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ABSTRACT In recent years, dc microgrid (MG) is increasing rapidly in electric power grids and other

isolated systems, integrating more efficiency and suite better some of the renewable energy sources,

storage units, and dc loads. However, dc MG stability analysis becomes a challenge when constant power

loads (CPLs) are applied to dc bus, which introduces destabilizing effects in the system due to its negative

impedance characteristics. This paper presents a novel robust controller, based on linear programming based

on the Chebyshev theorem as a robust control technique considering the Kharitonov’s theorem that ensures

the minimization of the total deviation from the desired performance in a closed-loop system, specified

by a family of characteristic polynomials. The purpose of the proposed controller is to tightly regulate the

dc bus voltage, ensuring MG stability due to the effects of power variation on CPLs. The simulation and

experimental tests are performed by using a MATLAB/Simulink simulator and a developed prototype of the

DC MG system, respectively, to ratify the robustness and effectiveness of the proposed method of robust

controller design.

INDEX TERMS Constant power load (CPL), Chebyshev theorem, DCmicrogrid (MG), Kharitonov stability

theorem, microgrid stability, robust control design.

NOMENCLATURE

G(s, p) Uncertain plant of order n

P(s, p) Uncertain characteristic polynomial

C(s, x) Controller of order r

p Vector of real parameters that represent the plant

X Vector of real parameters representing the

controller

po The nominal value of plant parameters

d(s) Closed-loop characteristic polynomial

di(x, p) closed-loop performance vector

1d Desired dynamic of closed-loop system
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φi Parameters of the closed-loop desired polynomial

8 Pesired performance region

xc Chebyshev Center

B largest ball of radius R

R Maximum radius of the largest ball B

A Parameters Matrix of the plant

B(φ) Vector that contains φ and plant parameters

B(φ+) Upper limit of φ

B(φ−) Lower limit of φ

Ai Matrix A of order i

‖ai‖2 The euclidian norm of coefficients of Ai
A′
upper Upper limit of A′

A′
lower Lower limit of A′

ϕ Parameters of di(x, p)
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ϕo Nominal values of the parameters of ϕ

1 Uncertainty box region

Pcl closed-loop interval polynomial

f (.) Arbitrary linear function in (.)

I. INTRODUCTION

Nowadays the integration of renewable energy sources, such

as solar and wind energy, into the current AC power grid have

become a big concern for the research community around the

world due to their spatially distributed and fluctuating nature

[1], [2]. In the last years, the penetration of these renewable

energy sources into the conventional utility grid system is

rising every time because of increasing load demand, crisis

of conventional energy and the environmental issues [3]–[5].

Microgrids (MGs) have been identified an efficient and

attractive option of modern electrical systems to integrate

various renewable energy sources [2], [6], where power elec-

tronic converters are the main power processing units for

interfacing these sources, which facilitates connection to the

conventional power system [4]. In contrast with AC MG,

the DC MG has many advantages such as robustness, higher

efficiency, simple control, an absence of reactive power and

harmonics, and natural interface for renewable source [7], [8],

whichmakes DC distribution an option to buildmore efficient

systems [9]. In addition, DC MGs have other advantages

over conventional AC systems, such as better current capa-

bility of DC power lines, better short circuit protection, and

transformer-less conversion of voltage levels [1]. Moreover,

MG can disconnect from the main distribution grid, operating

as ‘‘islanded mode’’ for some cases, such as fault in the main

distribution grid, blackout, and continue to supply a portion

of their local loads [3].

DC MG usually consists of multiple converters in paral-

lel, cascading, stacking, load splitting, and source splitting

configurations in order to achieve proper system operation

[4], [10]. Such systems are known as multiconverter power

electronic systems or distributed power systems (DPS) [4].

Cascaded power electronic converters are a common feature

of almost every converter dominated power system ensuring

the desired point-of-load regulation. However, when a power

electronic converter tightly regulates its output, it behaves as a

Constant Power Load (CPL) if their control performance and

bandwidth are sufficiently high to make the consumed power

independent to the bus voltage variations [11], [12]. CPL

introduces a destabilizing effect in the system, which may

cause significant oscillations in the DC bus voltage leading

to instability or voltage collapse [3], [11], [13], [14].

The main concern is to ensure DC bus voltage stabil-

ity, therefore, several methods have been proposed to cope

the destabilizing effect of CPL in a DC MG. From the

literature, methods to overcome the CPL negative incre-

mental impedance instability problem are categorized into

two main categories: hardware modification methods (pas-

sive methods) and control techniques (active methods).

Using passive approach researchers add a physical element

(resistor or mostly capacitor) to the load side converter

to overcome the negative incremental impedance problem

[10], [13]. An passive damping method based on the insertion

of a transistor as an ac resistor to compensate for the negative

incremental impedance of the CPL is successfully employed

in [15]. An LC filter and a CPL is used in [16] to stabilize the

systemwithout requiring the modification of the source or the

load control. The problem with passive techniques is their

effect on systems size, weight, cost and efficiency. Other

methods are active techniques, which can be applied on the

load side and on the generation side. A finite control set

model predictive control (FCS-MPC) is reported in [17] as an

active dampingmethod realized by introducing a stabilization

term in the cost function of the FCS-MPC algorithm that

is used for regulation of the point-of-load (POL) converter.

Feedback linearization, which aims to cancel the nonlinearity

introduced by CPL [18], is reported [19]. Sliding-mode con-

trol (SMC) is a large-signal time-domain analytical technique

for controlling the dynamic behavior of switching systems

that has been applied in the power electronics field in the

last years [18], [20]. The model predictive controller (MPC)

has been introduced by researchers as a solution to mitigate

the instability caused by CPL. MPC controls the variation

of the DC bus voltage and modifies of the load impedance

which is seen at the point of common coupling [17], [21]. The

work developed in [22] reported the application of adaptive

back-stepping to deal with the voltage stability of the DC

microgrid. In [23], a novel adaptive controller is proposed

to mitigate the destructive effect of time-varying uncertain

CPLs. The fuzzy model-based controller design procedure

for TS fuzzy model is as simple as linear one; meanwhile,

the performance of the fuzzy model-based controllers is sig-

nificantly better. Therefore, numerous fuzzy control methods

have been investigated in the literature [24]–[26]. To improve

the stability scenario of DC MG system, Kalman filtration

method has been introduced by researchers [22], [27], [28].

Robust control techniques has been considered for the ele-

mentary power electronics switching converters with a CPL

to cope with the mentioned CPL instability [11], [26], [29].

All these statements are well discussed in the literature.

However, there are other problems apart from the CPL that are

usually not taken into account in the controller design, e.g.,

uncertainties present in the system parameters, uncertainties

associated with renewable power sources, which may lead to

performance degradation [30].

To the best of the authors’ knowledge, it seems that most

papers published so far focus on mitigating the destabilizing

effect of CPL without considering the uncertainties present in

the system parameters.

Therefore, studies reporting robust parametric methodolo-

gies to mitigate oscillations effects caused by CPL in a DC

microgrid are still scarce in literature. Although, in [11] an

interval robust controller based on Robust Parametric Control

(RPC) theory is proposed, aiming to minimize oscillations

effects caused by a CPL in a DCMulti-Converter Buck-Buck

System. Moreover, in literature can be found control strate-

gies applied to DC power converters that deal with parametric
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uncertainties, in [31] a novel multivariable robust parametric

technique was used for minimizing coupling effect in single

inductor multiple output DC-DC converter operating in con-

tinuous conduction mode.

Furthermore, in [32] and [33], the use of RPC tech-

niques is proposed to stabilize oscillations at the output of a

buck converter caused by parametric uncertainties. Recently,

the study developed in [34] addressed an outstanding contri-

bution for the current state-of-the-art on the study of para-

metric uncertainties in DC-DC converters, its approach is

focused only on a posterior analysis of system stability.

However, the important subject of robust controller synthesis

has been not addressed. In contrast, the problem of robust

controller synthesis is addressed in [11], solving the Lin-

ear Matrix Inequality (LMI) optimization problem by using

Linear Programming (LP) and Kharitonov’s Theorem. There-

fore, the RPC method justifiably takes into account all pos-

sible uncertainties in the system. However, the application

of the RPC method to power electronic systems with CPL

and parametric uncertainties is not widely discussed in the

literature.

In this context, this paper proposes a novel robust con-

troller based on convex optimization combining the LP

approach [35] with Chebyshev Theorem [36], to solve the

LMI optimization problem adjusting the parameters of an

interval robust controller, in order to mitigate destabilizing

effect of CPL in aDCmicrogrid, ensuring robust performance

and stability, and providing a better control performance. The

proposed controller is applied to DC power buck converter,

which regulates the DC bus voltage, aiming to suppress oscil-

lations effects caused by a CPL power variation. The main

paper contributions are briefly summarized as follows:

1) The proposed novel methodology of controller design,

based on convex optimization using the Chebyshev

Theorem, provides a practical robust controller design

algorithm with sufficient level of the detail in order to

be easily implemented, aiming to minimize the oscil-

lation effect which occurs in DC microgrid caused by

CPL power variation.

2) By using the proposed novel methodology, structured

uncertainties of the type hyperbox, considering interval

parametric type, are taking into account from the outset

in the controller design process, incorporating avail-

able information about components (resistors, induc-

tors, capacitors, and CPL power variation) tolerances

defined by designer.

3) The proposed method for controller design ensures

the performance of controller and MG stability when

the DC microgrid is submitted a parametric variation

caused by CPL power variation.

The remainder of this paper is organized as follows.

Section II presents the studied DC microgrid with its insta-

bility problem. Section III presents a brief review about

parametric robust control background. Section IV proposes a

mathematical model for the DC microgrid system. Section V

presents the proposed design methodologies for interval

robust controller. Section VI describes the experiments to

be performed in this paper. Section VII presents an assess-

ment of the simulation results and experimental data. Finally,

Section VIII presents the main conclusions.

II. STUDIED DC MICROGRID AND

PROBLEM FORMULATION

Fig. 1 shows the considered DC MG used in this paper to

illustrate the proposed method. The buck converter controls

the DC voltage level on the DC bus maintaining the stability

of the DC microgrid.

FIGURE 1. The structure of the DC microgrid developed.

DC-DC converters can be used to achieve different DC

voltage levels suitable for a range of loads such as elec-

tronic devices, lighting, adjustable speed drive applications

that require DC voltage, and resistive loads, hence it is more

efficient to connect that loads in a DC distribution system

[3], [29]. However, a tightly-regulated power electronic con-

verter behaves as a CPL [11], [29].

A CPL behaves as a negative incremental resistance, which

tends to destabilize its feeder system. The V-I characteristics

of a typical CPL is shown in Fig. 2.

A simple example of CPL in a DC system is tightly-

regulated DC-DC converter with resistive load (cf. Fig. 2).

In order to maintain a constant power level, in a DC-DC

converter when it acts as a CPL, input current increases when

FIGURE 2. V-I characteristics of a typical CPL.
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input voltage decreases, and vice versa, thus, the product

of the input current and input voltage of the load converter,

(i.e., PCPL = ICPLVCPL) is a constant [11], [13].

The instantaneous value of the load impedance is positive

(i.e., VCPL/ICPL > 0). However, the incremental impedance

is always negative (i.e., 1VCPL/1ICPL < 0) due to the

appearance of any disturbance, thus its operating point will

change and never settling back to its original value again. This

negative incremental impedance has a negative impact on the

power quality and stability of the DC MG.

The system is analyzed by a phase-plane analysis, solving

(plotting) the system differential equations giving an insight

about how the system dynamics evolve with time [11], [13].

The phase-portrait of feeder system, which is shown

in Fig. 3), is simulated with the following parameters: Vi =

15 V , L1 = 2mH , C1 = 2000 mF , Po = 10 W , and

d1 = 0.744.

The phase-portrait (Fig. 3(a)) shows the state plane divided

into two regions with distinct characteristics [11], [13]:

FIGURE 3. Phase-portrait obtained by simulating. (a) Phase-portrait of
source converter loaded with a CPL. (b) Zoomed area near the operating
condition.

one to the left of a separatrix σ , in which the DC bus

voltage Vo collapses being an unstable region, and the

other to the right of σ , in which Vo presents significant

and undesirable oscillations because of the existence of a

limit-cycle χ [11], [13].

These oscillations are caused by energy imbalances, which

occur during the transient period when LC input filter and

output powers are not equal as it occurs in steady state.

Therefore, without resistive components in the system, which

can dissipate the energy imbalance, this energy will resonate

among the energy storage elements in the system. This oscil-

latory behavior is also observed when attempting regulation

if the controller is not adequately designed [11].

III. ROBUST PARAMETRIC CONTROL BACKGROUND

Mathematical models naturally present errors that are

neglected, depending on the type of study. An important

consideration in model-based control systems is to keep the

system stable, subject to parametric variations. However,

in the classic controller design, models that ignore uncer-

tainties are used, [11], [29]–[33]. In this way, it is common

to use a nominal transfer function for the controller design.

Although the controller is developed based on a nominal

transfer function, the real system must be stable for all kind

of transfer functions that represent the whole set of uncer-

tainties, however, when the system is subjected to different

uncertainties, the controller designed deteriorates the sys-

tem performance. Thereby, uncertainty of a system can be

classified as unstructured (non-parametric uncertainty) and

structured (parametric uncertainty), [29], [30], [36].

A. ROBUST STABILITY

A system with interval parametric uncertainties is gener-

ally described by uncertain polynomials B(s, q) and A(s, q),

restricted within pre-specified closed real intervals, as shown

in (1), [29], [30].

G(s, q) =
B(s, q)

A(s, q)
=

m∑

i=0

[

bi
−, bi

+
]

si

n∑

i=0

[

ai−, ai+
]

si
(1)

Many robust stability tests under parametric uncertainty

are based on analysis of uncertain characteristic polynomial

assumed as an interval polynomial family, [29], [30], such as

P(s, p) =

n
∑

i=0

[

pi
−, pi

+
]

si (2)

Polynomial P(s, p) is stable if and only if all its roots

are contained on the Semi-Plan Left (SPL) of the complex

plane [37]. Then, P(s, p) is robustly stable if and only if all its

polynomials are stable for a set of operating point different

from the nominal operating point within its minimum and

maximum limits [37]. However, it is not necessary to check

stability of an infinite number of polynomials to ensure the

robust stability. Robust stability can be checked through the
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analysis of four polynomials within P(s, p); these polynomi-

als can be found by Kharitonov theorem [30], [37], [38].

B. ROBUST CONTROLLER DESIGN BY

INTERVAL POLE-PLACEMENT

To design the controller, a region of uncertainty is previously

defined, considering that the uncertainty is contained in the

parameter variation of the plant-model. The controller is

designed according to Keel and Bhattacharyya [39], associ-

ated with a linear goal programming formulation, which will

lead to a set of linear inequality constraints.

Consider G(s, p) a uncertain plant of order n and C(s, x)

the controller of order r , defined in (3) and (4) respectively.

G(s, p) =
n(s)

d(s)
=

b1s
n−1 + · · · + bn−1s+ bn

sn + a1sn−1 + · · · + an−1s+ an
(3)

C(s, x) =
nc(s)

dc(s)
=
x0s

r + x1s
r−1 + · · · + xr−1s+ xr

sr + y1sr−1 + · · · + yr−1s+ yr
(4)

Let p be the vector of parameters that represent the plant

and x the vector of real parameters representing the controller

defined in (5) and (6) respectively. In addition, po represents

the nominal value of plant parameters defined in a hyperbox

region of uncertainties.

p : = [ b1 b2 · · · bn−1 bn a1 a2 · · · an−1 an ] (5)

X : = [ x0 x1 · · · xr−1 xr y1 y2 · · · yr−1 yr ] (6)

According to [39], the solution of the Diophantine equa-

tion (7) summarizes the classical pole-placement problem,

follow as:

d(s) = d(s)dc(s) + n(s)nc(s) (7)

where, d(s) is the closed-loop characteristic polynomial.

Therefore, the parameters of the closed-loop characteristic

polynomial are represented as follows:

di = di(x, p) (8)

Assuming that the desired dynamic of closed-loop system

is represented by

1d (s) = si + φ1s
i−1 + · · · + φi−1s+ φi (9)

where, φi represent the parameters of the closed-loop desired

polynomial.

In order to tune the controller, the closed-loop parameters

obtained are compared with the parameters of the closed-loop

desired polynomial, which represent the desired dynamics of

the system follows as

di(x, p
o) = φi, i = 1, 2, . . . , l (10)

This problem can be written in its matrix representation,

presenting the following relationship, (11), as shown at the

bottom of this page.

When the system is subject to parametric uncertain-

ties, the controller performance may deteriorate. Therefore,

the controller must guarantee robust performance within an

acceptable region of closed-loop parameters variation, so that

the closed-loop poles are located in a certain region. Thereby,

a desired region is defined as follows:

8 :=
{

φ−
i ≤ φi ≤ φ+

i

}

(12)

Therefore, according to [37], replacing the parameters of

(12) in (10), it is possible to formulate a linear inequalities

set, which restricted the controller and desired polynomial

coefficients in the predefined intervals, as shown in (13).

Thus, the closed-loop system has its poles within the roots

space of interval-desired polynomial, ensuring the robust

stability [11], [39].

φ−
i ≤ di(x, p) ≤ φ+

i , ∀i = 1, 2, . . . , l (13)

The robust design problem is summarized in the choice

of X (if possible) to satisfy the set of inequality (13) for all

p ∈ P. The solution of this problem can be idealized, as a

solution to a linear programming problem, therefore different

techniques can be used to solve it. However, its standard

solution is sometimes efficient and fast, so that this problem

can be rewritten as a problem of local minimization, subject

to restrictions.

Linear Programming Based on Chebyshev Theorem: The

Chebyshev Theorem demonstrates that it is possible to find

the largest ball B of center xc and maximum radius R, whose
























[b1] 0 · · · 0 0 | 1 0 · · · 0 0

[b2] [b1]
. . .

... 0 | [a1] 1
. . .

... 0
... [b2]

. . . 0
... |

... [a1]
. . . 0

...

[bm−1]
...

. . . [b1] 0 | [an−1]
...

. . . 1 0

[bm] [bm−1]
. . . [b2] [b1] | [an] [an−1]

. . . [a1] 1

0 [bm]
. . .

... [b2] | 0 [an]
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... [a1]
... 0

. . . [bm−1]
... |

... 0
. . . [an−1]

...

0
...

. . . [bm] [bm−1] | 0
...

. . . [an] [an−1]

0 0 · · · 0 [bm] | 0 0 · · · 0 [an]
























︸ ︷︷ ︸

A























x0
x1
...

xr−1

xr
−

y0
y1
...

yr−1

yr























︸ ︷︷ ︸

X

=















[φ1] − [a1]

[φ2] − [a2]
...

[φn] − [an]

[φn+1]
...

[φm]















︸ ︷︷ ︸

B

(11)
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norm is Euclidean, which is contained in the polytope P,

described by the set of linear inequalities constraints. The ball

center xc is called Chebyshev Center, as shown in Fig. 4 [36].

FIGURE 4. Largest ball B inscribed in P.

When the set P is convex, the computing of xc becomes

a convex optimization problem. More specifically, suppose

P ⊆ Rn is defined by a set of convex inequalities, i.e., P =

{aix ≤ bi, i = 1, . . . ,m}. If R ≥ 0, it can be found xc by

solving the Linear Programming according to the following

relations:

X ′ = arg
(

minf (X ′)
)

s.t.

[

A′
upper

−A′
lower

]

X ′ ≤





B(φ+)

−B(φ−)

0



 (14)

where,

X ′ =

[

X

R

]

,A′ =





Ai ‖ai‖2
−Ai ‖ai‖2
01×i −1



 (15)

where, ‖ai‖2 is the euclidian norm of coefficients ofAi,A
′
upper

and A′
lower represent the lower and upper limit of A′, respec-

tively; the cost function is defined as the sum of controller

gains within the radio R and the parameter vector X contains

the controller gains and the radio of Chebyshev sphere.

IV. MATHEMATICAL MODEL OF THE

STUDIED DC MICROGRID

In order to represent the dynamical behavior of the DC

MG, a small signal approximation model is employed as an

effective mathematical model. Fig. 5 represents the DC MG

system with two decoupled outputs, VC1
(DC Bus voltage)

and VC2
(CPL output), and a topology employed to control

the system. The main characteristic of this MG is that it has

a feeder system that regulates the DC bus and feeding a resis-

tive load and a CPL, respectively. Each converter (see Fig 5)

can be considered an independent subsystem; therefore,

the dynamics of the system can be simplified to the analysis

of two independent converters. The dynamic behavior of buck

converter, in Continuous Conduction Mode (CCM), can be

found in the literature [11], [32].

The equations described in (16) involving the state vari-

ables of buck converters are written based on the analysis

of their respective equivalent circuits. Fig. 5 shows the DC

MG with two outputs VC1 and VC2, such that VC2
< VC1

,

regulated through the duty cycles d1 and d2, respectively.

The duty cycle of switching Q1 regulates the DC bus voltage

(VC1), and the duty cycle of switch Q2 regulates the output

power of CPL, i.e., VC2
2/RL2.

Thereby, the outputs of the systems are described in (17).




























L1
diL1
dt

= d1Vi − VC1
− rL1 iL1

C1
dVC1

dt
= iL1 −

VC1

RL1

L2
diL2
dt

= d2VC1
− VC2

− rL2 iL2

C2
dVC2

dt
= iL2 −

VC2

RL2

(16)

y1 =
[

0 VC1

]

y2 =
[

0 PCPL
]

(17)

FIGURE 5. Simplified diagram of the DC Microgrid system developed.
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Assuming that the electronic switches and diodes are ideal,

the linearized model that describes the dynamic steady state

behavior of the converter is represented as follows:

VC1
(s)

Vi(s)
=

do1
L1C1

s2 +

(
1

RL1C1
+

rL1
L1

)

s+

(
1

L1C 1
+

rL1
RL1L1C1

) (18)

VC2
(s)

VC1
(s)

=

2
(

do2
L1C1

) (√
PCPL
RL2

)

s2 +

(
1

RL2C2
+

rL2
L2

)

s+

(
1

L2C 2
+

rL2
RL2L2C2

) (19)

where, do1 and do2 are operational point for duty cycle of

output 1 and 2, respectively. PCPL is the operating power

of CPL.

The nominal values of the parameters, operational point

and themeaning of each symbol in (18) and (19) are presented

in Table 1.

TABLE 1. Values for the physical parameters of the DC Microgrid develop
test system.

V. ROBUST CONTROLLER DESIGN METHODOLOGIES

This section presents the methodologies for designing a fixed

order robust controller considering an uncertain family of

plants. Such methodologies identify controllers that provide

robust stability and performance for a specific and predeter-

mined hyperbox region. This study only considers uncertain-

ties in the parameters in the source subsystem (see Table 1)

because oscillations, caused by a CPL, occur in the LC filter

of the converter. Therefore, only output 1 will be regulated by

a robust controller. A classic controller, based on Classical

Pole-Placement (CPP), will regulate output 2 in order to

emulate a CPL with a DC-DC buck converter. The robust

controller is designed according to presented by [37] and [36].

In this paper, these methodologies will be called ‘‘Con-

trol based on Kharitonov’s Rectangle (CKR)’’ and ‘‘Con-

trol based on Chebyshev’s Sphere (CCS)’’. The proposed

controller must ensure robust stability and performance for

the entire region of parametric variation.

Fig. 6 illustrates a simplified flowchart of the methodology

for designing the robust controller based on interval pole-

placement. The process starts in step 1, by defining the

nominal plant (18) with its operating conditions; in step 2,

the box region of uncertainties is built based on a previously

specified uncertainty range delimited by the designer. Since

box region of uncertainties influences on the delimitation of

the convex region where the control gains will be determined,

the correct selection of this box region is an important point

to consider in order to have success on the proposed method-

ology. The lower-and upper-bound of each parameter are

provided in Table 1. The closed-loop polynomial is obtained

(Step 3) by using the controller parameter and the nominal

model (18) selected in step 1, then by replacing the nominal

and interval values, defined in step 2, the interval closed-loop

polynomial is calculated. The controller function depends on

the chosen control structure. In this work, a controller with a

PID structure is selected. The transfer function is given below.

CPID(s) =
u(s)

e(s)
=
kd s

2 + kps+ ki

s
(20)

For simplification, transfer function, presented in (18), can

be represented as follows:

G1(s) =
VC1(s)

Vi(s)
=

b0

s2 + a1s+ a0
(21)

Finally, closed-loop interval polynomial is obtained by

using the controller (20) and plant (21) parameters.

Pcl(s) = s3 +
[

ϕ−
2 , ϕ+

2

]

s2 +
[

ϕ−
1 , ϕ+

1

]

s+
[

ϕ−
o , ϕ+

o

]

(22)

The nominal parameters of Pcl depend on the parameters

of source converter (cf. Table 1), resulting in the following

nominal parameters:

ϕo0 = b0ki (23)

ϕo1 = a0 + b0kp (24)

ϕo2 = a1 + b0kd (25)

The lower- and upper-limits for these parameters must

be computed by replacing the nominal and interval val-

ues presented in Table 1 through interval analysis for (21).

The region defined by the closed-loop interval polynomial

(22) must be inside the region determined by the desired

performance polynomial (chosen in Step 4). Particularly,

it was chosen for a maximum settling time of less than

0.15 sec. and a damping factor greater than 0.9, defining the

desired performance region (26). Note that an auxiliary pole

must be added that does not affect the desired dynamics of

system to satisfy (9).

8 = s3 + [φ2] s
2 + [φ1] s+ [φo] (26)

The optimization problem is selected in step 5 and in step 6

is solved. In step 6(A), the cost function is defined as the

sum of controller gains and the parameter vector X contains

the controller gains, according to [35]. In step 6(B), the cost

function is defined as the sum of controller gains with the
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FIGURE 6. Flowchart of the robust controller design methodologies.
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FIGURE 7. The DC Microgrid board developed.

radio R and the parameter vector X contains the controller

gains and the radio of Chebyshev sphere.

The feasible solution X∗ (obtained in step 6) is verified

in step 7 in case of achieving it, advance to step 9, if not,

go back to step 2, where you must redefine the system’s

uncertainties. Then, the feasible solution is used to set the

control structure (step 8). In order to obtain the discrete

equivalent of the designed controller, the Tustin method

[40], [41], was used (Step 9) to perform the discrete approx-

imation, using as a selection criterion of sampling frequency

between 2 to 10 times greater than the frequency band of

system [40], sampling rate of 1 ms was chosen. Finally,

step 10 presents the generic form for obtaining the discrete

gains of the digital PID controller. The following equations

present discrete PID controller.

CPID(z) =
h0z

2 + h1z+ h2

z2 − 1
(27)

VI. DESCRIPTION OF EXPERIMENTS

The Integral Square Error (ISE) is used to assess the perfor-

mance of the proposed control strategy. In order to design

the controllers, the following (nominal) requirements are

chosen to regulate the output 1: settling time less or equal

than 0.1 sec. and damping factor greater or equal than 0.9.

To regulated the output 2 (PCPL), requirements are: set-

tling time less or equal than 0.05 sec. and damping factor

greater or equal than 0.9. Note that the dynamics of output

2 is faster than output 1, being this a necessary condition for

the power converter acts as a CPL.

The experiments compare the performance of the con-

trollers tuned by CCS, CKR and CPP methodologies using

PID control structure.

Table 2 shows each controller gains for the controllers

designed to regulated output 1 and 2. Note that only for

output 1, robust control methodology is used.

The DC MG system starts with CPL disconnected until

source subsystem achieves its steady state (cf. Table 1), then

the CPL is connected (t = 0.5 sec) causing a load disturbance

TABLE 2. Values of parameters for the designed controllers.

at the DC bus voltage. The brief description of the experi-

ments are presented as follow:

1) Positive variation of CPL power: When the DC MG is

operating in its steady state (8V and 0.3 p.u.), the sys-

tem is subjected to a positive variation of CPL power

(t = 1.0 sec.) within an amplitudes range from 0.1 to

0.5 [p.u.].

2) Negative variation of CPL power: The experiment

begins in the same way than the experiment described

in positive variation test until the DC MG system

achieves its steady state (8V and 0.3 [p.u.]). Then,

a variation in operating condition at CPL (PCPL) occurs

(t = 1 sec.), in order to obtain a considerable negative

variation, so the system will operate with the following

conditions: V o
C1

= 8 V and PCPL = 0.7 [p.u.]. After

that, the system is subjected to a negative variation of

CPL power (t = 1.5 sec.) within an amplitude range

from 0.1 to 0.5 [p.u.].

3) Positive and negative variation of CPL power: This

experiment evaluates the closed-loop performance for

positive and negative variation of CPL power. After the

multi-converter system reaches its steady state, a posi-

tive variation of 0.5 [p.u.] is performed at the operating

point of CPL power reference. Then, a negative vari-

ation of 0.5 [p.u.] is performed to return to the initial

condition.
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FIGURE 8. Source subsystem performance. (I) Positive variation of CPL
power. (II) Negative variation of CPL power.

These experiments aim to demonstrate that the proposed

robust controller is able to compensate oscillations caused

by a CPL at DC bus voltage when the system is submit-

ted to positive and negative variations of CPL power oper-

ating condition, maintaining the desired performance for

the uncertainty region and consequently different operation

points.

All the experiments are performed in experimental envi-

ronment through a DC MG of the prototype developed and

FIGURE 9. CPL performance. (I) Positive variation of CPL power.
(II) Negative variation of CPL power.

simulation environment using Matlab/Simulink. Fig. 7 shows

the system developed for the experimental study.

VII. ASSESSMENT OF RESULTS

A. SIMULATED TESTS

The simulated tests are performed as described in

Section VI. Figs. 8 and 9 show the simulated responses

performed in the DC MG system, using a PID control
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FIGURE 10. Simulated environment of DC microgrid with CPL power
variation. (a) Positive variation. (b) Negative variation.

with a positive and negative variation of CPL power,

respectively.

The DC MG system starts with CPL disconnected until

source subsystem achieves its steady state (see Table 1), then

the CPL is connected (t = 0.5 sec.) causing disturbance at

the DC bus voltage. When the DC MG system is operating

in its steady state (8V and 0.3 [p.u.]), the system is subjected

to a positive variation of CPL power (t = 1.0 sec.) as shown

in Figs. 8(I) and 9(I).

According to Figs. 8(II) and 9(II), the experiment

begins in the same way that the experiment described

in Fig. 8(I) and 9(I), until the DC MG system achieves its

steady state (8V and 0.3 [p.u.]). Then, a variation in operating

condition at CPL power (PCPL) occurs at t = 1 sec., thus the

system will operate with the following conditions: V o
C1

= 8V

and PCPL = 0.7[p.u.], after that, the system is subjected to a

negative variation of CPL power (t = 1.5 sec.).

Fig. 10(a) and Fig. 10(b) shows, respectively, the positive

and negative variation of CPL power in simulated environ-

ment, using a PID control structures.

The simulated results demonstrate that all controllers of

source subsystem can compensate oscillations at DC bus

voltage caused by CPL power variations. However, the inter-

FIGURE 11. The cost function ISE of system outputs when the DC
microgrid is subjected to CPL power variations. (a) Positive variation.
(b) Negative variation.

FIGURE 12. The control effort of simulated DC microgrid with CPL power
variations. (a) Positive variation. (b) Negative variation.

val robust (CCS Method) controller proposed in this paper

provides a better performance in comparison with robust con-

troller (CKRMethod) and classical controller (CPPMethod).
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FIGURE 13. Source subsystem performance under CPL power variation.
(I) Positive variation. (II) Negative variation.

Therefore, the impact of CPL power variations is reduced

when the CCS method is used, as shown by the ISE per-

formance indices in Figs. 11(a) and 11(b), ratifying the

robustness of the proposed methodology. Fig. 12 shows

the control effort of controllers of the DC MG system

for simulated tests, using a PID control structures. Note

that saturation of the control signal does not occur at

any time.

FIGURE 14. CPL performance. (I) Positive variation of CPL power.
(II) Negative variation of CPL power.

B. EXPERIMENTAL TESTS

The experimental tests are performed in the same way as

the simulated test. Figs. 13 and 14 show the experimental

responses performed in the DC MG system, using PID con-

trol with a positive and negative variation of CPL power,

respectively.

Fig. 15(a) and Fig. 15(b) shows, respectively, the positive

and negative variation of CPL power in experimental envi-

ronment, using PID control structures.
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FIGURE 15. Experimental test of DC microgrid under CPL power variation.
(a) Positive variation. (b) Negative variation.

FIGURE 16. The cost function ISE of system outputs when the DC
microgrid is subjected to CPL power variations. (a) Positive variation.
(b) Negative variation.

The experimental tests show that the robust proposed

(CCS) approach outperforms the robust (CKR) approach and

FIGURE 17. The control effort of experimental DC microgrid with CPL
power variations. (a) Positive variation. (b) Negative variation.

classical (CPP) approach for several values of CPL power

variations (PCPL).

Therefore, the controller proposed provides a better perfor-

mance with reduced oscillations at DC bus voltage in com-

parison with the classical controller (CPP) and the classical

robust controller (CKR).

Fig. 16 shows the comparison of ISE performance index

for the DC MG test system between robust and classical

approaches. For most of the operating values of PCPL , the ISE

indexes for CPP method show higher values in comparison

with CKR and CCS methods.

Although the controller of CPL does not change, different

performances can be observed (cf. Fig. 16(b)) due to the

oscillation in the DC bus voltage caused by CPL power

variations. Thereby, the controller of the voltage regulation

stage that better compensates for the oscillations will cause

less deterioration in the performance of the power control

stage.

The ISE index evaluates the impact of CPL power varia-

tions (PCPL) on system performance. Therefore, the robust

controller (CCS) shows the best performance for experimen-

tal test ratifying the robustness of the proposed approach.

Fig. 17 shows the control effort of controllers of the DC

MG system for experimental tests, respectively, using a PID

control structures under CPL power variations (PCPL). Note
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FIGURE 18. The integral square of control signal (ISCS) of experimental
tests when the DC microgrid is subjected to CPL power variations.
(a) Positive variation. (b) Negative variation.

that the saturation of the control signal does not occur at any

time.

The Integral Square of Control Signal (ISCS) for exper-

imental tests developed is shown in Fig. 18. Note that the

CCS method presents less variations of duty cycle in com-

parison of others approaches. The DC MG system obtained

less degradation in the control system performance when the

robust proposed controller regulates the DC bus voltage as

shown their ISCS performance indexes in Fig. 18.

Fig 19 shows the experimental evaluation performed in

the DC MG system, using a PID control based on CPP

approach. Fig 20 shows the experimental evaluation per-

formed in the DC MG system, using a PID control based

on CKR approach. Fig 21 shows the experimental evaluation

performed in the DC MG system, using a PID control based

on CCS approach.

Figs. 19 to 21 show the CPL power variation and the

voltage oscillations in the feeder converter by using the

classical control methodology and robust control methodolo-

gies, respectively. It is worth to note that the CCS approach

outperforms the other approach due to the minimum voltage

oscillation occurrence, in addition, the oscillation is quickly

corrected in comparison with the CPP and CKR approach,

FIGURE 19. DC MG system performance, using a PID control based on
CPP approach.

FIGURE 20. DC MG system performance, using a PID control based on
CKR approach.

FIGURE 21. DC MG system performance, using a PID control based on
CCS approach.

furthermore the CCS methodology presents the smaller volt-

age ripple than the CPP and CKR approach.

In order to ratify these results, the integral index of

this oscillation for all approaches was calculated, the CKR

approach presents 1.24 of the ISE value, the CPP approach

presents 1.62 ISE value and the CPP approach presents

2.16 ISE value, therefore, it was ratified that the CCS

approach outperforms the others approaches when there is

variation of a CPL power in the system.

VIII. CONCLUSION

This paper proposes a novel robust parametric control tech-

nique for designing fixed order robust controller, in order to

minimize oscillation effects caused by constant power load
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in a DC MG system, ensuring robust stability and robust

performance for an entire predefined uncertainty region.

The design procedure is based on RPC theory. The pro-

posed technique has been exhaustively evaluated in both

computational simulations as well as by means of physical

experiments performed in a DC MG board developed, using

PID control structures. The proposed robust controller (CCS

Method) performance is compared with a robust controller

(CKR Method) and a classical controller based on pole-

placement (CPP Method).

According to the results obtained via simulation and exper-

imentally, it is concluded that when the DC MG system is

subjected to a certain variation of CPL power (PCPL), the CCS

method more effectively compensates the oscillations at DC

bus voltage (VC1
) improving the performance of the whole

system as shown by the performance indicators obtained in

this work.

Therefore, the results indicate that the proposed robust

controller (CCS Method) is justified and present relevant

performance improvements in the DC MG control, offering

robust performance and stability.
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