
RESEARCH ARTICLE Open Access

Novel significant stage-specific differentially
expressed genes in hepatocellular
carcinoma
Arjun Sarathi1 and Ashok Palaniappan2*

Abstract

Background: Liver cancer is among top deadly cancers worldwide with a very poor prognosis, and the liver is a
vulnerable site for metastases of other cancers. Early diagnosis is crucial for treatment of the predominant liver
cancers, namely hepatocellular carcinoma (HCC). Here we developed a novel computational framework for the
stage-specific analysis of HCC.

Methods: Using publicly available clinical and RNA-Seq data of cancer samples and controls and the AJCC staging
system, we performed a linear modelling analysis of gene expression across all stages and found significant
genome-wide changes in the log fold-change of gene expression in cancer samples relative to control. To identify
genes that were stage-specific controlling for confounding differential expression in other stages, we developed a
set of six pairwise contrasts between the stages and enforced a p-value threshold (< 0.05) for each such contrast.
Genes were specific for a stage if they passed all the significance filters for that stage. The monotonicity of gene
expression with cancer progression was analyzed with a linear model using the cancer stage as a numeric variable.

Results: Our analysis yielded two stage-I specific genes (CA9, WNT7B), two stage-II specific genes (APOBEC3B,
FAM186A), ten stage-III specific genes including DLG5, PARI, NCAPG2, GNMT and XRCC2, and 35 stage-IV specific genes
including GABRD, PGAM2, PECAM1 and CXCR2P1. Overexpression of DLG5 was found to be tumor-promoting contrary
to the cancer literature on this gene. Further, GABRD was found to be signifincantly monotonically upregulated across
stages. Our work has revealed 1977 genes with significant monotonic patterns of expression across cancer stages.
NDUFA4L2, CRHBP and PIGU were top genes with monotonic changes of expression across cancer stages that could
represent promising targets for therapy. Comparison with gene signatures from the BCLC staging system identified
two genes, HSP90AB1 and ARHGAP42. Gene set enrichment analysis indicated overrepresented pathways specific to
each stage, notably viral infection pathways in HCC initiation.

Conclusions: Our study identified novel significant stage-specific differentially expressed genes which could enhance
our understanding of the molecular determinants of hepatocellular carcinoma progression. Our findings could serve as
biomarkers that potentially underpin diagnosis as well as pinpoint therapeutic targets.

Keywords: LIHC transcriptomics, HCC stages, Stage-specific biomarkers, Differentially expressed genes, Pairwise
contrasts, Significance analysis, Linear modelling, Tumorigenesis, Cancer progression, Metastasis, Monotonic expression
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Background

Liver cancer is the second most deadly cancer in terms

of mortality rate, with a very poor prognosis [60]. It

accounted for 9.1% of all cancer deaths, and 83% of the

annual new estimated 782,000 liver cancer cases world-

wide occur in developing countries [13]. Liver cancer

showed the greatest increase in mortality in the last dec-

ade for both males (53%) and females (59%) [8]. Liver

hepatocellular carcinoma (LIHC) or simply hepatocellu-

lar carcinoma (HCC) is the most common type of liver

cancer, accounting for nearly 85% of liver cancers. 78%

of all reported cases of HCC were due to viral infections

(53% Hepatitis B virus and 25% Hepatitis C virus) [38].

There are several non-viral causes of HCC as well,

mainly aflatoxins and alcohol [10]. As shown in Fig. 1,

all the factors converge to a common mechanism of

genetic alterations that lead to the acquisition of cancer

hallmarks [20] and the eventual emergence of a cancer

cell [11]. Genetic alterations constitute the heart of the

problem, and studying changes due to these genetic

Fig. 1 Major causative pathways of hepatocarcinogenesis. All pathways converge to progressive genomic alterations, leading a normal cell to
acquire the hallmarks of cancer

Fig. 2 TCGA ‘Hybridization REF’ Barcode. The first 10 characters constitute an anonymized unique patient identifier and the following two
characters denote whether the sample is tumor or normal
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alterations is paramount to understand HCC. Earlier

gene expression studies using EST data detected differ-

ential expression in cancer tissue compared to non-

cancerous liver and proposed the existence of genetic

aberrations and changes in transcriptional regulation in

HCC [58]. The Cancer Genome Atlas (TCGA) research

network [41] have subtyped and identified many

potential targets for HCC based on a comprehensive

multi-omics analysis. An independent analysis of

TCGA RNA-Seq data encompassing 12 cancer tis-

sues has uncovered liver cancer-specific genes [37].

Zhang et al. [63] have performed mutation analysis

of HCC, and Yang et al. [59] combined TCGA ex-

pression data and natural language processing tech-

niques to identify cancer-specific markers.

The burden of disease and mortality rate are both in-

versely correlated with the cancer stage. The response

rate to therapy is also inversely correlated with stage. To

the best of our knowledge, there are no reported re-

search in the literature that have dissected the stage-

specific features of HCC. The cancer staging system is

based on gross features of cancer anatomical penetra-

tion, and one such standard is the American Joint Com-

mittee on Cancer (AJCC) Tumor-Node-Metastasis

(TNM) staging [2]. It is reasonable to hypothesize that

the stage-specific gross changes are associated with sig-

nature molecular events, and try to probe such molecu-

lar bases of stage-wise progression of cancer. We had

earlier published on stage-specific “hub driver” genes in

colorectal cancer [36]. A stage-focussed analysis of colo-

rectal cancer transcriptome data yielded negative results

vis-a-vis the AJCC staging system [25].

Methods

Data preprocessing

Normalized and log2-transformed Illumina HiSeq RNA-

Seq gene expression data processed by the RSEM pipe-

line [29] were obtained from TCGA via the firebrowse.

org portal [6]. The patient barcode (uuid) of each sample

encoded in the variable called ‘Hybridization REF’ was

parsed and used to annotate the controls and cancer

samples (Fig. 2). To annotate the stage information of

the cancer samples, we obtained the clinical information

dataset for HCC from firebrowse.org (LIHC.Merge_

Fig. 3 Design matrices. a In the linear modeling, the control
samples served as the baseline expression (intercept) of each gene
against which the stage-specific expression was estimated. b the
design matrix for the contrasts analysis

Table 1 Contrast matrix with control. Each stage (indicated by '1') is contrasted against the control (indicated by '-1') in turn
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Clinical.Level_1.2016012800.0.0.tar.gz) and merged

the clinical data with the expression data by match-

ing the “Hybridization REF” in the expression data

with the aliquot barcode identifier in the clinical

data. The stage information of each patient was

encoded in the clinical variable “pathologic stage”.

The pathologic stage is essentially the surgical stage,

prior to any treatment received, determined with the

tissue obtained at the time of surgery. This inter-

pretation is reinforced in the TCGA HCC sample in-

clusion criteria as follows: “Surgical resection of

biopsy biospecimens were collected from patients di-

agnosed with hepatocellular carcinoma (HCC), and

had not received prior treatment for their disease

(ablation, chemotherapy, or radiotherapy)” (The

TCGA [41]). The availability of this unequivocal in-

formation enables the analysis of cancer stages. The

substages (A,B,C) were collapsed into the parent

stage, resulting in four stages of interest (I, II, III,

IV). We retained a handful of other clinical variables

pertaining to demographic features, namely age, sex,

height, weight, and vital status. With this merged

dataset, we filtered out genes that showed little

change in expression across all samples (defined as

σ < 1). Finally, we removed cancer samples from our

analysis that were missing stage annotation (value

‘NA’ in the “pathologic stage”). The data pre-

processing was done using R (www.r-project.org).

Fig. 4 A Venn representation of the pairwise stages contrasts. A gene could be differentially expressed in any combination of the four stages and
this could be represented by a 4-bit string, one bit for each stage. For e.g., ‘1111’ at the overlap of all four stages would be assigned to genes
that are differentially expressed in all four stages

Table 2 Contrast matrix for inter-stage contrasts. There are six possible pairwise contrasts between the stages that are essential to
identifying stage-specific genes
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Linear modelling

Linear modelling of expression across cancer stages relative

to the baseline expression (i.e, in normal tissue controls)

was performed for each gene using the R limma package

[42]. The following linear model was fit for each gene’s ex-

pression based on the design matrix shown in Fig. 3a:

y ¼ αþ β1x1 þ β2x2 þ β3x3 þ β4x4 ð1Þ

where the independent variables are indicator variables of

the sample’s stage, the intercept α is the baseline expression

estimated from the controls, and βi are the estimated stage-

wise log fold-change (lfc) coefficients relative to controls.

The linear model was subjected to empirical Bayes adjust-

ment to obtain moderated t-statistics [34]. To account for

multiple hypothesis testing and the false discovery rate, the

p-values of the F-statistic of the linear fit were adjusted

using the method od Hochberg and Benjamini [22]. The

linear trend across cancer stages for the top significant

genes were visualized using boxplots to ascertain the regu-

lation status of the gene relative to the control.

Monotonic mean expression

The linear model in eqn. (1) would not be sufficient to

identify genes with an ordered monotonic trend of expres-

sion across cancer stages. Addressing this question would

also help assess whether monotonic changes of gene ex-

pression were observed with disease progression. Towards

this end, we designed a model of gene expression where

the cancer stage was treated as a numeric variable:

y ¼ aXþ b ð2Þ

where X takes a value in [0,1,2,3,4] corresponding to

the sample stage: [control, I, II, III, IV], respectively. It

Table 3 AJCC Cancer staging. The correspondence between the AJCC staging and the TCGA staging for LIHC is noted, along with
the number of LIHC cases in each stage in the TCGA dataset. Control indicates the number of normal tissue control samples, and
NA denotes cases where the stage information is unavailable
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Table 4 Summary of key demographic features of the dataset. For continuous variables (age,height, weight and BMI), the mean ±
standard deviation is given. BMI is calculated only for patients with both height and weight data

Table 5 Top 10 genes of the linear model. The log-fold change expression of the gene in each stage relative to the controls are
given, followed by p-value adjusted for the false discovery rate, and the regulation status of the gene in the cancer stages with
respect to the control
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was noted the mean expression of a gene could show

the following monotonic patterns across cancer stages:

(i). monotonic upregulation, where mean expression

follows: control < I < II < III < IV.

(ii).monotonic downregulation, where mean expression

follows: control > I > II > III > IV.

The sets of genes conforming to either (i) or (ii) were

identified to yield monotonically upregulated and mono-

tonically downregulated genes. These two sets were

merged, and the final set of genes with monotonic

changes of expression with cancer progression was ob-

tained. This final set was ranked by the adj. p-values

from the model estimated by eqn. (2).

Pairwise contrasts

To perform contrasts, a slightly modified design matrix

shown in Fig. 3b was used, which would give rise to the

following linear model of expression for each gene:

y ¼ β0x0 þ β1x1 þ β2x2 þ β3x3 þ β4x4 ð3Þ

where the controls themselves are one of the indicator

variables, and the βi are all coefficients estimated only

from the corresponding samples. Our first contrast of

interest, between each stage and the control, was achieved

using the contrast matrix shown in Table 1. Four contrasts

were obtained, one for each stage vs control. A threshold

of |lfc| > 2 was applied to each such contrast to identify

differentially expressed genes (with respect to the control).

We used the absolute value of the lfc, since driver genes

could be either upregulated or downregulated. Genes

could be differentially expressed in any combination of

the stages or no stage at all. To analyze the pattern of dif-

ferential expression (with respect to the control), we con-

structed a four-bit binary string for each gene, where each

bit signified whether the gene was differentially expressed

in the corresponding stage. For example, the string ‘1100’

indicates that the gene was differentially expressed in the

first and second stages. There are 24 = 16 possible out-

comes of the four-bit string for a given gene corresponding

Fig. 5 Boxplots of top 9 linear model genes. For each gene, notice that the trend in expression could be either overexpression or
downregulation relative to the control. For e.g., GABRD, PLVAP, CXorf36, CDH13 and UBE2T are overexpressed, while CLEC4M, CLEC1B, BMP10,
and CLEC4G are downregulated. It could be seen that a linear trend does not imply maximal |lfc| in stage 4, as illustrated most clearly in the case
of UBE2T
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to the combination of stages in which it is differentially

expressed. This is illustrated in set-theoretic terms in Fig. 4.

In our first elimination, we removed genes whose |lfc| < 2

for all stages. For each remaining gene, we identified the

stage that showed the highest |lfc| and assigned the gene as

specific to that stage for the rest of our analysis.

Significance analysis

We applied a four-pronged criteria to establish the signifi-

cance of the stage-specific differentially expressed genes.

(i). Adj. p-value of the contrast with respect to the

control < 0.001. The expression profile of a driver

gene in cancer samples would markedly depart

from that for the controls, which motivates the use

of a stringent threshold here.

(ii). (ii)-(iv) P-value of the contrast with respect to other

stages < 0.05. The use of a more relaxed cutoff would

improve the sensitivity of stage-specific detection.

To obtain the above p-values (ii) - (iv), we used the con-

trast matrix shown in Table 2, which was then used an an

argument to the contrastsFit function in limma.

Further analyses

Principal component analysis (PCA) were performed

using prcomp in R. To choose 100 random genes, we

used the rand function. Gene set enrichment analysis

were performed on KEGG (https://www.genome.jp/kegg/)

and Gene Ontology [5] using kegga and goana in

limma, respectively. In order to visualize outlier genes that

are significant with a large effect size, volcano plots could

be obtained by plotting the -log10 transformed p-value vs.

the log fold-change of gene expression. Heat maps of sig-

nificant stage-specific differentially expressed genes were

visualized using heatmap and clustered using hclust.

Novelty of the identified stage-specific genes was ascer-

tained by screening against the Cancer Gene Census v84

[14].

Results

The TCGA expression data consisted of expression values

of 20,532 genes in 423 samples. After the completion of

data pre-processing, we obtained a final dataset of expres-

sion data for 18,590 genes across 399 samples annotated

with the corresponding sample stage (available in Supple-

mentary File S1). The stagewise distribution of TCGA

samples along with the corresponding AJCC staging is

shown in Table 3. A statistical summary of demographic

details including age, sex, height, weight, and vital status is

shown in Table 4. The body mass index (BMI) distribution

was derived from patient clinical data that had both height

and weight (i.e, neither was ‘NA’). The average age of

Fig. 6 Boxplots illustrating stage-specificity of differentially expressed genes. Extremal expression in a stage could be either maximal expression or
minimal expression relative to the control and all other stages, and could be termed maximal differential expression. Here we show genes with
maximal differential expression in stage-I (WDR72; minimum expression), stage-II (GLI4, maximum expression; COLEC11, minimum expression),
stage-III (CKAP2; maximum expression), and stage-IV (MAPK11; maximum expression)
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onset of HCC was around 60 years, and the average BMI

was about 26, indicating a possible link with ageing-

associated pathology and obesity.

The dataset was processed through voom in limma to

prepare for linear modelling [28]. At a p-value cutoff of

0.05, 14,843 genes were significant for the linear model

given by eqn. (1). Even raising the bar to 1E-5, 9618

genes remained significant in the linear modelling, thus

implying a strong linear trend in their expression across

cancer stages relative to control. This was not entirely

surprising since one of the hallmarks of cancer pheno-

type is genome-wide instability [20]. The linear model-

ling highlighted top ranked genes, some upregulated in

HCC (GABRD, PLVAP, CDH13) and some downregu-

lated (CLEC4M, CLEC1B, CLEC4G). The lfc for each

stage with respect to control of top ten genes (ranked by

adjusted p-value) are shown in Table 5, along with their

inferred regulation status. Boxplots of the expression of

the top 9 genes (Fig. 5) indicated elevated expression

across cancer stages relative to control for up-regulated

genes, while depressed expression across cancer stages

relative to control was indicative of downregulated

genes. (Boxplots of all other genes in the top 200 are

provided in the Supplementary Fig. S1) It is worthwhile

to note that a given gene might have maximal differen-

tial expression in any stage (not necessarily stage 4), and

the linear trend does not suggest the order of expression

across stages (Fig. 6).

A PCA of the top 100 genes from the linear model

was visualized using the top two principal components

(Fig. 7a). A clear separation of the controls and the can-

cer samples could be seen, suggesting the extent of dif-

ferential expression of these genes in cancer samples.

Hence linear modelling yields cancer-specific genes ver-

sus normal controls, and the results for the all the genes,

including the top 100, are provided in order in Supple-

mentary File S2. For comparison, a PCA plot of 100 ran-

domly sampled genes (Fig. 7b) failed to show any

separation of the cancer and control samples.

To ascertain an ordered trend of expression across

cancer stages, the linear model given by eqn. (2) was fit.

At a p-value of 0.05, 14,127 genes were significant, and

raising the bar to 1E-5 still left 8032 genes significant. A

goodness of fit with eqn. (2) does not equate with a

monotonic trend of expression; i.e., a a gene with a sig-

nificant linear fit is not required to follow a monotonic

trend of mean expression with cancer stage. Using the

definition of monotonicity given in the Methods section,

we found 2109 genes showing strictly monotonic expres-

sion with the cancer stage and reaching maximum abso-

lute mean expression in stage IV. Each such gene was

annotated and ranked with the p-value from eqn. (2).

This yielded 1977 genes with significant (i.e, p-val < 0.05)

monotonic trends of mean expression across cancer

stages, with 1602 upregulated and 375 downregulated.

The top 20 such genes are presented in Table 6.

The results from the linear modelling were in contrast

with those obtained by Huo et al. [25] and were most

likely driven by an improved design and the inclusion of

51 controls in our study. These positive results provided

the impetus to pursue stage-driven analysis. Given the

conventional AJCC staging, gene expression differences

would play a major role in driving the cancer progression.

To identify the stage-specific differentially expressed

genes, we applied the first contrast matrix (Table 2) and

constructed the four-bit stage string of each gene. Based

on the stage strings, we binned all the genes, and the

string-specific gene lists corresponding to all the partitions

in the Venn diagram (Fig. 4) is made available in Supple-

mentary File S3. The size of each such partition is illus-

trated in Fig. 8. We eliminated the 16,135 genes

corresponding to the stage string ‘0000’ (|lfc| < 2 in all

stages). To establish the significance of the remaining

genes, we applied the second contrast (Table 3) and

passed each gene through the four filter criteria. The grad-

ual reduction in candidate stage-specific genes as each cri-

terion was applied, is shown in Table 7. Only genes that

passed all criteria were retained as significant stage-

specific differentially expressed genes. We obtained 2

stage-I specific, 2 stage-II specific, 10 stage-III specific and

35 stage-IV specific genes (Table 8). Figure 9 shows the

volcano plot of these 49 stage-specific genes.

In view of the limited sample size for stage-IV and

consequent low power for rejecting false-positives, we

stipulated that each stage-IV specific gene would display

a smooth increasing or decreasing expression trend

through cancer progression culminating in maximum

differential expression in stage-IV. On this basis, we

pruned the 35 stage-IV specific genes to just the top ten

by significance in the linear modelling. This yielded a

total of 24 stage-specifc genes of interest.

A heatmap of the lfc expression of these stage-specific

genes across the stages was generated (Fig. 10a) and re-

vealed a systematic gradient in expression relative to

control, involving both downregulation and overexpres-

sion. The map was clustered on the basis of differential

expression (i.e, |lfc|) both across stages and across fea-

tures (i.e, genes) (Fig. 10b). It was seen that stage I genes

clustered together, stage II genes co-clustered with

NCAPG2 and DLG5 from stage-III, all the other stage-

III genes clustered together, while the stage-IV genes

formed two separate clusters. It was interesting to note

that GABRD emerged as an outgroup to all the clusters,

demonstrating its uniqueness.

To identify the biological processes specific to each

stage, we used the genes with maximal |lfc| in each stage

and performed a stagewise gene set enrichment analysis

on two ontologies, the GO and KEGG pathways. Salient
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results with respect to KEGG pathways are presented

below (Table 9) and the complete KEGG and GO results

are available in Supplementary Tables S1 and S2, re-

spectively. In stage I, we found the significant enrich-

ment of cell-cycle signaling pathways (Hippo, Wnt, HIF-

1), and viral infection-related pathways (cytokine-cyto-

kine receptor interaction, human papillomavirus infec-

tion, HTLV-I infection). In stage II, key signalling

pathways (Ras, MAPK) were aberrant. Two liver-specific

pathways, alcoholism and cytochrome P450 mediated

metabolism of xenobiotics were enriched, as well as

standard cancer pathways of bladder, brain, stomach,

and skin that might involve generic genetic alterations

necessary for cancer cell growth. In stage III, we noticed

the significant enrichment of Metabolic pathways that

summarize cellular metabolism. This might indicate the

metabolic shift needed by the cancer to grow and invade

neighboring tissues. Other salient significantly enriched

pathways pertained to increased cell cycle progression,

DNA replication, chemical carcinogenesis, p53 signaling

pathway and cellular senescence, all hallmark processes

critical to cancer progression. Stage IV gene set was sig-

nificantly enriched for bile-related processes (bile secre-

tion, primary bile acid biosynthesis), and ABC

transporters (possibly conferring a drug-resistant ad-

vanced cancer phenotype). A signaling pathway related

to diabetic complications was enriched as well, indicat-

ing the role of co-morbidities in driving liver cancer pro-

gression. The enrichment analysis of the top 100 genes

of the linear model is included in the Supplementary

Table S3.

Discussion

When differentially expressed genes are identified in a

two-class cancer vs control manner, the information about

stage-specificity of differential expression is lost. By apply-

ing our protocol, this information is recovered and avail-

able for dissection. The top linear model genes and all the

stage-specific differentially expressed genes (Table 10)

were analyzed with respect to the existing literature.

Top genes of linear models

Three C-type lectin domain proteins (CLEC4M,

CLEC1B, CLEC4G) were detected in the top ten genes

of linear model given by eqn. (1). Interestingly, this iden-

tical cluster of three genes was detected as the most sig-

nificantly downregulated liver cancer-specific genes in a

qPCR study of an independent cohort of 65 tumor-

normal matched cases [21]. On screening the top 200

linear model (1) genes against cancer driver genes in the

Cancer Gene Census, only four genes were found,

namely BUB1B, CDKN2A, EZH2, and RECQL4. The top

200 genes of the linear model given by eqn. (2) over-

lapped with 111 genes of linear model (1) and yielded

six genes from the Cancer Gene Census, namely BUB1B,

EZH2, CDKN2C, CANT1, POLD1, and STIL. Both

CDKN2A and CDKN2C are cyclin-dependent kinase in-

hibitors. CDKN2A was a member of the gene signatures

for HCC prognosis independently proposed by Gillet et

al. [16] and Yang et al. [59]. It was remarkable that

GABRD stood out as the top gene in both the linear

models, and with a monotonic order of expression with

the cancer stage. GABRD is discussed further in the sec-

tion on Stage-IV specific genes. A gene with a monoton-

icity of expression may be increasingly upregulated as

the cancer initiates, progresses and metastasizes, signal-

ling its oncogenic progression; or conversely, it may be

increasingly downregulated with the cancer stages, sig-

nalling the loss of tumor suppressor activity. Screening

the top 200 genes with monotonic expression against

Fig. 7 Principal components analysis of cancer vs control. a The first
two principal components of the top 100 genes from linear
modeling are plotted. It could be seen that control samples (red)
clustered independent of the cancer samples (colored by stage). b
The same analysis repeated with 100 random genes failed to effect
a clustering of the control samples relative to the cancer samples
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the Cancer Gene Census yielded a completely different

set of six genes: HSP90AB1, ALDH2, ESR1, PPP2R1A,

HIST1H4I, SEPT5. HSP90AB1, a heat shock protein and

molecular chaperone, was a key result of Xu et al. [56]

where it played a dual role, one in the set of 50 hub

genes correlated with Barcelona Clinic Liver Cancer

(BCLC) staging of HCC patients, and another, in the set

of 13 hub genes correlated with overall survival of HCC

patients. HSP90AB1 might have a significant role in the

aetiology of HCC, given that its expression is known to

be upregulated by hepatitis B virus encoded X protein

[31]. The monotonic changes in HSP90AB1 might fur-

ther facilitate its known roles in angiogenesis [19]. The

top 200 genes with monotonic expression had 15 genes

in common with the top 200 of linear model (1) and 16

genes in common with the top 200 of linear model (2).

However, only six genes were common to the top 200 of

all three (namely GABRD, PIGU, NDUFA4L2, CRHBP,

FLVCR1, TTC13; Fig. 11). NDUFA4L2 has been identi-

fied as a target gene of HIF-1 (hypoxia-inducible tran-

scription factor-1), and a key factor driving the

metabolic reprogramming in hypoxic micro-

environments [46]. Our findings established that not

only was NDUFA4L2 significantly overexpressed in

HCC (as noted in [27]), but its overexpression follows a

significant monotonic pattern across cancer stages, a

much stronger statement that would support the role of

NDUFA4L2 in driving HCC progression. Similarly, the

expression of CRHBP has been recently shown to be

negatively associated with the tumor size in HCC [55].

Table 6 Top 20 genes with significant monotonic patterns of expression. Intercept, Coefficient and Adj. p-value are from the linear
model given by eqn.(2). Status indicates monotonic upregulation (UP) or monotonic downregulation (DOWN). The genes are sorted
by significance (adj.p-value)
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Our study provides a more quantitative account of the

significant monotonic downregulation of CRHBP with

the HCC stage. Two proteins of the glycosylphosphati-

dylinositol (GPI) anchoring system, PIGU and PIGC,

were top genes with respect to significant monotonic ex-

pression (Table 6); of these, PIGU is a known bladder

cancer oncogene [18].

Stage-I specific DEGs (Fig. 12)

CA9 is a member of carbonic anhydrases, which are

a large family of zinc metalloenzymes that catalyse

the reversible hydration of carbon dioxide. Its ex-

pression in clear cell Renal carcinoma, but not in

functional kidney cells has gained attention for its

use as a pre-operative biomarker [30]. The WNT7B

protein is part of the Wnt family, a family of se-

creted signalling proteins. Elevated WNT7B in pan-

creatic adenocarcinoma has been found to mediate

anchorage independent growth [4]. Surprisingly, both

CA9 and WNT7B are downregulated in HCC, most

so in stage-I, contrary to their role in other cancers.

A concrete interpretation of the role of these genes

in HCC awaits appropriately designed experimental

studies.

It is pertinent to ask the following question here:

which genes are essential for the initiation of HCC?

Fig. 8 Venn illustration of the size of each 4-bit string. The numbers of genes with each pattern of differential expression are shown

Table 7 Number of genes in each step of the significance analysis. Differential expression is defined with respect to a threshold
|logFC| = 2. Significance analysis proceeds first by significance (i.e, p-value) with respect to control, followed by p-value in each
possible pairwise contrast between the different stages. Exclusive DE genes refer to genes differentially expressed in only one of the
four stages (corresponding to the bit strings '1000', '0100', '0010' and '0001')
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Clearly these genes would be differentially expressed in

stage I relative to control. All significantly differentially

expressed genes with maximal |lfc| in stage-I would be

the best candidates for genes involved in the initiation of

HCC. These 122 genes are provided in the Supplemen-

tary File S3.

Stage-II specific DEGs (Fig. 13)

APOBEC3B, a DNA cytidine deaminase, is a known can-

cer driver gene in the Cancer Gene Census, but there

are no literature reports of its stage-specificity in any

cancer. It is known to account for half the mutational

load in breast carcinoma, and its target sequence context

Table 8 Final set of highlighted genes in each stage. The genes in each stage are ordered by increasing adjusted p-values of the
linear modelling analysis. Stage-IV specific genes with monotonic changes of expression correlating with disease progression are
highlighted
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Fig. 9 Volcano plot of the 49 significant stage-specific differentially expressed genes. Stage 1 genes, red; Stage 2, blue; Stage 3, green; and Stage
4, orange. The genes are seen to orient away from the origin and the axes, indicating significance and effect size

Fig. 10 Heatmap plots of the final 24 stage-specific genes. a heatmap generated from the lfc values of all the stage-specific genes (arranged
stagewise). The color gradient spans the spectrum from downregulation (blue) to overexpression (red). Log fold changes upto sixfold are seen,
indicating 64 times differential expression with respect to control. b Representation of the stagewise gene expression based on clustering of
differential expression profiles
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was found to be highly mutated in Bladder, lung, cervix,

neck, and head cancers as well [7]. Further studies have

attributed specific hypermutation signatures across all

cancers to the APOBEC family, including APOBEC3B

[1]. Here APOBEC3B is upregulated, increasing its cap-

acity to inflict the hypermutator phenotype, and

highlighting an intriguing stage-specificity in its action.

FAM186A polymorphisms have been reported in GWAS

and SNP studies on colorectal cancer patients and shown

to have a significant odds ratio in risk heritability [48].

FAM163A was a component of the 8-gene signature used

for the risk stratification of HCC patients [39].

Stage-III specific DEGs (Fig. 14)

C12orf48, also known as PARI, participates in the hom-

ologous recombination pathway of DNA repair, and its

overexpression has been reported in pancreatic can-

cer[35]. Further PARI was recently identified as a tran-

scriptional target of FOXM1 [62], which is a well-

validated upregulated gene in HCC [21]. DLG5 is a cell

Table 9 Gene set enrichment analysis. Stage-specific gene sets (all the differentially expressed genes, corresponding to row 'DE
genes' in Table 6) were analyzed for significant enrichment with respect to KEGG Pathways. Significance was based on p-value <0.05
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Table 10 Stagewise effect sizes and significance of stage specific genes. The stagewise log foldchanges of differential expression of
each candidate stage-specific gene in tumor samples relative to normal control samples are shown, along with significance values,
and its inferred regulation status. In stage-IV, only the top 10 genes are shown. The stage-specificity of the genes are emphasized
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polarity gene and its downregulation has been impli-

cated in the malignancy of breast [32], prostate [49] and

bladder cancers [65]. It has been recently found that

lower DLG5 expression is correlated with advanced

stages of HCC and essential for invadopodium forma-

tion, an event critical to cancer metastasis [26]. It is sur-

prising that our study has identified a stage-III specific

upregulation in DLG5. Interestingly, evidence is

emerging to lend support to our finding that DLG5

might be tumor-promoting. In a very recent review,

Saito et al. [43] reinterpreted published results on cell

polarity and cancer, and advanced an alternative per-

spective on the role of polarity regulators in cancer biol-

ogy. They argued that both cellular and subcellular

polarity would be regulated by DLG5 and related polar-

ity proteins. Subcellular polarity might improve the

Fig. 11 Boxplot of top genes with monotonic expression. These six genes (GABRD, PIGU, NDUFA4L2, CRHBP, FLVCR1, TTC13) showed monotonic
trends of expression across the cancer stages, and were topranked in both the linear models given by eqns. (1) and (2)

Fig. 12 Boxplot of stage-I specific genes. It is seen that CA9 and WNT7B are both maximally downregulated in stage-I
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cellular fitness for proliferation and stemness, thereby

causing tumor promotion. Hence cell polarity regulation

is anti-tumorigenic and subcellular polarity regulation is

pro-tumorigenic, and our analysis has uncovered the pro-

tumorigenic upregulated activity of DLG5. ECT2 encodes

a guanine nucleotide exchange factor that remains ele-

vated during the G2 and M phase in cellular mitosis.

ECT2 is found to be upregulated in lung adenocarcinoma

and lung squamous cell carcinoma [66], as well as in inva-

sive breast cancer [52]. NCAPG2 is a component of the

condensing II complex and involved in chromosome seg-

regation during mitosis. NCAPG2 level were found to be

increased in non-small cell lung cancer, and its over-

expression was found to be correlated with lymph node

metastasis, thus enabling the use of NCAPG2 as a poor

prognostic biomarker in lung adenocarcinoma [61].

GNMT is a methyltransferase that catalyses conversion of

S-adenosine methionine to s-adenosyl cysteine. In the ab-

sence of GNMT, S-adenosine methionine causes hyper-

methylation of DNA, which represses GNMT levels and is

found in HCC samples [24]. This is an epigenetic mechan-

ism for loss of function of tumor suppressors and our

study here confirmed the downregulation of GNMT ex-

pression. PRR11 is found to be over-expressed in lungs,

and its silencing using siRNA resulted in cell cycle arrest

and apoptotic cell death, followed by decreased cell

growth and viability [64]. A similar knock out experiment

of PRR11 in hilar cholangiocarcinoma cell lines resulted in

decreased cellular proliferation, migration, and tumor

growth [9]. WDHD1 is a key post-transcriptional regu-

lator of centromeric, and consequently genomic, in-

tegrity [23] and its overexpression has been identified

as biomarker of acute myeloid leukemia [53], and

lung and esophageal carcinomas [44]. C15orf42 has

been implicated in nasopharyngeal carcinoma [3].

ORC6L overexpression has been identified as a prog-

nostic biomarker of colorectal cancer possibly by

enhancing chromosomal instability [54]. XRCC2 was

found to increase locally advanced rectal cancer

radioresistance by repairing DNA double-strand

breaks and preventing cancer cell apoptosis [40].

XRCC2 was also highlighted in the gene signature for

HCC prognosis advanced by Gillet et al. [16].

Stage-IV specific DEGs (Fig. 15)

GABRD, which was the top gene in the linear models as

well, encodes for the delta subunit of the gamma-amino

butyric acid receptor. The GABA receptor family was

found to be frequently downregulated in cancers, except

for GABRD, which was found to be up-regulated. Gross

et al. [17] proposed that the GABA receptor gene family

might play a role in the proliferation independent differ-

entiation of cancer cells. GBX2 is part of the GBX gene

family, which are homeobox containing DNA binding

transcription factors. GBX2 is overexpressed in prostate

cancer and studies show that expression of GBX2 is re-

quired for malignant growth of human prostate cancer

[15]. PECAM1 overexpression has been linked to peri-

toneal recurrence of stage II/III gastric cancer patients

[47]. CEND1 has been identified as a cell-cycle protein

[50]. PGAM2 is a glycolytic enzyme whose upregulation

is essential for tumor cell proliferation [57]. NR1I2

downregulation has been used in constructing a prog-

nostic 9-genes expression signature of gastric cancer

[51]. GDF5 has been shown to be a downstream target

of the TGF-beta signaling pathway [33], stimulating

angiogenesis required for the growth and spread of the

cancer. GPR1 has been reported to be involved in pro-

moting cutaneous squamous cell carcinoma migration

[12]. Two other stage-IV specific genes, namely the

downregulated CXCR2P1, which is a C-X-C motif

chemokine receptor 2 pseudogene 1, and LOC25845,

are minimally documented in the literature in the

context of HCC, other cancers or any other

Fig. 13 Boxplot of stage-II specific genes. It is seen that both APOBEC3B and FAM186A are maximally overexpressed in stage-II, the trend
following an inverted U-shape
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condition. It is worth mentioning however that

CXCR2, a member of the GPCR protein family bind-

ing the interleukin IL8, has been reported as an ef-

fective non-invasive blood based biomarker for HCC

[45]. It is notable that ARHGAP42, a Rho GTPase

activating protein, was another key result of Xu et

al. [56], finding a place both in their set of 50 hub

genes correlated with the BCLC staging of HCC patients,

and in the set of 13 hub genes correlated with overall sur-

vival of HCC patients.Most of the stage-IV specific genes

show contra-regulation (i.e, no clear trend) across cancer

stages, and only 15 of the 35 genes revealed a monotonic

pattern of expression (highlighted in Table 8). The other 20

genes could be unique to the hallmarks of stage-IV cancer,

e.g., processes related to lymph node involvement and/or

metastasis.

Conclusion

We have developed an original protocol for the stage-

wise dissection of the HCC transcriptome. We were able

to successfully fit a linear model across cancer stages

and detected genes with a strong linear expression trend

in the cancer phenotype. These genes were found to ef-

fectively separate the control and cancer samples. We

Fig. 14 Boxplot of stage-III specific genes. Except for GNMT, the expression of stage-III specific genes show a peak in stage-III, with the expression
trend following an inverted U-shape across the stages. The expression trend is convex and reversed for the downregulated GNMT, with minimum
expression in stage-III
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were able to assign 2455 differentially expressed genes

into one of four stages and visualized their stage specific

expression using boxplots. Using a multi-layered ap-

proach, we were able to assess the significance of

each stage-specific DEG and narrowed down to a

handful of candidate significant stage-specific DEG’s.

Our analysis yielded two stage-I specific genes (CA9,

WNT7B), two stage-II specific genes (APOBEC3B,

FAM186A), ten stage-III specific genes (including DLG5,

NCAPG2, GNMT and XRCC2) and 35 stage-IV specific

genes (including GABRD and CXCR2P1). Though most

of these genes constituted novel findings in the context of

HCC, a comprehensive literature search indicated connec-

tions with other cancer conditions. The analysis of mono-

tonicity of expression has uncovered two genes with

documented HCC connection, namely NDUFA4L2 and

CRHBP. Correlation of our analysis with gene signatures

based on the BCLC staging system revealed two common

genes, namely HSP90AB1 and ARHGAP42. Our study

might deepen our understanding of the mechanistic basis

of HCC progression, and lay the foundation for the devel-

opment of HCC diagnosis and treatment strategies.

Translational research could transform our results into a

panel of biomarkers for early clinical decision-making and

Fig. 15 Boxplot of top 10 stage-IV specific genes. All genes, except NR1I2 and CXCR2P1, show a smooth increasing expression trend reaching
peak expression in stage-IV. In the case of NR1I2 and CXC2RP1, the trend is reversed, with the expression decreasing smoothly to touch the
minimum in stage-IV
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rational drug development. It is straightforward to extend

our computational methodology to the stage-based ana-

lysis of other cancers to obtain a fuller view of disease ini-

tiation, progression, and metastasis.
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