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Abstract Local feature matching is an essential compo-
nent of many image and object retrieval algorithms. Euclid-
ean and Mahalanobis distances are mostly used in order
to quantify the similarity of two stipulated feature vectors.
The Euclidean distance is inappropriate in the typical case
where the components of the feature vector are incommen-
surable entities, and indeed yields unsatisfactory results in
practice. The Mahalanobis distance performs better, but is
less generic in the sense that it requires specific training data.

In this paper we consider two alternative ways to con-
struct generic distance measures for image and object re-
trieval, which do not suffer from any of these shortcomings.
The first approach aims at obtaining a (image independent)
covariance matrix for a Mahalonobis-like distance function
without explicit training, and is applicable to feature vec-
tors consisting of partial image derivatives. In the second
approach a stability based similarity measure (SBSM) is in-
troduced for feature vectors that are composed of arbitrary
algebraic combinations of image derivatives, and likewise
requires no explicit training. The strength and novelty of
SBSM lies in the fact that the associated covariance ma-
trix exploits local image structure. A performance analysis
shows that feature matching based on SBSM outperforms
algorithms based on Euclidean and Mahalanobis distances.
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1 Introduction

Local descriptors are widely used in object-recognition and
image retrieval due to their robustness under occlusion, cer-
tain types of image transformations (translation, rotation,
zooming, up to some extent view point changes), and due
to their discriminative power. In order to avoid a large num-
ber of parameters, required by most of the popular de-
scriptors, we concentrate on differential invariant descrip-
tors [7–9, 12, 31]. These have additional conceptual advan-
tages, such as mathematical simplicity, and the possibility
to construct complete systems in a precise sense, i.e. sets of
differential invariants that provably capture all differential
structure up to some predefined order given some invariance
group, cf. Olver [28] and Florack [6].

In this paper we concentrate on what is perhaps the most
essential ingredient in any local feature based image and
object retrieval algorithm, viz. the construction of an effec-
tive (pseudo-)distance measure to quantify the similarity be-
tween two feature vectors. The effectiveness of a stipulated
feature set cannot be assessed without the consideration of
an associated similarity measure.

Since we consider sparse sets of local features, we first
need to define the interest points (in space and scale) that
serve as anchor points for these features. A wide range of
interest points has been proposed, such as Harris points
[16], Harris-Laplace regions [26], Hessian-Laplace regions
[26], DoG [24], Top-Points [29], etc. The second step is to
build a descriptor that characterizes (the immediate neigh-
borhood of) each interest point, which should be discrimi-
native and invariant to certain image transformations. This
multi-component local descriptor is what we call the fea-
ture vector. We will require (at least) invariance under
scale-Euclidean transformations, so that the proper set-
ting for interest points and feature vectors will be a scale
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space representation of the image, see e.g. Koenderink [17],
Witkin [33], Lindeberg [21, 22], and Florack [6].

There are numerous ways to compute descriptors based
on local image properties, such as pixel intensities, edges,
textures, etc. The most straightforward one, a vector of
neighboring image pixel values suffers from high compu-
tational complexity and low robustness to common inten-
sity changes. One group of approaches uses histograms to
represent some local characteristics of shape and appear-
ance. A straightforward one is the histogram of neighboring
pixel values. A more sophisticated descriptive histogram,
based on so-called intensity-domain spin images, was pro-
posed by Lazebnik et al. [20]. The authors consider a two-
dimensional histogram encoding the distribution of image
brightness values, where the two dimensions of the his-
togram are the distance from the center point and the inten-
sity value. Similar local histogram based approaches have
been proposed to capture shape characteristics, more pre-
cisely the edge distribution in the immediate neighborhood
of a pixel, such as the so-called geometric histogram pro-
posed by Ashbrook et al. [1], and the shape context by Be-
longie et al. [3].

Lowe [24] proposed the so-called scale invariant feature
transform (SIFT), a local descriptor also represented by a
histogram, in this case encoding the contextual gradient dis-
tribution. There are several more or less successful modi-
fications: rotation-invariant feature transform, or RIFT, by
Lazebnik et al. [20], PCA-SIFT by Yan and Sukthankar [34]
(which takes advantage of Principal Component Analysis),
Speeded Up Robust Features, or SURF, by Bay et al. [2], all
improving performance over the original approach in spe-
cific cases. This group of local and differential descriptors
(which will be described in more detail below), has been
evaluated by Mikolajczyk and Schmid [27].

Another major group of techniques is based on spatial-
frequency properties, such as Laws’ filter mask [19], dis-
crete cosine transform (DCT), wavelet transform, cf.
Unser [32], and Gabor filters [11]. These descriptors are
widely used in texture classification and their evaluation
is done by Grigorescu et al. [14], and by Randen and Hu-
soy [30].

In our research we focus on the feature vectors based
on derivatives computed at an interest point, presented in
Sect. 2.

In Sect. 4 we address distance. We show that in one par-
ticular case (using a specific set of differential invariants),
similar performance as for the Mahalanobis distance can be
reached without any training (Sect. 4.1). A more general ap-
proach to compute a distance measure is applicable to any
feature vector constructed from Gaussian derivatives taken
at the interest point [18], which shows improvement as com-
pared to Mahalanobis and Euclidean distances used in eval-
uations done by Mikolajczyk and Schmid [27]. This is the

subject of Sect. 4.2. The so-called stability based similarity
measure (SBSM) proposed in this section is based on the
analysis of local structure at the interest point, and therefore
uses a more appropriate covariance matrix than in case of
the globally defined Mahalanobis distance. The symmetry
property intrinsic to a genuine distance function is lost (al-
though this could easily be repaired by symmetrization, with
a computational prize), but this does not affect the match-
ing results. In fact, symmetry is not required conceptually,
as we have an asymmetry in the role of matched pairs; the
query object is considered a “ground truth” object, whereas
the object to be retrieved is allowed to exhibit some vari-
ability relative to this. Despite asymmetry of our measure,
we will adhere to the terminology of a “distance” for the
sake of simplicity.

The experimental results are presented in Sect. 5, using
the database and validation criterion discussed in Sect. 3.

We end with summary and conclusions in Sect. 6.

2 Differential Invariant Descriptors

Local image structure can be captured by the so-called lo-
cal jet [17], roughly speaking the set of image derivatives
computed up to some order. For brevity we indicate the var-
ious image derivatives by uk , k = 1, . . . , n, so that e.g. up to
second order we have n = 5 and u1 = ux,u2 = uy,u3 =
uxx,u4 = uxy,u5 = uyy . Differential feature vectors can
then be expressed as functions on the local jet {u1, . . . , un},
with n determined by the jet’s order and the dimension of
space, as follows:

di = di(u1, . . . , un), i = 1 . . .m. (1)

So each feature vector has m components, and, in principle,
each component depends on all n derivatives up to the pre-
scribed order. We consider several ways to build invariants
as functions of this type, and give their interpretations.

2.1 Cartesian Invariants

Once the local jet has been calculated, the differential in-
formation up to N th order (say) is available. However, the
jet’s components expressed relative to a coordinate system
are not invariant to mere changes of coordinates. One of the
ways to avoid this problem is to choose one particular, geo-
metrically meaningful coordinate system, and to compute
the local jet components (which are then invariants by con-
struction) as partial image derivatives relative this system.
Blom [4] and Florack et al. [8] proposed to use a gauge co-
ordinate system as a right handed local frame, in which one
axis (ordinate component: w) points in the same direction as
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the local image gradient, and the other axis (abscissa com-
ponent: v) is tangential to the isophote.

The N -jet at a given base point has a finite number of
independent degrees of freedom.

In 2D, e.g., the 3-jet generically consist of 9 Cartesian
invariants (intensity at the point is considered a 0-th order
differential invariant, so in the (v,w)-gauge system we have
u,uw,uvv, uvw,uww,uvvv, uvvw,uvww,uwww), the 4-jet
captures 14 invariants (viz. the foregoing plus uvvvv, uvvvw,

uvvww,uvwww,uwwww), and so forth. Note that (in 2D) this
number of Cartesian invariants is always 1 less than the
number of independent partial derivatives in an arbitrary co-
ordinate system, since uv = 0 identically, yet ux and uy are
generically independent. However, the selection of interest
points may, and will by definition, reduce this number fur-
ther by virtue of defining constraints among these invariants,
as we will see.

We construct the differential feature vectors in such a
way that they are invariant to certain transformations, no-
tably translation and rotation (the “trivial” prerequisite for
Cartesian coordinate invariance already considered above),
as well as zooming and linear intensity changes. In the
experimental part we consider sets of differential invari-
ants, evaluated at a top-point [29] of the image Lapla-
cian �u (at some implicit scale and position). For top-
points of the Laplacian image the following set of equations
holds:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂x�u = uxxx + uxyy = 0,

∂y�u = uxxy + uyyy = 0,

det H(�u) = (uxxxx + uxxyy)(uxxyy + uyyyy)

− (uxxxy + uxyyy)2 = 0.

(2)

Note that these identities are Cartesian invariant, and there-
fore also hold in the (v,w)-gauge, obtained by formal
replacement (x, y) → (v,w). This demonstrates the de-
pendencies among local jet components alluded to pre-
viously. More precisely, the local 3-jet is reduced by
2, and the local 4-jet by 3 degrees of freedom if an-
chored at these top-points. A further reduction by 1 de-
gree of freedom is obtained by normalizing the local jets
in such a way that invariance under grey-scale scalings
by a constant factor is realized. Thus in particular we
are left with 6 = 9 − 2 − 1 independent invariants for
the local 3-jet if we consider only Laplacian top-points
and insist on scale-Euclidean, linear grey-scale invari-
ance.

We collect the non-trivial, scaled and normalized scale-
Euclidean, linear grey-scale invariant differential invariants
up to third order into a feature vector. One possible repre-
sentation is given by (3), using Einstein’s summation con-

vention:1
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. (3)

Here ε is the Levi-Civita or permutation tensor defined in d

spatial dimensions as follows:

εi1i2...id =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if any two labels are the same,
1, if i1, i2, . . . , id is an even

permutation of 1, . . . , d,

−1, if i1, i2, . . . , id is an odd
permutation of 1, . . . , d.

(4)

So ε11 = ε22 = 0, ε12 = −ε21 = 1. This set is complete, in
the sense that there exists no other third order invariant (at
a Laplacian top-point!) that is independent of the entries
of (3). (One may alternatively consider the set of partial
derivatives in the (v,w)-gauge taking into account (2) and
linear grey-scale invariant normalization.)

2.2 General Grey-Scale Invariants

The invariants proposed by Florack et al. [9] are based on
the local isophote structure of an image. Isophotes are curves
(in 2D) of constant grey-value u in an image, and their shape
is invariant under the group of invertible intensity transfor-
mations, u �→ γ (u) with γ ′ �= 0.

By construction of the (v,w)-frame, the isophote can be
locally represented by the implicit function w(v) such that
u(v,w(v)) is constant, whence there exists an open neigh-
borhood � of the interest point, the origin (v,w) = (0,0)

say, such that

dn

dvn
u(v,w(v)) = 0 for all (v,w) ∈ �, (5)

for all orders n ≥ 1. Differential isophote structure can
now be captured by the local Taylor coefficients w′(0) ≡
0, w′′(0),w′′′(0),w′′′′(0), . . . of the isophote function,
which can be solved from (5). By construction these are
invariant under general (invertible) grey-scale transforma-
tions. The gauge condition, w′(0) ≡ 0, implies uv(0,0) = 0,
i.e. to first order grey-scale does not vary in isophote-tangent
direction. Solving (5) order by order produces the following

1That is, a sum over a spatial index of the type
∑d

i=1 Xii is condensed
into Xii .
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system of general grey-scale invariants up to fourth order:

w′(0) ≡ 0 (definition of (v,w)-gauge),

w′′(0) = −uvv

uw

,

w′′′(0) = 3
uvvuvw

u2
w

− uvvv

uw

,

w′′′′(0) = −3
uvv(4u2

vw + uvvuww)

u3
w

+ 6uvvuvvw + 4uvvvuvw

u2
w

− uvvvv

uw

.

(6)

(Extension beyond fourth order is straightforward, but won’t
be needed. It is tacitly understood that the image derivatives
on the right hand side are evaluated at the base point of in-
terest, (v,w) = (0,0). Gauge derivatives can be transformed
back to an arbitrary Cartesian coordinate system by a gra-
dient dependent rotation, cf. [9] for details.) The invariant
w′′(0) is the well-known isophote curvature.

A second set of general grey-scale invariants can be ob-
tained by considering flow lines (gradient integral lines, or-
thogonal to the isophotes), which are also invariant to in-
vertible grey-scale transformations. Both sets are mutually
dependent, for the flow lines are completely fixed by the
isophotes, vice versa. However, for fixed differential order
they do provide independent invariants.

Let the flow line be parameterized by

v(λ) =
(
v(λ)

w(λ)

)

(λ ∈ R), (7)

such that v(0) coincides with the origin, i.e. our base point
of interest. The unit tangent vector of a flow line is, by def-
inition, aligned with the gradient (a dot indicates differenti-
ation w.r.t. λ; we suppress the parameter λ henceforth in the
notation):

v̇ =
(

v̇

ẇ

)

= 1
√

u2
v + u2

w

(
uv

uw

)

. (8)

Note that ‖v̇‖ = 1 is a trivial invariant, unlike higher order
derivatives, which can be computed by using (8):

‖v̈‖ = uw
−1 |uvw| , (9)

‖...
v‖ = u−2

w

(
u4

vw + (uwuvww

+ uvw(uvv − 2uww))2) 1
2 , (10)

‖....
v ‖ = u−3

w

(
9u2

vw(uwuvww + uvw(uvv − 2uww))2

+ (uvw(6u2
ww + u2

vv) − 7u3
vw + u2

wuvwww

− 5uwwuvwuvv + uw(uvww(uvv − 3uww)

+ 3uvw(uvvw − uwww)))2) 1
2 , (11)

and so forth. The second order invariant ‖v̈‖ is the flow-
line curvature. Note that the third order derivative of the
isophote, recall (6), is expressed in terms of both isophote
and flow-line curvatures, as well as one third-order grey-
value invariant. This illustrates the dependencies that gen-
erally exist between the isophote and flow-line induced sys-
tems of differential invariants.

As a third order feature vector we may choose (again, the
base point of interest, corresponding to λ = 0, is implicit in
the notation henceforth)

(σw′′, σ 2w′′′, σ 2‖v̈‖2, σ 3‖...
v‖2),

and as a fourth order feature vector we may choose

(σw′′, σ 2w′′′, σ 3w′′′′, σ 2‖v̈‖2, σ 3‖...
v‖2, σ 4‖....

v ‖2).

In the terminology of (1), these feature vectors have lengths
m = 4 and m = 6, respectively.

2.3 Steerable Filters

We showed how to construct rotation invariant feature vec-
tors using gauge coordinates. Another approach was pro-
posed by Freeman and Adelson [10] in terms of steerable
filters.

The nth order directional derivative in the direction indi-
cated by the angle θ with respect to the x-axis is given by

u(n)(θ) = ∂n
θ u = (cos θ∂x + sin θ∂y)

nu. (12)

To obtain a set of nth order, we compute (n + 1) directional
derivatives oriented in the directions given by the angles θn,i ,
in which i = 0, . . . , n labels the n + 1 directions. The direc-
tions are

θn,i = iπ/(n + 1) + θg, (13)

where θg is any fixed orientation at the point (in our case, the
gradient direction). Invariance to linear intensity changes is
obtained by dividing the higher order derivatives by the gra-
dient magnitude, i.e. ‖∇u‖ = u′(θg). The nth order feature
vector is
(

σu′′(θ2,0)

u′(θg)
,
σu′′(θ2,1)

u′(θg)
,
σu′′(θ2,2)

u′(θg)
, . . . ,

σ n−1u(n)(θn,n)

u′(θg)

)

. (14)

In case of Laplacian top-points third order features are lin-
early dependent, therefore two of them should be dropped,
recall a previous argument. Again, scale factors have been
incorporated to ensure spatial scale invariance.
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3 Validation

In foregoing sections we have proposed different ways to
construct complete systems of differential invariants (up
to some predefined differential order) given an invariance
group. By virtue of completeness the specificities of a given
system (within the context of a stipulated invariance group)
are not important (complete systems can be represented in
many equivalent ways and all capture the same information),
but combined with a distance concept the choice of a partic-
ular one does become relevant. Apart from this, imposing
different invariance groups will obviously affect the poten-
tial power of a set of invariants for a particular retrieval task.
In this section we therefore propose a criterion for evaluating
the various systems of differential invariants under various
distance measures. The actual validation is postponed, and
is carried out in the respective subsections of Sect. 4, after
we have introduced the various distance measures.

3.1 Database

For the experiments we use a data set containing trans-
formed versions of 12 different magazine covers. The cov-
ers contain a variety of objects and text. The data set con-
tains rotated, zoomed and noisy versions of these magazine
covers as well as images with perspective transformations
(Fig. 1). For all transformations the ground truth is known,
which enables us to verify the performance of different algo-
rithms on the database. Mikolajczyk’s data set used in [26,
27] is, although more realistic, not suitable for our valida-
tion purposes, as we require ground truth for genuine group
transformations not confounded with other sources of image
changes, such as changes in field of view. To our knowledge
Mikolajczyk’s data set does not provide this.

3.2 Evaluation Criterion

We use a criterion proposed by Yan and Sukthankar [34]. It
is based on the number of correct matches and the number of
false matches obtained for an image pair. With a “match” we
generally indicate an established coupling between a query
and a scene object, which may or may not be correct, i.e. the
term as such is used here without the implicit connotation of
being correct. For the sake of definiteness we therefore also

refer to matched pairs in general as possible matches, to be
distinguished from the disjoint subsets of correct matches,
respectively false matches (the latter two according to some
available ground truth):

#possible matches = #correct matches

+ #false matches. (15)

The operational criterion for calling a match correct will be
discussed below. A false match is a possible match that is
not correct.

We couple interest points, i.e. we establish a (possible)
match, if the distance between their feature vectors is below
a certain threshold d . Note that since we know the trans-
formations we also know the ground truth for the matches.
Each feature vector from the reference image is compared
to each vector from the transformed image, and the number
of correct matches as well as the number of false matches
is counted. The threshold d is varied to obtain curves as de-
tailed in the next section. The results are presented with re-
call versus 1 − precision. Recall is the number of correctly
matched points relative to the number of ground truth corre-
spondences between two images of the same scene. A cor-
respondence refers to what we know from ground truth, and
indicates a pairing of an object and a scene point that has
either been found as a correct match, or should ideally have
been found but has been overlooked as such.

So,

recall = #correct matches

#correspondences
. (16)

Note also that

recall = #possible matches − #false matches

#correspondences
. (17)

The number of false matches relative to the number of pos-
sible matches is expressed, by definition, by 1 − precision:

1 − precision = #false matches

#possible matches
. (18)

In other words, using the previous definitions, (15)
and (18):

precision = #correct matches

#possible matches
. (19)

Fig. 1 A selection of data set
images. From left to right:
unchanged, rotated, added noise,
scaled, changed perspective
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(Note that recall and precision are independent quantities.)
The number of correct matches and correspondences is ob-
tained with an overlap error, ε, so as to allow for some tol-
erance in the true position of the target point and the one ob-
tained by transformation of the query point, for these (sub-
pixel) positions will in practice hardly ever be exactly equal.
The overlap error measures how well the points correspond
under a transformation H . It is defined by the ratio of the
intersection and union of two disks S1 and S2 with centers
in the interest points, x1 and x2, and radii given by the scales
of the points, σ1 and σ2,

ε = 1 − S2 ∩ HS1

S2 ∪ HS1
, (20)

where HS1 = {Hx|x ∈ S1}.
In case of transformations close to scale-Euclidean ones,

HS1 can be approximated by a disk, and areas of inter-
section and union can be computed analytically. We call a
match correct if the error ε in the image area covered by two
corresponding regions is less than 50% of the region union.
The number of correspondences in order to compute recall
in (16) is determined with the same criterion.

A perfect descriptor gives a recall equal to 1 for any pre-
cision. In practice, due to noise and transformations, the dis-
tance between two descriptors is almost never exactly zero,
so that the recall starts from some low value and increases
with increasing threshold. Horizontal curves indicate that
the recall is attained with a high precision and is limited by
the specificity of the scene. A slowly increasing curve shows
that the descriptor is more sensitive to image degradation. If
curves corresponding to different descriptors are far apart
and have different slopes, then the discriminative power and
robustness of the descriptors is different for a given image
transformation or scene type.

4 Distance

All definitions for the evaluation criteria in the previous sec-
tion require a quantitative descriptor for the similarity be-
tween two features, and this “distance” measure will cru-
cially affect evaluation results. Therefore we focus on an
operational distance concept in this section. We begin by
a discussion of some common distance measures and list a
number of deficiencies. Subsequently we make an attempt to
overcome these by introducing novel measures, and finally
we subject these to a performance evaluation.

The space of features is a vector space, but it is not ob-
vious how to introduce a norm because of the incommensu-
rability of the components. Similarity between descriptors
is usually computed with either the Euclidean or the Maha-
lanobis distance measure. The Euclidean distance,

ρEuclidean(d(1),d(2))2 = (
d(1) − d(2)

)T
(d(1) − d(2)), (21)

makes little sense in view of the heterogenic nature of fea-
ture vector components. In particular it does not take into ac-
count the fact that the components of (1) may be correlated,
nor that they are entities of possibly different dimensionali-
ties, as is e.g. the case with (3). Indeed, the naive Euclidean
distance performs very poorly in practice, as we will illus-
trate in Sect. 5.

A sensible similarity measure should take the correlation
of features into account. Recall that the Mahalanobis dis-
tance has been introduced precisely in order to achieve this:

ρMahalanobis(d(1),d(2))2 = (
d(1) − d(2)

)T

× C−1(d(1) − d(2)). (22)

The covariance matrix C is obtained from training data. In
principle, it is always possible to reduce computational time
by transforming the Mahalanobis distance into a Euclidean
distance via a suitably chosen system of Cartesian coordi-
nates:

C−1 = RT D−1R,

dnorm = D−1/2Rd,

ρMahalanobis(d(1),d(2)) = ρEuclidean(d
(1)
norm,d(2)

norm),

(23)

where D is a diagonal matrix and R is an orthogonal matrix.
The Mahalanobis distance gives better matching results,

but has three disadvantages, viz.

• need for supervised initialization: the Mahalanobis dis-
tance requires a covariance matrix C to be estimated from
training data;

• lack of genericity: the matrix C, and therefore perfor-
mance results will depend on the training set used;

• non-locality: the matrix C, and consequently the Ma-
halanobis distance, is an image independent entity and
therefore not optimally adapted to the local structure at
any feature point of interest.

We propose two ways to overcome these deficiencies, one
exploiting the local Taylor expansions at the base points of
the features (Sect. 4.1), and one which is akin to the con-
ventional Mahalanobis distance but obviates training, and
likewise takes into account the local structure at the fea-
ture points of interest (Sect. 4.2). In this case the covariance
matrix is obtained directly from the differential structure at
each interest point. The matrix can be obtained in analyti-
cal form and reflects the actual behavior of the descriptor
due to small perturbations. One could say that training by
explicit examples is replaced by a Gedanken experiment in
which the effect on the feature components of all hypotheti-
cal, local, additive noise perturbations with fixed variance is
taken into account in the realization (“analytical training”)
of a local covariance matrix. In the next sections we present
the details of these two approaches.
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4.1 Taylor Expansion

We follow and slightly adapt an approach previously pro-
posed by Griffin [13] and Loog [23] to compare neighbor-
hoods of two interest points. Let us represent the structure of
the image in a neighborhood of a point by the Taylor expan-
sion in a gauge coordinate system using a Gaussian window:

f (0,0)−1f (x, y) = 1 +
∞∑

n=1

n∑

i=0

1

i!(n − i)!fn,ix
iyn−i , (24)

in which

fn,i = f (0,0)−1 ∂nf (0,0)

∂xi∂yn−i
, (25)

x, y are gauge coordinates in the neighbourhood of the ori-
gin, i.e. the point of interest. In order to make it scale invari-
ant, we scale the local coordinate system at a feature point
by its scale coordinate in scale space:

(x′, y′) = σ−1(x, y).

The distance between two feature point neighbourhoods can
now be defined as the L2-norm of the difference of the two
corresponding Taylor expansions at the respective points,
windowed by a Gaussian aperture. If the scales correspond-
ing to the feature points’ scale coordinates are given by σ1

and σ2, respectively, and the images are denoted by f and

g, with scaled local Taylor polynomials f
(N)
1 and g

(N)
2 , then

(omitting primes on dummy variables)

IN =
∫ ∫ (

N∑

n=1

n∑

i=0

1

i!(n − i)! (σ
n
1 fn,i − σn

2 gn,i)x
iyn−i

)2

× �(x,y) dxdy (26)

with

�(x,y) = exp
(−(x2 + y2)

)
. (27)

The introduced distance is invariant to rotation, zooming
and grey-value scaling, for if we denote the right hand side
of (26) by

IN = ‖f (N)
1 − g

(N)
2 ‖2

�, (28)

then, by change of variables, respectively isotropy of �,

IR
N ≡ ‖f (N)

1 ◦ R−1 − g
(N)
2 ◦ R−1‖2

�

= ‖f (N)
1 − g

(N)
2 ‖2

�◦R

= ‖f (N)
1 − g

(N)
2 ‖2

� = IN , (29)

proving rotational invariance. Scale invariance follows in a
similar fashion (note that scaling spatial variables affects the

scale factors σ1,2 proportionally), whereas grey-value invari-
ance is manifest by dividing out the features’ zeroth order
Taylor coefficients in (25).

It is possible to compute the distance, (26), analytically,
and to recast it in a form akin to the conventional Maha-
lanobis distance:

IN =
N∑

i1=0

N∑

i2=0

N−i1∑

j1=0

N−i2∑

j2=0

(σ
i1+j1
1 fi1+j1,i1 − σ

i1+j1
2 gi1+j1,i1)

× Ci1j1i2j2(σ
i2+j2
1 fi2+j2,i2 −σ

i2+j2
2 gi2+j2,i2). (30)

Straightforward computation yields

Ci1j1i2j2 =

⎧
⎪⎨

⎪⎩

2π(j1+j2−1)!!(i1+i2−1)!!
i1!j1!i2!j2!

if i1 + i2 ∈ 2N ∧ j1 + j2 ∈ 2N,
0 otherwise.

(31)

Therefore comparing two neighborhoods by their windowed
Taylor series turns out to be equivalent to comparing two
feature vectors consisting of gauge derivatives scaled by in-
tensity at the center using a modified Mahalonobis distance.
But unlike the original Mahalonobis distance it does not re-
quire training data, and is therefore of a more generic nature.

The performance of differential descriptors consisting of
gauge coordinates is compared for three different distance
measures, Euclidean, the conventional, trained Mahalanobis
distance, and the modified one with the analytical covariance
matrix given by (31). The experiments were conducted for
different interest points, namely DoG points and top-points,
and for different image transformations. For all the cases
Euclidean distance performs very poorly, whereas both Ma-
halanobis distances perform approximately the same, al-
though neither does sufficiently well. The typical results for
one of the experiments, in which DoG points have been
taken as interest points and the image has been rotated over
45 degrees (worst case scenario), are shown in Fig. 2.

Because neither distance yields satisfactory performance
we turn to a novel, alternative distance measure in the next
section.

4.2 Stability Based Similarity Measure

The main deficiency that the newly proposed analytically
obtained Mahalanobis distance from the previous section
has in common with the conventional, experimentally ob-
tained Mahalanobis distance is that the covariance matrix,
recall (31), is a global measure, i.e. it does not depend on
local image structure at the feature points of interest. It is
also less versatile, since it is applicable to only one particu-
lar (albeit complete) representation of image structure, viz.
the local gauge derivatives up to some order, recall (30).

In this section we construct a second type of generi-
cally applicable, analytical Mahalanobis-like distance which



128 J Math Imaging Vis (2008) 31: 121–132

Fig. 2 Evaluation of different
distances in case of DoG points
and differential invariants for an
experiment of matching image
pairs under a 45 degree rotation

overcomes these drawbacks, but likewise does not require
any training. In this way we arrive at a distance measure that
meets all three requirements that were itemized in the be-
ginning of this section. To this end we introduce a stability
based similarity measure (SBSM) for feature vectors. In this
case the feature vectors may be composed of arbitrary al-
gebraic combinations of image derivatives. Despite the fact
that no training is involved in the SBSM, feature matching
based on SBSM is shown to outperform algorithms based
on Euclidean and the previously studied conventional and
analytical Mahalanobis distances.

4.2.1 Feature Vector Perturbation

We use a perturbation approach for the estimation of a
covariance matrix for each feature vector. We generically
model changes in the image due to rendering artifacts in-
duced by transformations, jpeg-compression effects, and
other sources of noise, as a zero-mean additive random im-
age perturbation. The distribution of the random value is
assumed to be the same for all pixels,2 and may be pixel-
correlated. The only thing we will ultimately need is the
variance of this distribution.

Recall the notational convention for local jet components
(partial image derivatives) introduced in (1). Due to linearity
of scale-space the perturbed local jet in the point is

{v1, . . . , vn} = {u1, . . . , un} + {n1, . . . , nn}, (32)

in which the first term on the right hand side models the un-
perturbed, and the last term the perturbations of the various
local jet components.

Let us rewrite (1) for the unperturbed and perturbed im-
ages in condensed form as

di = di(u), (33)

2This need not be quite realistic, but it is the order of magnitude of
perturbation that concerns us.

d̃i = di(v). (34)

Noting that according to (32) v = u + n, in self-explanatory
notation, the difference between the two descriptors,
(33–34), can be approximated by a Taylor expansion of (34)
around u up to first order in n:

�di = d̃i − di ≈
n∑

k=1

∂di

∂vk

∣
∣
∣
∣
vk=uk

nk. (35)

Therefore, the approximate covariance matrix � is given by
(note that 〈ni〉 vanishes)


ij = 〈�di�dj 〉

=
n∑

k=1

n∑

l=1

∂di

∂vk

∣
∣
∣
∣
vk=uk

∂dj

∂vl

∣
∣
∣
∣
vl=ul

〈nknl〉. (36)

The covariance matrix C = 〈nknl〉1≤k,l≤n of the noise deriv-
atives is given in the following Section. A statistical ap-
proach to obtain this matrix is considered by Markussen et
al. [25].

4.2.2 Gaussian Correlated Noise

For convenience, instead of linear indexing of the set of
derivatives ni in (32–36) we consider a more explicit double
index (nx, ny), where nx and ny correspond to powers of
derivatives with respect to x and y.

The momentum M2
mx,my,nx,ny

= 〈nmx,my nnx,ny 〉 of
Gaussian derivatives of orders (mx,my) and (nx, ny) of cor-
related noise in case the spatial noise correlation distance τ

(or rather
√

τ ) is much smaller than scale t is given by

M2
mx,my,nx,ny

� 〈n2〉
(

τ

2t

)(−1

4t

) 1
2 (mx+my+nx+ny)

× Qmx+nx Qmy+ny , (37)

with Qk given by Table 1. The proportionality constant 〈n2〉
is the variance of the noise function for the zeroth order im-
age. We refer to Blom et al. for a derivation and further
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Table 1 Some values of Qn

(Qn = 0 if n is odd) n 0 2 4 6

Qn 1 1 3 15

details [5]. Equation (37) summarizes the effect of zero-
mean additive, pixel-correlated noise on image derivatives
in Gaussian scale space, and thus implicitly on any alge-
braic combination of these. Thus it can be used to express
the sensitivity (degree of robustness) of the components of
a differential feature vector, which is what we are about to
exploit in order to arrive at the SBSM.

Let us take the correlation kernel to be roughly of one
pixel width corresponding to τ = δ2/4, where δ denotes
pixel size. Going back to the linear indexing of the n-jet,
for Gaussian derivatives of first and second order we then
obtain the following correlation matrix:

C = 〈ninj 〉1≤i,j≤5 =

⎛

⎜
⎜
⎜
⎜
⎝

4t 0 0 0 0
0 4t 0 0 0
0 0 3 0 1
0 0 0 1 0
0 0 1 0 3

⎞

⎟
⎟
⎟
⎟
⎠

δ2〈n2〉
(4t)3

, (38)

where (n1, . . . , n5) = (nx, ny, nxx, nxy, nyy), and the matrix
entries in (38) are labeled accordingly. This correlation ma-
trix together with (36) gives an approximation of the covari-
ance matrix of each local feature vector for given perturba-
tion variance and pixel size.

4.2.3 Similarity Measure

We define the similarity between feature descriptors d and
d0 in a similar way as for the Mahalanobis distance, except
that for every point d0 we insert its associated covariance
matrix, recall (36):

ρSBSM(d;d0) = (d − d0)
T 
−1

d0
(d − d0). (39)

Consequently, the function ρSBSM(d;d0) is not symmetric,
therefore it is not a distance in the strict sense. The reference
image d0 is considered to be the “ground truth”. The covari-
ance matrix and, as a consequence, the distance are propor-
tional to the constant δ2〈n2〉, i.e. the product of noise vari-
ance and pixel size. This constant is the same for all points
of the reference image and hence does not change the order-
ing of distances from some fiducial object point to the set of
all points of the reference image, whence the constant can
be omitted.

In the next section we subject the SBSM to an experimen-
tal test, and compare performances relative to all distance
measures introduced.

Fig. 3 Evaluation of different distances in case of DoG points, dif-
ferential invariants for 5% noise. 1: SBSM; 2: Euclidean distance; 3:
Mahalanobis distance

Fig. 4 Evaluation of different distances in case of top-points, differen-
tial invariants and 45 degree rotation. 1: SBSM; 2: Euclidean distance;
3: Mahalanobis distance

5 Experiments

In our experimental setting the distance between every
point from the reference image and every point from the
transformed one is calculated for the database presented in
Sect. 3.1. Two points are considered to be matched if the
distance ρSBSM, (39), between their feature vectors is be-
low a certain threshold d . The result obtained by varying
d is presented by a curve. The curve presents recall ver-
sus 1 − precision as a function of d . The covariance matrix
for the conventional Mahalanobis distance was obtained by
(intentionally) training on the data set itself, so that it may
be regarded “optimal” in the sense that no better results are
likely to be obtained in practice when using a different train-
ing set in the proper way.

Experiments were conducted with different choices of
image transformations (rotation, perspective changes, noise,
scaling), feature vectors, and interest points. For every pair
of images a recall versus 1 − precision curve is constructed,
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Fig. 5 Evaluation of different distances in case of top-points, steerable
filters and rotation plus zooming. 1: SBSM; 2: Euclidean distance; 3:
Mahalanobis distance

and then the mean curve over 12 pairs of images is com-
puted. In all the experiments usage of SBSM improved the
performance. Here we present three typical examples. Fig-
ure 3 depicts SBSM, Euclidean and Mahalanobis curves in
case of 5% noise, where differential invariants are used in
Difference-of-Gaussian points [24]. In Fig. 4 top-points [29]
are used as interest points and differential invariants as fea-
tures for the worst-case 45 degree rotation experiment. Fig-
ure 5 depicts results of using steerable filters at top-points
for image rotation and zooming. As might be expected, in
all these cases the use of the inappropriate Euclidean dis-
tance yields the worst performance. SBSM, on the other
hand, clearly improves performance of the feature vectors
as compared to all other measures.

In order to indicate the practical use besides improved
performance of differential invariant type of feature vectors,
consider Fig. 6. An advantage of SBSM is the possibility of
using it in order to threshold interest points with very unsta-
ble and therefore unreliable feature vectors. In this experi-
ment we use the determinant of the covariance matrix as a
criterion.

6 Summary and Conclusions

In this paper we have focused on descriptive feature vectors
based on derivatives computed at a set of interest points.
These descriptors have very small dimensionality, e.g. in
comparison to the popular SIFT representation the dimen-
sionality of a feature vector is an order of magnitude lower.
Differential features admit a clear geometric interpretation,
as they represent local image structure. They are easy to im-
plement and fast to compute [15].

We have considered two novel ways to construct a
generic distance measure for the quantitative comparison

Fig. 6 Evaluation of differential invariants (with SBSM) and SIFT for
top-points and 50% zooming. In case of differential invariants (Dif Inv)
also a reduction to 50% and 25% of the most stable features has been
considered, as indicated in the legend

of feature vectors. The first approach yields a generic, an-
alytical covariance matrix for a Mahalanobis-like distance
function that obviates training and yet turns out to give the
same performance as for the standard approach using experi-
mental training on a restricted class of images. The resulting
distance measure has, however, the disadvantage of being
less versatile (it only applies to feature vectors consisting of
image derivatives up to some order), and it does not exploit
the particular local structure at each feature. This has led us
to our second approach, in which we have introduced a new
stability based similarity measure (SBSM) for feature vec-
tors consisting of arbitrary algebraic combinations of image
derivatives. The algorithm is based on a perturbation ap-
proach and uses properties of noise propagation in Gaussian
scale-space. Besides being more versatile it exploits the lo-
cal structure of the image at each feature point.

In comparison to the other distance measures, experi-
ments confirm that the use of SBSM leads to a clear im-
provement in performance for different choices of inter-
est points, different combinations of derivatives and several
transformations.

The advantage of the proposed approach is that a lo-
cal SBSM covariance matrix describing the stability of the
feature vector can be predicted theoretically on the basis
of the local differential structure, so that no training data
are required. In fact one could say that the analytical noise
model underlying the SBSM replaces the role of training.
This makes SBSM generically applicable to a broad range
of image and object retrieval tasks. Another advantage of
SBSM is the possibility of using it in order to threshold
interest points with very unstable and therefore unreliable
feature vectors. One can think of eigenvalues of the co-
variance matrix as a criterion. This at the same time al-
lows one to reduce the amount of data stored as well as
computational time needed for matching. A drawback of
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SBSM is the necessity to store a covariance matrix for every
point of the reference image. But even with the necessity
to store such a matrix, the dimensionality of the descrip-
tive data per point remains significantly lower in comparison
to SIFT.

As a final remark we note that, although a machine learn-
ing method trained on any specific set of training images
may outperform any generic algorithm in object retrieval
tasks, the latter can naturally cope with a general variety of
images of which no examples are a priori available. It goes
without saying that being in possession of additional knowl-
edge about the object retrieval task might be exploited to
improve performance, but recall that our intention has been
explicitly not to account for any specific prior knowledge.
It is, however, not clear to us how one should incorporate
such prior knowledge into our locally defined Stability based
Similarity Measure.
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