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Novel roles for GAPDH in cell death and
carcinogenesis

A Colell*,1, DR Green2 and J-E Ricci*,3,4,5

Growing evidence points to the fact that glucose metabolism has a central role in carcinogenesis. Among the enzymes
controlling this energy production pathway, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is of particular interest.
Initially identified as a glycolytic enzyme and considered as a housekeeping gene, this enzyme is actually tightly regulated and is
involved in numerous cellular functions. Particularly intriguing are recent reports describing GAPDH as a regulator of cell death.
However, its role in cell death is unclear; whereas some studies point toward a proapoptotic function, others describe a
protective role and suggest its participation in tumor progression. In this study, we highlight recent findings and discuss
potential mechanisms through which cells regulate GAPDH to fulfill its diverse functions to influence cell fate.
Cell Death and Differentiation (2009) 16, 1573–1581; doi:10.1038/cdd.2009.137; published online 25 September 2009

Initially identified as a ‘simple’ glycolytic enzyme, glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH) is tightly regu-
lated at both transcriptional and posttranslational levels and
has numerous cellular functions ascribed to it.1,2 Among
these, the role of GAPDH in cell death remains poorly
understood. Initially identified as a proapoptotic agent, it is
perhaps paradoxical that a majority of human tumors over-
express it. Recent findings underline its role in tumorigenesis,
as well as in tumor progression and cell survival. The aim of
this review is to provide an overview of howGAPDH functions,
how it can be modulated and its different roles in controlling
cell life and death.

GAPDH is a Multifunctional Protein

GAPDH is one of the enzymes involved in the ubiquitous
process of glycolysis. GAPDH specifically catalyzes the
simultaneous phosphorylation and oxidation of glyceralde-
hyde-3-phosphate to 1,3-biphosphoglycerate, using NADþ

as the electron acceptor. GAPDH comprises a polypeptide
chain of 335 amino acids. Structural studies identified two
regions, namely the glyceraldehyde-3-phosphate catalytic
site and the NADþ binding site, a primary structure known as
the Rossmann fold, which is also required for the activity of
other dehydrogenases.1 The glycolytic function mainly relies

on critical amino acids that include Cys152 and His179, and on
its tetrameric structure composed of four identical 37-kDa
subunits.1

Besides its conventional metabolic role, a number of
studies have identified the participation of GAPDH in diverse
cellular functions. Many of these roles are dependent on the
ability of GAPDH to bind different macromolecules in the cell.
Early reports first identified the fusogenic properties of
GAPDH,3 whereas subsequent observations showed its
physiological significance in endocytosis and nuclear mem-
brane assembly.4,5 Membrane transport between the endo-
plasmic reticulum and the Golgi complex has also been
described to require the binding of GAPDH to the small
GTPase Rab2 present in pre-Golgi intermediates.6 In addi-
tion, an association of GAPDH with microtubules seems to
have an essential role in tubulin bundling and cytoskeletal
dynamics.7,8 These studies show that ATP induces the
dissociation of the GAPDH tetramer and inhibits its bundling
activity.8 Recently, in vitro microtubule binding assays
showed that Rab2 associates with microtubules but only
when GAPDH and atypical PKCt are present.9 This associa-
tion stimulates the recruitment of the motor protein dynein,
which in turn regulates microtubule motility and cargo
transport.9

GAPDH also interacts with nucleic acids. Early studies
noted the high affinity of the enzyme for transfer RNA (tRNA),
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Barcelona, Spain. Tel: þ 00 34 93 363 8310; Fax: þ 00 34 93 363 8301; E-mail: anna.colell@iibb.csic.es or
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and its ability to discriminate between wild-type and tRNA
mutants that are defective in nuclear export, suggesting that
GAPDH may participate in tRNA export.10 Subsequent
studies have further characterized GAPDH as an RNA-
binding protein, with preference to AU-rich elements, and
localized the binding activity to the Rossmann fold of the
enzyme.11 Recently, these findings have been confirmed and
extended, demonstrating that, through this interaction,
GAPDH regulates mRNA stability and consequently controls
the expression of proteins, such as endothelin-112 and colony-
stimulating factor-1 (CSF-1).13

In addition to its cytosolic and membrane roles, GAPDH
shows several nuclear functions. It is part of the OCA-S
complex, a multicomponent Oct-1 coactivator that is essential
for S-phase-dependent histone-2B (H2B) transcription.14

GAPDH binds directly to Oct-1, is selectively recruited to the
H2B promoter in the S-phase and seems to have an intrinsic
activation domain that interacts with an as yet unidentified
component of the basal RNA polymerase II transcription
machinery.14 Studies in fission yeast showed that GAPDH
interacts with the Rbp7 subunit of RNA polymerase II, further
supporting its participation in transcription.15 Its role in DNA
repair was suggested by the observation that GAPDH
monomers exhibit a uracyl DNA glycosylase activity that is
cell-cycle regulated.16 Further studies designed to elucidate
cellular response to mercaptopurines showed the formation of
a DNA–protein complex containing GAPDH that binds
thioguanylated DNA and may act as a sensor of structural
DNA alterations.17 Moreover, it has recently been described
that GAPDH may have a protective effect on telomere length
after ceramide exposure.18

Mechanisms of GAPDH Regulation

The exact mechanisms by which GAPDH performs its
non-glycolytic functions remain largely obscure. The GAPDH
gene is localized on chromosome 12 in humans and on
chromosome 6 in mice, and encodes a single mRNA species
leading to the production of a single protein. Therefore, the
functional diversity of GAPDH is probably not the result of
differential RNA processing but is more likely a consequence
of posttranslational events.
Although GAPDH is widely used as an internal control, its

mRNA and protein levels vary in response to various stimuli.
Indeed, the GAPDH gene and protein are actively regulated
on cell proliferation.19–21 GAPDH is the target of different
transcription factors, and various control regions have been
identified in its promoter, including hypoxia and insulin-
responsive elements22,23 (Figure 1). In the context of cancer,
hypoxia is of particular interest. Tumor cells maintain a high
proliferation rate and consumption of nutrients and oxygen
that often overcomes the support capacity of existing local
blood vessels.24 As a result, areas with low oxygen develop in
most solid tumors,25,26 and cells have diverse mechanisms to
adjust to hypoxia. Although adaptation to an acute decrease in
oxygen levels is mainly mediated by reversible posttranscrip-
tional modifications such as phosphorylation, under chronic
deprivation, cells induce the expression of new genes that
allow the tumor to adapt to these stressful conditions. Hypoxic
gene transcription is mediated by various transcription

factors, including AP-1, NF-kB, CREB and p53, among
others. Particularly relevant is the transcription factor
HIF-1,27 of which more than 100 direct targets have been
identified. Among these, the expression of glycolytic en-
zymes,28,29 including GAPDH, is upregulated on oxygen
deprivation.30,31

Protein levels can also be affected by changes in degrada-
tion. GAPDH is among the 30% of soluble cytosolic cellular
proteins that contain a KFERQ amino-acid sequence that
targets those proteins for lysosomal degradation32 (Figure 1).
This process of chaperone-mediated autophagy is part of the
cellular quality control system that is essential for cellular
response to stress.33,34

However, the wide functional diversity of GAPDH cannot be
explained only by changes in protein levels; indeed, other
posttranslational events may have a key role in regulating
GAPDH glycolitic and non-glycolitic functions (Figure 1). In
one study, phosphorylation by the muscle-specific isoform
of Ca2þ /calmodulin-dependent protein kinase II increased
GAPDH glycolitic activity by 3.4-fold and allowed the
assembly of glycogen-mobilizing and glycolytic enzymes at
the sarcoplasmic reticulum (SR) membrane in response to
calcium signaling.35 It was suggested that this could serve to
modulate ATP and NADH levels at the SR, thereby allowing
the regulation of calcium transport processes. GAPDH
phosphorylation by PKCt/l has also been suggested to target
the enzyme to pre-Golgi intermediates, enhancing its partici-
pation in microtubule dynamics.6,36,37

GAPDH is a key redox-sensitive protein, the activity of
which is largely affected by covalent modifications by
oxidants at its highly reactive Cys152 residue. The protein is
inhibited when it undergoes S-nitrosylation by nitric oxide
(NO),38,39 NADþ covalent linkage on S-nitrosylation,39

nitroalkylation by nitrated fatty acids,40 S-glutathionylation
by gluthatione and by NO,41 as well as extensive oxidation by
H2O2 or peroxynitrite.42,43 These oxidative changes not only
affect the glycolytic function but also stimulate the participa-
tion of GAPDH in cell death (described in the next section).
Another level of regulation is the translocation of the

enzyme to the nucleus, which can be cell-cycle depen-
dent14,18 or triggered in response to cellular stress.44–49

Similarly, serum withdrawal was described to induce an
accumulation of GAPDH in the nucleus.50 However, in
contrast to other cell death stimuli, this nuclear translocation
is a reversible process that could be recovered on serum
addition, likely triggered by survival signals. Recently, a novel
exportin1 or chromosome region maintenance (CRM)1-
dependent nuclear export signal was identified in the
C-terminal GAPDH domain.51 Truncation or mutation of this
sequence abrogated CRM1 binding and caused nuclear
accumulation of GAPDH. Nuclear targeting can also be
modulated by posttranslational changes. O-linked N-acetyl-
glucosamine modifications of GAPDH (O-GlcNAcylation
mainly on Thr227) were reported as being able to disrupt the
tetrameric form, enabling its nuclear translocation52 (Figure 1).
This finding contrasts with that of Hara et al.,38 which
described that S-nitrosylation of GAPDH allowed binding with
Siah1, leading to the nuclear translocation of GAPDH
dependent on Siah1 NLS. However, as the interaction of the
O-GlcNAcylation form of GAPDH with Siah1 was not tested, it
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is conceivable that a common mechanism of Siah1-depen-
dent nuclear import of GAPDH may exist.
Overall, these data strongly support the notion that post-

translational changes ofGAPDHcan affect its cellular functions,
opening an important avenue that requires further work.

GAPDH as a Proapoptotic Agent

Evidence for the potential apoptotic role of GAPDH first came
from studies on cultured cerebellar neurons,46–48,53 in which
an increase inGAPDH levels and its subsequent translocation
to the nucleus preceded neuronal death induced by culture

aging or cytosine arabinonucleoside exposure. Antisense
oligonucleotides directed against GAPDH mRNA exerted a
protective effect, and either antisense treatment or incubation
with protein synthesis inhibitors prevented its appearance in
the nucleus.47,53 This suggested that nuclear GAPDH is
mainly derived from new protein synthesis andmay function in
cell death. These initial observations have been extended to
non-neuronal cells that are exposed to several apoptotic
stimuli (summarized in Table 1).
Nuclear accumulation of GAPDH precedes apoptotic

features that are antagonized by the overexpression of
Bcl-2.44,54 Once in the nucleus, GAPDH loses its catalytic

Figure 1 Regulatory mechanisms of GAPDH. Cellular GAPDH content is modulated by several biological processes (see inset). Its expression is highly dependent on the
proliferative state of the cell and can also be regulated by transcription factors, such as hypoxia-inducible factor 1 (HIF-1a), p53 or c-jun/AP1. Indeed, different control regions
have been identified on its promoter (HRE, hypoxia response element; IRE, insulin response element) that may regulate its levels in certain circumstances, such as low oxygen
supply. In the cytosol, levels of the glycolytic enzyme, which catalyzes the conversion of glyceraldehyde-3-phosphate (G3P) into 1,3-biphosphoglycerate (1,3-BPG), can be
affected by changes in its lysosomal degradation. Under conditions of cellular stress, chaperone-mediated autophagy is activated; GAPDH contains a KFERQ motif that is
selectively recognized by the chaperone heat shock cognate protein of 70 kDa (hsc70). This interaction targets the complex to the lysosomal membrane, where it binds to the
lysosome-associated membrane protein type 2A (LAMP-2A) that acts as a receptor for this pathway. At the posttranslational level, GAPDH can undergo different
modifications, which may determine some of its non-glycolytic functions. Tyrosine (Tyr) phosphorylation by the atypical protein kinase Ct/l (aPKCt/l) is required for its
association with Rab2 and for the transport between the endoplasmic reticulum and the Golgi complex. Hydrogen peroxide (H2O2) and nitric oxide (NO) both act on the active
site cysteine 152 (Cys). The irreversible oxidation of the Cys residue can be prevented by S-glutathionylation, in which the sulfydryl group (–SH) conjugates with glutathione
(GSH). S-nitrosylation facilitates its binding to Siah1 and also the translocation of the complex to the nucleus. In addition, GAPDH can undergo O-linked
b-N-acetylglucosamine glycosylation (O-GlcNAcylation) at threonine residues, which also may mediate its nuclear migration by disrupting the tetrameric conformation of the
enzyme. Once in the nucleus, GAPDH can participate in DNA repair mechanisms and in the transcriptional regulation of proteins, including ATG12 autophagy-related 12
homolog and histone H2B
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activity and becomes resistant to standard extraction proce-
dures.44,49 Further studies have shown that induction of cell
death is accompanied by the appearance of nuclear alkaline
forms of the enzyme distinct from cytosolic species.55

Although these findings would suggest the involvement of
novel GAPDH forms in cell death, it is worth noting that it has
also been described that the presence of basic forms of
GAPDH is cell-cycle regulated and exerts a protective role
against telomere shortening induced by ceramide or che-
motherapeutic agents.18 Thus, it is conceivable that the
participation of GAPDH in cell death may be determined by
other posttranslational events. Further support for the
existence of these regulatory mechanisms was the observa-
tion that apoptotic treatment markedly reduced sodium
nitroprusside-induced NADþ labeling of nuclear GAPDH,
suggesting that the active site of GAPDH may be covalently
modified, denatured or improperly folded.55 In this regard,
recent studies have shown that sustained exposure to
oxidants, through the formation of intermolecular disulfide
bonds, induced insoluble amyloid-like GAPDH aggregates
that promote cell death56 (Figure 2). This irreversible oxidation
can be prevented by protein S-thiolation, in which protein
sulphydryl groups form mixed disulfides with low-molecular-
weight thiols, such as glutathione.57,58 Moreover, studies in
Caenorhabditis elegans indicated that redox regulation of

GAPDH can counteract oxidative stress by repressing the
glycolytic pathway and consequently rerouting the metabolic
flux to maintain an optimal NADPH/NADPþ ratio, through
the pentose cycle.59 Strikingly, the redox-sensitive cysteine
residue of the glycolytic enzyme also has an essential role in
signaling pathways that sense oxidative stress in the
phospho-relay signaling of the fission yeast Schizosaccharo-
myces pombe60 (Figure 2). In this system, peroxide stress
signals are transmitted from Mak2/3 sensor kinases to the
Mpr1 histidine-containing phosphotransfer protein and finally
to the Mcs4 response regulator, ultimately activating a MAP
kinase cascade. In response to oxidative stress, the transient
oxidization of GAPDH facilitates its association with the Mcs4
response regulator, and this represents an essential step for
the interaction between Mcs4 and Mpr1.60

GAPDH has also been reported as a sensor of NO
stress.61,62 NO causes S-nitrosylation of GAPDH at its
active site, increasing the binding to Siah1 (an E3 ubiquitin
ligase)38,62 (Figure 2), the nuclear localization signal of which
mediates translocation of GAPDH. In turn, GAPDH in the
nucleus stabilizes Siah1, facilitating its degradation of
nuclear proteins.38,62 Further studies have shown that nuclear
S-nitrosylated GAPDH is acetylated at Lys160 by the
acetyltransferase p300/CREB-binding protein (CBP),63 which
enhances the ability of GAPDH to stimulate auto-acetylation

Table 1 Participation of GAPDH in cell death and carcinogenesis

Cell lines Stimulus Proposed mechanisms References

Participation in apoptosis
HEK293; Raw264.7;
cerebellar neurons

Staurosporin; LPS/IFNg; NMDA S-nitrosylation of GAPDH and
nuclear translocation

Hara et al.38

Cerebrocortical neurons Culture aging Increased expression of GAPDH Ishitani et al.45

Cerebellar neurons Culture aging; AraC; low K+ Increased expression of GAPDH
and nuclear translocation

Ishitani et al.46; Ishitani et al.47;
Saunders et al.48; Ishitani and
Chuang53; Saunders et al.55;
Ishitani et al.102

S49; primary thymocytes; PC12;
cerebrocortical neurons

Dexamethasone; NGF; culture
aging

Nuclear translocation Sawa et al.49

Neuroblastoma cells (mNB41A3);
R6 fibroblasts Staurosporin; MG132; H2O2;

FeCN
Nuclear translocation Dastoor and Dreyer44

Mesencephalic neurons MPP+ Nuclear translocation Fukuhara et al.103

Neuroblastoma cells (SH-SY5Y) Dopaminergic neurotoxin Nuclear translocation Maruyama et al.104

Hepatocytes TGF-b Nuclear translocation Barbini et al.105

HeLa NO donor (NOC18) Nuclear GAPDH aggregates Nakajima et al.56

Raw264.7; macrophages;
HEK293; neuroblastoma cells
(SH-SY5Y)

LPS/IFNg; NO donor (GSNO) Induction of p53 by GAPDH-
mediated activation of P300/CBP

Sen et al.63

Follicular thyroid cell; KTC2 TRAIL S-nitrosylation of GAPDH and
nuclear translocation

Du et al.66

HeLa; HEK293 Staurosporin; etoposide;
Lonidamine

GAPDH-induced mitochondrial
permeabilization

Tarze et al.67

Neuroblastoma cells (N2a) Mutant huntingtin (mHtt) GAPDH-mediated translocation
of mHtt

Bae et al.74

HT22 Ab peptides Disulfide-linkage and nuclear
accumulation of GAPDH

Cumming and Schubert76

Participation in carcinogenesis or protection from cell death
HeLa, primary MEFs Etoposide, staurosporine,

actinomycine D, oncogenes
Protection from CICD by glycolysis
increase and autophagy induction

Colell et al.87

K562, JURL-MK1 Imatinib mesylate Inhibition of CICD Lavallard et al.81

Jurkat, Molt4, primary ALL cells Prednisolone GAPDH downregulation sensitizes
resistant cells to treatment

Hulleman et al.95

NOSE.1, Hey GAPDH stabilizes CSF-1 mRNA Zhou et al.13

HCT116, DLD1, primary
lung fibroblastes (LF1)

Methyl methane sulfonate,
bleomycin

GAPDH interaction with APE1 Azam et al.97
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and catalytic activity of p300/CBP, and, consequently, down-
stream targets such as p53 are activated. Interestingly, both
Siah-1, with a specific p53 response element within its second
intron, and GAPDH have been shown to be upregulated by
p53,64,65 pointing to the existence of auto-amplifying loops.
The involvement of S-nitrosylation mechanisms in GAPDH-
mediated cell death is further supported by studies in thyroid
cancer cell lines in which S-nitrosylation and nuclear
translocation of GAPDH are observed after TNF-related
apoptosis-inducing ligand (TRAIL) exposure.66 Knockdown
of GAPDH with small-interfering RNA partially prevented the
apoptotic effect of TRAIL, although NO synthase stimulation
and production of NO were not attenuated.66

After cell death induction, GAPDH levels were also found to
apparently increase in the mitochondria;47,48 however, its role
within this organelle remains elusive. Recent studies in
isolated mitochondria have suggested that GAPDH interacts
with the voltage-dependent anion channel 67 (Figure 2),
inducing a cyclosporin A-inhibitable permeability transition
and the release of proteins, such as cytochrome c and

apoptosis-inducing factor.67 It is worth noting that these
observations are based on the use of exogenous GAPDH at
concentrations that may not reflect cellular levels. Indeed,
only a small portion of total cellular GAPDH is found in the
mitochondrial fraction after induction of cell death,47,48,67 and
therefore further work is required to confirm any direct role of
GAPDH in the intrinsic mitochondrial pathway of apoptosis.
Evidence links GAPDH to several physiopathological

models, particularly neurodegenerative disorders.68 Nuclear
GAPDH has been found in fibroblasts and in vulnerable
neurons of postmortem samples from patients affected with
polyglutamine-repeat disorders such as Huntington’s disease
(HD) or dentatorubral-pallidoluysian atrophy,69,70 as well as
from patients with Parkinson’s disease71 and Alzheimer’s
disease (AD).72,73 Moreover, studies suggest that binding of
the enzyme either to b-amyloid (Ab) peptides or to mutant
huntingtin, both directly involved in the development of these
age-related disorders (AD and HD, respectively), regulates its
cytotoxicity.74–76 In cell culture models, mutant huntingtin,
with polyglutamine tracts in the N-terminal region, elicits its
cytotoxicity through the nuclear migration of its N-terminal
fragments. Overexpression of GAPDH or Siah1 enhances
huntingtin nuclear translocation and cytotoxicity, whereas
GAPDH mutants that cannot bind Siah1 prevented the
translocation.74 Analyses of brain extracts from transgenic
AD mice coexpressing the mutated forms of human amyloid
precursor protein and presenilin-1 gene, or postmortem
samples from AD patients, showed the accumulation of
insoluble disulfide-linked multimers of GAPDH within neu-
rons.76 Furthermore, exposure of neuronal cells to Ab
promoted the formation of these insoluble aggregates of
GAPDH to a similar extent as that induced by oxidative
stress.56,76 Although Ab-mediated neurotoxicity occurs
through multiple biological pathways, the effect of Ab on
disulfide binding and the subsequent aggregation of an
abundantly expressed protein such as GAPDH are likely to
influence a number of these processes. Studies in cell lines
and animal models showed that the protective effect of anti-
dementia drugs, such as the cholinesterase inhibitors tacrine
or donezepil, and deprenyl, a selective monoamine oxidase B
inhibitor widely used in the treatment of Parkinson’s disease,
largely relied on their ability to interact with the GAPDH
apoptotic cascade.73,77 These results prompted a clinical trial
using the deprenyl derivative TCH346 in patients with
amyotrophic lateral sclerosis;78 however, the trial showed no
evidence of a beneficial effect on disease progression.

GAPDH as a Prosurvival Factor

Given its role as a proapoptotic agent, it is perhaps
paradoxical that GAPDH is overexpressed in most human
cancers. Dramatically elevated levels of glycolytic enzymes,
including GAPDH expression, were observed in most human
cancer types tested,79 and were often associated with
reduced survival.80–83 Since Warburg’s work in 1929, it has
been known that cancer cells frequently upregulate glucose
metabolism, resulting in a high uptake and use of glucose but
moderate rates of mitochondrial respiration under aerobic
conditions. Upregulation of glycolytic enzymes will lead to an
enhancement of cell metabolism that has been shown to

Figure 2 GAPDH participation in cell death. GAPDH can trigger oxidative
stress-mediated cell death. Exposure to oxidants or amyloid-b peptides (Ab)
induces an irreversible oxidation of cysteine residues that favor intermolecular
disulfide bonds and the subsequent formation of cytosolic aggregates. This
insoluble protein may ultimately promote cellular stress. Oxidative modifications can
also target GAPDH to the nucleus. S-nitrosylation of the enzyme increases binding
to Siah1, which mediates its nuclear translocation. GAPDH stabilizes Siah1,
enhancing the activity of this ubiquitin ligase and the proteasome-mediated
degradation of nuclear proteins. Nuclear GAPDH is acetylated by the p300/CREB-
binding protein (CBP), which in turn stimulates the catalytic activity of p300/CBP.
Consequently, downstream targets of p300/CBP, such as p53, can be activated and
cause cell death. GAPDH has been also localized in the mitochondria, in which its
binding to the voltage-dependent anion channel (VDAC) has been suggested to
promote the release of proapoptotic proteins, such as cytochrome c (CytC) and
apoptosis-inducing factor (AIF). In prokaryotes, the glycolytic enzyme has been
involved in signaling pathways that sense oxidative stress. The oxidation of GAPDH
facilitates its association with the Mcs4 response regulator, an essential step in the
phosphorelay signaling that ultimately activates a MAP kinase cascade

GAPDH, cell death and carcinogenesis
A Colell et al

1577

Cell Death and Differentiation



correlate with increased tumor aggressiveness and poor
patient prognosis in several cancers;84,85 however, the reason
for this switch in the cell energetic status is debated.86

In a recent study by Colell et al.,87 a novel role of elevated
GAPDH was suggested. In this study, the authors used an
unbiased genomic screen to identify proteins that protected
cells from caspase-independent cell death (CICD)88

(Figure 3). Apoptosis has a key role in suppressing onco-
genesis, but under some conditions in which apoptosis is
inhibited, a ‘back-up death mechanism’ can manifest.89 This
alternative form of cell death was defined as CICD.88 Both
apoptosis and CICD are triggered by mitochondrial outer
membrane permeabilization (MOMP).89 Therefore, cells that
resist cell death either do not undergo MOMP or have
mechanisms to block or avoid both forms of cell death
downstream of MOMP. Tumors frequently show such ‘down-
stream defects’, including mutation of caspases, lack of the
adapter Apaf-1 or overexpression of the endogenous caspase
inhibitor XIAP.90–92

Using a retroviral screen, GAPDH was identified as being
able to protect cells from cell death after MOMP only when
caspase activation was blocked or disrupted.87 GAPDH
mutants that discriminate between glycolytic and non-glyco-
lytic functions of the enzyme did not protect, but were effective
when expressed together, indicating that two separate
functions may be involved. One of these involves a novel role
for GAPDH in autophagy induction. On CICD induction,
GAPDH translocated to the nucleus, where it participated in
an upregulation of the autophagy protein ATG12.87 In support
of this, GAPDH upregulation induced by bacterial CpG motifs

in colon carcinoma cells was correlated with an increase in
autophagy in vitro and in vivo.93 The elevated ATP levels as a
result of glycolysis, and the function of autophagy to remove
damaged mitochondria, both coordinated by GAPDH,
cooperate in this protection toward CICD (Figure 3). However,
in this study, protection from CICD involved GAPDH over-
expression; therefore, further studies are required to unravel
the mechanism whereby GAPDH protects cells from CICD
under physiological conditions.
Very recently, under low-glucose conditions, GAPDH was

found to inhibit mTORC1 signaling in an AMPK-independent
manner by binding to Rheb.94 This is of particular interest in
the context of GAPDH protection from CICD, as mTORC1
inhibition causes autophagy induction (among other func-
tions). Therefore, investigating the role of mTORC1 signaling
in protection from CICD is of interest.
The role of GAPDH as an anti-death molecule was further

investigated in a model of chronic myeloid leukemia (CML)
showing resistance to imatinib mesylate treatment.81 Imatinib
mesylate is widely used for the treatment of patients with
CML, acting to induce apoptosis by counteracting Bcr-Abl
activity. In all, 20–25% patients develop resistance to imatinib
for several reasons, but so far, the best-characterized
mechanism is mutations in Bcr-Abl. Recently, imatinib was
found to induce both apoptosis and CICD, and some imatinib-
resistant cells showed a spontaneous overexpression of
GAPDH. Moderate knockdown of GAPDH did not affect
the cellular metabolism, but sensitized these resistant
cells to imatinib. Therefore, targeting GAPDH-mediated
protection from CICD may be an innovative way of sensitizing

Figure 3 GAPDH as a prosurvival factor. Evasion of apoptosis is one of the hallmarks of human cancers, which promote tumor formation and progression, as well as
treatment resistance. Signaling to cell death can be blocked by an increase in antiapoptotic molecules and/or by a decrease or defective function of proapoptotic proteins. The
mitochondrial pathway may be impaired by overexpression of anti-apoptotic Bcl-2 proteins, as well as by Bax mutations or epigenetic silencing of Apaf-1. In addition, activation
of downstream caspases can be blocked by high levels of IAPs (inhibitor of apoptosis proteins). However, besides caspase-dependent apoptosis, additional regulatory
mechanisms of non-apoptotic modes of cell death must also be considered. When caspase activity is blocked, the decrease in mitochondrial membrane potential (Dcm) and
function can result in caspase-independent cell death (CICD). Under these conditions, the increase in GAPDH levels inhibits cell death by simultaneously increasing ATP
levels through glycolysis and stimulating autophagy-mediated clearance of permeabilized mitochondria. The involvement of GAPDH in other cellular processes may also
contribute to its prosurvival role, including participation in DNA repair mechanisms, cell-cycle progression and mRNA binding and stability

GAPDH, cell death and carcinogenesis
A Colell et al

1578

Cell Death and Differentiation



imatinib-resistant CML patients.81 In this regard, a recent
study suggested that a modulation of GAPDH levels affects
prednisolone resistance in acute lymphoblastic leukemia
cells.95

Roles for GAPDH in tumorigenesis and tumor progression
are further supported by other studies. In ovarian cancer
metastases, a strong coexpression of CSF-1 and its receptor
was associated with poor prognosis,96 and GAPDH has
recently been shown to bind and stabilize CSF-1 mRNA in
this cell type.13 The authors speculated that one function of
GAPDH in ovarian cancer is to increase the levels of CSF-1,
an important cytokine in tumor progression.
Another protective role for GAPDH involves DNA repair and

response to cytotoxic drugs. GAPDH can physically interact
with APE1, an enzyme involved in the repair of spontaneous
or drug-induced abasic sites in damaged DNA.97 This
interaction results in a reactivation of APE1 endonuclease
activity, thus preventing genomic instability resulting from
aberrant structural changes caused by oxidative stress.
Therefore, GAPDH can function to safeguard the genome
by preventing APE1 inactivation on oxidative stress. Finally,
GAPDH was found to be involved in cell-cycle regulation by
modulating cyclin B-cdk1 activity, resulting in increased
mitoses and accelerated cell-cycle progression.98

Most cancer cells exhibit increased glycolysis and use this
metabolic pathway for ATP production. Therefore, inhibiting
glycolysis could be an efficient way of targeting tumor cells
while sparing normal tissue, and indeed several clinical trials
have shown promising results using glycolytic inhibitors such
as 2-deoxyglucose in combination with other anticancer
agents (reviewed in Pelicano et al.99 and Scatena et al.100).
Recent studies have shown that koningic acid, a selective
inhibitor of GAPDH, kills a broad range of highly glycolytic cell
lines through growth inhibition and CICD.101 Thus, under-
standing the biological functions of GAPDH beyond glycolysis
will likely improve our ability to effectively target this enzyme in
cancer therapy.

Concluding Remarks. There is mounting evidence that cell
death is initiated after the synthesis of a new GAPDH protein
and its subsequent nuclear appearance. However, the same
events have also been observed during cell proliferation and/
or transformation. Indeed, most cells exhibit some GAPDH
translocation to the nucleus on cell cycle, and some, such as
lymphocytes, naturally upregulate it on activation, without
dying. How can this paradox be reconciled? It may well be
that transformation requires that cells bypass a GAPDH-
mediated metabolic checkpoint. One possible model would
be that cells that normally derive energy from oxidation have
a GAPDH-mediated checkpoint that can kill them if, because
of sudden changes in signaling (indicative of transforming
events), they engage elevated glycolysis. However,
mechanisms must exist to overcome or bypass this in cells
that make such a shift as a part of normal physiology. One of
these might be linked to ROS production. GAPDH is a redox-
sensitive protein that is inactivated by ROS. Therefore, in
conditions that induce a mild ROS production (lymphocyte
activation), GAPDH upregulation may be protective for the
cell. However, in the presence of higher amounts of ROS,
such as those observed under conditions of mitochondrial

dysfunction, oxidation of Cys152 may lead to a GAPDH
inhibition, participating in cell death. As we know very little
regarding the manner in which GAPDH engages apoptosis or
prevents CICD, the actual mechanisms involved in the above
scenario remain obscure.
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