1 in the first three items of the above corollary, we get the following
new interesting reduction formulae of some odd radicals involving Lucas, Pell–Lucas, and
Fermat–Lucas numbers.



Mathematics 2022, 10, 2342 13 of 18

Corollary 12. For every non-negative integer i, one has

2i+1

√√√√ L2i+1

2
+

√
L2

2i+1
4

+ 1 +
2i+1

√√√√ L2i+1

2
−

√
L2

2i+1
4

+ 1 = 1,

2i+1

√√√√ L2i+1

2
+

√
L2

2i+1
4

+ 1−
2i+1

√√√√ L2i+1

2
−

√
L2

2i+1
4

+ 1 =
√

5,

2i+1

√√√√Q2i+1

2
+

√
Q2

2i+1
4

+ 1 +
2i+1

√√√√Q2i+1

2
−

√
Q2

2i+1
4

+ 1 = 2,

2i+1

√√√√Q2i+1

2
+

√
Q2

2i+1
4

+ 1−
2i+1

√√√√Q2i+1

2
−

√
Q2

2i+1
4

+ 1 = 2
√

2,

2i+1

√√√√ f2i+1

2
+

√
f 2
2i+1
4
− 22i+1 +

2i+1

√√√√ f2i+1

2
−

√
f 2
2i+1
4
− 22i+1 = 3,

2i+1

√√√√ f2i+1

2
+

√
f 2
2i+1
4
− 22i+1 −

2i+1

√√√√ f2i+1

2
−

√
f 2
2i+1
4
− 22i+1 = 1.

In the following example, we give the reduction formulae of a few radicals as an
application of Corollary 11.

Example 1. The following identities are valid:

1. 3
√

7 + 5
√

2 + 3
√

7− 5
√

2 =

3

√
L3(2)

2 +
√

(L3(2))2

4 + 1 +
3

√
L3(2)

2 −
√

(L3(2))2

4 + 1 = 2.

2. 3
√

7 + 5
√

2− 3
√

7− 5
√

2 =

3

√
L3(2)

2 +
√

(L3(2))2

4 + 1− 3

√
L3(2)

2 −
√

(L3(2))2

4 + 1 = 2
√

2.

3. 3
√

117 + 37
√

10 + 3
√

117− 37
√

10 =

3

√
Q3(3)

2 +
√

(Q3(3))2

4 + 1 +
3

√
Q3(3)

2 −
√

(Q3(3))2

4 + 1 = 6.

4. 5
√

115896 + 19876
√

34 + 5
√

115896− 19876
√

34 =

5

√
f5(4)

2 +

√
( f5(4))2

4 − 25 +
5

√
f5(4)

2 −
√

( f5(4))2

4 − 25 = 12.

5. 5
√

47525 + 19402
√

6 + 5
√

47525− 19402
√

6 =

5
√

T5(5) +
√
(T5(5))2 − 1 + 5

√
T5(5)−

√
(T5(5))2 − 1 = 10.

6.2. New Reduction Formulae of Some Even Radicals

This section is devoted to presenting the new formulae of some even radicals.
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Theorem 6. Let k be any positive even integer. Then for every real number with (ax)2 ≥ −4b, the
following two identities hold:

k

√
ψa,b

k (x)
2 +

√ (
ψa,b

k (x)
)2

4 − bk −
k

√
ψa,b

k (x)
2 −

√ (
ψa,b

k (x)
)2

4 − bk =

|a x|, b > 0,
√

a2 x2 + 4 b, b < 0,
(41)

and

k

√
ψa,b

k (x)
2 +

√ (
ψa,b

k (x)
)2

4 − bk +
k

√
ψa,b

k (x)
2 −

√ (
ψa,b

k (x)
)2

4 − bk =


√

a2 x2 + 4 b, b > 0,

|a x|, b < 0.
(42)

Proof. Let k be a positive even integer. In view of Equation (4), for all real numbers x with
(ax)2 ≥ −4b, φa,b

k−1(x) ≥ 0 if and only if a x ≥ 0.

Now, Equation (30) may be written as
√

a2x2 + 4b | φk−1 | =
√

ψ2
k − 4 bk. Using

similar procedures followed in the proof of Theorem 5 leads to the following identity,

k

√
ψa,b

k (x)
2 +

√ (
ψa,b

k (x)
)2

4 − bk ∓
k

√
ψa,b

k (x)
2 −

√ (
ψa,b

k (x)
)2

4 − bk =
∣∣|α(x)| ∓ |β(x)|

∣∣,
and consequently, the identities in (41) and (42) can be obtained.

As consequences of Theorem 6, we give some reduction formulae of certain even
radicals. These formulae are shown in the corollary below.

Corollary 13. For every positive integer i and for every real number x, the following formulae hold:

1. For all x ∈ R, one has

2i

√√√√ L2i(x)
2

+

√
L2

2i(x)
4
− 1−

2i

√√√√ L2i(x)
2
−

√
L2

2i(x)
4
− 1 = |x|,

2i

√√√√ L2i(x)
2

+

√
L2

2i(x)
4
− 1 +

2i

√√√√ L2i(x)
2
−

√
L2

2i(x)
4
− 1 =

√
x2 + 4.

2. For all x ∈ R, one has

2i

√√√√Q2i(x)
2

+

√
Q2

2i(x)
4
− 1−

2i

√√√√Q2i(x)
2
−

√
Q2

2i(x)
4
− 1 = 2 |x|,

2i

√√√√Q2i(x)
2

+

√
Q2

2i(x)
4
− 1 +

2i

√√√√Q2i(x)
2
−

√
Q2

2i(x)
4
− 1 = 2

√
x2 + 1.

3. For all x ∈ R \ (− 2
√

2
3 , 2

√
2

3 ), one has

2i

√√√√ f2i(x)
2

+

√
f 2
2i(x)

4
− 22i −

2i

√√√√ f2i(x)
2
−

√
f 2
2i(x)

4
− 22i =

√
9 x2 − 8,

2i

√√√√ f2i(x)
2

+

√
f 2
2i(x)

4
− 22i +

2i

√√√√ f2i(x)
2
−

√
f 2
2i(x)

4
− 22i = 3 |x|.
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4. For all x ∈ R \ (−1, 1), one has

2i

√
T2i(x) +

√
T2

2i(x)− 1− 2i

√
T2i(x) +

√
T2

2i(x)− 1 = 2
√

x2 − 1,

2i

√
T2i(x) +

√
T2

2i(x)− 1 + 2i

√
T2i(x) +

√
T2

2i(x)− 1 = 2 |x|.

In the following example, we give the formulae of some specific even radicals based
on Corollary 13.

Example 2. The following identities are valid:

1. 4
√

17 + 12
√

2− 4
√

17− 12
√

2 =

4

√
L4(2)

2 +
√

(L4(2))2

4 − 1− 4

√
L4(2)

2 −
√

(L4(2))2

4 − 1 = 2.

2. 4
√

5201 + 1020
√

26− 4
√

5201− 1020
√

26 =

4

√
Q4(5)

2 +
√

(Q4(5))2

4 − 1− 4

√
Q4(5)

2 −
√

(Q4(5))2

4 − 1 = 10.

3. 6
√

83448209
2 + 4010265

2

√
433 + 6

√
83448209

2 − 4010265
2

√
433 =

6

√
f6(7)

2 +

√
( f6(7))2

4 − 26 +
6

√
f6(7)

2 −
√

( f6(7))2

4 − 26 = 21.

4. 8
√

708158977 + 408855776
√

3 + 8
√

708158977− 408855776
√

3 =

8
√

T8(7) +
√
(T8(7))2 − 1 + 8

√
T8(7)−

√
(T8(7))2 − 1 = 14.

7. Some Other Radical Formulae

The purpose of this section is to establish two other reduction formulae for some
radicals. In the sequel, the following lemma is required.

Lemma 3. For every positive integer j and every x ∈ R∗, one has

ψa,b
j

(
1
a
(x− b

x )

)
=


xj − bj

xj , j odd,

xj +
bj

xj , j even.

Proof. Binet’s formula in (5) implies that

ψa,b
j

(
1
a
(x− b

x )

)

=
1
2j


((

x− b
x

)
+

√(
x− b

x

)2
+ 4b

)j

+

(
(x− b

x )−
√
(x− b

x )
2 + 4b

)j


=
1
2j

{(
(x− b

x ) +
√
(x + b

x )
2
)j

+

(
(x− b

x )−
√
(x + b

x )
2
)j
}

=
1
2j

{((
x− b

x

)
+
∣∣∣x + b

x

∣∣∣)j
+
(
(x− b

x )−
∣∣∣x + b

x

∣∣∣)j
}

=
1
2j

{
(2 x)j +

(
−2 b

x

)j
}

=

{
xj − bj

xj , j odd,

xj + bj

xj , j even.
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The proof is now complete.

Theorem 7. If j is an odd positive integer and b ∈ R, then for every x ∈ R∗, the following
identity applies:

j

√√√√√ψa,b
j ( 1

a (x− b
x ))

2
+

√√√√(
ψa,b

j ( 1
a (x− b

x ))
)2

4
+ bj =

x, x > 0, b > 0,
−b
x , x < 0, b > 0,

x, x ∈ [−
√
−b, 0) ∪ [

√
−b, ∞), b < 0,

−b
x , x ∈ (−∞,−

√
−b) ∪ (0,

√
−b), b < 0.

(43)

Proof. From Lemma 3, we have

j

√√√√√ψa,b
j ( 1

a (x− b
x ))

2
+

√√√√(
ψa,b

j ( 1
a (x− b

x ))
)2

4
+ bj =

j

√√√√ (xj − bj

xj )

2
+

√
(xj − bj

xj )
2

4
+ bj

=
j

√√√√ (xj − bj

xj )

2
+

√
(xj + bj

xj )
2

4
=

j

√
(xj − bj

xj )

2
+
|xj + bj

xj |
2

,

and consequently, Relation (43) can be obtained.

The following results are direct consequences of Theorem 7.

Corollary 14. If j is an odd positive integer, then the following identities are true for Lucas,
Pell–Lucas, Fermat–Lucas, and Chebyshev polynomials of the first kind:

j

√√√√√ Lj(x− 1
x )

2
+

√√√√(
Lj(x− 1

x )
)2

4
+ 1 =

{
x, x > 0,
−1
x , x < 0,

j

√√√√√Qj(
1
2 (x− 1

x ))

2
+

√√√√(
Qj(

1
2 (x− 1

x ))
)2

4
+ 1 =

{
x, x > 0,
−1
x , x < 0,

j

√√√√√ f j(
1
3 (x + 2

x ))

2
+

√√√√(
f j(

1
3 (x + 2

x ))
)2

4
− 2j =

{
x, x ∈ [

√
2, ∞) ∪ [−

√
2, 0),

2
x , x ∈ (−∞,−

√
2) ∪ (0,

√
2),

j

√
Tj(

1
2 (x + 1

x )) +

√(
Tj(

1
2 (x + 1

x ))
)2
− 1 =

{
x, x ∈ [1, ∞) ∪ [−1, 0),
1
x , x ∈ (−∞,−1) ∪ (0, 1).

Example 3. As an application of Corollary 14, which is a corollary of Theorem 7, we readily get
(for j = 5 and x = −1

3 ) the following odd reduction formula:

5

√
−1889569

486
+

√
3570463447489

236196
=

5

√√√√ f5(
−19

9 )

2
+

√
( f5(

−19
9 ))2

4
− 32 = −1

3
.

The following theorem exhibits the counterpart result of Theorem 7 for even radicals.
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Theorem 8. If j is an even positive integer, then the following identity applies for every nonzero
real number x:

j

√√√√√ψa,b
j ( 1

a (x− b
x ))

2
+

√√√√(
ψa,b

j ( 1
a (x− b

x ))
)2

4
− bj =

{
|x|, x ∈ R \ (−

√
|b|,
√
|b|),

| bx |, x ∈ (−
√
|b|,
√
|b|).

Example 4. The dedication for Paper [31] reads: "In memory of Ramanujan on the

6

√
32( 146410001

48400 )3 − 6( 146410001
48400 ) +

√
(32( 146410001

48400 )3 − 6( 146410001
48400 ))2 − 1 th

anniversary of his birth."
This radical was calculated by Osler in [30] using Cardan polynomials. In the following few

lines, we show that it can be evaluated with the aid of Theorem 8. In fact, if we note that

32
(

146410001
48400

)3
− 6
(

146410001
48400

)
=

1
2

ψ1,−1
3

(
(110)2 + 1

(110)2

)
,

then we have

6

√
32( 146410001

48400 )3 − 6( 146410001
48400 ) +

√
(32( 146410001

48400 )3 − 6( 146410001
48400 ))2 − 1 =

6

√√√√ψ1,−1
3

(
(110)2+ 1

(110)2

)
2 +

√(
ψ1,−1

3

(
(110)2+ 1

(110)2

))2

4 − 1 =
√
(110)2 = 110.

8. Conclusions

In this paper, we established several new connection formulae between some classes
of polynomials generalizing the celebrated Fibonacci and Lucas polynomials. Some of these
formulae generalize respective known ones. Two applications of the derived connection
formulae were presented. A number of new expressions between the celebrated Fibonacci,
Pell, Fermat, Lucas, Pell–Lucas, and Fermat–Lucas numbers were deduced. As a very
important utilization of the two generalized Fibonacci and Lucas polynomials, some new
reduction formulae of certain odd and even radicals were given. We have deduced as special
cases several reduction formulae of certain radicals involving Lucas, Pell–Lucas, Fermat–
Lucas, Chebyshev, and Dickson polynomials of the first and second kinds. Numerous
examples were given to apply the reduction of radicals. As far as we know, most of the
formulae in this paper are new and they are thought to be crucial and useful. Furthermore,
we do believe that other generalizations of Fibonacci and Lucas sequences of numbers and
polynomials can be considered. In the near future, we hope to consider and investigate
some of these generalized sequences.
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